
ABSTRACT
The memory hierarchy is often a critical component of an embedded sys-
tem. An embedded system’s memory hierarchy can have dramatic impact

on the overall cost, performance, and power consumption of the system.

Consequently, designers spend considerable time evaluating potential
memory system designs. Unfortunately, the range of options in the mem-

ory hierarchy (e.g., number, size, and type of caches, on-chip SRAM,

DRAM, EPROM, etc.) makes thorough exploration of the design space
using typical simulation techniques infeasible. This paper describes a

fast, accurate technique to estimate an application’s average memory

latency on a set of memory hierarchies. The technique is fast—two orders
of magnitude faster than a full simulation. It is also accurate—extensive

measurements show that 70% of the estimates were within 1 percentage

point of the actual cycle count while over 99% of all estimates were
within 10 percentage points of the actual cycle count. This fast, accurate

technique provides the embedded system designer the ability to more

fully explore the design space of potential memory hierarchies and select
the one that best meets the system’s design requirements.

Categories and Subject Descriptors
B.m [Hardware]: Miscellaneous, C.4 [Performance of Systems]:
Performance attributes

General Terms
Algorithms, Measurement, Performance, Design, Experimenta-
tion.

Keywords
Memory Hierachy, Performance Estimation, Embedded Systems.

1. INTRODUCTION
Embedded system designers often must tailor a system’s memory
hierarchy to meet strict performance/cost constraints. Unfortu-
nately, the wide range of options in the memory hierarchy (e.g.,
number, size, and type of caches, on-chip SRAM, DRAM,
EPROM, etc.) leads to an exponential number of possibilities for
memory hierarchy configuration. Changing the size of the cache

Permission to make digital or hard copies of all or part of this work for per-

sonal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

SAC'07, March 11-15, 2007, Seoul, Korea.

Copyright 2007 ACM 1-59593-480-4/07/0003…$5.00.

may effect how much on-chip SRAM (also known as Scratchpad
memory) is required. With hundreds or thousands of possibilities,
it becomes prohibitively expensive to do a full simulation for each
possible memory configuration. Such simulations typically take
hours, and thousands of simulations may take weeks or months
and are often impractical given the fast time-to-market constraints
of many embedded systems. Worse yet, the program itself may
evolve during the development of an ASIC processor. An extra
memory reference in a critical loop could change what is the most
appropriate configuration.

To produce designs that meet performance and cost constraints,
system designers need fast, effective methods to determine the cost
and relative performance of many different possible memory con-
figurations. Figure 1 contains an example of a graph that a designer
may use to evaluate the cost and performance of different memory
configurations. The figure shows the cost (kilobytes of cache and
on-chip SRAM) and the total memory latency for the adpcm decode

benchmark when run for 80 different memory configurations. A
designer can use this information to choose the memory configura-
tion which best meets the design criteria. For example, a designer
may know that the program needs to execute in less than five mil-
lion memory cycles, and consume no more than 25 KB of cache
and SRAM space. The figure shows that only configurations 60–
76 meet those requirements.

Note that Figure 1 plots the total time the program took to access
memory for each configuration. The total memory access time is
plotted because the goal is to estimate the performance of the

Figure 1: Memory access time and cost graph.

Fast, Accurate Design Space Exploration of
Embedded Systems Memory Configurations

Jason D. Hiser, Jack W. Davidson David B. Whalley
Department of Computer Science Department of Computer Science

University of Virginia Flordia State University
Charlottesville, VA 22904 Tallahasse, FL 32306

{hiser,jwd}@virginia.edu whalley@cs.fsu.edu

memory hierarchy, not the performance of the surrounding core.
Furthermore, the performance of the chip is often tied directly to
the memory system’s performance.

The graph in Figure 2 plots actual total memory access time and
total cycles to execute the program, again for the adpcm decode

benchmark. This graph represents data from a two-issue out-of-
order processor. See Section 4 for details of the processor and
memory configurations used. The figure shows that the two mea-
surements have the same trend, and thus processor performance is
tied directly to the memory system performance.

This paper makes the following contributions. It describes the
MCDSE process (memory configuration design space exploration)
a fast, accurate process for exploring the design space of memory
hierarchy configurations for embedded systems. MCDSE couples
an existing algorithm for assigning program variables to memory

partitions and a novel cache performance estimation technique to
compute total memory access time curves for the memory configu-
ration design space.

In this work we refer to a memory partition as a component of the
memory hierarchy in which data is stored on a permanent basis.
On-chip SRAM, and DRAM are examples of a memory partition.
A cache, although part of the memory hierarchy is not considered
a memory partition. Each memory partition is considered homo-
geneous and compiler-visible. This model is distinct from the
models used by work that selects portions of main memory to con-
vert to faster SRAM based on program access characteristics [2, 4].

The MCDSE process is fast—two orders of magnitude faster than
using detailed simulation to evaluate a candidate memory hierar-
chy. MCDSE is also accurate—extensive measurements show that
70% of the estimates were within 1 percentage point of the actual
cycle count and over 99% of all estimates were within 10 percent-
age points of the actual cycle count.

The MCDSE process is easily incorporated into existing compila-
tion and simulation frameworks. Furthermore, the speed of the
technique allows it to be employed in an iterative design environ-
ment where hundreds or thousands of possible memory hierarchies
may need to be considered to find one that meets cost/perfor-
mance/resource design constraints.

The remainder of the paper is organized as follows: Section 2
describes how the MCDSE process can be integrated into a design
process. Section 3 describes how the total memory access time is
estimated, while Section 4 discusses the experimental setup and
results with a focus on the accuracy of the technique. Section 5 dis-
cusses related work in this area, and Section 6 summarizes our
findings.

2. THE DESIGN PROCESS
Figure 3 illustrates how the memory system design space explora-
tion technique can be used to accelerate the hardware design pro-
cess.

The inputs to the hardware design process are the target applica-
tion codes, any hardware restrictions, and the performance goals.
After determining an appropriate processor core, the designer is
faced with selecting the most appropriate memory system

configuration.†

The designer uses the MCDSE process (shaded box) to quickly
eliminate memory configurations that do not meet the design con-
straints. For example, MCDSE produced the data in Figure 1
allowing the designer to focus on just 16 candidate memory con-
figurations. From these few candidate memory configurations, the
designer may select some or all to be evaluated using cycle-accurate
simulation. Using the results of the detailed simulation, the
designer may complete the design process or make changes to the
core or memory system and repeat the process.

Figure 2: Cycle count vs. memory latency.

Figure 3: Design process.

† We assume that the designer has some methodology for selecting an

initial core that is appropriate for the application. As the figure

shows, the MCDSE process does support subsequent changes to the

core architecture.

Hardware
Restrictions

Performance
Goals

Target
Applications

Design/evaluate core

Memory Configuration Design
Space Exploration

Refinements
Necessary?

Detailed Simulation

Evaluate Results

Final
Hardware
Design

Hardware Design

Refine Memory
Hierarchy

Refinements

3. MEMORY CONFIGURATION
DESIGN SPACE EXPLORATION

Figure 4 expands the shaded box of Figure 3. The first step in the
MCDSE process is to collect a profile of the variable accesses in
the program. The profile contains information about which vari-
ables (global, stack, and heap) are accessed and where in the target
code they are accessed.

To collect the profile, an existing compiler and simulator were
modified. The compiler was modified to collect static information
about variable accesses. Using interprocedural analysis, the com-
piler classifies variable accesses according to region (global, stack,
and heap) and also records where in the program the variables were
accessed. This information is made available to the simulator.

The simulator (based on SimpleScalar [7]) was modified to use the
compiler collected information to monitor each load and store
instruction to a particular variable and compute “dynamic” live
ranges for each variable. A dynamic live range for a variable v is a
triple (s, e, n), where s is the start cycle, e the end cycle, and n is the
number of accesses to v between s and e. The dynamic live ranges
are maintained in a hash table indexed by variable. When an
address is accessed, the simulator determines which variable is
accessed and updates the appropriate live range list.

We were able to use a fast functional simulator (sim-profile)
because obtaining the profile does not require a cycle-accurate sim-
ulation. Furthermore, the profile information only needs to be col-
lected once (unless the application or processor core is changed).
Consequently, the simulator’s runtime was sufficiently fast for our
purposes (profile simulations took less than 25 minutes per bench-
mark to complete.)

The dynamic live range information, a description of the candidate
memory hierarchies, and the program text itself are then used to
assign variables to memory partitions. The choice of partitioning

algorithm is arbitrary although the accuracy of MCDSE could be
affected by the use of a poor algorithm. For the results reported in
this paper, a previously published algorithm that has been shown
to produce excellent results was used [11].

3.1 Estimating Cache Hit Rates
Once partition assignments are made, the data profile can be used
to estimate the access patterns to each cache. In this work, the
cache hit rate for each cache in the memory hierarchy is calculated
first. To calculate hit rates, the estimation phase calculates an effec-

tive cache size (ESize) for each cache, C, in a top-down fashion, as
follows:

where tcf(v1, v2) is defined as the total conflict factor between vari-
able v1 and v2 assigned to the same memory partition. We use the
calculation of tcf as defined in our previous publication [11].

PC is the partition cached by C. The sum of the tcfs is divided by

the cache's associativity, Cassoc, to account for the reduced conflicts

from higher associativity. The sum is also divided by AccessesC, the

accesses to cache C, to convert the summation into a percentage
estimating the amount of conflict.

Next, using the data profile sorted by access count, the estimation
phase counts the accesses to variables until the sum of the variables’
size exceeds the effective cache size. Figure 5 gives an example. In
the figure, the accesses to variables 1, 2, and 3 are included in the

summation. Also, part of the accesses to variable 4 are included.†

Call this sum S. The estimate for C’s hit rate is defined as:

where LineSizeC is C’s line size, and AccessesC is the number of
accesses to C. The idea is that most of the S accesses will be hits
and most of the remaining accesses will be misses. However, we
also want to take into account that while traversing an array, which
is common in embedded codes, about 1/LineSizeC accesses will
probably be misses.

Once HitRateC is calculated, the estimation of misses can be

passed down to lower level caches as cache accesses, and the calcu-
lation is repeated (omitting the variables cached by the upper level
caches, such as Var 1–3 in the example) to calculate hit rates for
lower level caches.

3.2 Estimating Average Access Times
Once the estimated hit rate of all caches have been computed, the
estimated average access time (EAAT) for each cache is calculated.

Figure 4: Block diagram of the compilation infrastructure.

OptimizerPrelinkerunoptimized
RTLs

unoptimized
RTLs linked

Assembly/Link

Profiling (modified
sim-profile)

Partition
Tool

Estimate
PartitionEstimate for each

memory hierarchy

Next memory hierarchy
in partition description file

Whole application
source code

variable access

P
ar

tit
io

n
D

es
cr

ip
tio

n
F

ile

information

Compiler Infrastructure

Dynamic Live Ranges

executable

Memory Hierarchy Modeling Framework

Assignments

C
Front
End

† The estimation phase calculates the percent of the variable's size that

fits within the cache, say X%. It then includes X% of the accesses in

the sum.

ESizeC SizeC 1 1

tcf v1 v2,()
v1 v2, Pc∈∀
∑

AssocC AccessesC×
--–

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

+

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

×=

HitRateC
S

LineSizeC AccessesC×
--- 1 1

LineSizeC

--------------------------–+=

Since the access time of a first level cache depends on access times
for second level caches, the calculation is done in a bottom-up
fashion. The EAAT for a cache is:

where tC is the time to access C, and tm is the time to satisfy a miss
(either the EAAT of a lower level cache, or by the access time of
the backing partition.)

Next, once an EAAT has been calculated for each cache, the aver-
age access time for each partition can be calculated. EAATP is the

minimum of the access time to the partition or the minimum
EAAT of the caches that satisfy requests for variables in partition P.

Lastly, the total access time is calculated:

This calculation provides an estimate of how long the processor
will spend satisfying memory requests if the program were run on
the training input with the given memory configuration. Of
course, we are interested in the time satisfying memory requests for
the program run on actual data. Section 4.2 discusses the accuracy
of the MCDSE estimation when compared to cycle-accurate sim-
ulations using real data.

4. EVALUATION
4.1 Experimental Setup
For the experiments reported in this paper, we used a compiler tar-
geted to SimpleScalar PISA instruction set [5, 7]. PISA is a vari-
ant of the MIPS R4000 instruction set, commonly used in many
embedded applications.

SimpleScalar was configured to use a two-issue out-of-order pro-
cessor in all experiments [6]. The CPU has two integer execution
units, and one floating-point execution unit, along with a memory

unit for each partition. All on-chip caches and SRAM are modeled
as having a one cycle latency, while an off-chip (level-2) cache is
modeled using a 10 cycle latency. All caches were direct mapped
caches. DRAM is modeled as having 100 cycle latency. All these
parameters can be adjusted to reflect the operating parameters of
the target system and memory components.

Table 1 lists the 80 memory hierarchies used to evaluate the accu-
racy of the MCDSE technique. Additional experiments and mea-
surements using other configurations were performed and yield
similar results. Due to space limitations this data cannot be pre-
sented.

The configurations range from memory hierarchies with 0–4kb of
on-chip SRAM, 0–32kb on-chip cache, and 0-256kb of off-chip,
L2 cache. Some configurations, such as configuration 50, may have
0kb of on-chip cache, but still access an off-chip cache. Note that
different configurations have significantly different cache and
SRAM sizes. Thus cycle times may be significantly different
between configurations and two configurations may not be directly
comparable. However, since the goal of the work is to estimate the
cycle count accurately, it is not important to compare configura-
tions. Instead, it is important that the estimates trend in the same
fashion as the cycle-accurate measurements.

Table 2 describes the benchmarks that are used in this work, and
also the inputs used for profiling and for the evaluation. We
selected a benchmark set that had a wide range of qualities that
made the benchmarks suitable for testing our algorithm. Some
benchmarks, such as dijkstra, use significant amounts of dynamic
memory allocation. Others, such as pegwit and mpeg2.decode, have
large, complex code segments, which would make static analysis
complicated. All of the benchmarks are long-running and most
have been used in prior memory partitioning research [17, 3].

4.2 Experimental Results
To evaluate the accuracy of the MCDSE cache hit rate estimates,
one could compare the estimates to those obtained via cycle-accu-
rate simulation. However, some cache hit rates are more important
than others. Consider Figure 6a. Since many more accesses are to
the SRAM (indicated by the wide arrow between the SRAM and
CPU), the hit rate of the cache is relatively unimportant. In Figure
6b however, the cache hit rate is very important as it strongly
determines the performance of the system. Furthermore, it may
not be necessary to accurately estimate the cache hit rates when it
is possible to representatively estimate the change in cache hit rate
caused by changes in partition assignments or cache configuration.

Figures 7–9 show the results of evaluating our estimation tech-
nique for each of the five benchmarks. Each graph plots the esti-
mated memory cycles for the benchmark and the actual memory
cycles used. The actual memory cycles used was obtained by run-
ning a cycle-accurate simulation using the evaluation input. Notice
that the data are plotted using different scales. The data must be
plotted using different scales because the estimation phase has no
way to estimate the run time of the program on reference input,
and the reference runs execute longer than the training runs.

The key observation is that the trends are the same. The figures
show that the estimate curve tracks very closely to the actual curve.
On 500Mhz UltraSparc-IIe's with 1GB of RAM the curves corre-
sponding to the actual memory cycles took over 200 hours to cal-

Figure 5: Cache hit rate visualization.

Var 1

Var 2

Var 3

Var 4

Variable Size

V
ar

ia
bl

e
A

cc
es

se
s

EAATC tC HitRateC× tm 1 HitRateC–()×+=

EAATP min
EAATC∀ C caches P

AccessTimeP⎩ ⎭
⎨ ⎬
⎧ ⎫

=

TotalAccessTime AccessesP EAATP×
p∀ partitions∈
∑=

culate while the estimate curves were produced in under two hours
of elapsed time—a two order of magnitude reduction in elapsed
time.

To measure how closely the estimated memory access time
matches the actual memory access time, both the estimated values
and the actual values were scaled so they were in the 0–1 range.
The scaling effectively makes each point a percentage of the maxi-
mum value. On this adjusted data set, the mean absolute error
(MAE) and root mean square error (RMSE) were calculated. The
MAE and RMSE are the equivalent of the average and standard
deviation for this type of data set.

Table 3 contains the error estimates. The percent errors average
only 1.5%. The small RMSE indicates that the errors are relatively

consistent, and few are off by more than the MAE. Figure 10 con-
tains a histogram of the percentage errors. Each bar represents how
many estimates deviate from the actual memory access time by
more than 1, 3, 5, 10, and 20 percentage points, respectively. The
average bar shows that over 70% of the data points deviate by less
than 1 percentage point and 99% of the estimates deviate by less
than 10 percentage points. The CRC benchmark does the best
with all estimated memory cycles deviating by less than 3 percent-
age points.

Some points, however, have significant error. In particular, config-
uration 68 for the dijkstra and pegwit benchmarks shows errors of
11.4 percentage points and 8.4 percentage points respectively.

This increased error stems from configuration 68 itself and the
dynamic nature of these benchmarks. Configuration 68 has no
SRAM, no second-level cache, and a very small first-level cache.
Since a program that has much dynamic memory allocation and
large variables makes estimating conflict in the cache extremely
difficult, the MCDSE estimation model has difficulty predicting
the cache hit rate. Small errors in the estimated cache hit com-
bined with a large discrepancy between the cost of a cache hit and
miss (such as having no L2 cache) yield these larger errors in esti-
mated memory access times.

An embedded system designer may be less interested in the
amount of error and more interested in the fidelity of the memory

Table 1: Component sizes (in kb) for configurations.

config
num

SRAM L1 L2 config
num

SRAM L1 L2 config
num

SRAM L1 L2 config
num

SRAM L1 L2

1 4 32 256 21 4 8 128 41 1 4 128 61 4 32 0

2 4 2 256 22 0 8 256 42 2 4 128 62 4 2 0

3 4 4 256 23 1 8 256 43 0 8 64 63 4 4 0

4 4 8 256 24 2 8 256 44 1 8 64 64 4 8 0

5 4 32 64 25 0 32 64 45 2 8 64 65 0 32 0

6 4 32 128 26 1 32 64 46 0 8 128 66 1 32 0

7 0 32 256 27 2 32 64 47 1 8 128 67 2 32 0

8 1 32 256 28 0 32 128 48 2 8 128 68 0 2 0

9 2 32 256 29 1 32 128 49 4 0 256 69 1 2 0

10 4 2 64 30 2 32 128 50 4 0 64 70 2 2 0

11 4 2 128 31 0 2 64 51 4 0 128 71 0 4 0

12 0 2 256 32 1 2 64 52 0 0 256 72 1 4 0

13 1 2 256 33 2 2 64 53 1 0 256 73 2 4 0

14 2 2 256 34 0 2 128 54 2 0 256 74 0 8 0

15 4 4 64 35 1 2 128 55 0 0 64 75 1 8 0

16 4 4 128 36 2 2 128 56 1 0 64 76 2 8 0

17 0 4 256 37 0 4 64 57 2 0 64 77 4 0 0

18 1 4 256 38 1 4 64 58 0 0 128 78 0 0 0

19 2 4 256 39 2 4 64 59 1 0 128 79 1 0 0

20 4 8 64 40 0 4 128 60 2 0 128 80 2 0 0

Table 2: Benchmark and input descriptions.

Benchmark Description Profile Input Evaluation Input Inst. Count Source

CRC 32 Compute 32-bit CRC used as the frame check
sequence in ADPCM

small.pcm—1 MB pcm file large.pcm—26 MB pcm file 4.8M [10]

dijkstra Dijkstra’s shortest path algorithm input.dat—20 shortest paths input.data—50 shortest paths 285M [10]

adpcm.encode Adaptive, Differential, Pulse-Code Modulation
Speech Encoder clinton.pcm clinton.pcm 6.6M [13]

pegwit public key decryption and authentication 91k pgptest.plain, encoded 637k pgpref.plain, encoded 89M [10]

mpeg2.decode
Converts a compressed bitstream into an ordered
set of uncompressed pictures test.m2v—8k m2v file mei16v2.m2v—35k m2v file 159M [10]

Figure 6: Example memory configurations.

CPU

SRAM D$

CPU

D$

(a) (b)

performance estimates. The fidelity of the estimates is defined as
the percentage of time the estimates of a memory configuration’s
performance can be used to select the memory configuration that
actually provides the best performance.

Consider Figure 11a which shows a magnified view of a section of
a graph plotting the design space estimates of memory cycles
expended and the actual memory cycles expended as determined
by a cycle-accurate simulator. Comparing the estimates and choos-

ing the one with the lowest cycle count results in the selection of
the memory configuration H1 that, in fact, does provide the best

performance (in terms of cycles). Figure 11b shows a similar graph
where choosing the estimate with the lowest cycle count (E2)

results in the selection of the memory configuration H4 that, in

fact, does not provide the best performance (in terms of cycle
count).

To measure the fidelity of the MCDSE estimates, a pairwise com-
parison of all estimates was performed to determine the number of
times the comparison of two estimates would result in the selection
of a memory configuration that, in fact, was not the memory con-
figuration that provided the best actual performance. Thus, for n
configurations, there are n(n–1)/2 comparisons. An estimator has
100% fidelity if the estimator, when used to compare two memory

Figure 7: Estimated and actual memory cycles for pegwit and mpeg2.

Figure 8: Estimated and actual memory cycles for CRC and dijkstra.

Figure 9: Estimated and actual memory cycles for adpcm decode.

Table 3: MAE and RMSE.

Benchmark MAE RMSE

CRC32 0.27% 0.05%

dijkstra 2.66% 0.73%

pegwit 2.61% 0.41%

mpeg2.decode 1.39% 0.27%

adpcm.encode 0.45% 0.15%

Average 1.50% 0.30%

configurations, always selects the configuration that has the best
actual performance.

Table 4 presents the results of this pairwise comparison of the 80
estimates for the five benchmarks. The table shows the breakdown
of correct, incorrect, and total comparisons per benchmark in col-
umns 2, 3, and 4, respectively. The fidelity ranges from 73% to
90% across the benchmarks. The average is 80.7%.

However, savvy system designers understand that estimates have
some amount of inherent error. A designer may see that two mem-
ory configurations were estimated to perform very similarly.
Knowing that there is some inherent error allows the designer to
fall back to detailed simulations when two memory configurations
are estimated to have similar performance. To determine how well
this approach may work for a designer, the previous calculation was
redone, but comparisons in which the estimates differ by less than
the MAE for that benchmark were rejected. Table 4 shows that,
on average, 94.9% of the time, a designer is able to select the best
candidate memory hierarchy using this scheme. Column 5 shows
the average for each benchmark.

5. RELATED WORK
Due to the importance of the problem addressed in this paper,
there has been much research in this area. Jacob, et al. describe
cache modes that address memory hierarchy design for generic
workloads [12]. Such models are not applicable to ASIC-based
systems because in an ASIC, the workload is fixed by the applica-
tion and need not perform well on a wide range of workloads like a
desktop machine. Other work focuses on statically predicting the
cache behavior for each kernel loop of a program [21, 9]. Unfortu-

nately, some benchmarks, dijkstra for example, cannot be analyzed
by static techniques because of function calls, pointers, and
dynamic allocation.

Other work aims to solve the memory configuration evaluation
problem in a different way, by speeding up simulation time. This
can be done by simulating multiple caches in one simulation run,
taking advantage of cache properties such as the inclusion property
or how associativity affects caches [20, 22]. These techniques,
however, still require many simulations to fully examine the spec-
trum of possible memory hierarchies and may still take extensive
time to complete. Also, it is difficult to reason about some proper-
ties when multiple first-level caches are backed by lower-level
caches (such as having first-level instruction and data caches
backed by a level 2 cache.) Other work only addresses part of the
problem, how to choose first-level cache parameters (size, associa-
tivity, line size, etc.) or how to choose the number of memory par-
titions assuming there is a first-level cache [18, 19, 14, 1].
Unfortunately, a single simulation run, no matter how many cache
parameters are evaluated, cannot take into account varying SRAM
size. Varying the partition size changes which variable accesses are
serviced by a cache, and can significantly change the access pat-
terns. Thus, to get a picture of how the entire memory hierarchy
works, a chip designer may still need a very large number of
detailed simulations.

Still other work aims to speed up simulation by taking samples of
the memory trace and replaying just those samples to the memory
subsystem [8, 23, 16, 15]. These techniques also yield accurate
results. Although such techniques can be significantly faster than
full simulation, sampling a small fraction of memory references can
still be expensive and replaying them for each candidate memory
configuration would be more expensive than an approach that
combines simulation with analytical modeling.

6. SUMMARY
The memory system is a critical component of many embedded
systems. Increasingly designers are using partitioned memory
architectures to meet cost/performance constraints. Unfortunately,
the range of options (e.g., number, size, and type of caches, on-
chip SRAM, DRAM, EPROM, etc.) complicates choosing an
appropriate memory configuration.

To address this problem, this paper has presented an approach for
quickly exploring the design space of possible memory configura-
tions for an embedded system. The technique is fast and accurate.
It is two orders of magnitude faster than detailed simulation. It is
also accurate. For five commonly used embedded benchmarks, we
found that the estimations show the same trends as the applica-

Figure 10: Error histogram.

Figure 11: Example of correct and incorrect comparisons.

C
yc

le
s

E1

E2

A1

A2

(a)

E1 E2

A1

A2

(b)

H2H1 H4H3

Configurations

Benchmark Correct
Compares

Incorrect
Compares

%
Correct

Restricted
% Correct

CRC 2,441 719 77.2 95.1

dijkstra 2,459 611 80.7 90.8

pegwit 2,611 549 82.6 96.6

mpeg2 2,827 333 89.5 97.1

adpcm 2,317 843 73.3 94.8

Average 2,549 611 80.7 94.9

Table 4: Per benchmark memory hierarchy comparisons.

tion. The mean absolute error of the scaled data is 1.5% of the
maximum estimate, on average. Furthermore, we see that over 70%
of all estimates were within 1 percentage point of the actual, while
over 99% of all estimates were within 10 percentage points.

7. ACKNOWLEDGEMENTS
This research was supported in part by the National Science Foun-
dation under grants CNS–0551560, CNS–0524432, CNS–
0305144, CNS–0072043, CCR–0208892, CCR–0312493, and
CNS–0615085.

8. REFERENCES
[1] ABRAHAM, S., AND MAHLKE, S. Automatic and efficient

evaluation of memory hierarchies for embedded systems. In
Proceedings of the 32th Annual International Symposium on
Microarchitecture (1999), pp. 114–125.

[2] ANGIOLINI, F., BENINI, L., AND CAPRARA, A. Polynomial-
time algorithm for on-chip scratchpad memory partitioning.
In CASES ’03: Proceedings of the 2003 International Conference

on Compilers, Architecture and Synthesis for Embedded Systems
(New York, NY, USA, 2003), ACM Press, pp. 318–326.

[3] AVISSAR, O., AND BARUA, R. An optimal memory allocation
scheme for scratch-pad-based embedded systems. ACM

Transactions on Embedded Computing Systems 1, 1 (2002), 6–
26.

[4] BENINI, L., MACII, A., AND PONCINO, M. A recursive algo-
rithm for low-power memory partitioning. In ISLPED ’00:
Proceedings of the 2000 International Symposium on Low Power

Electronics and Design (New York, NY, USA, 2000), ACM
Press, pp. 78–83.

[5] BENITEZ, M. E., AND DAVIDSON, J. W. A portable global
optimizer and linker. In Proceedings of the SIGPLAN ’88 Con-

ference on Programming Language Design and Implementation
(1988), pp. 329–338.

[6] BROOKS, D., TIWARI, V., AND MARTONOSI, M. Wattch: A
framework for architectural-level power analysis and optimi-
zations. In Proceedings of the 27th Annual International Sympo-

sium on Computer Architecture (2000), ACM Press, pp. 83–94.

[7] BURGER, D., AUSTIN, T. M., AND BENNETT, S. Evaluating
future microprocessors: The SimpleScalar tool set. Technical
Report CS-TR-1996-1308, University of Wisconsin, Madi-
son, 1996.

[8] CONTE, T. M., HIRSCH, M. A., AND HWU, W.-M. W.
Combining trace sampling with single pass methods for effi-
cient cache simulation. IEEE Transactions on Computers 47, 6
(1998), 714–720.

[9] GHOSH, S., MARTONOSI, M., AND MALIK, S. Cache miss
equations: A compiler framework for analyzing and tuning
memory behavior. ACM Transactions on Programming Lan-

guages and Systems 21, 4 (1999), 703–746.

[10] GUTHAUS, M. R., RINGENBERG, J. S., ERNST, D., AUSTIN,
T. M., MUDGE, T., AND BROWN, R. B. Mibench: A free,
commercially representative embedded benchmark suite.

[11] HISER, J. D., AND DAVIDSON, J. W. EMBARC: An efficient
memory bank assignment algorithm for retargetable compil-
ers. In Proceedings of the 2004 ACM SIGPLAN/SIGBED Con-

ference on Languages, Compilers, and Tools (2004), ACM Press,
pp. 182–191.

[12] JACOB, B. L., CHEN, P. M., SILVERMAN, S. R., AND
MUDGE, T. N. An analytical model for designing memory
hierarchies. IEEE Transactions on Computers 45, 10 (October
1996), 1180–1194.

[13] LEE, C., AND STOODLEY, M. University of toronto dsp
benchmark suite. World Wide Web, http://www.eecg.tor-
onto.edu/extasciitildecorinna/.

[14] LIN, H., AND WOLF, W. Co-design of interleaved memory
systems. In Proceedings of the 8th International Workshop on
Hardware/Software Codesign (2000), ACM Press, pp. 46–50.

[15] LIU, L., AND PEIR, J. Cache sampling by sets. Very Large Scale

Integration (VLSI) Systems, IEEE Transactions on 1, 2 (1993),
98–105.

[16] PATEL, S. L. J. H., AND IYER, R. K. Accurate low-cost meth-
ods for performance evaluation of cache memory systems.
IEEE Transactions on Computers 37, 11 (1988), 1325–1336.

[17] SAGHIR, M. A. R., CHOW, P., AND LEE, C. G. Exploiting
dual data-memory banks in digital signal processors. In Pro-
ceedings of the 2006 International Conference on Architectural

Support for Programming Languages and Operating Systems
(1996), pp. 234–243.

[18] SHIUE, W.-T., AND CHAKRABARTI, C. Memory exploration
for low power, embedded systems. In Proceedings of the 36th

ACM/IEEE Conference on Design Automation (1999), ACM
Press, pp. 140–145.

[19] SINGH, J. P., STONE, H. S., AND THIEBAUT, D. F. A model
of workloads and its use in miss-rate prediction for fully asso-
ciative caches. IEEE Transactions on Computers 41, 7 (July
1992), 811–815.

[20] WANG, W.-H., AND BAER, J.-L. Efficient trace-driven sim-
ulation methods for cache performance analysis. ACM Trans-

actions on Computer Systems 9, 3 (1991), 222–241.

[21] WOLF, M. E., MAYDAN, D. E., AND CHEN, D.-K. Combin-
ing loop transformations considering caches and scheduling.
In MICRO 29: Proceedings of the 29th Annual ACM/IEEE

International Symposium on Microarchitecture (Washington,
DC, USA, 1996), IEEE Computer Society, pp. 274–286.

[22] WU, Z., AND WOLF, W. Iterative cache simulation of embed-
ded cpus with trace stripping. In Proceedings of the 7th Interna-
tional Workshop on Hardware/Software Codesign (1999), ACM
Press, pp. 95–99.

[23] XU, R., AND LI, Z. A sample-based cache mapping scheme.
In LCTES ’05: Proceedings of the 2005 ACM SIGPLAN/SIG-

BED Conference on Languages, Compilers, and Tools for Embed-

ded Systems (New York, NY, USA, 2005), ACM Press,
pp. 166–174.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

