
Automatic Validation of Code-Improving Transformations on
Low-Level Program Representations∗

Robert van Engelen, David Whalley, and Xin Yuan
Department of Computer Science, Florida State University, Tallahassee, FL 32306

Abstract

This paper presents a general approach to automatically validate code-improving transformations on
low-level program representations. The approach ensures the correctness of compiler and hand-specified
optimizations at the machine instruction level. The method verifies the semantic equivalence of the pro-
gram representation before and after a transformation to determine the validity of the transformation,
i.e. whether the instance of the transformation is semantics preserving. To verify that the transformation
is semantics preserving, the method derives semantic effects from the sequence of low-level instruc-
tions that span the execution paths affected by the transformation. The semantics are preserved if the
normalized semantic effects derived from the code before and after the transformation are proven to
be identical. A validating compilation system was implemented that is able to validate basic changes
comprising instruction insertions, modifications, and deletions, to more powerful transformations that
modify the branch structure of a function in a program.

1 Introduction

Software is being used as a component of an increasing number of critical systems. Ensuring that these
systems execute correctly is vital. Because software is incorporated in an increasing number of critical sys-
tems, there is a need to ensure that compilers produce machine code that correctly represents the algorithms
specified at the source code level. This is a formidable task since an optimizing compiler translates a source
code program to machine code while applying hundreds or thousands of compiler optimizations to even a
relatively small program.

To ensure that a compiler produces correct machine code, compiler developers must guarantee that all
compiler optimizations are semantics preserving. Proving the correctness of optimizing transformations is
a challenging problem in general [8, 11, 12, 16, 17, 20, 21, 23, 24]. Compiler optimizations are often quite
complex in terms of the computational power of the analysis algorithms used for detecting opportunities for
optimizations and the intricacy of the code transformations applied to exploit specific architectural features
of a target machine. The problem of proving the semantics preserving property of optimizing transforma-
tions is exacerbated for embedded systems development [26], where often either applications are developed
in assembly code manually or compiler-generated assembly is modified by hand to meet speed and/or space
constraints. This is an important problem for embedded system developers, because the cost of malfunc-
tioning software in embedded systems is huge. For example, single chip designs featuring on-chip program
code do not support the installation of software updates when an error is discovered after production.

∗This work was partially supported by NSF grants, CCR-9904943, EIA-0072043, CCR-0073482, CCR-0105422, CCR-
0208892, and by DOE grant DEFG02-02ER25543

There has been much work done in the area of attempting to prove the correctness of compilers [11,
12, 16, 17, 23]. However, proving the correctness of production-quality compilers that apply complex and
intricate optimizations has been found to be difficult or impossible in many cases. More success has been
made in the area of validating compilations rather than proving the correctness of the compiler itself [8,
20, 21, 24]. Therefore, it is perceived that proving the semantics preserving property of the instance of a
transformation is more practical.

This paper follows the latter approach and presents a general method to automatically validate code-
improving optimizations on low-level program representations by verifying the correctness of the compi-
lation process at the machine instruction level. This ensures the correctness of compiler optimizations and
hand-specified modifications of the code. The method verifies the semantic equivalence of the program
representation before and after a transformation to determine the validity of the transformation, i.e. whether
the rule instance of the transformation is semantics preserving. Each transformation may consist of a fixed
sequence of simple atomic modifications to the code, such as instruction insertions and deletions, to achieve
one optimization. The intermediate stages of such a sequence of atomic modifications may not be required
to be semantics preserving, but it is assumed that the end result of the sequence of modifications, constitut-
ing one optimizing transformation, preserves the semantics of the code. To verify the semantics preserving
property of a transformation, the method derives a set of semantic effects from the sequence of low-level
instructions that span the execution paths affected by the transformation. The semantics are preserved if the
semantic effects of the code before and after each transformation are identical. A validating compilation
system was implemented that is able to validate basic changes comprising instruction insertions, modifica-
tions, and deletions, to more powerful transformations that modify the branch structure of a function in a
program.

This paper is an updated and extended version of two earlier publications. The idea to validate opti-
mizing transformations using semantic effects was first introduced in [24]. A second paper [26] describes
the applicability of the approach to validate the optimization of embedded software using an interactive
compilation system for code development.

The remainder of this paper is organized as follows. An overview of compiler validation methods and
related work is presented in Section 2. In Section 3 the register transfer list notation is introduced for
representing low-level machine instructions. Section 4 presents an introduction to modeling semantics of
low-level instructions using register transfer lists, where the model is based on the strongest postcondition
from Hoare logic. Section 5 describes the algorithms and implementation of the automatic compiler val-
idation system and results on a number of benchmark programs are presented in Section 6. The paper is
summarized with some concluding remarks in Section 7.

2 An Overview of Compiler Validation Methods and Related Work

Previous work on compiler validation attempted to prove the correctness of compilers [11, 12, 16, 17, 23].
However, more success has been made in the area of validating compilations [8, 20, 21, 24].

Thecredible compilationapproach [21] attempts to validate code-improving transformations on an in-
termediate machine-independent representation, but uses a different approach from the one described in this
paper. The compiler writer determines the appropriate type ofinvariantsfor the analysis and transformation
of each different type of code-improving optimization and the compiler automatically constructs a proof
for these invariants for each optimization. While this approach is quite powerful, it puts a burden on a
compiler writer to correctly identify the types of changes associated with each optimization and to specify
the appropriate invariants that need to be proven correct. In addition, the invariants are assumed to be cor-

2

rect. Otherwise, incorrect optimizations may pass a proof of correctness based on incorrect invariants (false
positives) and correct optimizations may be rejected (false negatives).

The work most closely related to ours is by Necula [20]. The method calculates a symbolic state of
eachbasic block[1] and then uses equivalence relations to prove that two blocks are equivalent when the
symbolic states of blocks before and after a transformation are identical. His work demonstrates that most
optimization phases can be validated during the compilation of thegccsource code by thegcccompiler itself.
However, the validation system is not able to validate transformations that change thebranch structureof
thecontrol flow graph(CFG) [1], which is caused by transformations that optimize thecontrol flowof the
code and other optimizations that span multiple basic blocks in the CFG. This work differs from ours in
that it is more restrictive. The approach presented in this paper can validate transformations that change the
branch structure of the CFG.

Closely related is the work on provingsemantic equivalenceof textually different source programs.
Bergstra [5] developed a method based on normal forms to prove the semantic equivalence of textually dif-
ferent source programs. However, this has only been attempted on a restricted high-level language without
loops and function calls. Horwitz [14] attempted to identify semantic differences between source programs
in a simple high-level language containing a limited number of constructs. First, programs in this language
were represented in aprogram representation graphthat identifies dependences between statements. Next,
a matching function examined both representations to determine ifold andnewrepresentations were equiva-
lent. A similar approach using a matching function could be applied on a low-level representation to validate
some types of transformations, such as those that change theorder of independent instructions. However,
it is unclear how other transformations, such as the those that change theform of instructions, could be
validated using Horowitz’ approach.

Capturing the changes associated with compiler transformations has been used by a number of related
projects that were concerned with debugging either the compiler or the optimized code it produced. For
example, compiler visualization systems have been developed to illustrate the differences in the program
representation before and after a transformation [7, 10]. Mappings between unoptimized and optimized
programs have been produced to facilitate debugging of optimized code [15].

There has also been work in isolating the code-improving transformation that causes an error in the
code when a runtime error has been discovered by testing the optimized code on an input data set [6, 29].
Unfortunately, it is usually impractical to provide complete test coverage of compiled programs. Therefore,
validation of the compiler and the transformation it applied is preferable over isolating a transformation that
caused a runtime error.

3 Register Transfer Lists

Theregister transfer list(RTL) notation is a popular intermediate code representation for low-level instruc-
tions used by a variety of compilers, such asgcc andvpo [4]. The RTL notation is uniform and provides
an orthogonal instruction set based on predicated assignments. The RTL notation used bygcc is distinctly
more Lisp-like compared to the vpo RTL. However, the two RTL variants are conceptually the same. Other
intermediate representations used by compilers, such as three-address code and triples [1] for example, can
be easily mapped to RTL instructions. Because most compilers adopt RTL or a representation that is iso-
morphic to RTL, the validation of the transformations at the RTL level presented in this paper provides a
generic approach.

The Verilog register transfer level model (Verilog RTL) is somewhat related to register transfer lists.
However, Verilog RTL provides a more comprehensive instruction set for the verifiable synthesis and simu-

3

RTL → L = E ; assignment
| L = E1 , E2 ; predicated assignment (assignsE2 to L conditional onE1)
| RTL \n RTL sequential execution (\n indicates newline)
| RTL RTL concurrent execution (RTLs on a single line)

E → 	E monadic operation
| E ⊕ E dyadic operation
| label address, offset, or basic block label
| intConst integer constant
| L value of an l-value

L → r[natConst] indexed (virtual) register
| M[E] memory reference
| PC program counter
| IC condition code register
| RT return address (to caller)

	 → − | ¬ negation and binary complement
⊕ → ∧ | ∧̄ | ∨ | ∨̄ |] and, nand, or, nor, xor logical operators

| < | ≤ | > | ≥ | = | 6= relational operators
| ? compare operator (see text)
| + | − addition and subtraction
| ∗ | / |% multiplication, division, and modulo
| � | � binary arithmetic shift

Figure 1: RTL Grammar

PC=label; PC=IC 6=0,label; PC=RT; r[0]=r[1]; r[1]=r[0];
IC=r[0] ?0;
r[0]=IC <0, −r[0];

jump conditional jump return concurrency set and use condition code

(a) (b) (c) (d) (e)

Figure 2: Examples

lation of electronic systems [3].
Thevpocompiler applies code-improving transformations at the RTL level. After optimization, the RTL

representation of a program is converted to machine code by a post-processing stage in the back-end of the
compiler. The RTL notation used byvpo is expressed with the grammar1 shown in Figure 1. The RTL
language is composed of assignments to registers and memory locations. Conditional and unconditional
control flow is specified with predicated assignments to the program counterPC. Figure 2(a), (b), and (c)
illustrate examples of an unconditional jump instruction, a conditional jump instruction, and a return state-
ment, respectively. These instructions are used to build thecontrol flow graphstructure [1]. A CFG of a
source-code function is composed of nodes that are calledbasic blocks, where each basic block contains a
sequence of consecutive RTL instructions in which flow of control enters at the beginning and leaves at the
end without halt or possibility of branching except at the end [1].

RTL instructions can be concurrently executed as is illustrated in Figure 2(d). The concurrent execution
of RTLs respects copy-in copy-out semantics. Thus, the example shown in the figure exchanges the values
of ther[0] andr[1] registers. Concurrent RTL instructions can be used to describe multiple parallel data
transfers in hardware, such as auto-increment registers that access memory and update the address they are

1The grammar shown in Figure 1 is ambiguous. It is assumed that the usual associative and precedence properties of the
arithmetic operators and parenthesis are used for disambiguation.

4

pointing to during the execution of the memory load or store operation.
The compare operator is used to compare two values, basically using subtraction with infinite precision.

The actual result of the compare operator is discarded, only the condition code flags are set. Therefore,
this operator is only relevant for RTL instructions that set the condition code registerIC , as is illustrated
in Figure 2(e). In this example, the first RTL instruction sets the condition code registerIC by comparing
registerr[0] to 0. The second (predicated) instruction negatesr[0] if the IC sign flag is negative.

Floating point numbers can be used with RTL programs, but not directly. Instead, floating point values
are loaded from a static memory region or registers are set using the (multiple) integer values of floating
point standard representations, such as IEEE 754. This is important, because the modeling of low-level
semantics is simplified when restricted to integer-based arithmetic and floating point operations that may
possibly cause roundoff errors can be avoided.

4 Modeling Low-Level Program Semantics

This section introduces the modeling of low-level program code semantics using the strongest postcondition
rule of axiomatic semantics. It is shown that the computation of the semantic effects of a region of code is
identical to the derivation of the strongest postcondition for that region.

4.1 Strongest Postcondition

RTL instructions consist of assignments to registers and memory. Hoare logic [13] is used to model the
semantics of RTL instructions. The Hoare triple for the strongest postcondition for assignment [9] is defined
by

{P} L=E; { ∃`.P [`/L] ∧ L = E[`/L] }

where∃`.P [`/L] ∧ L = E[`/L] is the postcondition derived from the preconditionP , with [`/L] denoting
the substitution ofL by the term̀ as defined in Figure 3. The termL is any l-value exceptPC, because RTL
assignments that influence the flow of control must be handled differently. The semantic modeling of RTL
instructions that influence the flow of control will be discussed in Section 5. The Hoare triple for the RTL
predicated assignment is defined by

{P} L=E1, E2; { ∃`.P [`/L] ∧ L =

{
E2 if E1

L if ¬E1

}
[`/L] }

whereL is any l-value exceptPC. Note that the rule for the RTL predicated assignment requires condition-
ing the r-valueE2 on E1, whereE2 is assigned toL if E1 is true andL is assigned to itself otherwise.
The axiomatic rules for concurrent (predicated) assignments are similar and are based on the concept of
simultaneous substitutions.

The substitution algorithm shown in Figure 3 is an extended substitution algorithm to model poten-
tial aliased pointers introduced by the memory reference constructM[E] in the RTL language, where the
value of the address expressionE may not be known at compile time. Registers cannot be aliased, thus
the presence of aliases is limited to memory references. The substitution algorithm replaces a register or a
memory reference with a replacement term in an RTL expression. The RTL expression may contain an addi-
tional conditional construct, denoted with curly braces, introduced for representing predicated instructions,
conditional control flow, and potential aliases in the semantic model.

The application of the (predicated) assignment rule to a sequence of RTL instructions is straight forward.
It is assumed that the initial preconditionP0 models the entire input state of the machine as defined by

5

(E1)[E/r[n]] 7→ 	E1[E/r[n]]
(E1 ⊕ E2)[E/r[n]] 7→ E1[E/r[n]] ⊕ E2[E/r[n]]

label[E/r[n]] 7→ label
intConst[E/r[n]] 7→ intConst
(r[k])[E/r[n]] 7→ r[k] (whenn 6= k)
(r[n])[E/r[n]] 7→ E

(M[E1])[E/r[n]] 7→ M[E1[E/r[n]]]
E1 if Ek+1

...
Ek if E2k

[E/r[n]] 7→

E1[E/r[n]] if Ek+1[E/r[n]]

...
Ek[E/r[n]] if E2k[E/r[n]]

(E1)[E/M[E′]] 7→ 	E1[E/M[E′]]

(E1 ⊕ E2)[E/M[E′]] 7→ E1[E/M[E′]] ⊕ E2[E/M[E′]]
label[E/M[E′]] 7→ label

intConst[E/M[E′]] 7→ intConst
(r[n])[E/M[E′]] 7→ r[n]

(M[E1])[E/M[E′]] 7→
{

E if E′ = E1

M[E1] if E′ 6= E1

}

E1 if Ek+1
...

Ek if E2k

[E/M[E′]] 7→

E1[E/M[E′]] if Ek+1[E/M[E′]]

...
Ek[E/M[E′]] if E2k[E/M[E′]]

Figure 3: Substitution

P0 = (
∧N

n=0 r[n] = r 0[n]) ∧ (
∧M

m=0 M[m] = M0[m])

Thus, for defining the precondition each registerr[n] , n = 0, . . . , N , is bound to an initial valuer 0[n]
and each of them = 0, . . . ,M memory locationsM[m] holds an initial valueM0[m] . With this assump-
tion, the choice of valuè in the postcondition of an RTL assignment instruction is simply the current value
(state) of the l-valueL given in the precondition of the assignment instruction. An example representative
sequence of RTL instructions is given below and is intended to illustrate the application of the axiomatic
semantic rules:

{P0}
r[0]=r[0]+1;
{P1 ∧ r[0] =r 0[0] +1 }
r[1]=r[0]-1;
{P2 ∧ r[0] =r 0[0] +1 ∧ r[1] =r[0] − 1 }
M[r[1]]=M[r[2]];

{P3 ∧ r[0] =r 0[0] +1 ∧ r[1] =r[0] − 1 ∧ M[r[1]] =

{
M0[r[1]] if r[1] = r[2]
M[r[2]] if r[1] 6= r[2]

}
}

r[0]=M[r[1]];

{P4 ∧ r[0] =M[r[1]] ∧ r[1] =r 0[0] + 1− 1 ∧ M[r[1]] =

{
M0[r[1]] if r[1] = r[2]
M[r[2]] if r[1] 6= r[2]

}
}

where

6

P1 = P0[r 0[0] /r[0]] = (
∧N

n=1 r[n] = r 0[n]) ∧ (
∧M

m=0 M[m] = M0[m])
P2 = P1[r 0[1] /r[1]] = (

∧N
n=2 r[n] = r 0[n]) ∧ (

∧M
m=0 M[m] = M0[m])

P3 = P2[M0[r[1]] /M[r[1]]]

= (
∧N

n=2 r[n] = r 0[n]) ∧ (
∧M

m=0

{
M0[r[1]] if r[1] = m
M[m] if r[1] 6= m

}
=M0[m])

P4 = P3[(r 0[0] +1)/r[0]]

= (
∧N

n=2 r[n] = r 0[n]) ∧ (
∧M

m=0

{
M0[r[1]] if r[1] = m
M[m] if r[1] 6= m

}
=M0[m])

The rules are applied from the top to the bottom and the non-normalized intermediate conditions are shown.
Normalization of the final postcondition leads to

{P4 ∧ r[0] =M0[r 0[2]] ∧ r[1] =r 0[0] ∧ M[r 0[0]] =M0[r 0[2]] }

whereP4 is normalized to

P4 = (
∧N

n=2 r[n] = r 0[n]) ∧ (
∧M

m=0

{
M0[r 0[0]] if r0[0] = m
M[m] if r0[0] 6= m

}
=M0[n])

= (
∧N

n=2 r[n] = r 0[n]) ∧ (
∧M

m=0,(m6=r0[0]) M[m] =M0[m])

The normalization process replaces all occurrences of registers and memory references on the equation’s
right-hand sides with their r-values using the substitution algorithm. Arithmetic and logical simplification
are applied to reduce the resulting expressions. A subset of the rules for expression simplification is shown
in Figure 4.

4.2 RTL Effects

The semantics of a region of code are modeled using a simplified form of postconditions, called RTLef-
fects[24]. Effects describe the impact of the instructions on registers and memory. This simplified form has
the same meaning as a postcondition in axiomatic semantics, but uses a different notation. The mapping of
postconditions to effects is defined as follows:

• TheP0, P1, P2, . . . , are eliminated from the postconditions to obtain effects. These can be regenerated
at any time by inspecting the postcondition’s free variables, which are the registers and memory
references that make up the equations in the main part of the postcondition, i.e. the postcondition
without thePi part.

• Effects are always normalized (via substitution and simplification), therefore all registers and memory
references that were set in the region of code occur on the left-hand sides of the equations. The
registers and memory references occurring on the right-hand sides are always initial values of registers
and memory, i.e.r 0[n] andM0[m] , respectively.

• Equations for registers that are dead are eliminated from effects. The compiler annotates RTL in-
structions with register liveness information based ondef-use data flow analysis[1]. When a register
or a memory reference (i.e. a program variable) is flagged as dead at a certain point in the code, its
equation describing the effect on the register is removed. Registers provide temporary storage and are
therefore not critical to the modeling of semantics of a program, unlike memory updates.

7

(E1 ∨ E2) ∧ E3 ⇒ (E1 ∧ E3) ∨ (E2 ∧ E3) distribution
¬(E1 ∨ E2) ⇒ ¬E1 ∧ ¬E2 De Morgan
¬(E1 ∧ E2) ⇒ ¬E1 ∨ ¬E2 De Morgan

E1 ∨ (E1 ∧ E2) ⇒ E1 absorption
E1 ∨ (¬E1 ∧ E2) ⇒ E1 ∨ E2 absorption
¬E1 ∨ (E1 ∧ E2) ⇒ ¬E1 ∨ E2 absorption

(E1 ∧ E2) ∨ (¬E1 ∧ E2) ⇒ E2 absorption
(E1 ∧ E2 ∧ E3) ∨ (¬E1 ∧ E3) ⇒ (E2 ∧ E3) ∨ (¬E1 ∧ E3) absorption
(¬E1 ∧ E2 ∧ E3) ∨ (E1 ∧ E3) ⇒ (E2 ∧ E3) ∨ (E1 ∧ E3) absorption{

E1 if E2

... if
...

}
if E3 ⇒

{
E1 if E2 ∧ E3

... if
... ∧ E3

}
left un-nesting

E1 if

{
E2 if E3

... if
...

}
⇒

{
E1 if E2 ∧ E3

E1 if
... ∧

...

}
right un-nesting

. . .
E1 if E2

. . .
E1 if E3

. . .

 ⇒

{
. . .
E1 if E2 ∨ E3

. . .

}
combining arms

E1 ⊕

{
E2 if E3

... if
...

}
⇒

{
E1 ⊕ E2 if E3

E1 ⊕
... if

...

}
promoting{

E1 if E2

... if
...

}
⊕ E3 ⇒

{
E1 ⊕ E3 if E2

... ⊕ E3 if
...

}
promoting

	

{
E2 if E3

... if
...

}
⇒

{
	E2 if E3

	
... if

...

}
promoting

E1 = E2 ⇒ E1 − E2 = 0 whenE1 − E2 <lex E2 − E1 andE2 6= 0
E1 = E2 ⇒ E2 − E1 = 0 whenE1 − E2 ≥lex E2 − E1 andE2 6= 0
E1 > E2 ⇒ E1 − E2 > 0 whenE1 − E2 <lex E2 − E1 andE2 6= 0
E1 > E2 ⇒ ¬(E2 − E1 + 1 > 0) ∨ ¬(E2 − E1 > 0) whenE1 − E2 ≥lex E2 − E1 andE2 6= 0
E1 ≥ E2 ⇒ E1 − E2 + 1 > 0 whenE1 − E2 <lex E2 − E1 andE2 6= 0
E1 ≥ E2 ⇒ ¬(E2 − E1 > 0) whenE1 − E2 ≥lex E2 − E1 andE2 6= 0
E1 6= E2 ⇒ ¬(E1 − E2 = 0) whenE1 − E2 <lex E2 − E1 andE2 6= 0
E1 6= E2 ⇒ ¬(E2 − E1 = 0) whenE1 − E2 ≥lex E2 − E1 andE2 6= 0

E1 > 0 ∧ E2 > 0 ⇒ E1 > 0 whenE1 ≤ E2

E1 > 0 ∧ E2 > 0 ⇒ E2 > 0 whenE1 > E2

E1 > 0 ∧ E2 = 0 ⇒ false whenE1 ≤ E2

E1 > 0 ∧ E2 = 0 ⇒ E2 = 0 whenE1 > E2

E1 > 0 ∨ E2 > 0 ⇒ E2 > 0 whenE1 ≤ E2

E1 > 0 ∨ E2 > 0 ⇒ E1 > 0 whenE1 > E2

E1 > 0 ∨ E2 = 0 ⇒ E1 + 1 > 0 whenE1 = E2

E1 > 0 ∨ E2 = 0 ⇒ E1 > 0 whenE1 > E2

Figure 4: Simplification

8

M[r[2]]=r[4];
{ M[r[2]]=r[4]; }
r[5]=M[r[3]];

{ r[5]=

{
r[4] if r[2] = r[3]
M[r[3]] if r[2] 6= r[3]

}
; M[r[2]]=r[4]; }

Figure 5: Potential Def-Use Alias

The simplified effect forms enable a faster derivation of the semantic description by a process calledmerg-
ing [24]. Merging effects requires substitution and normalization, similar to deriving postconditions.

Consider for example the following region of code annotated with effects derived by merging, i.e. through
substitution and normalization:

r[0]=r[0]+1;
{ r[0]=r 0[0]+1 }
r[1]=r[0]-1; r[0]:
{ r[1]=r 0[0] }
M[r[1]]=M[r[2]];
{ r[1]=r 0[0] ∧ M[r 0[0]]=M 0[r 0[2]] }
r[0]=M[r[1]];
{ r[0]=M 0[r 0[2]] ∧ r[1]=r 0[0] ∧ M[r 0[0]]=M 0[r 0[2]] }

In each step, the effects of the previous RTL instructions are merged with the current RTL effect using
substitution and normalization. Note that the annotationr[0]: indicates that registerr[0] is not live in
the region of code below the annotated instruction. That is, the instruction is the last to use the live value of
r[0] set by the first instruction. Therefore, the RTL effect onr[0] was eliminated in the second step.

It is guaranteed that effects produced by the application of the substitution algorithm in a manner iden-
tical to the application of substitution in the postcondition rule for assignments, consist of equations whose
left-hand sides are l-values, i.e. registers and memory references. As a result, effects can be viewed as
concurrent RTL constructs themselves, such as

r[0]=M 0[r 0[2]]; r[1]=r 0[0]; M[r 0[0]]=M 0[r 0[2]];

These RTL effects are state modifiers, providing a means to directly describe the impact of the original
sequence of instructions on the registers and memory of a machine.

Because effects can be written as concurrent RTL assignments that obey copy-in copy-out semantics,
the notationsr 0[n] andM0[m] have become redundant as a means to express initial values. In the sequel,
these notations will be dropped all together in favor of a further compressed notation, such as

r[0]=M[r[2]]; r[1]=r[0]; M[r[0]]=M[r[2]];

for the example shown above.

4.3 Guarded RTL Effects

Guarded expressions in RTL effects express control flow, predication, and potential aliasing. With respect
to aliasing, consider the merging of effects for the region of code shown in Figure 5, where adef and
a useinstruction may reference the same memory location. The guard is automatically produced by the
substitution algorithm when replacing a memory reference with a replacement term in an expression (as was
shown in Figure 3). Figure 6 shows the guarded expression produced due to potential aliasing from twodefs
to memory. An alias between ausefollowed by adefdoes not introduce a guard, since thedefcannot affect
theuse.

9

M[r[2]]=r[4];
{ M[r[2]]=r[4]; }
M[r[3]]=r[5];

{ M[r[3]]=r[5]; [r[2]]=

{
r[5] if r[2] = r[3]
r[4] if r[2] 6= r[3]

}
; }

Figure 6: Potential Def-Def Alias

4.4 Proving Semantics Preserving Properties of Transformations with RTL Effects

Effects can be used to validate the semantics preserving property of transformations. An instance of a code-
improving transformation is semantics preserving if the semantics of the transformed code are unchanged.
Consider for example the following transformation:

r[0]=r[0]+1;
r[1]=r[0]-1; r[0]:
M[r[1]]=M[r[2]];
r[0]=M[r[1]];

⇒
r[1]=r[0]; r[0]:
M[r[1]]=M[r[2]];
r[0]=M[r[1]];

The semantic effect of both code fragments is the same and identical to the effect

r[0]=M[r[2]]; r[1]=r[0]; M[r[0]]=M[r[2]];

Therefore, it is concluded that the transformation is semantics preserving.
This approach can be used to validate transformations on basic blocks comprising a consecutive se-

quence of RTL instructions. Transformations that may alter the flow of control however, require a more
extensive analysis of the CFG and proof system. This is explained in the next section.

5 Validation of Transformations on Program Regions

This section presents the implementation details of the validation approach. The approach can handle trans-
formations that change the control flow. To this end, a CFG analysis algorithm was implemented that
determines the affected region of code. The algorithm also propagates postconditions and branch predicates
down the CFG to determine the effects at the exit points in the region.

5.1 Overview

The automatic transformation-validating compilation system is illustrated in Figure 7. The system validates
code-improving transformations in thevpo compiler [4]. Thevpo compiler optimizes code using a CFG
representation of the program [1], where the basic blocks of the CFG are populated with RTL instructions.
The system analyzes the CFG for region changes after each optimizing transformation. The code that spans
the affected region is identified and the semantic effects of the code are collected at each of the exit points
of the region. The effects of the region before the transformation are compared to the effects of the region
after the transformation. The transformation is valid if the normalized effects are found to be identical.

It is assumed that two regions are semantically identical if the functions in both regions are called in the
same order and identical output data is produced in memory for each function call given any set of input data.
The function call ordering requirement does not allow the validation of code-improving transformations that
change the function call order. However, most compilers do not attempt to reorder function calls due to the

10

Apply
optimizations

C source code

Optimized
CFG Semantics

preserved?

Effect
normalization

Obtain
semantic

effects at exit
points

Determine
transformed

region of code

CFG

Compile
source code

function

No: error

Yes: continue

Compilation Validation

CFG

CFG

effects

Representation

Figure 7: System Overview

presence of potential side effects in functions in procedural languages such as C. For example,vpodoes not
perform low-level code-optimizing transformations across function boundaries.

Note that the system proves the equivalence of the region of the program associated with the changes
rather than showing the equivalence of the entire program representation. In [26] it was shown that the
region that is changed by most code-improving compiler transformations is typically quite small, consisting
of an average 5.9 RTL instructions for a set of benchmark programs.

The approach also supports the validation of hand-specified optimizations. This is currently accom-
plished with the the interactive VISTA system to edit RTL instructions and/or assembly instructions manu-
ally [26, 31].

5.2 Determining the Region of Code Associated with a Transformation

Determining the region of code that is associated with a code-improving transformation requires capturing
the changes to the program representation caused by the transformation. Changes associated with a trans-
formation are automatically detected by making a copy of the program representation before each code-
improving transformation and comparing the program representation after the transformation with the copy.
After identifying all of the basic blocks that have been changed, the closest block in the control-flow graph
that dominates all of the modified blocks forms the root node of the region. Thisdominating blockis the
designated entry point for the region. The region consists of all instructions between the dominating block
and the RTL instructions that have been modified. The region of code before the transformation will be re-

11

IC=r[8]?0;

PC=IC<0,B3;

B1
...

r[8]=r[9];

M[r[14]+.c]=r[8];
PC=B4;

B2

r[8]=M[r[14]+.c];
...

B4

B3
r[8]=r[9];

M[r[14]+.c]=r[8];
r[8]=-r[8];

IC=r[8]?0;

PC=IC<0,B3;

B1
...

r[8]=r[9];
M[r[14]+.c]=r[8];
PC=B4;

B2

r[8]=M[r[14]+.c];
...

B4

B3
r[8]=r[9];

M[r[14]+.c]=r[8];
r[8]=-r[8];

IC=r[8]?0;
PC=IC<0,B3;

B1
...

r[8]=r[9];
M[r[14]+.c]=r[8];
PC=B4;

B2

r[8]=M[r[14]+.c];
...

B4

B3
r[8]=r[9];

M[r[14]+.c]=r[8];
r[8]=-r[8];

(a) (b) (c)

Figure 8: Example of Calculating the Extent of a Region

r[16]=0;

r[17]=HI[_string];

r[19]=r[17]+LO[_string];

r[17]=r[16]+r[19];
...

...

r[16]=0;

r[17]=HI[_string];

r[19]=r[17]+LO[_string];

r[17]=r[19];
...

...

r[16]=0;
r[17]=HI[_string];
r[19]=r[17]+LO[_string];
r[17]=r[16]+r[19];
...

...

r[16]=0;
r[17]=HI[_string];
r[19]=r[17]+LO[_string];
r[17]=r[19];
...

...

(a) (b) (c) (d)
Old region before extension New region before extension Old region after extension New region after extension

Figure 9: Example of Extending the Scope of a Region

ferred to as theold regionand the region after the transformation will be referred to as thenew region. These
two regions are considered counterparts of each other since they should have the same semantic effects on
the rest of the program. The effects of the old and new regions are considered semantically equivalent if
they are identical at each exit point of the region. Note that the old and new regions need not have the same
basic block structure. Only the dominating block and exit points of the two regions have to be identical.

The example shown in Figure 8 illustrates how the region detection algorithm works. Consider the
program representation shown in Figure 8(a) depicting the state of the program before a register allocation
transformation. The affected memory reference by the transformation isM[r[14]+.c] shown in boldface
in the figure, where.c is a constant offset. This references a local variable that is replaced with a register in
the transformation. The block that most closely dominates all blocks containing the modifications (blocks
2, 3, and 4) is block 1. The region consists of all RTL instructions between those that are changed and this
dominating point, which are shown in boldface in Figure 8(b). Block 1 contains no RTL instructions that
have been modified. As shown in Figure 8(c), its conditional branch is included in the region so conditions
can be represented when transitions are made to blocks 2 and 3.

5.3 Extending the Region of Code Associated with a Transformation

There are cases when the extent of a region has to be recalculated. For instance, the points at which one
region exits have to be identical to the exit points in its counterpart region. If an exit point in one region
does not exist in its counterpart, then that exit point is added to its counterpart region and the extent of the
region is recalculated.

A region may need to be extended when its effects are not identical as its counterpart region. This does
not necessarily mean that the transformation is invalid. Rather, this may indicate that larger parts of the

12

code need to be included in the extent of the region to calculate the semantic effects. For instance, consider
Figures 9(a) and 9(b). Only one change was detected, so the old and new regions initially consist of a single
instruction (shown in boldface). Obviously, these two regions in isolation do not have the same effect.
However, there is a reference tor[16] in one region that is not included in the other. If the effects of the
two regions are not identical and there are moreusesor defsof a specific register or a memory reference in
one region, then the regions are extended to include an additionaldefof that register or memory reference.
Figures 9(c) and 9(d) show the extension of the old and new regions to include thedef of r[16] , which
allows identical effects to be calculated for each region. The effects of Figure 9(c) and 9(d) are identical
and equal to

r[16]=0; r[17]=HI[string]+LO[string]; r[19]=HI[string]+LO[string];

which provides proof that both code fragments are semantically identical. TheHI[] andLO[] operators
return the high part and low part of an address constant, respectively2.

5.4 Calculating the Effects of a Region

Each region consists of a single entry point at the dominating block and one or more exit points. Semantic
effects are calculated for each exit point from the region as follows:

• The liveness of registers and memory references in a region are calculated using a demand-driven
data flow analysis method, as opposed to the traditional data flow analysis used invpo. The demand-
driven method caches and reuses previously computeddefanduseinformation obtained from earlier
transformation and validation analyses stages to save time.

• Semantic effects are derived for each block in succession starting with the dominating block in the
CFG and by working downwards until the exit points are reached. Back-edges in the CFG correspond
to loops. A loop structure forms a connected component in the CFG and analyzed as such. This will
be discussed in Section 5.6.

• To derive the semantic effects for each block in the CFG, the effects of the RTL instructions are
merged, as was described previously.

• At a fork in the CFG the condition expression is propagated downward by predicating edges and
nodes (basic blocks) with the branch condition, see Figure 10(a). The semantic effects derived from
the basic blocks down the path are predicated with the conditions produced in these forks.

• A a join in the CFG the predicates of inbound edges are united to form a disjunction. This dis-
junction is propagated downward by predicating edges and nodes with the combined condition, see
Figure 10(b).

• The process terminates when the effects are produced at all the exit points of the region.

The merging of effects of a region is accomplished using a directed acyclic graph (DAG) representation. A
DAG effectively conserves storage, because common-subexpressions that occur multiple times in the effects
of a region are stored only once. A DAG node is created for each right-hand side in an RTL assignment
instruction and the expression is referenced by the right-hand side r-value of the assignment. In addition,
the substitution algorithm (shown in Figure 3) was modified to process DAG nodes instead of symbolic

2TheHI[] andLO[] operators are not included in the RTL grammar shown in Figure 1, because they are macros.

13

PC=cond,B3;

B1

cond¬cond

B2 B3

¬cond cond

B1 B2

B3

cond1 Ú cond2

cond1 cond2

cond1 Ú cond2

(a) (b)

Figure 10: Fork and Join Flow Predication

expressions. For example, the merging ofr[10]=r[8]-2; with r[11]=r[10]+r[10]; results in
r[10]= n1 and r[11]= n2, wheren1 and n2 are two DAG nodes with the bindingsn1=r[8]-2 and
the substitutionn2=n1+n1. Without a DAG representation for effects, merging can result in exponentially
growing storage requirements.

The nodes in the final DAG (obtained after all effects have been merged) are marked when the node is
used in an effect corresponding to an exit point of the region of code. The marking proceeds by recursively
analyzing the expressions stored at the nodes in the DAG. Marking the DAG effectively eliminates unused
expressions. Unused expressions typically are expressions assigned to registers or variables that are not live
at the exit point of the region.

For each marked node visited in a postorder traversal of the DAG, the term stored at the marked node is
simplified if not already simplified by rewriting the term into a canonical representation, where references
in the term to other nodes are replaced by references to canonical representations of the terms in the nodes.
When calculating the canonical representation of an effect, embedded references to canonical representa-
tions need not be simplified again. Finally, the effects at the exit points of the regions are simplified and the
DAG node references are replaced by their canonical representations.

Effects are simplified usingCtadelto implement the rewrite rules shown in Figure 4 together with the
usual simplification rules for arithmetic and logical expressions.Ctadel [25] is an extensible rule-based
symbolic manipulation program implemented in SWI-Prolog [30]. Thevpo compiler was modified by
inserting calls toCtadelto simplify effects. The expression simplification is applied in the address space of
thevpocompiler by linking with the SWI-Prolog interpreter.

Consider the example program fragment shown in Figure 11(a). Figure 11(b) shows the CFG of the code
with the edges predicated with the branch conditions. It is assumed that the compiler uses the following
register assignments:r[8] ≡v , r[10] ≡s , andr[11] ≡inv).

By following the paths through the branch structure, it is apparent that the statements=-1 is unreach-
able. Unreachable code is also referred to asdead code[1]. Dead code elimination is an optimizing compiler
transformation that removes all blocks from a CFG that are unreachable. Therefore, the removal of block
B5 should not change the semantics of the program fragment. Indeed, the predicate at the edge from block
B4 to B5 indicates that blockB5 is not reachable. Therefore, the effects collected inB5 are predicated with
falseand not further propagated.

The transitions (1)–(5) in the CFG are of particular interest the derivation of the edge predicates will be
discussed in more detail:

1. At transition (1) the semantic effect from blockB5 is r[10] = {−1 if r[8] ≥ 0∧r[8] = 0∧r[8] > 0}

14

if (v>=0)
{ if (v!=0)

s=1;
else if (v<=0)

s=0;
else

s=-1;
inv=-s;

}

IC=r[8]?0;
B1

PC=IC<0,B8;

r[8]<0

PC=IC≠0,B4;

B2

r[8]≥0

B3

B4

B5 B6

B7

B8

r[10]=1;

PC=B7;

PC=IC>0,B6;

r[10]=0;

PC=B7;r[10]=-1;

r[11]=-r[10];

...

r[8]≥0 ∧ r[8]≠0

r[8]≥0 ∧ r[8]=0 ∧ r[8]≤0

r[8]≥0 ∧ r[8]=0

r[8]≥0 ∧ r[8]=0 ∧ r[8]>0

1 23

4

5
r[8]≥0

(a) (b)

Figure 11: Example

2. At transition (2) the semantic effect from blockB6 is r[10] = {0 if r[8] ≥ 0 ∧ r[8] = 0 ∧ r[8] ≤ 0}

3. At transition (3) the semantic effect from blockB3 is r[10] = {1 if r[8] ≥ 0 ∧ r[8] 6= 0}

4. Combining the effects of the blocksB5, B6, andB3 at the join point gives

r[10] =

1 if r[8] ≥ 0 ∧ r[8] 6= 0
0 if r[8] ≥ 0 ∧ r[8] = 0 ∧ r[8] ≤ 0
−1 if r[8] ≥ 0 ∧ r[8] = 0 ∧ r[8] > 0

 simplify
=

{
1 if r[8] > 0
0 if r[8] = 0

}

5. Merging these effects with the effects of blockB7 yields

r[10] =

{
1 if r[8] > 0
0 if r[8] = 0

}

r[11] = −
{

1 if r[8] > 0
0 if r[8] = 0

}
simplify

=

{
−1 if r[8] > 0
0 if r[8] = 0

}

6. Merging the (empty) effects at transition (5) with the effects at transition (4) we obtain the effects of
the region of code

r[10] =

{

1 if r[8] > 0
0 if r[8] = 0

}
if r[8] ≥ 0

r[10] if r[8] < 0

 simplify
=

1 if r[8] > 0
0 if r[8] = 0
r[10] if r[8] < 0

r[11] =

{
−1 if r[8] > 0
0 if r[8] = 0

}
if r[8] ≥ 0

r[11] if r[8] < 0

 simplify
=

−1 if r[8] > 0
0 if r[8] = 0
r[11] if r[8] < 0

15

where the guard conditionr[8] ≥ 0 is derived by forming the disjunction of the guard conditions on
the incoming edges to blockB7, which is the simplified form of

(r[8] ≥ 0 ∧ r[8] 6= 0) ∨ (r[8] ≥ 0 ∧ r[8] = 0 ∧ r[8] ≤ 0) ∨ (r[8] ≥ 0 ∧ r[8] = 0 ∧ r[8] > 0)

The final effects tor[10] andr[11] in step 6 accurately describe the semantics of the region of code.
The semantic effect of the region of code before and after a dead-code elimination transformation is applied
is unchanged (not shown).

5.5 Representing Effects from Function Calls

The combined effects on registers and memory by a function call can be assumed to be the same when the
function arguments are unaltered and the function calls take place in the same order. To accurately represent
the effects of function calls on the state of registers and (global) memory references, it was decided to
use an RTL assignment-based notation to describe effects on registers and memory references. The effects
representation conservatively assumes that all registers and memory references are potentially changed. For
each live register and memory reference a function call is represented by a sequence of RTL instructions of
the form

L=func(L, label);

whereL is an l-value andlabel refers to the basic block (of the original old region) that contains the function
call. In this way, functions are viewed as black-box transformers of l-values. The block labeling ensures
that transformations that change the function call order will be flagged as invalid.

5.6 Representing Effects from Loops

A region may span multiple basic blocks that cross loop nesting levels. Merging the effects across loop
nesting levels requires calculating the effects of an entire loop. One issue that must be addressed is how to
represent a recurrence, which involves the use of a variable or register that is set on a previous loop iteration.
An induction variable is one example of a simple recurrence. We represent a recurrence as a recursive
function using the following notation. Thelabel distinguishes the loop in which the recurrence occurs. The
newValuerepresents the next value of the recurrence. References tow in thenewValuerepresent the previous
value of the recurrence. TheinitialValue is the initial value of the recurrence. Theconditionindicates when
the recurrence is no longer applied. Thus, this notation is used to represent a sequential ordering of effects,
where each instance represents the effect on a different iteration of a loop.

y(label , initialValue,newValue) until condition

We define the semantics of the recurrencey(label , initialValue,newValue) by defining functionF as

F = λf.λi.if i = 0 then initialValue else (λw.newValue) (f (i− 1))

The semantics ofy is defined as the application of the fixpointY combinator toF , which results in a function
that given an iteration numberi (i ≥ 0) returns the value of the recurrences at that iteration. For example,
the value of the recurrencey(B2, 1, w + 1) at iteration 10 is

Y(λf.λi.if i = 0 then 1 else (λw.w + 1〉) (f (i− 1)) 10 = 11

16

1. Effects ofB1:
r[10]=0; r[11]=HI[a]; r[12]=HI[n];
Effects ofB2 after merging with effects ofB1:
M[r[10]<<2+r[11]+LO[a]]=0; r[10]=r[10]+1;

2. Effects ofB1:
r[10]=0; r[11]=HI[a]; r[12]=HI[n];
Introducing a recursive function for recurrences in effects ofB2:
M[(y(B2,r[10],w+1) until

y(B2,r[10]+1,w+1) ≥M[r[12]+LO[n]])<<2+r[11]+LO[a]]=0;
r[10]=y(B2,r[10],w+1) until

y(B2,r[10]+1,w+1) ≥M[r[12]+LO[n]];

3. After merging the effects ofB1 into effects ofB2:
M[(y(B2,0,w+1) until

y(B2,0+1,w+1) ≥M[HI[n]+LO[n]])<<2+HI[a]+LO[a]]=0;
r[10]=y(B2,0,w+1) until y(B2,0+1,w+1) ≥M[HI[n]+LO[n]];

4. After simplification:
M[(y(B2,0,w+1) until y(B2,1,w+1) ≥M[n])*4+ a]=0;
r[10]=y(B2,0,w+1) until y(B2,1,w+1) ≥M[n];

5. After changing the recursive functions to sequences:
M[({B2,0,1 } until y(B2,1,w+1) ≥M[n])*4+ a]=0;
r[10]= {B2,0,1 } until y(B2,1,w+1) ≥M[n];

6. After adjusting initial value and increment of the first sequence:
M[({B2, a,4 } until y(B2,1,w+1) ≥M[n])]=0;
r[10]= {B2,0,1 } until y(B2,1,w+1) ≥M[n];

7. After detecting thatr[10] is not used after the loop:
M[({B2, a,4 } until y(B2,1,w+1) ≥M[n])]=0;

r[10]=0;

r[11]=HI[_a];

r[12]=HI[_n];

B1

B2
r[8]=r[11];

r[8]=r[8]+LO[_a];

r[9]=r[10]<<2;

M[r[9]+r[8]]=0; r[8]:r[9]:

r[10]=r[10]+1;

r[8]=r[12];

r[8]=M[r[8]+LO[_n]];

IC=r[10]?r[8]; r[8]:

PC=IC<0,B2;

Figure 12: Example of Calculating Effects for a Loop

A sequencecan be used to represent recursive functions when thenewValueis obtained by incrementing
the current value, which is the case for basic induction variables. We adopt a notation that is similar to the
notation used for chains of recurrences [2, 27, 28] (CRs). Each sequence has the following form, which is
similar to a recursive function. Unlike recursive functions, a number of algebraic operations can be applied
to these sequences.

{label , initialValue, increment} until condition

Figure 12 depicts an example of representing the effects of a loop. In this example, the loop is about to
be modified by a loop strength reduction transformation. Step 1 shows the effects of the preheader and loop
blocks after merging the effects of the blocks separately. Step 2 shows the effects of the loop block after
replacing all uses ofr[10] with a recursive function since the assignmentr[10]=r[10]+1; forms a
recurrence. Note that theconditionof the recursive function is the exit condition of the loop. Step 3 shows
the effects after merging the preheader block with the loop block. The registerr[10] , unlike registers
r[11] and r[12] , is not loop invariant. However, the only explicit uses ofr[10] in the loop after
applying the recursive functions is in theinitialValue of these functions. Thus, assignments before a loop

17

Program Description Num Trans Validated Region Size Overhead
ackerman benchmark that performs recursive function calls 89 100.0% 3.18 13.64
arraymerge benchmark that merges two sorted arrays 483 89.2% 4.23 63.89
banner poster generator 385 90.6% 5.42 34.13
bubblesort benchmark that performs a bubblesort on an array 342 85.4% 6.10 34.37
cal calendar generator 790 91.1% 5.16 105.64
head displays the first few lines of files 302 89.4% 8.42 152.64
matmult multiplies 2 square matrices 312 89.7% 5.55 28.97
puzzle benchmark that solves a puzzle 1928 78.5% 5.85 128.98
queens eight queens problem 296 85.8% 6.79 73.65
sieve finds all prime numbers between 3 and 16383 217 80.6% 6.85 21.90
sum prints the checksum and block count for a file 235 91.9% 8.62 195.19
uniq report or filter out repeated lines in a file 519 91.1% 4.21 163.26
average 492 88.6% 5.87 84.64

Table 1: Benchmarks

can be successfully merged into a loop after representing recurrences with recursive functions. Likewise,
effects after a loop will be guarded by the exit condition, which will allow merging of effects in a loop with
effects after the loop. Step 4 shows the effects after simplification. Constant expressions are simplified, the
sum of the high and low portions of a value is replaced with the value itself, and left shifts by a constant are
replaced by multiplies. Step 5 changes the recursive functions to sequences. Step 6 adjusts the first sequence
by a factor and an offset. Finally, step 7 deletes the assignment tor[10] sincer[10] is not used after the
loop.

Recurrences are a concise representation of a loop iteration. The underlying semantics of recurrences
can be best viewed as a representation that enables us to unroll the iterations of a loop until the condition is
satisfied thereby obtaining the semantic effects of each loop iteration. Multiple recurrences refering to the
same loop are unrolled in parallel, hence the use of alabel to refer to a loop. For instance, the effect of step 7
in Figure 12 isM[({B2, a,4 } until y(B2,1,w+1) ≥M[n])]=0; which represents the combined
execution of all iterations

M[a] = (0 if 1 < M[n]);
M[a+4] = (0 if 2 < M[n]);

...
M[a+36] = (0 if 10 < M[n]);

where the value ofM[n] is assumed to be10 and is not aliased with an element of the arraya.

6 Results

Table 1 shows the results on a number of test programs that were compiled while validating code-improving
transformations invpo. The third column indicates the number of improving transformations that were
applied during the compilation of the program. The fourth column represents the percentage of the transfor-
mations that were attempted to be validated. The compiler did not attempt to validate the transformations if
the region of the transformation extends across one or more loop boundaries. For those attempted, the suc-
cess rate was 100% validation as can be expected from a high-quality compiler. Therefore, no false alarms
were raised for the transformations whose regions do not extend across one or more loop boundary. The
reason for not attempting to validate those is that the loop analysis (as shown in Section 5.6) has not yet been
fully implemented, due to a tighter interaction required between thevpocompiler and theCtadelsystem to

18

handle the loop-based effects simplification. The fifth column represents the average static number of in-
structions for each region associated with all code-improving transformations during the compilation. The
final column denotes the ratio of compilation times when validating programs versus a normal compilation.

The types of transformations in thevpocompiler that were validated using the system includealgebraic
simplification of expressions, basic block reordering, branch chaining, common subexpression elimination,
constant folding, constant propagation, unreachable code elimination, dead store elimination, evaluation
order determination, filling delay slots, induction variable removal, instruction selection, jump minimiza-
tion, register allocation, strength reduction, anduseless jump elimination. These and similar transformations
are typically applied by a low-level code-improving compiler.

The use of an interpretive Prolog system to simplify effects did impact the speed of the validation pro-
cess. However, an overhead of about two orders of magnitude would probably be acceptable, as compared
to the cost of not detecting potential errors. Note that a user can select a subset of transformations (e.g. ones
recently implemented) to be validated. In addition, validation would not be performed on every compilation.

7 Conclusions

This paper described a general approach for the automatic validation of code-improving transformations on
low-level code. First, the region in the program representation associated with the changes caused by a code-
improving transformation is identified. Second, the effects of the region before and after the transformation
are calculated. Third, a set of simplification rules are applied to normalize the form of these effects. Finally,
the effects of the region before and after the transformation are compared. If the two sets of effects are
identical, then the transformation is deemed valid. It was shown that it is feasible to use this approach to
validate many conventional code-improving transformations.

Validating code-improving transformations has many potential benefits. Validation provides greater as-
surance of correct compilation of programs, which is important since software is being used as a component
of an increasing number of critical systems. The time spent by compiler writers to detect errors can be dra-
matically reduced since the transformations that do not preserve the semantics of the program representation
are identified during the compilation. Finally, validation of hand-specified transformations on assembly code
can be performed, which can assist programmers of embedded systems.

There has also been progress in proving type, memory safeness, and other related properties of a com-
pilation rather than the equivalence of source and target programs [22, 18, 19]. Proving these types of
properties is important and these techniques could be used in conjunction with the approach described in
this paper.

References

[1] A. Aho, R. Sethi, and J. Ullman.Compilers: Principles, Techniques and Tools. Addison-Wesley
Publishing Company, Reading MA, 1985.

[2] O. Bachmann, P.S. Wang, and E.V. Zima. Chains of recurrences - a method to expedite the evaluation
of closed-form functions. InInternational Symposium on Symbolic and Algebraic Computing, pages
242–249, Oxford, 1994. ACM.

[3] Lionel Bening and Harry Foster.Principes of Verifiable RTL Design. Kluwer Academic, 2001.

19

[4] M. E. Benitez and J. W. Davidson. A Portable Global Optimizer and Linker. InProceedings of the
SIGPLAN ’88 Symposium on Programming Language Design and Implementation, pages 329–338,
June 1988.

[5] J.A. Bergstra, T.B. Dinish, J. Field, and J. Heering. A complete transformational toolkit for com-
pilers. In H.R. Nielson, editor,6th European Symposium on Programming (ESOP’96), LNCS 1058,
Linköping, Sweden, April 1996. Springer. Also Technical Report CS-R9601, National Research Insti-
tute for Mathematics and Computer Science (CWI), The Netherlands.

[6] M. Boyd and D. Whalley. Isolation and Analysis of Optimization Errors. InProceedings of the ACM
SIGPLAN Conference on Programming Language Design and Implementation, pages 26–35, June
1993.

[7] M. Boyd and D. Whalley. Graphical Visualization of Compiler Optimizations.Journal of Program-
ming Languages, 3:69–94, 1995.

[8] A. Cimatti and et. al. A Provably Correct Embedded Verifier for the Certification of Safety Critical
Software. InInternational Conference on Computer Aided Verification, pages 202–213, June 1997.

[9] E.W. Dijkstra and C.S. Scholten.Predicate Calculus and Program Semantics. Springer-Verlag, 1990.

[10] C. Dow, S. Chang, and M. Soffa. A Visualization System for Parallelizing Programs. InProceedings
of Supercomputing, pages 194–203, 1992.

[11] P. Dybjer. Using Domain Algebras to Prove the Correctness of a Compiler.Lecture Notes in Computer
Science, 182:329–338, 1986.

[12] J. Guttman, J. Ramsdell, and M. Wand. VLISP: a Verified Implementation of Scheme.Lisp and
Symbolic Computation, 8:5–32, 1995.

[13] C.A.R. Hoare. An axiomatic basis for computer programming.Communications of the ACM, 12:576–
580, October 1969.

[14] S. Horwitz. Identifying the Semantic and Textual Differences between Two Versions of a Program. In
Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, pages 234–245, 1990.

[15] C. Jaramillo, R. Gupta, and M. L. Soffa. Capturing the Effects of Code Improving Transformations.
In International Conference on Parallel Architecture and Compilation Techniques, pages 118–123,
October 1998.

[16] J. Moore. A Mechanically Verified Language Implementation.Journal of Automated Reasoning,
5:461–492, 1989.

[17] F. Morris. Advice on Structuring Compilers and Proving Them Correct. InProceedings of the ACM
Symposium on Principles of Programming Languages, pages 144–152, 1973.

[18] G. Necula. Proof-Carrying Code. InProceedings of the ACM Symposium on Principles of Program-
ming Languages, pages 106–119, January 1997.

20

[19] G. Necula and P. Lee. The Design and Implementation of a Certifying Compiler. InProceedings of the
ACM SIGPLAN Conference on Programming Language Design and Implementation, pages 333–344,
1998.

[20] G. C. Necula. Translation Validation for an Optimizing Compiler. InProceedings of the SIGPLAN ’00
Symposium on Programming Language Design and Implementation, pages 83–94, June 2000.

[21] M. Rinard and D. Marinov. Credible Compilation with Pointers. InProceedings of the FLoC Workshop
on Run-Time Result Verfication, 1999.

[22] D. Tarditi, J. Morrisett, P. Cheng, C. Stone, R. Harper, and P. Lee. TIL: A Type-Directed Optimizing
Compiler for ML. In Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 181–192, 1996.

[23] J. Thatcher, E. Wagner, and J. Wright. More on Advice on Structuring Compilers and Proving Them
Correct. InProceedings of a Workshop on Semantics-Directed Compiler Generation, pages 165–188,
1994.

[24] R. van Engelen, D. Whalley, and X. Yuan. Automatic validation of code-improving transformations.
In ACM SIGPLAN Workshop on Language, Compilers, and Tools for Embedded Systems, 2000.

[25] R.A. van Engelen, L. Wolters, and G. Cats. CTADEL: A generator of multi-platform high performance
codes for PDE-based scientific applications. In10th ACM International Conference on Supercomput-
ing, pages 86–93, New York, 1996. ACM Press.

[26] Robert van Engelen, David Whalley, and Xin Yuan. Validation of code-improving transformations
for embedded systems. Inproceedings of the 8th ACM Symposium on Applied Computing SAC 2003,
pages 684–691, Melbourne Florida, March 2003.

[27] Robert A. van Engelen. Efficient symbolic analysis for optimizing compilers. InProc. of the ETAPS
Conference on Compiler Construction 2001, LNCS 2027, pages 118–132, 2001.

[28] Robert A. van Engelen and Kyle Gallivan. An efficient algorithm for pointer-to-array access conversion
for compiling and optimizing DSP applications. InInternational Workshop on Innovative Architectures
for Future Generation High-Performance Processors and Systems (IWIA) 2001, pages 80–89, Maui,
Hawaii, 2001.

[29] D. Whalley. Automatic Isolation of Compiler Errors.ACM Transactions on Programming Languages
and Systems, 16:1648–1659, 1994.

[30] J. Wielemaker.SWI-Prolog Reference Manual. University of Amsterdam, 1995. Available by anony-
mous ftp fromswi.psy.uva.nl .

[31] Wankang Zhao, Baosheng Cai, David Whalley, Mark Bailey, Robert van Engelen, Xin Yuan, Jason
Hiser, Jack Davidson, Kyle Gallivan, and Douglas Jones. VISTA: A system for interactive code im-
provement. Inproceedings of the LCTES conference, 2002.

21

