
Coalescing Conditional Branches into E�cientIndirect JumpsGang-Ryung Uh and David B. WhalleyComputer Science Dept., Florida State University, Tallahassee, FL 32306-4019, USAAbstract. Indirect jumps from tables are traditionally only generatedby compilers as an intermediate code generation decision when translat-ing multiway selection statements. However, making this decision duringintermediate code generation poses problems. The research described inthis paper resolves these problems by using several types of static analysisas a framework for a code improving transformation that exploits indirectjumps from tables. First, control-ow analysis is performed that providesopportunities for coalescing branches generated from other control state-ments besides multiway selection statements. Second, the optimizer usesvarious techniques to reduce the cost of indirect jump operations by stat-ically analyzing the context of the surrounding code. Finally, path andbranch prediction analysis is used to provide a more accurate estima-tion of the bene�t of coalescing a detected set of branches into a singleindirect jump. The results indicate that the coalescing transformationcan be frequently applied with signi�cant reductions in the number ofinstructions executed and total cache work. This paper shows that staticanalysis can be used to implement an e�ective improving transformationfor exploiting indirect jumps.1 IntroductionIndirect jumps from tables can be used to replace sequences of branches com-paring the same register or variable to constants. Traditionally, indirect jumpsfrom tables are only generated by compiler front ends when translating multiwayselection statements, such as the Pascal case or C switch statements. Makingthis decision early during intermediate code generation poses problems. First,it is di�cult to determine when a particular method can be e�ectively used ina machine-independent fashion since an accurate cost can only be known aftergenerating machine instructions. Even if a compiler front end is updated to con-tain machine-dependent information, the approach used will be a�ected by thecontext of the code surrounding the multiway selection statement. Second, manycode-improving opportunities may be missed by only considering the translationof multiway selection statements. The authors propose that these problems canbe more e�ectively addressed by coalescing conditional branches into indirectjumps from tables as a general improving transformation after code generation.There are many opportunities for coalescing branches into indirect jumpsfrom tables when performed as an improving transformation as opposed to an in-termediate code generation decision. Consider the following code fragment from



ctags (C tags generator) shown in Figure 1(a). A typical C compiler would gen-erate an indirect jump with a table for the switch statement and would generatea conditional branch for the for statement. Yet, the conditional branch compar-ing *sp with zero would immediately precede the indirect jump. An optimizercould recognize this sequence of comparisons of the same variable (or register)with constants and be able to coalesce the comparison with zero and the condi-tional branch into the indirect jump and jump table. Note that one can view thisbranch as another case for the switch statement as shown in Figure 1(b). Othercommon instances may occur due to programming style. Figure 2(a) shows acode segment from grep program that has a series of if statements comparingthe same variable to di�erent constants. Compilers will translate these if state-ments as a sequence of conditional branches. However, the code could have beenequivalently written as a single switch statement as shown in Figure 2(b). Thus,the control ow for both code segments can be accomplished with an indirectjump. Use of multiple macros may also result in several consecutive comparisonsbeing performed. Therefore, coalescing of branches as a general improving trans-formation has the appealing aspect that performance is a�ected by the programlogic (control ow) and not the program style (whether or not multiway selectionstatements are used).
(a) Original Code

(b) Equivalent Code as a

    Switch Statement

for (sp = line; *sp; sp++)

  switch (*sp) {

    ...

  }

for (sp = line; ; sp++)

  switch (*sp) {

     case 0: /* exit the loop */

        goto out;

     ...

  }

out:Fig. 1. Code Fragment from ctags
(a) Original Code

   goto cerror; switch (c) {

if (c == ’>’) { ... }

if (c == ’(’) { ... }

if (c == ’)’) { ... }

(b) Equivalent Code as a Switch Statement

if (c == ’<’) { ... }

if ((c = *sp++) == 0) c = *sp++;

   case 0: goto cerror;

   case ’<’: ...

   case ’>’: ...

   case ’(’: ...

   case ’)’: ...

   case ’1’: ...
   ...

   case ’9’: ...

   default: ...

}

if (c >= ’1’ && c <= ’9’) { ... }Fig. 2. Code Fragment from grepThis paper describes a general approach for decreasing the number of condi-tional branches executed by coalescing branches into indirect jumps from tables.First, a control-ow analysis algorithm is used to detect potential sequences of



branches that can be transformed into a single indirect jump. Test conditionsother than ones for equality and inequality can also be coalesced into indirectjumps, including testing if a variable is within a bounded range of constants.Second, value-range propagation analysis is performed to determine the range ofvalues associated with each potential target of the indirect jump. Third, varioustechniques are used that statically analyze the code surrounding the sequenceof branches being coalesced to reduce the cost of performing an indirect jumpfrom a table. Applying these techniques often results in the execution of onlytwo instructions on a SPARC for this operation. Fourth, path and branch pre-diction analysis is also performed to estimate the bene�t of coalescing a set ofbranches into an indirect jump. The number of instructions executed througheach path of the set of branches and the probability of each path being taken isconsidered versus the cost of performing an indirect jump. Finally, the controlow is transformed from the sequence of branches to an indirect jump whenthe transformation is deemed bene�cial. Results are given indicating that thecode improving transformation could be frequently applied and often resulted insigni�cant performance improvements.2 Related WorkSeveral authors have suggested heuristics for deciding between di�erent meth-ods of translating multiway selection statements [12, 14]. These methods includea linear search (branch for each case value), binary search, hashing, and in-direct jumps from tables. The approach used in this paper initially generatesconditional branches to perform a linear search and relies on the code-improvingtransformation to coalesce these and other branches into indirect jumps. Thetechniques used in this paper to reduce the cost of performing an indirect jumpfrom a table often make binary searches, hashing, and other alternative methodsless bene�cial.There has been some research on other techniques for avoiding conditionalbranches. Loop unrolling has been used to avoid executions of the conditionalbranch associated with a loop termination condition [6]. Loop unswitching movesa conditional branch with a loop-invariant test condition before the loop andreplicates the loop in each of the two paths of the branch [1]. A more generalmethod has recently been developed that avoids conditional branches by codereplication [10]. This method determines if there are paths where the result ofa conditional branch will be known and replicates code to avoid execution ofthe branch. Coalescing branches into indirect jumps from tables will avoid theexecution of branches that these other techniques could not.3 Detecting Sequences of Coalescent BranchesA general algorithm for detecting a sequence of branches that can be coalescedtogether may provide additional opportunities that would not be available bygenerating indirect jumps only when translating multiway selection statements.The analysis for the approach described in this paper to detect sequences of



branches that can be coalesced into an indirect jump required the followingconditions. (1) The branches must be contiguous in the control ow. In otherwords, the instructions implementing the comparisons and branches must beconnected by transitions with no intervening instructions. (2) Each branch mustcompare the same variable (or register) with a constant. (3) At most one branchcan have no incoming transitions from another branch in this set. Thus, at mostone branch can be the head of the sequence.The algorithm for detecting a sequence of branches that can be coalesced isgiven in Figure 3. The algorithm not only will detect a coalescent sequence, butwill also attempt to maximize the number of branches to be coalesced.
        variable V with a constant) THEN

       Search_Back(B, V);

       H = Choose_Head();

       Collect_Blocks(H, V);

PROCEDURE Search_Back(B, V)

  mark B as visited;

      preceding its compare and branch) THEN

          Search_Back(P, V);

PROCEDURE Detect_Sequence()

PROCEDURE Collect_Blocks(B, V)

  mark B as collected;

    IF (S has not been collected AND

    IF (B contains a branch that compares

       Collect_Blocks(S, V);

           P compares V with a constant) THEN           a constant) THEN

           P has a branch AND         S compares V with

       IF (P has not been visited AND           and branch AND

        S starts with a compare     FOR each immediate predecessor P of B DO

  IF (B has no instructions   FOR each immediate successor S of B DO

PROCEDURE Choose_Head()

    IF (B has no immediate predecesor

        marked as visited) THEN

       RETURN B;

  RETURN visited block that dominates
         the most visited blocks;

  FOR each block B marked as visited DO  FOR each block B DO

Fig. 3. Algorithm for Detection of Potentially Coalescent Branches
...

...

...

...

...
...

...

...

...

...

...

...
...

...

...

...

...

...

...
...

...

...
...

...
...

...
...

1

2

3 4

5 6

20 21

22 23 24

25 26 27

1

2

3 4

5 6

20 21

24

25 26 27

1

2

3 4

5 6

20 21

23 24

25 26 27

(a) Before Coalescing (b) Coalesced Sequence Starting at Block 20 (c) Coalesced Sequences at Blocks 20 + 21Fig. 4. Transforming Branches into Indirect JumpsFigure 4(a) contains an example ow graph that is used to illustrate thealgorithm. Assume that the blocks 2, 4, 20, 21, 22, and 23 contain a branch thatcompares the same condition variable with a constant. Also assume that blocks



2, 4, 22, and 23 contain no other instructions besides a comparison and branch.Consider if the detection of a sequence of branches is attempted at block 2. Thealgorithm recursively searches backwards and mark blocks 2, 23, 20, and 21 asvisited. Assume block 20 is chosen as the head of the sequence since it is the�rst block detected that has no visited immediate predecessor. At this point thealgorithm recursively searches forward and collects blocks 20, 22, 23, 2, and 4 asthe sequence of branches to be coalesced.4 Constructing the Jump TableOnce it has been determined that a set of conditional branches can be coalesced,a jump table must be constructed in order to perform the transformation. Con-struction of a jump table requires two steps. (1) Identify all possible targets forthe indirect jump. (2) Associate each possible value of the condition variable witha single potential target. To e�ciently accomplish these steps, a DAG (DirectedAcyclic Graph) is built as the blocks containing the coalescent branches are col-lected. Each node in the DAG represents one of the coalescent branches. Eachedge represents either a transition between two such branches or a transition toa potential target of the indirect jump.The bene�ts of using a DAG are as follows. First, all possible targets forthe indirect jump can be quickly identi�ed since they will be the targets of thetransitions out of the DAG. Second, each nonoverlapping value range of thecondition variable can be easily associated with a single target by propagatingvalue ranges of the variable through the DAG. Each node will have two outgoingedges, one for the true (taken) transition and the other for the false (fall-through)transition. The possible range of values at each node is calculated by unioningthe e�ect of applying the relational operator of each immediate predecessor nodeon its corresponding input range.The use of a DAG allows coalescing of branches that check if a variable iswithin a speci�c range. For instance, the C code segment in Figure 5(a) checks ifa character could be part of a C identi�er. Figure 5(b) depicts the DAG that wasbuilt representing the control ow of the coalescent branches in the code segment.Nonoverlapping value ranges of the condition variable are mapped to the targetsout of the DAG (A, B, C, D, and E). Note that at most one target from atransition out of the DAG will be permitted to have unbounded value ranges.For instance, only the D target has value ranges that cannot be represented ina jump table. Such a target would correspond to the default case of a C switchstatement.5 Reducing the Cost of Performing an Indirect JumpCompiler writers have long considered performing an indirect jump from a jumptable as a very expensive operation. The tasks associated with such an indirectjump operation include (1) performing an initial range check to ensure that thevalue being compared is within a bounded range, (2) calculating the addressof the jump table, (3) calculating the o�set used to index into the table, (4)loading the target address from the table, and (5) performing the indirect jump.



min..max

< 97

97..max

< 65

65..96,123..max

<= 90

min..96,123..max

< 48

<= 57 != 95

<= 122

F T

T
F F T

F

T F T

F
T FT

  97..122

65..90

48..57

91..94,96..96,
123..max

(’a’..’z’)

(’A’..’Z’)

(’0’..’9’)
95..95

(’_’)

if ((c >= ’a’ && c <= ’z’) ||

    (c >= ’A’ && c <= ’Z’) ||

    (c >= ’0’ && c <= ’9’) ||

     

(b) DAG Used for Value Range Analysis

      (a) C code segment

    (c == ’_’)) { ... }

min..64,91..96,123..max

48..64,91..96,123..max min..47,58..64,91..96,123..max

min..47,58..64,

Target A

Target B

Target C
Target D Target EFig. 5. Example of Checking If a Character Is Part of a C Identi�erCompiler writers have made little attempt at reducing the cost of this operationsince indirect jumps from tables occurred relatively infrequently.The number of instructions required to perform an indirect jump from a jumptable can vary depending upon a number of factors. Figure 6 depicts SPARCinstructions represented as RTLs that are used to implement an indirect jump(disregarding the instruction in the delay slot of the indirect jump) by the pcc[9], gcc [15], and vpo [4] compilers. Similar instructions are available on mostRISC architectures. It would appear that at least 5 pairs of compare and branchinstructions must be executed to make coalescing branches into an indirect jumpoperation worthwhile on the SPARC since 8 instructions are used to implementan indirect jump. However, instructions 4 and 5 are loop invariant and thereforecan often be moved out of a loop. The following subsections describe othertechniques that will often avoid the execution of instructions 1-3 and 6 as well.

# sub %o2,32,%o0

# cmp %o0,45

# bgu L18

# sethi %hi(L01),%l4

# or %l4,%lo(L01),%l4

# sll %o0,2,%o0

# ld [%o0+%l4],%o0

# jmp %o0

1. Subtract lowest case value

2. Compare with the (highest-lowest) case value

3. Perform unsigned > branch to ensure value is in range

4. Get high portion of address of jump table

5. Or in the low portion of the address

6. Left shift value so can index into jump table

7  Load target destination out of jump table

8. Perform an indirect jump

# Target address of lowest case value m.

# Target address of highest case value n.

r[8]=r[10]-32;

IC=r[8]?45;

PC=ICh,L18;

r[20]=HI[L01];

r[20]=r[20]|LO[L01];

r[8]=r[8]<<2;

r[8]=M[r[8]+r[20]];

PC=r[8];

.seg  "data"

L01:

.word  L27

...

.word  L24Fig. 6. SPARC Instructions Implementing an Indirect Jump from a Jump Table5.1 Padding the Front of the TableInstructions 1-3 in Figure 6 are used to check if the expression is in the rangeof possible case values. Instruction 1 can be avoided when the lowest case value



is positive and relatively close to zero. The jump table can be padded withthe addresses corresponding to the default target. This technique is illustratedin Figure 7, which contains the instructions of Figure 6 with the modi�cationsresulting from padding the front of the jump table. Instruction 2 in Figure 7 usesthe highest case value in the comparison when padding is applied. Note also thatinstructions 4 and 5 in Figure 6 were removed in Figure 7 since it was assumedthey are loop invariant for this example.
.seg  "data"

L01:

...

...

.word  L24 # Target address of highest case value n

.word  L27 # Target address of lowest case value m

.word  L18 # Default target for case value m-1

.word  L18 # Default target for case value 0

PC=r[8]; # 8. Perform an indirect jump

r[8]=M[r[8]+r[20]]; # 7. Load target destination

r[8]=r[8]<<2; # 6. Left shift value

PC=ICh0,L18; # 3. Perform unsigned > branch

IC=r[8]?77 # 2. Compare with highest case valueFig. 7. SPARC Instructions afterPadding the Front of the Table .seg  "data"

L01:

...

...

...

.word  L18 # Default target for case value 255

.word  L18 # Default target for case value n+1

.word  L24 # Target address of highest case value n

.word  L27 # Target address of lowest case value m

.word  L18 # Default target for case value m-1

.word  L18 # Default target for case value 0

PC=r[8]; # 8. Perform an indirect jump

r[8]=M[r[8]+r[20]]; # 7. Load target destination

r[8]=r[8]<<2; # 6. Left shift value

Fig. 8. SPARC Instructions with aBounded Range of Values5.2 Using Value-Range Analysis to Avoid the Initial Range CheckThe initial range check (instructions 1-3 in Figure 6) can be completely avoidedif a bounded range of case values is known and an entry can be stored in thetable for each value [14]. Consider a variable loaded frommemory as a byte valueand compared against characters. The decimal value of the variable can eitherbe from -128..127 or 0..255, depending upon if the value was loaded as a signedor unsigned byte. The instructions associated with this approach is depicted inFigure 8 when an unsigned byte was loaded from memory. Note that 256 targetsare listed in the table. Often this space is reduced by a factor of four as describedin the next section. Unfortunately, characters in C are often stored in integervariables to compare with EOF. The authors used demand-driven analysis tosearch backwards from the head of the sequence to determine if the range ofcase values is bounded by the RTLs representing byte loads or conversions tounsigned or signed character values.Often a path of blocks is detected where the range of values is bounded andone or more paths are detected where the range is unbounded. Code is replicatedwhen deemed worthwhile to allow coalescing of branches to occur on the pathwith the bounded range. For example, Figures 9(a) and 9(b) show RTLs andthe control ow corresponding to a code segment in wc, where block 24 containsthe head of a sequence of conditional branches comparing the same register toconstants. Blocks 17 to 20 contain RTLs generated from invoking the getc()macro. Block 18 contains an RTL that loads an unsigned character from a bu�erand bounds the range of values from 0..255. Block 19 contains a call to filbuf,which results in the value associated with r[10] being unbounded since no inter-procedural analysis was performed. The compiler recursively searches backwards



and �nds that blocks 24, 20, and 18 are within a path back to the point where therange of values is bounded. Likewise, the compiler �nds that blocks 24, 20, and19 are within a path where the range of values is unbounded. The intersectionbetween the blocks in a bounded path and the blocks within any unboundedpaths results in the blocks that must be replicated to distinguish the boundedpath. Figures 9(c) and 9(d) show the control ow and RTLs and after replicationof the blocks 20 and 24 and coalescing of the sequence of branches. Coalescingcan occur at the replicated head (block 24') without an initial range check sincethe range of values is now bounded. Limits were placed on the amount of codeallowed to be replicated to prevent large code size increases.
17

18 19

20

24

...

...

......

17. ...

...

18. ...

    r[8]=B[r[9]]&255;

    ...

19. ...

    CALL _filbuf();

20. r[10]=r[8];

    ...

...

24. ...

    IC=r[10]?32;

    PC=IC<=0,L66;

...

(a) RTLs in Original Blocks (d) RTLs in Replicated Blocks Only

20’. r[10]=r[8];

     ...

24’. ...

     r[10]=M[r[10]+r[20]];

     PC=r[10];

     r[10]=r[10]<<2;

(b) Original Flow

and Coalescing

(c) Flow After Replication

17

18 19

20

24

...

...

...

...

...... ... ... .........

20’

24’Fig. 9. Using Replication to Distinguish Paths for Coalescing5.3 E�ciently Indexing into the Jump TableInstruction 6 in Figure 8 left shifts the value by 2 since each element of thejump table contains a complete target address requiring 4 bytes. Consider tablescontaining byte displacements instead of complete word addresses. For instance,Figure 10 shows how the code in Figure 8 can be transformed to use byte dis-placements. There are two advantages for using byte displacements. First, theleft shift will no longer be necessary. Second, the table only requires one fourththe amount of space. Thus, a jump table for a value range associated with acharacter can be compressed from 256 to 64 words.The disadvantages include requiring an additional register to calculate thebase address for the displacements and not always having displacements smallenough to �t within a byte. There are two approaches that were used to helpensure that the displacements are not too large. First, a label for the base of thedisplacements was placed at the instruction that was the midpoint between the�rst and last indirect jump targets. The jump table is always placed in the datasegment so it will not cause the distance between indirect jump targets to beincreased. Note this requires the calculation of the addresses of two labels (theone at the beginning of the jump table and the one used for the base addressof the displacements). Before applying this approach, the compiler �rst ensuresthat the indirect jump would be in a loop and registers are available to movethe calculation of both addresses out of the loop.



Second, the targets of the indirect jumpmay be moved to reduce the distancebetween targets. The instructions within a program may be divided into relo-catable segments. Each segment starts with a basic block that is not fallen intofrom another block and ends with a block containing an unconditional transfer ofcontrol. An example of relocatable code segments is given in Figure 11. Assumeeach of the labels in the �gure are potential targets of one indirect jump. Thereare three ways segments can be moved to reduce the distance between targets.(1) A segment that does not contain any targets for a speci�c indirect jump canbe moved when it is between segments containing such targets. For example,segment D can be moved to follow segment A since both segments contain notargets for the indirect jump. (2) The segment containing the most instructionspreceding the �rst target label in a segment can be moved so it will be the �rstsegment containing targets. For example, segment C has blocks of instructionspreceding the block containing its �rst target label (L2). By moving segment Cto follow segmentD, these instructions preceding L2 will be outside the indirectjump target range. (3) Likewise, the segment containing the most instructionsfollowing the last target label in its own segment can be moved so it will be thelast positional segment containing targets. For example, segment B has the mostinstructions following its last target label (L1) and is moved to follow segmentE. Jump tables are only converted to tables containing byte displacements whenall targets of the indirect jump will be within the range of a byte displacementafter relocating segments of code.
.seg  "data"

L01:

  ...

  ...

  ...

# r[20] is the jump table address (L01)

# r[22] is the base address (L02)

#       for the displacement

  .byte  L18-L02 # Default target for case value 255

  .byte  L18-L02 # Default target for case value n+1

  .byte  L24-L02 # Target address of highest case value n

  .byte  L27-L02 # Target address of lowest case value m

  .byte  L18-L02 # Default target for case value m-1

  .byte  L18-L02 # Default target for case value 0

# 8. Perform indirect jumpPC=r[8]+r[22];

r[8]=M[r[8]+r[20]]; # 7. Load target displacement out of jump tableFig. 10. SPARC Instructions with ByteDisplacements in the Jump Table
target range

Before After

L2
L3

A

B

C

D

F

E

A

D

C

E

B

F

jump

target range

L1

L3

jump

jump

jump

jump

jump

jump

jump

jump

jump

L1

L2Fig. 11. Relocating Segments of Code6 Estimating the Bene�ts of Coalescing a Set of BranchesBefore coalescing a set of branches, the compiler attempts to determine if thecoalescing was worthwhile. Our compiler inspects the DAG representing thebranches to be coalesced. The number of instructions through each path in theDAG is calculated. The average number of instructions required to traverse theDAG is estimated by calculating a probability for each path through the DAG.The compiler also determines the number of instructions required to performthe indirect jump. If a bene�t is predicted, then the branches are coalesced.



The probability of taking each path was estimated to obtain a more accurateprediction for the average number of instructions executed to traverse the DAG.Past studies always assumed that each case of a multiway selection statement,except for the default case, is equally likely [14]. However, the improving trans-formation described in this paper coalesces branches that are generated fromcontrol statements other than multiway selection statements. Many studies haverecently used heuristics [3], value range propagation [11], or empirical data fromthe execution of other programs [5] to predict the direction that branches willtake. A di�erent approach that is an extension of using value range propagationwas found to be most e�ective by the authors for the improving transformationin this paper. The range of values associated with the variable being comparedat each node in the DAG was inspected when it was determined that the valuesbeing compared were within the range of possible character values. Each char-acter value was also weighted according to an estimated frequency of commonuse. For instance, values representing ASCII letters and digits were assigned ahigher weight than values representing control characters. The probability forthe direction that a branch would take was calculated by using a ratio betweenthe sum of the weights of the possible values of each of the two outgoing transi-tions from the branch. The probability of a path being taken through the DAGwas simply the factor of the probability of each branch decision along that path.If the compiler could not determine that the comparisons were with charactervalues, then each branch in the DAG was assumed to have an equal probabilityof being taken or falling through.Figure 12 shows an example DAG with probabilities assigned to each transi-tion. The DAG consists of three nodes, where each node represents two instruc-tions, a comparison and conditional branch. There are �ve unique paths throughthe DAG. By using probabilities associated with the transitions, a weighted av-erage number of instructions can be calculated as shown in Figure 13.
dest A

0.7

  0.6

dest B dest C

Conditional 

 Branch 1

Conditional 

 Branch 2

Conditional 

 Branch 3

0.40.3

0.8 0.2Fig. 12. DAG with Weighted Edges Unique Path Propagated Weight Num of Insts1,2,A 0.8*0.3=0.24 41,2,3,B 0.8*0.7*0.4=0.224 61,2,3,C 0.8*0.7*0.6=0.336 61,3,B 0.2*0.4=0.08 41,3,C 0.2*0.6=0.12 4Weighted 5.12Fig. 13. Estimating the Number of Exe-cuted Instructions7 Transforming the Control FlowAfter ensuring that the transformation will be bene�cial, the branch at the headof the sequence being coalesced will be replaced by the instructions to performthe indirect jump. The original transitions from this head block will be deletedand replaced by transitions associated with the jump table targets. The other



branches may or may not need to be deleted depending upon if transitions fromother blocks can reach these branches.Consider again the ow graph in Figure 4(a). The sequence of branches start-ing at block 20 (20, 22, 23, 2, 4) are coalesced into an indirect jump in Figure4(b). The branch at block 20 was replaced by the indirect jump. The branch inblock 22 was deleted after dead code elimination. The other branches will re-main since there are transitions from block 21 and block 1 that can reach thesebranches. Figure 4(c) shows the e�ect of another coalescing transformation thatreplaces the branch in block 21 with an indirect jump. The branch in block 23 isdeleted since its only other predecessor transition would be removed. Eventually,a coalescing transformation may be attempted on block 2 as well. Coalescing isonly performed when the estimated bene�t outweighs the estimated cost. Notethat the cost of performing an indirect jump from a jump table can vary ondi�erent machines. Not only can the number of instructions required to per-form this operation vary, but indirect jump instructions (as well as conditionalbranches) can also result in pipeline stalls on many machines. The dual loopmethod [2] was used by the authors to obtain a more accurate estimation of theexecution time required for a sequence of conditional branches versus indirectjumps. We found that an indirect jump as shown in Figure 10 required aboutthe same execution time as two pairs of compare and branch instructions fora SPARCstation-IPC, SPARCstation-5, SPARCstation-10, and SPARCstation-20. Therefore, the transformation is only applied when it is estimated that morethan two coalescent branches in the set will on average be executed.One issue that a�ected how often branches could be coalesced was the pointat which this improving transformation was performed. Calculating the addressof the jump table requires a register to be allocated. If the indirect jump is insideof a loop, then it is desirable to move instructions for this calculation outsideof the loop since they are loop invariant. Allocating a register for this purposewill compete with other improving transformations that allocate registers. Theimproving transformation described in this paper was implemented in the vpocompiler with all conventional optimizations being applied [4]. Loop transfor-mations in vpo are performed on the innermost loops �rst. The authors decidedto coalesce branches within a loop after all other loop transformations for thatloop have been initially attempted. Calculating the base address for byte dis-placements also requires allocating a register. However, the authors convertedcomplete addresses in jump tables to byte displacements after all other improv-ing transformations (including �lling delay slots) have been applied. Performingthis conversion later allows the compiler to know exactly the number of instruc-tions between the �rst and last indirect jump targets. If it is estimated that thetarget range can be represented in a byte at the point the branches are coalesced,then a register was reserved in the loop for calculating the base address for thebyte displacements.The vpo compiler previous to this work only �lled delay slots of indirectjumps with instructions that precede the jump. This approach was reasonablesince indirect jumps with jump tables occurred infrequently and �lling the delay



slot from one of several targets is more complicated than �lling the delay slot of abranch instruction. After implementing the transformation to coalesce branches,indirect jumps from tables occurred much more frequently. The compiler wasmodi�ed to �ll the delay slot of an indirect jump with an instruction from one ofthe targets if it could not be �lled with an instruction that preceded the jump.An instruction from a target block could only be used to �ll the delay slot if itdid not a�ect any of the live variables or registers entering any of the other targetblocks. The path analysis described in the previous section was used to orderthe indirect jump targets most likely to be taken for selecting the instruction to�ll the delay slot.8 ResultsMeasurements were collected on the code generated by vpo using ease (Environ-ment for Architectural Study and Experimentation) [8] on the SPARC architec-ture. Non-numerical applications tend to have complex conditional control ow.Table 1 shows the number of instructions executed from several common Unixutilities. The None column contains the number of instructions executed, whichwas obtained by modifying the C front end, called vpcc [7], to never translatea C switch statement using an indirect jump. The Original column shows thepercentage change as compared to None when indirect jumps from tables wereonly generated by the original vpcc used with vpo [4]. This front end only coa-lesces branches into indirect jumps when translating some C switch statementsusing the same heuristics as pcc. Note that the Original measurements included�lling delay slots for indirect jumps from target blocks speci�ed in jump tablesto fairly compare the impact of branch coalescing. The measurements show thata substantial bene�t was obtained by conventional translation of multiway se-lection statements into jump tables. The Coalescing column shows the resultswhen coalescing of branches is performed using the techniques described in thispaper. These frequency measurements indicate that performing indirect jumpsfrom tables can e�ectively reduce the dynamic number of instructions. Coalesc-ing had a negative impact on performance when performance estimates wereoverly optimistic or pessimistic, which occurred for join, nro�, and sdi�.Table 2 shows the proportional bene�t of the di�erent techniques used tocoalesce branches as compared to the Original (not the None) measurements.After Code Generation shows the bene�ts obtained by performing coalescing inthe back end of a compiler as a general improving transformation instead ofa code generation decision. These bene�ts indicate that a compiler back endcan exploit more opportunities for branch coalescing and make better coalescingdecisions. Front Padding includes padding the front of jump tables to avoid sub-tracting the lowest value compared. This technique could be applied frequentlysince most coalescing of branches involved comparisons with character constants,which have values that are nonnegative and close to zero. Avoid Initial RangeCheck represents when value range analysis was also used to completely elim-inate the initial range check. This technique resulted in a substantial decreasesince 2 or 3 instructions were avoided each time it was applied. E�cient Indexing



includes using byte displacements in jump tables. Using byte displacements waspossible since relocating code segments quite e�ectively compressed the targetrange of indirect jumps. Note that the last three techniques were often appliedon coalesced branches not associated with multiway selection statements.Table 1. Dynamic Instruction Frequency MeasurementsProgram Description None Original Coalescingawk pattern language 13,666,952 -0.294% -2.145%cb C program beauti�er 19,739,127 -12.976% -20.613%cpp C preprocessor 30,985,306 -37.421% -37.960%ctags C tags generator 74,316,425 -0.536% -10.974%dero� remove nro� cmd lines 15,511,507 -0.195% -1.028%grep pattern search 11,810,070 -21.620% -24.370%hyphen lists hyphenated words 19,535,372 0.000% -0.783%join relational join on �les 3,552,801 0.000% 0.102%lex scanner generator 10,052,031 -0.230% -0.566%nro� document formatter 25,118,855 -0.155% -0.015%pr prepare for printing �les 78,016,755 0.000% -7.801%ptx generate permuted index 22,679,653 0.000% -7.891%sdi� side-by-side �le di�s 17,582,760 0.000% 0.022%sed stream editor 17,872,507 -6.375% -6.629%sort sort or merge �les 18,921,766 0.000% -31.289%wc word counter 17,860,086 0.000% -17.853%yacc parser generator 25,658,688 -0.194% -0.303%average 24,880,627 -4.706% -10.006%Table 2. Reducing the Cost of CoalescingTechniques Proportional Bene�tAfter Code Generation 9.303%Front Padding 32.760%Avoid Initial Range Check 48.084%E�cient Indexing 9.853% Table 3. Cache Work MeasurementsCache Size Instruction Data Total1K -5.761% 8.438% -3.746%2K -7.591% 6.673% -6.172%4K -5.988% 3.077% -5.065%8K -5.877% 1.310% -5.611%16K -5.997% 2.230% -5.448%32K -5.587% 2.891% -5.554%The impact of branch coalescing on caching was a concern since misses fromjump tables loads could potentially have a negative impact on performance.Table 3 shows the average e�ect coalescing has on instruction caching, datacaching, and total cache work as compared to the Original cache measurements.Each cache con�guration used was direct-mapped with a 32 byte line size. Thecache work cycles were calculated by counting a cache hit as one cycle and a cachemiss as ten [13]. The i-cache work was reduced since the number of instructionsreferenced were diminished. For high hit ratios this reduction is close to thedecrease in instructions executed from the Original measurements. As expected,the d-cache work was increased due to the jump table loads performed. The totalcache work was obtained from the sum of the cycles associated with i-cache hits,i-cache misses, and d-cache miss penalties. It was assumed that d-cache accessescould be performed simultaneously with i-cache accesses. The total cache workwas decreased since i-cache accesses are more frequent than d-cache accesses.



Some other measurements not given in the tables provide useful informa-tion. When all the techniques are used to reduce the cost of coalescing branches,24.269% of the executed branches were avoided by coalescing as a general im-proving transformation. There was one indirect jump executed for every 8.579branches avoided. There were on average 10.344 branches coalesced into eachjump table.9 Future WorkThere are several areas that could be investigated to provide additional opportu-nities for coalescing conditional branches. Often there are paths between condi-tional branches that compare the same variable to constants without the variablebeing updated. These noncontiguous branches could be coalesced and the otherinstructions that were to be executed between the branches can be replicatedwhen necessary. By resolving many of these conditional branches early, many ba-sic blocks can be merged and result in greater opportunities for instruction-levelparallelism.Another factor that limited coalescing branches into indirect jumps was notperforming interprocedural analysis to more e�ectively determine value ranges.Often int arguments being compared to constants in one function are loadedfrom memory as a byte in a di�erent function. Interprocedural analysis wouldallow the three instructions comprising the initial range check to be avoidedmore frequently.Pro�ling could also be used to help determine when coalescing was worth-while. The authors statically estimated the average number of branches thatwould be executed through the DAG. Pro�ling would provide more accurateestimates for coalescing decisions. In general, detecting bounded ranges and us-ing an estimated frequency for character values provided good heuristics whenmaking coalescing decisions. This approach has promising implications for con-ventional branch prediction, which the authors are currently exploring.Finally, a more detailed study is needed about the e�ect branch coalescingand related architectural enhancements have on pipelining. For instance, thestalls from mispredictions for a branch target bu�er could be less than or greaterthan stalls from mispredictions associated with the sequence of branches thatwere coalesced. The authors suspect that the total number of branch target bu�ermispredictions should decrease after branch coalescing since fewer transfers ofcontrol will be encountered.10 ConclusionsThis paper described an approach for coalescing conditional branches into indi-rect jumps. Static analysis techniques were used to perform this improving trans-formation more e�ectively. Control-ow analysis was used to detect sequencesof branches that can be coalesced together and to select a head branch for thelocation of the indirect jump. Coalescing branches after code generation as ageneral improving transformation provided additional opportunities that wouldotherwise not be available. Methods for reducing the cost of performing indi-rect jumps from tables were investigated and shown to be e�ective. Value-range



analysis was used to avoid the initial range check when possible. Target-rangeanalysis was used to compress the target range, which avoided the executionof a shift instruction and reduced the size of the jump table. Path and branchprediction analysis was performed to predict the average number of instructionsexecuted through the set of branches to be coalesced and obtain more accurateestimation of the bene�t of coalescing. The results indicate that indirect jumpsfrom tables have been underutilized in the past since reductions in both thenumber of instructions executed and cache work can be obtained.References1.F. Allen and J. Cocke. Design and Optimization of Compilers. Prentice-Hall, En-glewood Cli�s, NJ, 1971.2.N. Altman and N. Weiderman. Timing variation in dual-loop benchmarks. Techni-cal report, Software Engineering Institute, Carnegie Mellon University, Pittsburgh,PA, October 1987.3.T. Ball and J.R. Larus. Branch prediction for free. In ACM SIGPLAN Conferenceon Programming Language Design and Implementation, pages 300{313, June 1993.4.M.E. Benitez and J.W. Davidson. A portable global optimizer and linker. InACM SIGPLAN Conference on Programming Language Design and Implementa-tion, pages 329{338, June 1988.5.B. Calder, D. Grunwald, and D. Lindsay. Corpus-based static branch prediction.In ACM SIGPLAN Conference on Programming Language Design and Implemen-tation, pages 79{92, June 1995.6.J.W. Davidson and S. Jinturkar. Aggressive loop unrolling in a retargetable, opti-mizing compiler. In Proceedings of Compiler Construction Conference, pages 59{73,April 1996.7.J.W. Davidson and D.B. Whalley. Quick compilers using peephole optimizations.Software Practice & Experience, 19(1):195{203, January 1989.8.J.W. Davidson and D.B. Whalley. A design environment for addressing architec-ture and compiler interactions. Microprocessors and Microsystems, 15(9):459{472,November 1991.9.S.C. Johnson. A Tour Through the Portable C Compiler. Unix Programmer'sManual 7th Edition Section 33, January 1979.10.F. Mueller and D.B. Whalley. Avoiding conditional branches by code replication.In ACM SIGPLAN Conference on Programming Language Design and Implemen-tation, pages 56{66, June 1995.11.J. Patterson. Accurate static branch prediction by value range propagation. InACM SIGPLAN Conference on Programming Language Design and Implementa-tion, pages 929{942, June 1995.12.Arthur Sale. The implementation of case statements in pascal. Software-Practiceand Experience, 11:929{942, September 1981.13.A.J. Smith. Cache memories. Computing Surveys, 14(3):473{530, September 1982.14.D.A. Spuler. Compiler code generation for multiway branch statements as a staticsearch problem. Technical report, Dept. of Computer Science, James Cook Univer-sity, Townsville, 4811, Australia, 1994.15.R.M Stallman. Using and Porting GNU CC (version 1.37.1). Free Software Foun-dation, Inc., Cambridge, MA, February 1990.


