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ABSTRACT

The Poor Man’s Trace Cache (PMTC) architecture is a novel fetch technique which intends to

address two computer architecture problems: the fetch problem and the branch prediction

problem. The fetch problem is the inability of many of today’s superscalar processors to fetch to

their entire issue width due to transfer of control instructions breaking the sequential ordering of

instructions. The branch prediction problem refers to incorrectly issued instructions from a

branch misprediction which unnecessarily take up processor resources. The PMTC architecture

involves static code duplication following direct transfer of control instructions. The number of

instructions copied from the target is variably determined based on the distance of the transfer of

control instruction from the nearest cache line boundary. For conditional transfer of control

instructions, we select to perform PMTC code duplication only on those instructions which are

biased towards taken. Static measurements indicate an increase in path separability, which can

improve dynamic branch prediction accuracy since approaching the same branch from distinct

paths will likely result in distinct prediction histories. Path separability also has the potential to

enable additional static code improving transformations.
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CHAPTER 1

INTRODUCTION

The Poor Man’s Trace Cache (PMTC) architecture is a novel fetch technique which intends to

address the problem of a limited fetch bandwidth as well as low branch prediction accuracy. The

expected benefits that will come out of the use of the PMTC architecture are an increased fetch

bandwidth, increased branch prediction accuracy, and increased path separability, which may in

turn enable additional code improving transformations.

1.1 Research Problems

We introduce two computer architecture problems: the fetch problem and the branch prediction

problem.

1.1.1 The Fetch Problem

It has become increasingly difficult to reap the benefits of a wide issue width that is present in

many of today’s superscalar processors. Ideally, a multi-issue superscalar machine would exploit

its maximum issue capabilities. If we consider an 8-issue superscalar, then ideally each issue

packet would contain eight instructions from the fetch unit. However, the fetch unit is not always

able to supply the maximum number of instructions.The fetch unit relies on a starting address

from which to start fetching instructions. A fetch unit can only fetch multiple sequential

instructions from within the same cache line, or sometimes across a pair of consecutive cache

lines. This implies the need for sequential ordering of instructions. A basic block is a sequential

set of instructions with a single entry point and a single exit point. A small average number of

instructions within a basic block and a large number of transfer-of-control instructions are the

main reasons for limitations on the fetch unit. Jump and taken branch instructions disrupt the
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sequential flow of instructions, causing any remaining instructions in the fetch buffer to be

rendered invalid for decode and execution. This is a problem because it greatly limits fetch

efficiency, which in turn limits the performance of the machine. Even if these machines have the

ability to issue eight instructions at once, we only gain as much improvement as we can exploit

from the fetch buffer.

1.1.2 The Branch Prediction Problem

Another problem that stems from branch heavy code is the problem of branch prediction. Issuing

instructions with a branch that is incorrectly predicted would provide no additional benefit to

performance. We may even need to incur a penalty to recover from the branch misprediction.

Therefore, it is important to have an accurate branch prediction protocol. We want to limit the

number of incorrect predictions that need to be handled by the processor.

1.2 Motivation

The PMTC architecture primarily aims to address the fetch problem and the branch prediction

problem. It is important to consider these two problems in tandem. Without accurate branch

prediction, multi-issue machines would incur great penalties discarding invalid instructions. On

the other hand, accurately predicting branches would only provide as much benefit as the number

of instructions from the correct branch path that we can issue. In implementing the PMTC

architecture as an optimization on MIPS assembly code, we focus on achieving the benefits of

wide issue widths while preventing a large penalty for incorrect branch predictions.

1.2.1 Anticipated Benefits

There are three main intended improvements we expect from the implementation of the PMTC

architecture:

a) Increased fetch bandwidth
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b) Increased branch prediction accuracy

c) Increased path separability

All of these improvements can potentially provide the benefit of increased performance for any

application. The first two directly address the fetch problem and the branch prediction problem,

respectively. The last improvement we expect as a result of PMTC code duplication. The

redundancy of code which is copied is considered path separability, since two instances of the

same copied code can be treated as two separate paths. We expect that this increase in path

separability will enable additional code improving transformations.

Since the world and its productivity has grown so dependent on computers, any

improvement in performance would be beneficial to our society as a whole. Many of today’s

desktops, laptops, and servers use superscalar processors which would benefit from this fetch

technique. This increase in performance can open up the potential for these processors to be able

to handle new and more powerful applications.

1.2.2 Research Questions

There were a number of research questions we asked to guide the research and development of

this project:

1. Can we implement a solution that addresses the fetch problem while preventing a large

number of performance penalties recovering from branch mispredictions?

2. Can we implement a solution that improves branch prediction accuracy?

3. Does addressing our research problems with this implementation provide substantial

performance improvements?

4. Does our solution provide greater path separability?

5. Does our solution enable any additional code improving transformations?
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These questions will be revisited at the conclusion of this paper, where we can determine from

our results if we achieved our expected benefits and goals. We can also assess if our

measurement techniques provide an accurate determination of our success, and discuss any

limitations of these techniques.
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CHAPTER 2

LITERATURE REVIEW

The concept of a dynamic trace cache as a solution to the fetch problem has been studied for

decades [3]. This idea involves storing traces of the dynamic instruction stream so that

instructions which are non-contiguous can be sequentially fetched. The PMTC architecture can

be thought of as a software trace cache, since it statically predicts the instruction stream and

“caches” traces of instructions through code duplication. This method, in contrast to previous

methods, has the additional benefit of increasing branch prediction accuracy. Previous work [2]

has attempted to increase fetch bandwidth by rearranging the order of basic-blocks to follow the

natural sequential fetching of the fetch unit. The drawback of this method is that this

rearrangement negatively interacts with branch prediction since branches become more biased

towards not taken. In contrast, the PMTC architecture does not alter the control-flow of a

program, which allows it to consistently improve branch prediction accuracy.

The PMTC architecture is a novel architecture originally developed by Moore and Önder

[1] as part of an assembler. This team has developed numerous algorithms which remain similar

for our implementation. Figure 2.1 refers to an algorithm developed by Moore and Önder for

inserting delay slots.
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Figure 2.1: Delay Slot Insertion Algorithm

This project explores an implementation of the PMTC architecture in an assembly optimizer,

rather than part of an assembler. Due to greater knowledge of loop information at the

optimization level, we are able to more accurately identify which paths associated with a transfer

of control instructions will likely benefit from code duplication. In general, direct transfers of

control which could leave a loop are biased towards the successor which stays in the loop. We

assume that branches which are biased towards taken will more likely benefit from code

duplication. Moore also made this assumption, but did not have the same access to loop

information as we do at the assembly optimizer level. Moore’s implementation assumes that a

backwards branch is most likely to stay within a loop, which can be seen in line 8 of Figure 2.1.

Because the assembly optimizer can perform control flow analysis, we know exactly which basic

blocks are in any given loop. We expect that the greater knowledge of loop information will

provide greater performance improvement. Additionally, the implementation of PMTC at the

6



assembly optimizer level opens up the opportunity to apply additional code-improving

transformations on the duplicated code which can further improve performance.
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CHAPTER 3

IMPLEMENTATION

3.1 Technologies Background

3.1.1 Asopt

The terms “asopt” or “opt” are used to refer to the assembly optimizer used in this project. This

application performs various code-improving transformations on assembly files. Previously

implemented transformations include dead assignment elimination, copy propagation, and loop

unrolling. Asopt can keep track of transformation statistics. Command line options are used to

signal which optimizations should be applied. The PMTC implementation was split into two

phases, which requires two distinct flags. The flag -d is used for phase one. The flag -p is used

for phase two.

3.1.2 FAST and ADL

The Flexible Architecture Simulation Tool (FAST) is the simulation system used in this project.

This system utilizes an Architecture Description Language (ADL) developed specifically for

FAST. The ADL acts as a specification for a given microarchitecture. The output of FAST

includes a simulator, assembler, and disassembler for the microarchitecture described by the

given ADL file. A researcher studying a microarchitecture may write their own simulator by

hand, but can instead write an ADL file for their architecture and pass it as input into FAST. The

developers of FAST estimate that it takes a developer about one to three months to describe an

architecture in ADL, for which would take 18 to 24 months to write a simulator in C [4]. It is

also relatively simple to update an ADL file. In addition to the productivity gains, the resulting

simulator can also gather performance data and other statistics.
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3.2 Overview of Implementation

PMTC code duplication occurs in two phases. Both phase one and phase two refer to processing

transformations which are performed on each function in a given file. If a phase is being

performed on an entire file, then this means that the phase is being performed on each function in

that file. Likewise, a phase being performed on an entire program implies that the phase is being

performed on each file which comprises the program.

Phase one handles the insertion of all delay slots for branches, jumps, and function calls.

PMTC code duplication for jump and branch instructions occurs in the first phase, while PMTC

code duplication for call instructions must be handled in the second phase. The reason for this is

that in many cases the caller function and the callee function are defined in separate files. This

requires a first pass through every function, in every file, in every directory of the program. We

compile a list of functions in a file called the “beginsts” file. To assist phase two, we generate the

beginsts files when performing phase one on the entire program. Phase two reads from all the

beginsts files generated and uses this information to perform PMTC code duplication at function

calls.

3.3 The ADL File

The ADL file used for the PMTC architecture is a modified version of the ADL file used for the

MIPS architecture. The PMTC file includes three additional types of instructions. First, we

needed a delayed version for jumps, branches, and function calls. A delayed transfer of control

signals that instructions sequentially after the transfer of control should be fetched and executed

before the transfer of control takes place, given that the transfer will be taken. The delayed

version includes an additional ‘d’ at the end of the mnemonic. For example, the delayed version

for “beq” would be “beqd.” Second, we needed to recognize branch and jump instructions which
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utilize an address offset to locate the target address. For this, we add a double underscore to the

end of the mnemonic. For example, “beq” would expect an absolute address or label for its

argument, while “beq__” would expect an address offset relative to its location. Finally, we

needed a third type of instruction which is simply a combination of the two modifications. This

type of instruction would end with “d__” and would both be delayed and expect an address

offset. Referring back to our example, the modified version of “beq” would be “beqd__”. The

ADL file for the PMTC architecture includes descriptions for the three additional types of

instructions.

3.4 The Beginsts File

Code duplication for branches and jumps can be locally executed within one assembly file. On

the other hand, code duplication for function calls often cannot be locally executed. There are

many cases where functions are declared and defined in files separate from where they are

called, and in some cases in separate directories. The beginsts file serves as a repository of all the

functions across all files in a given directory. Note that it would be excessive to store all of the

instructions of a function. We only store the first N instructions of a function, where N =

instructions per cache line. We generate the beginsts file in the first iteration of PMTC, which we

refer to as phase one. We use the beginsts file in the second iteration of PMTC in order to

perform code duplication for function calls. This is the main purpose of splitting the PMTC

implementation into two phases.

The first line of the beginsts file contains the total number of functions currently being

stored in the file. Each function lists the file name, function name, and at most the first N lines of

the function, where N = instructions per cache line. Some functions may have less than N

instructions. For this reason, the keyword “end” is used to signal the end of a function listing.
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Two consecutive function listings from the SPEC benchmark 462.libquantum are shown in

Figure 3.1. For more information on SPEC benchmarks, refer to Section 4.1 of this paper.

Figure 3.1: Beginsts File Function Listing Example

3.5 The Config File

The configuration file contains user-specified values and options for PMTC, and a list of

directories that comprise a program. Opt assumes a particular name, location, and structure of the

configuration file. The name of the configuration file must be pmtc.config and it must be located

in the directory from which opt is being executed. The config file used for the SPEC benchmark

999.specrand is shown in Figure 3.2. For more information on SPEC benchmarks, refer to

Section 4.1 of this paper.
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Figure 3.2: PMTC Configuration File

The cache line size specifies how many instructions fit between two cache line boundaries. The

function info file name is the name of the beginsts file. For this project, “beginsts.txt” was

always used as the name of this file. However, the implementation allows for any user-specified

name. At a function call, the program attempts PMTC code duplication by locating the function

information in a beginsts file. If this function cannot be found in the beginsts file, then opt can do

one of two things: report an error or ignore the function call. The next line of the config file

specifies an option which either treats “function not found” as an error when the value is ‘y’, or

ignores this entirely if the value is ‘n’. It may be necessary to turn off this option when some of

the program directories contain an incomplete beginsts file. This would occur if not all program

files have been processed with the -d flag, which may be needed to isolate asopt errors. Finally,

the config file lists the directories which comprise the entire program. This is essential for opt to

locate all the beginsts files during phase two.
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3.6 Phase One

PMTC phase one can be broken up into three distinct parts which occur once per function:

1. Delay Slot Insertion and Branch Prediction – “nop” instructions are inserted up to the

cache line boundary after function calls, jump instructions, and branches which are biased

towards taken, which is also determined in this step.

2. Code Duplication at Jumps and Branches – delay slots are filled with copied instructions

from the target address for jumps and branches.

3. Write Current Function to Beginsts – at most a cache line’s worth of instructions at the

beginning of the function is written to the beginsts file.

3.6.1 Delay Slot Insertion and Branch Prediction

The algorithm for inserting delay slots remains very similar to the one developed by Moore and

Önder, which is shown in Figure 2.1. For any jump, call, or biased branch, we insert “nop”

instructions until the end of the cache line. The main difference is the logic used to determine

which branches should be delayed. Figure 2.1 includes a check for backwards branches. There is

no such check in this implementation. The assembly optimizer keeps track of all control flow

loops, giving us a better insight to which branches are biased towards taken. Loops typically

branch back on themselves at least once, but only leave the loop exactly once. Thus, we can

assume that branches which could leave a loop are biased towards the successor which stays in

the loop. This check could not have been implemented in the assembler developed by Moore and

Önder, since it is unknown which branches stay within a loop at the assembler level. Figure 3.3

shows how the program determines whether or not a branch is biased. A return value of “TRUE”

signifies that the branch is biased towards taken, and thus will be transformed to a delayed

branch. Otherwise, the function returns “FALSE”.
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Figure 3.3: Function for Determining Biased Branches

Figure 3.4 shows the effects of delay slot insertion on the source code. Opt determined that there

is room for four delay slots following the jump instruction in the block starting at $L4. It is

necessary to apply delay slot insertion on the entire function before performing code duplication,

since copied instructions may also include their own delay slots.
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Figure 3.4: Delay Slot Insertion Example

3.6.2 Code Duplication at Jumps and Branches

After all delay slots have been inserted with nops across the entire function, we begin PMTC

code duplication at jumps and biased branches. For any jump or biased branch, we identify the

target of the control transfer. Once located, we copy instructions from the target until we either

run out of delay slots (nop instructions) or run out of instructions to copy. If we run out of

instructions to copy before we run out of delay slots, then the remaining “nop” instructions are

changed to “trash” instructions. The “trash” instruction has the same behavior as the “nop”

instruction, but is used to represent a filled delay slot instead of an unfilled delay slot. The

branch or jump instruction must be replaced with a delayed version of the instruction. This is

done by appending a ‘d’ to the end of the mnemonic. A delayed instruction signals to the
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simulator that instructions sequentially after the transfer of control, up to the cache line

boundary, should be fetched and executed. After the cache line boundary is reached, the

simulator starts fetching and executing from the target, skipping past the instructions which were

already fetched. For details on the implementation of this instruction type, refer to Section 3.3 of

this paper.

Consider our example which was first presented in Figure 3.4. Opt knows to copy exactly

four instructions from the target, $L3, because that is how many delay slots are listed after the

jump instruction. Figure 3.5 shows the result of this transformation.

Figure 3.5: PMTC Code Duplication Example
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3.6.3 Write Current Function to Beginsts

At this point, all delay slots for branch and jump instructions have been filled, and call

instructions still have unfilled delay slots. This last step involves adding a function listing for the

current function to the beginsts file. We add the filename, function name, and a list of the first N

lines of the function, where N = instructions per cache line. For more information on the format

of this function listing, refer to Section 3.4 of this paper.

There is one type of transformation on the code source which can still happen at this step.

If we encounter a branch or jump instruction, we must replace the label for the target with the

address offset of the target from the control flow instruction in question. We must also append a

double underscore to the end of the mnemonic. For details on the implementation of this

instruction type, refer to Section 3.3 of this paper. This transformation must be done before the

function is written to the beginsts file. In the case that we must copy a branch or jump instruction

into the delay slot for a function call, the control flow instruction would be referencing a label

which is defined in the callee function, not the caller. If the target were to live in a separate file,

then the assembler would either not understand how to translate the label into an offset, or would

translate the label into the incorrect offset. This transformation is essentially performing this

translation so that there is no ambiguity at the assembler level.

Figure 3.6 shows the effect of this transformation. We replace the mnemonic “bne” with

“bne__” so that the assembler knows to expect an address offset. We replace the target of the

branch instruction, $L3, with an offset of -3 because the first instruction of $L3 is “mult

$2,$4”, which is three instructions before the branch instruction.
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Figure 3.6: Replacing Branch Target with Address Offset

3.7 Phase Two

PMTC phase two can be broken up into two distinct parts which:

1. Read Function Information from Beginsts – all functions are read from all the beginsts

files and stored in a data structure. This is done before asopt processes the assembly file.

2. Code Duplication at Function Calls – delay slots at function calls are filled with the

function’s instruction listing which was read from the beginsts file.

3.7.1 Read Function Information from Beginsts

There exists one beginsts file per directory of the program, with its own function count in the

first line of the file. Opt reads the list of directories from the configuration file and stores this list

in a data structure. Opt then uses this list to add up all the function counts for each file, and

allocates a dynamic array of structs with this size. We then iterate through the list of directories

again to read all the function listings into this array.

3.7.2 Code Duplication at Function Calls

This step is similar to the step described in Section 3.6.2 of this paper. For any function call, we

search for the function in the array of functions generated in the last step. Once located, we copy
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instructions from the callee function into the delay slots after the function call. Similarly to code

duplication at branches and jumps, we do this until we either run out of delays slots or run out of

instructions to copy. If there are extra delay slots remaining, they are replaced with “trash”

instructions.
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CHAPTER 4

RESULTS

4.1 SPEC Benchmarks

The Standard Performance Evaluation Corporation (SPEC) benchmarks are standardized test

programs used to evaluate machine performance. These benchmarks are used widely in

computing research because they are written to accurately mimic real-world applications. Some

examples include a video compression program, a path finding algorithm used in games, and

quantum computing simulations [5]. There exist both integer and floating point benchmarks. Any

given benchmark contains various source files. The name of a SPEC benchmark is of the form

<benchmark_id_number>.<title>. Some examples include 999.specrand, 462.libquantum, and

026.compress. The SPEC CPU2006 benchmarks are the programs which will be used for our

evaluations.

4.2 Measurements

Opt keeps track of various static measurements while processing a file. Upon completion, opt

dumps the statistics to a file with a .pmtc extension. Running opt on the file “decoherence.s”

from the benchmark 462.libquantum results in a statistics file called “decoherence.pmtc”, which

is shown in Figure 4.1 as an example.

20



Figure 4.1: decoherence.pmtc

The “delay slots inserted” value is the total number of delay slots inserted in the decoherence.s

file. The “delay slots filled” value is the total number of those delay slots which were replaced

with a duplicated instruction. The next three values are the total number of instructions of a

given type which were given delay slots. Whenever a jump or branch instruction was copied into

a delay slot, the “paths duplicated” value was incremented. This value is used to measure the

effect that the PMTC transformations have on path separability. The last two values show the

total code size, in number of instructions, before and after the PMTC optimization has been

performed. These values are used to measure the code size growth.

A separate program was developed to gather data from all the .pmtc files for a given

benchmark, and produce statistics for the entire program. The resulting statistics file for the

benchmark 462.libquantum is shown in Figure 4.2.
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Figure 4.2: Benchmark Statistics Example

The first section is the result of adding up all the values from all the .pmtc files in the

benchmark. The next section consists of calculations made from the data in the first section.

Assume that every value that says “percent” was multiplied by 100 to represent the percent

instead of the fraction. The value for “percent of delay slots filled” is obtained by taking delay

slots filled over the total number of delay slots inserted. The values for percent jumps, branches,

and calls are obtained by taking the individual count over the total number of delayed

instructions. The percent growth is obtained by taking the total growth over the original size of

the code. The final value is obtained by taking the paths duplicated over the total number of

delayed instructions.
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4.3 Data and Analysis

All data was taken from the same thirteen benchmarks. These benchmarks consist of a mix of

both integer and floating point programs from the SPEC CPU2006 benchmarks.

Figure 4.3: Percent of Delay Slots Filled after Phase One

Figure 4.3 shows the percent of delay slots filled for each of the benchmarks. Note that we were

only able to gather statistics on this for phase one, so there are still delay slots for call

instructions which have not yet been filled. Most of the benchmarks lie around 40% to 60%,

averaging around 45%. This shows a significant amount of delay slots being filled in phase one.

The data suggests that we may find similar results for the delay slots being filled in phase two. In

other words, we expect the results for phase two to also lie around 40% to 60% to offset the

results from phase one. Note that the two values would likely not add up to 100%, since there are

some cases where not all delay slots can be filled. In these cases, they are replaced with “trash”

instructions.
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Figure 4.4: Composition of Instructions Given Delay Slots

Figure 4.4 shows the composition of instructions given delay slots by instruction type. Note that

the percentage of jumps and branches taken together roughly matches the graph in Figure 4.3.

These are the results we expect if a majority of the delay slots for jump and branch instructions

are being filled. This also supports the suggestion that the remaining delay slots will be mostly

filled during phase two.
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Figure 4.5: Percent Growth of Code Size

Figure 4.5 shows the percent growth of the code size for each of the benchmarks. Most of the

benchmarks lie around 40% to 50%, which is a significant increase in code size. The average lies

at 40% due to a few benchmarks which saw little code growth. The large increase in code size is

considered one of the drawbacks of this implementation. This data will help guide our future

research to focus on methods to decrease unnecessary growth. There does not seem to be any

correlation between percent growth and the size of the original program. In other words, nothing

in this data suggests that percent growth increases or decreases with the size of the program.
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Figure 4.6: Percent of Delayed Instructions with a Duplicated Path

Figure 4.6 shows an estimate of the percent of delayed instructions with a duplicated path. This

tells us about what percent of our transformations result in an increase in path separability. Most

of the benchmarks lie around 20% to 30%. Note that we were only able to gather statistics on

this for phase one, so there are still delay slots for call instructions which have not yet been

filled. We expect to see a similar increase in phase two, proportional to the percent of delay

instructions which are call instructions. After both phase one and phase two, it is likely that about

50% of our transformations result in an increase in path separability. This is a significant

increase, and suggests that the resulting code would benefit from additional optimizations. This

data will help guide the future work to be more involved with applying additional optimization

and measuring how the effects on path separability enable certain transformations.
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CHAPTER 5

DISCUSSION

5.1 Challenges and Limitations

While working on the project, we discovered an issue with copying jump and branch instructions

into the delay slots for a function call. The jump or branch instruction being copied would have a

target label which is defined in the callee function, not the caller. This would result in unexpected

behavior, as the assembler would attempt to locate the label only within the same file. In

response to this issue, we brainstormed various possible solutions. One possibility was to relabel

every label so they would all be unique and global, thus removing any ambiguity. Another

possibility was to replace the target label with the target address offset from the branch. The

latter was implemented. For more information on this transformation, refer to Section 3.6.3.

In order for the PMTC architecture to correctly work, the instructions must be aligned on

the cache line boundary. At the beginning of every function, we add an align directive which

agrees with the cache line size assumed by opt. For example, we use the “.align 5” directive so

the simulator knows to align instructions so that there are eight instructions, or 25 bytes, per

cache line. During testing, we discovered that the PMTC simulator produced by FAST does not

correctly align the instructions. We notified one of the developers of FAST and ADL, and he

discovered that the linker is changing the alignment. He told us that this will be fixed in the next

version release. Without the ability to simulate the code produced, we were unable to get any of

the dynamic measurements that we had planned. Due to this issue, our testing and measurements

were limited to be only static at this time.
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In order to test phase two, it must be re-applied to the resulting program from phase one.

There was no infrastructure in place to be able to re-apply opt to the resulting code, since opt

relies on an existing setup of the benchmark directories. This setup would need to be

reconstructed during phase one in order for opt to test the modified program. Addressing this

obstacle was not sufficiently considered in the scope of this project, thus testing phase two will

be postponed to future work. Due to this unforeseen challenge, our testing and measurements

were limited to phase one results at this time.

5.2 Future Work

We will be able to begin gathering static measurements for phase two after building the

necessary framework. Once the new version of FAST is released, we will be able to begin testing

the resulting code and obtaining dynamic measurements. We may discover that these

measurements indicate insignificant speedup, or inefficient use of delay slots, or inaccurate

branch prediction strategies. Based on this, we can modify our implementation and experiment

with different delay slot insertion algorithms and branch prediction algorithms. We may also

want to explore the potential for additional assembly optimizations that PMTC code duplication

may enable.

5.3 Conclusions

While the results may have been more limited than we originally intended, they proved to be a

promising sign that the PMTC architecture can sufficiently address the fetch problem and the

branch prediction problem, both introduced in Section 1.1. The results encourage further

development of the PMTC architecture as an assembly optimization.
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Let us revisit our research questions:

1. Can we implement a solution that addresses the fetch problem while preventing a large

number of performance penalties recovering from branch mispredictions?

2. Can we implement a solution that improves branch prediction accuracy?

3. Does addressing our research problems with this implementation provide substantial

performance improvements?

4. Does our solution provide greater path separability?

5. Does our solution enable any additional code improving transformations?

Questions 1 through 3 cannot be sufficiently answered without being able to simulate the

architecture, thus will have to be revisited in future work. In response to question 4, our results

do suggest that the solution provides greater path separability. This implies that the solution has

the potential to enable additional code improving transformations. While this is promising,

question 5 cannot be sufficiently answered with our current knowledge. The results are an

encouraging sign to continue building upon the PMTC implementation in our future work.
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