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Abstract.Indirect jumps from tables are traditionally only generated
by compilers as an intermediate code generation decision when translat-
ing multiway selection statements. However, making this decision during
intermediate code generation poses problems. The research described in
this paper resolves these problems by using several types of static analysis
as a framework for a code improving transformation that exploits indirect
jumps from tables. First, control-flow analysis is performed that provides
opportunities for coalescing branches generated from other control state-
ments besides multiway selection statements. Second, the optimizer uses
various techniques to reduce the cost of indirect jump operations by stat-
ically analyzing the context of the surrounding code. Finally, path and
branch prediction analysis is used to provide a more accurate estima-
tion of the benefit of coalescing a detected set of branches into a single
indirect jump. The results indicate that the coalescing transformation
can be frequently applied with significant reductions in the number of
instructions executed and total cache work. This paper shows that static
analysis can be used to implement an effective improving transformation
for exploiting indirect jumps.

1 Introduction

Indirect jumps from tables can be used to replace sequences of branches com-
paring the same register or variable to constants. Traditionally, indirect jumps
from tables are only generated by compiler front ends when translating multiway
selection statements, such as the Pascal case or C switch statements. Making
this decision early during intermediate code generation poses problems. First,
it 1s difficult to determine when a particular method can be effectively used in
a machine-independent fashion since an accurate cost can only be known after
generating machine instructions. Even if a compiler front end 1s updated to con-
tain machine-dependent information, the approach used will be affected by the
context of the code surrounding the multiway selection statement. Second, many
code-improving opportunities may be missed by only considering the translation
of multiway selection statements. The authors propose that these problems can
be more effectively addressed by coalescing conditional branches into indirect
jumps from tables as a general improving transformation after code generation.

There are many opportunities for coalescing branches into indirect jumps
from tables when performed as an improving transformation as opposed to an in-
termediate code generation decision. Consider the following code fragment from



ctags (C tags generator) shown in Figure 1(a). A typical C compiler would gen-
erate an indirect jump with a table for the switch statement and would generate
a conditional branch for the for statement. Yet, the conditional branch compar-
ing *sp with zero would immediately precede the indirect jump. An optimizer
could recognize this sequence of comparisons of the same variable (or register)
with constants and be able to coalesce the comparison with zero and the condi-
tional branch into the indirect jump and jump table. Note that one can view this
branch as another case for the switch statement as shown in Figure 1(b). Other
common instances may occur due to programming style. Figure 2(a) shows a
code segment from grep program that has a series of if statements comparing
the same variable to different constants. Compilers will translate these if state-
ments as a sequence of conditional branches. However, the code could have been
equivalently written as a single switch statement as shown in Figure 2(b). Thus,
the control flow for both code segments can be accomplished with an indirect
jump. Use of multiple macros may also result in several consecutive comparisons
being performed. Therefore, coalescing of branches as a general improving trans-
formation has the appealing aspect that performance is affected by the program
logic (control flow) and not the program style (whether or not multiway selection
statements are used).

(b) Equival ent Code as a

(a) Oiginal Code Swi t ch St at enent
for (sp = line;, *sp; sp++) for (sp = line; ; spt++)
switch (*sp) { switch (*sp) {
case 0: /* exit the loop */
} goto out;
}
out:

Fig.1. Code Fragment from ctags

(a) Oiginal Code (b) Equivalent Code as a Switch Statenent
if ((c = *sp++) == 0) C = *sp++,;

goto cerror; switch (c) {
if (c=="<){ ...
if (c ==">
if (c =="(
if (c ==")"
if (c >"7

case 0: goto cerror;
case '<': ...

case ’

e e e

case '’

c<='9){ ...} case ’

A

case ’

case '9': ...
default: ...

}
Fig.2. Code Fragment from grep
This paper describes a general approach for decreasing the number of condi-

tional branches executed by coalescing branches into indirect jumps from tables.
First, a control-flow analysis algorithm is used to detect potential sequences of



branches that can be transformed into a single indirect jump. Test conditions
other than ones for equality and inequality can also be coalesced into indirect
jumps, including testing if a variable is within a bounded range of constants.
Second, value-range propagation analysis i1s performed to determine the range of
values associated with each potential target of the indirect jump. Third, various
techniques are used that statically analyze the code surrounding the sequence
of branches being coalesced to reduce the cost of performing an indirect jump
from a table. Applying these techniques often results in the execution of only
two instructions on a SPARC for this operation. Fourth, path and branch pre-
diction analysis is also performed to estimate the benefit of coalescing a set of
branches into an indirect jump. The number of instructions executed through
each path of the set of branches and the probability of each path being taken is
considered versus the cost of performing an indirect jump. Finally, the control
flow 1s transformed from the sequence of branches to an indirect jump when
the transformation is deemed beneficial. Results are given indicating that the
code improving transformation could be frequently applied and often resulted in
significant performance improvements.

2 Related Work

Several authors have suggested heuristics for deciding between different meth-
ods of translating multiway selection statements [12, 14]. These methods include
a linear search (branch for each case value), binary search, hashing, and in-
direct jumps from tables. The approach used in this paper initially generates
conditional branches to perform a linear search and relies on the code-improving
transformation to coalesce these and other branches into indirect jumps. The
techniques used in this paper to reduce the cost of performing an indirect jump
from a table often make binary searches, hashing, and other alternative methods
less beneficial.

There has been some research on other techniques for avoiding conditional
branches. Loop unrolling has been used to avoid executions of the conditional
branch associated with a loop termination condition [6]. Loop unswitching moves
a conditional branch with a loop-invariant test condition before the loop and
replicates the loop in each of the two paths of the branch [1]. A more general
method has recently been developed that avoids conditional branches by code
replication [10]. This method determines if there are paths where the result of
a conditional branch will be known and replicates code to avoid execution of
the branch. Coalescing branches into indirect jumps from tables will avoid the
execution of branches that these other techniques could not.

3 Detecting Sequences of Coalescent Branches

A general algorithm for detecting a sequence of branches that can be coalesced
together may provide additional opportunities that would not be available by
generating indirect jumps only when translating multiway selection statements.
The analysis for the approach described in this paper to detect sequences of



branches that can be coalesced into an indirect jump required the following
conditions. (1) The branches must be contiguous in the control flow. In other
words, the instructions implementing the comparisons and branches must be
connected by transitions with no intervening instructions. (2) Each branch must
compare the same variable (or register) with a constant. (3) At most one branch
can have no incoming transitions from another branch in this set. Thus, at most
one branch can be the head of the sequence.

The algorithm for detecting a sequence of branches that can be coalesced is
given in Figure 3. The algorithm not only will detect a coalescent sequence, but
will also attempt to maximize the number of branches to be coalesced.

PROCEDURE Det ect _Sequence() PROCEDURE Choose_Head()

FOR each bl ock B DO FOR each bl ock B marked as visited DO
IF (B contains a branch that conpares I F (B has no i medi ate predecesor
variable V with a constant) THEN marked as visited) THEN

Sear ch_Back(B, V); RETURN B;
H = Choose_Head(); RETURN vi sited bl ock that dom nates
Col | ect _Bl ocks(H, V); the nost visited bl ocks;
PROCEDURE Sear ch_Back(B, V) PROCEDURE Col | ect _Bl ocks(B, V)
mark B as visited, mark B as coll ected;
I F (B has no instructions FOR each i medi ate successor S of B DO
preceding its conpare and branch) THEN I'F (S has not been col | ected AND
FOR each i mredi ate predecessor P of B DO S starts with a conpare
IF (P has not been visited AND and branch AND
P has a branch AND S conpares V with
P conpares V with a constant) THEN a constant) THEN
Search_Back(P, V); Col | ect _Bl ocks(S, V);

Fig. 3. Algorithm for Detection of Potentially Coalescent Branches

(a) Before Coalescing (b) Coalesced Sequence Starting at Block 20 (c) Coalesced Sequences at Blocks 20 + 21

Fig. 4. Transforming Branches into Indirect Jumps

Figure 4(a) contains an example flow graph that is used to illustrate the
algorithm. Assume that the blocks 2, 4, 20, 21, 22, and 23 contain a branch that
compares the same condition variable with a constant. Also assume that blocks



2,4, 22, and 23 contain no other instructions besides a comparison and branch.
Consider if the detection of a sequence of branches is attempted at block 2. The
algorithm recursively searches backwards and mark blocks 2, 23, 20, and 21 as
visited. Assume block 20 is chosen as the head of the sequence since it is the
first block detected that has no visited immediate predecessor. At this point the
algorithm recursively searches forward and collects blocks 20, 22, 23, 2, and 4 as
the sequence of branches to be coalesced.

4 Constructing the Jump Table

Once 1t has been determined that a set of conditional branches can be coalesced,
a jump table must be constructed in order to perform the transformation. Con-
struction of a jump table requires two steps. (1) Identify all possible targets for
the indirect jump. (2) Associate each possible value of the condition variable with
a single potential target. To efficiently accomplish these steps, a DAG (Directed
Acyclic Graph) is built as the blocks containing the coalescent branches are col-
lected. Each node in the DAG represents one of the coalescent branches. Each
edge represents either a transition between two such branches or a transition to
a potential target of the indirect jump.

The benefits of using a DAG are as follows. First, all possible targets for
the indirect jump can be quickly identified since they will be the targets of the
transitions out of the DAG. Second, each nonoverlapping value range of the
condition variable can be easily associated with a single target by propagating
value ranges of the variable through the DAG. Each node will have two outgoing
edges, one for the true (taken) transition and the other for the false (fall-through)
transition. The possible range of values at each node is calculated by unioning
the effect of applying the relational operator of each immediate predecessor node
on its corresponding input range.

The use of a DAG allows coalescing of branches that check if a variable is
within a specific range. For instance, the C code segment in Figure 5(a) checks if
a character could be part of a C identifier. Figure 5(b) depicts the DAG that was
built representing the control flow of the coalescent branches in the code segment.
Nonoverlapping value ranges of the condition variable are mapped to the targets
out of the DAG (A, B, C, D, and E). Note that at most one target from a
transition out of the DAG will be permitted to have unbounded value ranges.
For instance, only the D target has value ranges that cannot be represented in
a jump table. Such a target would correspond to the default case of a C switch
statement.

5 Reducing the Cost of Performing an Indirect Jump

Compiler writers have long considered performing an indirect jump from a jump
table as a very expensive operation. The tasks associated with such an indirect
jump operation include (1) performing an initial range check to ensure that the
value being compared is within a bounded range, (2) calculating the address
of the jump table, (3) calculating the offset used to index into the table, (4)
loading the target address from the table, and (5) performing the indirect jump.



(a) C code segment

nmin..64,91..96,123. . max
< 48

Target A £ T
65,90 48..64,91. .96, 123. . max min..47,58..64,91..96,123. . max
CA..7Z) <= 57 1= 95
Target B % W
48..57 mn..47,58..64, 95..95
(o..r9) 91..94, 96. . 96, ¢
Target C 123. . max
Target D Target E

(b) DAG Used for Value Range Analysis
Fig. 5. Example of Checking If a Character Is Part of a C Identifier

Compiler writers have made little attempt at reducing the cost of this operation
since indirect jumps from tables occurred relatively infrequently.

The number of instructions required to perform an indirect jump from a jump
table can vary depending upon a number of factors. Figure 6 depicts SPARC
instructions represented as RTLs that are used to implement an indirect jump
(disregarding the instruction in the delay slot of the indirect jump) by the pee
[9], gee [15], and wpo [4] compilers. Similar instructions are available on most
RISC architectures. It would appear that at least 5 pairs of compare and branch
instructions must be executed to make coalescing branches into an indirect jump
operation worthwhile on the SPARC since 8 instructions are used to implement
an indirect jump. However, instructions 4 and 5 are loop invariant and therefore
can often be moved out of a loop. The following subsections describe other
techniques that will often avoid the execution of instructions 1-3 and 6 as well.

r[8]=r[10]-32; sub %02, 32, %00 1. Subtract lowest case value

| C=r [ 8] 745; cnp %0, 45 2. Compare with the (highest-lowest) case value

PC=I Ch, L18; bgu L18 3. Perform unsigned > branch to ensure value is in range
r[20] =HI [ LO1] ; sethi %i (LO1), % 4 4. Gethigh portion of address of jump table

r[20]=r[20] | LO LO1]; or %4,%o(L01), % 4 5.0Orinthe low portion of the address

HoH O H R W H W

r[ 8] =r[8] <<2; sl %0, 2, %00 6. Left shift value so can index into jump table
r[8]1=Mr[8]+r[20]]; Id [ %90+% 4], %00 7 Load target destination out of jump table
PC=r[8]; jnp %0 8. Perform an indirect jump

.seg "data"

LO1:

.word L27 # Target address of lowest case value m.

.word L24 # Target address of highest case value n.

Fig. 6. SPARC Instructions Implementing an Indirect Jump from a Jump Table

5.1 Padding the Front of the Table

Instructions 1-3 in Figure 6 are used to check if the expression is in the range
of possible case values. Instruction 1 can be avoided when the lowest case value



i1s positive and relatively close to zero. The jump table can be padded with
the addresses corresponding to the default target. This technique is illustrated
in Figure 7, which contains the instructions of Figure 6 with the modifications
resulting from padding the front of the jump table. Instruction 2 in Figure 7 uses
the highest case value in the comparison when padding is applied. Note also that
instructions 4 and 5 in Figure 6 were removed in Figure 7 since it was assumed
they are loop invariant for this example.

r[8]=r[8]<<2; #86. Left shift value
| C=r [ 8] 277 #2. Compare with highest case value r[8]=Mr[8] +r[20]]; #7.Load target destination
PC=1 ChO, L18; # 3. Perform unsigned > branch PC=r[8]; #8. Perform an indirect jump
r[8] =r[8] <<2; #8. Left shift value .seg "data
r[8] =M r[8]+r[20]]; #7.Load target destination Lot
PC=r[ 8] ; #8. Perform an indirect jump ~word L18 # Default target for case value 0
.seg "data" R
Lo1: .word L18 # Default target for case value m-1
.word L18 # Default target for case value 0 .word L27 # Target address of lowest case value m
) ;/\br d L18 # Default target for case value m-1 .word L24 # Target address of highest case value n
.word L27 # Target address of lowest case value m .word L18 # Default target for case value n+1
.word L24 # Target address of highest case value n .word L18 # Default target for case value 255

Fig.7. SPARC [Instructions after Fig.8. SPARC Instructions with a
Padding the Front of the Table Bounded Range of Values

5.2 Using Value-Range Analysis to Avoid the Initial Range Check

The initial range check (instructions 1-3 in Figure 6) can be completely avoided
if a bounded range of case values is known and an entry can be stored in the
table for each value [14]. Consider a variable loaded from memory as a byte value
and compared against characters. The decimal value of the variable can either
be from -128..127 or 0..255, depending upon if the value was loaded as a signed
or unsigned byte. The instructions associated with this approach is depicted in
Figure 8 when an unsigned byte was loaded from memory. Note that 256 targets
are listed in the table. Often this space is reduced by a factor of four as described
in the next section. Unfortunately, characters in C are often stored in integer
variables to compare with EOF. The authors used demand-driven analysis to
search backwards from the head of the sequence to determine if the range of
case values is bounded by the RTLs representing byte loads or conversions to
unsigned or signed character values.

Often a path of blocks is detected where the range of values is bounded and
one or more paths are detected where the range is unbounded. Code is replicated
when deemed worthwhile to allow coalescing of branches to occur on the path
with the bounded range. For example, Figures 9(a) and 9(b) show RTLs and
the control flow corresponding to a code segment in we, where block 24 contains
the head of a sequence of conditional branches comparing the same register to
constants. Blocks 17 to 20 contain RTLs generated from invoking the getc()
macro. Block 18 contains an RTL that loads an unsigned character from a buffer
and bounds the range of values from 0..255. Block 19 contains a call to _filbuf,
which results in the value associated with r[10] being unbounded since no inter-
procedural analysis was performed. The compiler recursively searches backwards



and finds that blocks 24, 20, and 18 are within a path back to the point where the
range of values is bounded. Likewise, the compiler finds that blocks 24, 20, and
19 are within a path where the range of values is unbounded. The intersection
between the blocks in a bounded path and the blocks within any unbounded
paths results in the blocks that must be replicated to distinguish the bounded
path. Figures 9(c) and 9(d) show the control flow and RTLs and after replication
of the blocks 20 and 24 and coalescing of the sequence of branches. Coalescing
can occur at the replicated head (block 24”) without an initial range check since
the range of values is now bounded. Limits were placed on the amount of code
allowed to be replicated to prevent large code size increases.

(a) RTLsin Original Blocks (b) Original Flow (c) Flow After Replication (d) RTLsin Replicated Blocks Only
and Coalescing

7.
18. ...
r[8]=B[r[9]] &255;

19. ...
CALL _filbuf();

20. r[10]=r[8]; 20". r[10]=r[8];

S 24" . ...

24. ... r[10] =r[ 10] <<2;
I C=r[10] ?32; r[10] =M r[10]+r[20]];
PC=I C<=0, L66; PC=r[10];

Fig. 9. Using Replication to Distinguish Paths for Coalescing

5.3 Efficiently Indexing into the Jump Table

Instruction 6 in Figure 8 left shifts the value by 2 since each element of the
jump table contains a complete target address requiring 4 bytes. Consider tables
containing byte displacements instead of complete word addresses. For instance,
Figure 10 shows how the code in Figure 8 can be transformed to use byte dis-
placements. There are two advantages for using byte displacements. First, the
left shift will no longer be necessary. Second, the table only requires one fourth
the amount of space. Thus, a jump table for a value range associated with a
character can be compressed from 256 to 64 words.

The disadvantages include requiring an additional register to calculate the
base address for the displacements and not always having displacements small
enough to fit within a byte. There are two approaches that were used to help
ensure that the displacements are not too large. First, a label for the base of the
displacements was placed at the instruction that was the midpoint between the
first and last indirect jump targets. The jump table is always placed in the data
segment so it will not cause the distance between indirect jump targets to be
increased. Note this requires the calculation of the addresses of two labels (the
one at the beginning of the jump table and the one used for the base address
of the displacements). Before applying this approach, the compiler first ensures
that the indirect jump would be in a loop and registers are available to move
the calculation of both addresses out of the loop.



Second, the targets of the indirect jump may be moved to reduce the distance
between targets. The instructions within a program may be divided into relo-
catable segments. Each segment starts with a basic block that is not fallen into
from another block and ends with a block containing an unconditional transfer of
control. An example of relocatable code segments is given in Figure 11. Assume
each of the labels in the figure are potential targets of one indirect jump. There
are three ways segments can be moved to reduce the distance between targets.
(1) A segment that does not contain any targets for a specific indirect jump can
be moved when it is between segments containing such targets. For example,
segment D can be moved to follow segment A since both segments contain no
targets for the indirect jump. (2) The segment containing the most instructions
preceding the first target label in a segment can be moved so it will be the first
segment containing targets. For example, segment C has blocks of instructions
preceding the block containing its first target label (L2). By moving segment C
to follow segment D, these instructions preceding L2 will be outside the indirect
jump target range. (3) Likewise, the segment containing the most instructions
following the last target label in its own segment can be moved so it will be the
last positional segment containing targets. For example, segment B has the most
instructions following its last target label (L1) and is moved to follow segment
E. Jump tables are only converted to tables containing byte displacements when
all targets of the indirect jump will be within the range of a byte displacement
after relocating segments of code.

Before After
ju#\p juép
#1[20] is the jump table address (L01) terget [aljgeL 1,
#r[22] is the base address (L02) : D
#  forthe displacement : B .
r[8]=Mr[8]+r[20]]; #7.Load target displacement out of jump table : . L Jump
PC=r[8] +r[22]; #8. Perform indirect jump ! jump
0 0 i L target range
. seg dat a | C
. I i - L2
Lo1: ! ! jump
C ?
.byte L18-L02 # Default target for case value 0 ! L2| . : —
o | jump . L3
.byte L18-L02 # Default target for case value m-1 | | .UE
.byte L27-L02 # Target address of lowest case value m : D : Jump
S L1 —
I . [
.byte L24-L02  #Targetaddress of highest case value n ! Jump
.byte L18-L02 # Default target for case value n+1 | L3 B
S o - E .
.byte L18-L02  #Defaulttarget for case value 255 Jjump Jump

fF fF

Fig. 11. Relocating Segments of Code

Fig.10. SPARC Instructions with Byte
Displacements in the Jump Table

6 Estimating the Benefits of Coalescing a Set of Branches

Before coalescing a set of branches, the compiler attempts to determine if the
coalescing was worthwhile. Our compiler inspects the DAG representing the
branches to be coalesced. The number of instructions through each path in the
DAG is calculated. The average number of instructions required to traverse the
DAG 1s estimated by calculating a probability for each path through the DAG.
The compiler also determines the number of instructions required to perform
the indirect jump. If a benefit is predicted, then the branches are coalesced.



The probability of taking each path was estimated to obtain a more accurate
prediction for the average number of instructions executed to traverse the DAG.
Past studies always assumed that each case of a multiway selection statement,
except for the default case, is equally likely [14]. However, the improving trans-
formation described in this paper coalesces branches that are generated from
control statements other than multiway selection statements. Many studies have
recently used heuristics [3], value range propagation [11], or empirical data from
the execution of other programs [5] to predict the direction that branches will
take. A different approach that is an extension of using value range propagation
was found to be most effective by the authors for the improving transformation
in this paper. The range of values associated with the variable being compared
at each node in the DAG was inspected when it was determined that the values
being compared were within the range of possible character values. Each char-
acter value was also weighted according to an estimated frequency of common
use. For instance, values representing ASCII letters and digits were assigned a
higher weight than values representing control characters. The probability for
the direction that a branch would take was calculated by using a ratio between
the sum of the weights of the possible values of each of the two outgoing transi-
tions from the branch. The probability of a path being taken through the DAG
was simply the factor of the probability of each branch decision along that path.
If the compiler could not determine that the comparisons were with character
values, then each branch in the DAG was assumed to have an equal probability
of being taken or falling through.

Figure 12 shows an example DAG with probabilities assigned to each transi-
tion. The DAG consists of three nodes, where each node represents two instruc-
tions, a comparison and conditional branch. There are five unique paths through
the DAG. By using probabilities associated with the transitions, a weighted av-
erage number of instructions can be calculated as shown in Figure 13.

Conditional
Branch 1

Unique Path|Propagated Weight |Num of Insts
1,2,A 0.8%0.3=0.24 7]
1,2,3B | 0.8%0.7%0.4=0.224 6
Conditional Conditional 1,2,3,C 0.8%0.7*%0.6=0.336 6
Branch 2 Branch 3 1,3,B 0.2%0.4=0.08 4
1,3,C 0.2%0.6=0.12 4
0.6 Weighted 5.12
dest A dest B dest C . . .
Fig.13. Estimating the Number of Exe-
. . . cuted Instructions
Fig.12. DAG with Weighted Edges

7 Transforming the Control Flow

After ensuring that the transformation will be beneficial, the branch at the head
of the sequence being coalesced will be replaced by the instructions to perform
the indirect jump. The original transitions from this head block will be deleted
and replaced by transitions associated with the jump table targets. The other



branches may or may not need to be deleted depending upon if transitions from
other blocks can reach these branches.

Consider again the flow graph in Figure 4(a). The sequence of branches start-
ing at block 20 (20, 22, 23, 2, 4) are coalesced into an indirect jump in Figure
4(b). The branch at block 20 was replaced by the indirect jump. The branch in
block 22 was deleted after dead code elimination. The other branches will re-
main since there are transitions from block 21 and block 1 that can reach these
branches. Figure 4(c) shows the effect of another coalescing transformation that
replaces the branch in block 21 with an indirect jump. The branch in block 23 is
deleted since its only other predecessor transition would be removed. Eventually,
a coalescing transformation may be attempted on block 2 as well. Coalescing is
only performed when the estimated benefit outweighs the estimated cost. Note
that the cost of performing an indirect jump from a jump table can vary on
different machines. Not only can the number of instructions required to per-
form this operation vary, but indirect jump instructions (as well as conditional
branches) can also result in pipeline stalls on many machines. The dual loop
method [2] was used by the authors to obtain a more accurate estimation of the
execution time required for a sequence of conditional branches versus indirect
jumps. We found that an indirect jump as shown in Figure 10 required about
the same execution time as two pairs of compare and branch instructions for
a SPARCstation-IPC, SPARCstation-5, SPARCstation-10, and SPARCstation-
20. Therefore, the transformation is only applied when it is estimated that more
than two coalescent branches in the set will on average be executed.

One issue that affected how often branches could be coalesced was the point
at which this improving transformation was performed. Calculating the address
of the jump table requires a register to be allocated. If the indirect jump is inside
of a loop, then it is desirable to move instructions for this calculation outside
of the loop since they are loop invariant. Allocating a register for this purpose
will compete with other improving transformations that allocate registers. The
improving transformation described in this paper was implemented in the wvpo
compiler with all conventional optimizations being applied [4]. Loop transfor-
mations in vpo are performed on the innermost loops first. The authors decided
to coalesce branches within a loop after all other loop transformations for that
loop have been initially attempted. Calculating the base address for byte dis-
placements also requires allocating a register. However, the authors converted
complete addresses in jump tables to byte displacements after all other improv-
ing transformations (including filling delay slots) have been applied. Performing
this conversion later allows the compiler to know exactly the number of instruc-
tions between the first and last indirect jump targets. If it 1s estimated that the
target range can be represented in a byte at the point the branches are coalesced,
then a register was reserved in the loop for calculating the base address for the
byte displacements.

The wpo compiler previous to this work only filled delay slots of indirect
jumps with instructions that precede the jump. This approach was reasonable
since indirect jumps with jump tables occurred infrequently and filling the delay



slot from one of several targets is more complicated than filling the delay slot of a
branch instruction. After implementing the transformation to coalesce branches,
indirect jumps from tables occurred much more frequently. The compiler was
modified to fill the delay slot of an indirect jump with an instruction from one of
the targets if it could not be filled with an instruction that preceded the jump.
An instruction from a target block could only be used to fill the delay slot if it
did not affect any of the live variables or registers entering any of the other target
blocks. The path analysis described in the previous section was used to order
the indirect jump targets most likely to be taken for selecting the instruction to

fill the delay slot.
8 Results

Measurements were collected on the code generated by vpo using ease (Environ-
ment for Architectural Study and Experimentation) [8] on the SPARC architec-
ture. Non-numerical applications tend to have complex conditional control flow.
Table 1 shows the number of instructions executed from several common Unix
utilities. The None column contains the number of instructions executed, which
was obtained by modifying the C front end, called wpce [7], to never translate
a C switch statement using an indirect jump. The Original column shows the
percentage change as compared to None when indirect jumps from tables were
only generated by the original vpce used with vpo [4]. This front end only coa-
lesces branches into indirect jumps when translating some C switch statements
using the same heuristics as pce. Note that the Original measurements included
filling delay slots for indirect jumps from target blocks specified in jump tables
to fairly compare the impact of branch coalescing. The measurements show that
a substantial benefit was obtained by conventional translation of multiway se-
lection statements into jump tables. The Coalescing column shows the results
when coalescing of branches is performed using the techniques described in this
paper. These frequency measurements indicate that performing indirect jumps
from tables can effectively reduce the dynamic number of instructions. Coalesc-
ing had a negative impact on performance when performance estimates were
overly optimistic or pessimistic, which occurred for join, nroff, and sdiff.

Table 2 shows the proportional benefit of the different techniques used to
coalesce branches as compared to the Original (not the None) measurements.
After Code Generation shows the benefits obtained by performing coalescing in
the back end of a compiler as a general improving transformation instead of
a code generation decision. These benefits indicate that a compiler back end
can exploit more opportunities for branch coalescing and make better coalescing
decisions. Front Padding includes padding the front of jump tables to avoid sub-
tracting the lowest value compared. This technique could be applied frequently
since most coalescing of branches involved comparisons with character constants,
which have values that are nonnegative and close to zero. Avoid Initial Range
Check represents when value range analysis was also used to completely elim-
inate the initial range check. This technique resulted in a substantial decrease
since 2 or 3 instructions were avoided each time it was applied. Efficient Indexing



includes using byte displacements in jump tables. Using byte displacements was
possible since relocating code segments quite effectively compressed the target
range of indirect jumps. Note that the last three techniques were often applied
on coalesced branches not associated with multiway selection statements.

Table 1. Dynamic Instruction Frequency Measurements

Program|Description None| Original|Coalescing
awk pattern language 13,666,952| -0.294%| -2.145%
cb C program beautifier 19,739,127(-12.976%| -20.613%
cpp C preprocessor 30,985,306|-37.421%| -37.960%
ctags C tags generator 74,316,425 -0.536%| -10.974%
deroff  |remove nroff cmd lines 15,511,507| -0.195%| -1.028%
grep pattern search 11,810,070(-21.620%| -24.370%
hyphen [lists hyphenated words |19,535,372 0.000%| -0.783%
join relational join on files 3,552,801 0.000% 0.102%
lex scanner generator 10,052,031| -0.230%| -0.566%
nroff document formatter 25,118,855| -0.155%| -0.015%
pr prepare for printing files |78,016,755| 0.000%| -7.801%
ptx generate permuted index |22,679,653| 0.000%| -7.891%
sdiff side-by-side file diffs 17,582,760 0.000% 0.022%
sed stream editor 17,872,507| -6.375%| -6.629%
sort sort or merge files 18,921,766 0.000%| -31.289%
wce word counter 17,860,086 0.000%| -17.853%
yacc parser generator 25,658,688| -0.194%| -0.303%
average 24,880,627| -4.706%| -10.006%

Table 2. Reducing the Cost of Coalescing Table 3. Cache Work Measurements

Techniques Proportional Benefit Cache Size|Instruction| Data | Total
After Code Generation 9.303% 1K -5.761% [8.438%|-3.746%
Front Padding 32.760% 2K -7.591% |6.673%|-6.172%
Avoid Initial Range Check 48.084% 4K -5.988% [3.077%|-5.065%
Efficient Indexing 9.853% 8K -5.877% |1.310%|-5.611%
16K -5.997% |2.230%|-5.448%
32K -5.587% |2.891%|-5.554%

The impact of branch coalescing on caching was a concern since misses from
jump tables loads could potentially have a negative impact on performance.
Table 3 shows the average effect coalescing has on instruction caching, data
caching, and total cache work as compared to the Original cache measurements.
Each cache configuration used was direct-mapped with a 32 byte line size. The
cache work cycles were calculated by counting a cache hit as one cycle and a cache
miss as ten [13]. The i-cache work was reduced since the number of instructions
referenced were diminished. For high hit ratios this reduction is close to the
decrease in instructions executed from the Original measurements. As expected,
the d-cache work was increased due to the jump table loads performed. The total
cache work was obtained from the sum of the cycles associated with i-cache hits,
i-cache misses, and d-cache miss penalties. It was assumed that d-cache accesses
could be performed simultaneously with i-cache accesses. The total cache work
was decreased since i-cache accesses are more frequent than d-cache accesses.



Some other measurements not given in the tables provide useful informa-
tion. When all the techniques are used to reduce the cost of coalescing branches,
24.269% of the executed branches were avoided by coalescing as a general im-
proving transformation. There was one indirect jump executed for every 8.579
branches avoided. There were on average 10.344 branches coalesced into each
jump table.

9 Future Work

There are several areas that could be investigated to provide additional opportu-
nities for coalescing conditional branches. Often there are paths between condi-
tional branches that compare the same variable to constants without the variable
being updated. These noncontiguous branches could be coalesced and the other
instructions that were to be executed between the branches can be replicated
when necessary. By resolving many of these conditional branches early, many ba-
sic blocks can be merged and result in greater opportunities for instruction-level
parallelism.

Another factor that limited coalescing branches into indirect jumps was not
performing interprocedural analysis to more effectively determine value ranges.
Often int arguments being compared to constants in one function are loaded
from memory as a byte in a different function. Interprocedural analysis would
allow the three instructions comprising the initial range check to be avoided
more frequently.

Profiling could also be used to help determine when coalescing was worth-
while. The authors statically estimated the average number of branches that
would be executed through the DAG. Profiling would provide more accurate
estimates for coalescing decisions. In general, detecting bounded ranges and us-
ing an estimated frequency for character values provided good heuristics when
making coalescing decisions. This approach has promising implications for con-
ventional branch prediction, which the authors are currently exploring.

Finally, a more detailed study is needed about the effect branch coalescing
and related architectural enhancements have on pipelining. For instance, the
stalls from mispredictions for a branch target buffer could be less than or greater
than stalls from mispredictions associated with the sequence of branches that
were coalesced. The authors suspect that the total number of branch target buffer
mispredictions should decrease after branch coalescing since fewer transfers of
control will be encountered.

10 Conclusions

This paper described an approach for coalescing conditional branches into indi-
rect jumps. Static analysis techniques were used to perform this improving trans-
formation more effectively. Control-flow analysis was used to detect sequences
of branches that can be coalesced together and to select a head branch for the
location of the indirect jump. Coalescing branches after code generation as a
general improving transformation provided additional opportunities that would
otherwise not be available. Methods for reducing the cost of performing indi-
rect jumps from tables were investigated and shown to be effective. Value-range



analysis was used to avoid the initial range check when possible. Target-range
analysis was used to compress the target range, which avoided the execution
of a shift instruction and reduced the size of the jump table. Path and branch
prediction analysis was performed to predict the average number of instructions
executed through the set of branches to be coalesced and obtain more accurate
estimation of the benefit of coalescing. The results indicate that indirect jumps
from tables have been underutilized in the past since reductions in both the
number of instructions executed and cache work can be obtained.
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