
FSU DEPARTMENT OF COMPUTER SCIENCE

 

E�cient On-the-
y Analysis of ProgramBehavior and Static Cache SimulationFrank Mueller, David WhalleyDepartment of Computer ScienceFlorida State UniversityTallahassee, FL 32304-4019e-mail:mueller@cs.fsu.eduWWW:http://www.cs.fsu.edu/~muellerE�cient On-the-
y Analysis of Program Behavior and Static Cache Simulation SAS'94 1



FSU DEPARTMENT OF COMPUTER SCIENCE

 

Objective� provide faster cache performance evaluation- determine number of hits and misses of a program execution- used to evaluate new cache designs- used to analyze new optimization techniques� predict the caching behavior (for real-time systems)

E�cient On-the-
y Analysis of Program Behavior and Static Cache Simulation SAS'94 2



FSU DEPARTMENT OF COMPUTER SCIENCE

 

Methods in Contrast� Goal: faster cache performance evaluation� traditional approach: inline tracing- instrument program on complement of min. spanning tree- generate trace addresses- simulate caches based on trace� our approach: on-the-
y analysis- analyze program statically (static cache simulation)- instrument program on \unique paths"- do NOT generate trace addresses- simulate remaining cache behavior within program execution

E�cient On-the-
y Analysis of Program Behavior and Static Cache Simulation SAS'94 3



FSU DEPARTMENT OF COMPUTER SCIENCE

 

Small Set of Measurement Points� covers all events and preserves their order during execution� applicable for any on-the-
y analysis of program behavior� cannot use min. spanning tree if order of events critical� need new method to �nd a small set of measure points� partition control-
ow graph into unique paths:- unique transition for each path to place instrumentation code- path contains sequence of basic blocks in control 
ow- blocks in path not necessarily consecutive code- set of blocks determines portion of program for static anal-ysisE�cient On-the-
y Analysis of Program Behavior and Static Cache Simulation SAS'94 4



FSU DEPARTMENT OF COMPUTER SCIENCE

 

De�nition of Unique Path Partitioning (UPPA)1. all vertices covered by paths2. edges are either in paths or connect paths3. each path has unique edge or vertex4. paths overlap only in initial or �nal subpaths5. paths are chained properly6. calls terminate paths (operational)7. paths do not cross loop boundaries (operational)

E�cient On-the-
y Analysis of Program Behavior and Static Cache Simulation SAS'94 5



FSU DEPARTMENT OF COMPUTER SCIENCE

 

Properties of UPPAs

� basic block partitioning is a UPPA� Let jUPPAj denote number of paths in partitioning� ordering: UPPAa < UPPAb := jUPPAaj < jUPPAbj� goal: �nd minimal UPPA for a given control-
ow graph

E�cient On-the-
y Analysis of Program Behavior and Static Cache Simulation SAS'94 6



FSU DEPARTMENT OF COMPUTER SCIENCE

 

1

2
3

4 5

6

7 8

pa
th

 3

pa
th

 2
pa

th
 1 pa

th
 5pa

th
 4

E�cient On-the-
y Analysis of Program Behavior and Static Cache Simulation SAS'94 7



FSU DEPARTMENT OF COMPUTER SCIENCE

 

Computation of a Small UPPA

1. mark initial head and tail vertices2. WHILE change DO(a) propagate heads and tails(b) for each new head vertex, �nd fork after join3. UPPA = collect each path between a head and a tail vertex

E�cient On-the-
y Analysis of Program Behavior and Static Cache Simulation SAS'94 8



FSU DEPARTMENT OF COMPUTER SCIENCE

 

Example: Join followed by Fork

join

fork

head

tail

headE�cient On-the-
y Analysis of Program Behavior and Static Cache Simulation SAS'94 9



FSU DEPARTMENT OF COMPUTER SCIENCE

 

Example 1: Algorithmic Construction of a Small UPPA

head

tail

head

tail

1

2

43

5

6

7

1

2

43

5

6

7

head

tail

1

2

43

5

6

7

head
tail

head
tail

head
tail
head

tail
head
tailE�cient On-the-
y Analysis of Program Behavior and Static Cache Simulation SAS'94 10



FSU DEPARTMENT OF COMPUTER SCIENCE

 

Example 2: Algorithmic Construction of a Small UPPA
tail
head6

1

2 3

4

5 6tail tail

head 1

2 3

4

5 6tail tail

head

tail

1

2 3

4

5

tail

head

tail

head
tail

head
tail

E�cient On-the-
y Analysis of Program Behavior and Static Cache Simulation SAS'94 11



FSU DEPARTMENT OF COMPUTER SCIENCE

 

Properties of the Algorithm

� correctness proved� minimal UPPA ) optimal on-the-
y analysis ??- de�ne equivalence class of same-order UPPAs- show that algorithm constructs one such UPPA- show that no smaller UPPAs exist

E�cient On-the-
y Analysis of Program Behavior and Static Cache Simulation SAS'94 12



FSU DEPARTMENT OF COMPUTER SCIENCE

 

Function-Instance Graph

� decomposition of call graph according to call sites� useful for inter-procedural analysis in general� used here for static cache simulation� provides more detailed information about a function instance� many applications: alias analysis, caller-save, inlining� special transitions to recognize recursion

E�cient On-the-
y Analysis of Program Behavior and Static Cache Simulation SAS'94 13



FSU DEPARTMENT OF COMPUTER SCIENCE

 

Example of Function-Instance Graph

f

g h

Call Graph

i k

f

k

g h h

k ki

Function Instance Graph

0 0 1

0 1 20

0

E�cient On-the-
y Analysis of Program Behavior and Static Cache Simulation SAS'94 14



FSU DEPARTMENT OF COMPUTER SCIENCE

 

Performance Evaluation

� UPPAs and function instances vs. basic block partitioning� static savings: 24% fewer measurement points� dynamic savings: 31% fewer measurement points

E�cient On-the-
y Analysis of Program Behavior and Static Cache Simulation SAS'94 15



FSU DEPARTMENT OF COMPUTER SCIENCE

 

What is Static Cache Simulation?

� new approach to analyze cache behavior of programs statically� applied to instruction caches (working on data caches)� addresses of instructions known statically� uses data-
ow analysis of call graph and control 
ow� categorizes each instruction� predicts large portion of instruction cache references

E�cient On-the-
y Analysis of Program Behavior and Static Cache Simulation SAS'94 16



FSU DEPARTMENT OF COMPUTER SCIENCE

 

Instruction Categorization� transforms call graph into function-instance graph (FIG)� performs analysis on FIG and UPPAs� uses data-
ow analysis algorithms for prediction� abstract cache state: potentially cached program lines� reaching state: reachable program lines� categories based on these states:- always hit- always miss- �rst miss: miss on �rst reference, hit on consecutive ones- con
ict: either hit or miss (dynamic)E�cient On-the-
y Analysis of Program Behavior and Static Cache Simulation SAS'94 17



FSUDEPARTMENT OF COMPUTER SCIENCE

 

return

return
program

 line 5

478 3

program
 line 3

a-hit

a-hit

a-hit

a-hit

a-hit

a-hit
a-hit

a-hit

a-hit

a-hit

a-hit

a-m
iss

a-m
iss

foo()
(a)

(b)

program
 line 1

program
 line 2

program
 line 4

f-m
iss

m
ain()

1
a-m

iss

a-m
iss

conflict

a-hit

a-m
iss

2

call foo()
a-hit

program
 line 0

a-hit

a-hit

5
f-m

iss

a-hit

f-m
iss

6

call foo()

E�cientOn-the-
yAnalysisofProgramBehaviorandStaticCacheSimulationSAS'9418



Frank Mueller, David Whalley SAS'94

� 4 cache lines� 16 bytes per line (4 instructions)� instances foo (a) block 8a and (b) block 8b� 7(1): always hit, spacial locality� 8b(1): always hit, temporal locality� 3(3): �rst miss� 5(1) and 6(1): group �rst miss� 3(1): con
ict with 8b(2) conditionally executed
E�cient On-the-
y Analysis of Program Behavior and Static Cache Simulation (notes) 18-1



FSU DEPARTMENT OF COMPUTER SCIENCE

 

Fast Instruction Cache Performance Analysis

� uses e�cient on-the-
y analysis� performs static instruction cache simulation� instruments program� provides accurate cache performance measurements� instrumented program has only 1.2 to 2.2 execution overhead� faster than any other cache analysis method published so far

E�cient On-the-
y Analysis of Program Behavior and Static Cache Simulation SAS'94 19



FSU DEPARTMENT OF COMPUTER SCIENCE

 

Conclusion

� general framework for e�cient on-the-
y analysis (path parti-tioning)� static cache simulation: new way to analyze caching behavior� function-instance graph� faster instruction cache performance analysis� other applications
E�cient On-the-
y Analysis of Program Behavior and Static Cache Simulation SAS'94 20


