
Validation of Code­Improving Transformations for
Embedded Systems

∗

Robert van Engelen, David Whalley, and Xin Yuan
Dept. Of Computer Science, Florida State University, Tallahassee, FL 32306

ABSTRACT

Programmers of embedded systems often develop software
in assembly code due to inadequate support from compil-
ers and the need to meet critical speed and/or space con-
straints. Many embedded applications are being used as
a component of an increasing number of critical systems.
While achieving high performance for these systems is im-
portant, ensuring that these systems execute correctly is
vital. One portion of this process is to ensure that code-
improving transformations applied to a program will not
change the program’s semantic behavior, which may be jeop-
ardized when transformations are specified manually. This
paper describes a general approach for validation of many
low-level code-improving transformations made either by a
compiler or specified by hand. Initially, we associate a re-
gion of the program representation with a code-improving
transformation. Afterwards, we calculate the region’s effects
on the rest of the program before and after the transforma-
tion. The transformation is considered valid when the effects
before and after the transformation are identical. We imple-
mented an automatic validation system in the vpo compiler.
The system is currently able to validate all code-improving
transformations in vpo except transformations that affect
blocks across loop levels.

1. INTRODUCTION

Software is being used as a component of an increasing
number of critical systems. Ensuring that these systems ex-
ecute correctly is vital. One portion of this process is to
ensure that the compiler produces machine code that accu-
rately represents the algorithms specified at the source code
level. This is a formidable task since an optimizing compiler
not only translates the source code to machine code, it may
apply hundreds or thousands of compiler optimizations to
even a relatively small program. However, it is crucial to

∗This work was partially supported by NSF grants, CCR-
9904943, EIA-0072043, CCR-0073482, CCR-0105422, and
CCR-0208892

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC 2003 Melbourne, Florida, USA
Copyright 2003 ACM 1­58113­624­2/03/03 ...$5.00.

try to get software correct for many systems. This problem
is exacerbated for embedded systems development, where of-
ten either applications are developed in assembly code man-
ually or compiler generated assembly is modified by hand
to meet speed and/or space constraints. Code-improving
transformations accomplished manually are much more sus-
pect than code generated automatically by a compiler.

An optimizing compiler or assembly programmer applies
a sequence of code-improving transformations to the repre-
sentation of a program. Each transformation consists of a
set of changes, where these changes may result in machine
instructions being deleted, inserted, or modified. However,
the program representation before and after the changes as-
sociated with a code-improving transformation should be
semantically equivalent.

Rather than trying to prove the equivalence of an entire
source program and object program, we use two techniques
that simplify the task of validating code-improving opti-
mizations. First, we show the equivalence of the program
representation before and after each improving transforma-
tion. While many code-improving transformations may be
applied to a program representation, each individual trans-
formation typically consists of only a few changes. Also,
if there is an error, then the compiler writer or assembly
programmer would find it desirable for a system to iden-
tify the transformation that introduced the error. Second,
for each code-improving transformation we only attempt to
show the equivalence of the region of the program associ-
ated with the changes rather than showing the equivalence
of the entire program representation. We have found that
the region of the program representation that is changed
by a code-improving transformation is typically quite small.
We show equivalence of the region before and after the trans-
formation by demonstrating that the effects the region will
have on the rest of the program will remain the same.

In the subsequent sections of the paper we describe the
general approach used for validating intraprocedural (within
a single function) low-level code-improving transformations.
An automatic validation system based on the approach has
been implemented in the vpo compiler [2] and is currently
able to validate all code-improving transformations in vpo

except those that affect blocks across loop levels. While the
implementation is specific to vpo, the general approach can
also be applied when compiling for embedded systems.

2. RELATED WORK

There has been much work in the area of attempting to
prove the correctness of compilers [5, 6, 8, 9, 15]. Compil-

ers are quite complex programs and proving the correctness
of any large program is a difficult task. More success has
been made in the area of validating compilations rather than
the compiler itself. For instance, equivalence of source and
target programs have been verified for an expression lan-
guage that contains no loops or function calls [4]. Likewise,
there has been progress in proving type, memory safeness,
and other related properties of a compilation rather than
the equivalence of source and target programs [14, 10, 11].
Proving these types of properties is important and these
techniques could be used in conjunction with the approach
described in this paper, which attempts to prove that the
effects a region has on registers and memory are identical
before and after a transformation.

Horwitz attempted to identify semantic differences be-
tween source programs in a simple high-level language con-
taining a limited number of constructs [7]. First, programs
in this language were represented in a program representa-

tion graph that identifies dependences between statements.
Next, a matching function examined both representations
to determine if old and new representations were equiva-
lent. While it is possible that a similar approach using a
matching function could be applied on a low-level represen-
tation to validate some types of transformations (e.g. ones
that change the order of independent instructions such as
instruction scheduling), it is unclear how other transforma-
tions (e.g. ones that change the form of instructions such as
strength reduction) could be validated using this approach.
A related approach for proving semantic equivalence of dif-
ferent source programs is to derive normal forms [3]. How-
ever, this has only been attempted on a restricted high-level
language without loops and function calls.

The credible compilation approach [13] attempts to val-
idate code-improving transformations on an intermediate
machine independent representation, but uses a very dif-
ferent approach from the one described in this paper. The
compiler writer determines the appropriate type of invari-
ants for the analysis and transformation of each different
type of code-improving optimization and the compiler au-
tomatically constructs a proof for these invariants for each
optimization. While this approach is quite powerful, it puts
a burden on a compiler writer to correctly identify the types
of changes associated with each optimization and to specify
the appropriate invariants that need to be proven correct.

The work most related to ours is by Necula [12]. He calcu-
lates a symbolic state of each basic block and then attempts
to prove equivalence relations to show that two blocks are
equivalent when the symbolic state of blocks before and af-
ter a transformation differed. He was able to validate many
optimization phases during the compilation of gcc by the gcc

compiler. However, a number of false alarms occurred, indi-
cating that the validation system was not yet complete. This
work differs from ours not only in that a different method
was used, but also that his approach was more restrictive in
that the branch structure of the program before and after
an optimization phase had to be identical. Our approach
does not have this restriction.

3. ASSOCIATING A TRANSFORMATION

WITH A REGION OF CODE

Vpo uses RTLs (register transfer lists) to represent ma-
chine instructions. The same intermediate representation

could be used to validate hand-specified transformations as
well. Each register transfer is an assignment that repre-
sents a single effect on a register or memory cell of the
machine. Thus, the RTL representation served as a good
starting point for calculating the semantic effects of a re-
gion.

Determining the region of code that is associated with a
transformation requires capturing the changes to the pro-
gram representation caused by the transformation. This
is different from program slicing [19], which starts from a
subset of program behavior and reduces the program to a
minimal form that produces the behavior. To validate a
transformation, it is sufficient to show that the effects of
the changes associated with the transformation on the rest
of the program are the same. Instructions that affect the
behavior of the changes do not have to be in the region to
capture the changes caused by the transformation.

We automatically detect changes associated with a trans-
formation by making a copy of the program representation
before each code-improving transformation and comparing
the program representation after the transformation with
the copy. After identifying all of the basic blocks that have
been syntactically changed (modified, deleted, or added), we
find the closest block in the control-flow graph that domi-
nates all of the modified blocks. This dominating block con-
tains the entry point of the region. The region consists of
all instructions between the dominating block and the RTLs
that have been modified. The region before the transforma-
tion is the old region and the region after the transformation
is the new region. These two regions are considered counter-
parts since they should have the same effects on the rest of
the program. Thus, proving program equivalence can be ac-
complished by proving region equivalence. The effects of the
old and new regions are considered semantically equivalent
if they are identical at each exit point of the region. Note
that the old and new regions need not have the same basic
block structure. Only the dominating block and exit points
of the two regions have to be identical, which sometimes
requires extending one or both of the regions.

Figure 1 shows the algorithm to determine the set of in-
structions that comprise the region. One should note that
a changed RTL includes an inserted RTL, an RTL deleted
in the counterpart region, or a marker for the point where
an RTL was inserted in the counterpart region. The exam-
ple shown in Figure 2 illustrates how the algorithm works.
Consider the program representation shown in Figure 2(a)
that depicts the state of the program before a register allo-
cation transformation. The references to variable c are to be
replaced with a register and these references have been iden-
tified and are shown in boldface. The block that most closely
dominates all blocks containing the modifications (blocks 2,
3, and 4) is block 1. The region consists of all RTLs between
the ones that are changed and this dominating point, which
are shown in boldface in Figure 2(b). Block 1 contains no
RTLs that have been modified. As shown in Figure 2(c),
its conditional branch is included in the region so conditions
can be represented when transitions are made to blocks 2
and 3.

There are cases when the extent of a region has to be
recalculated. For instance, the points at which one region
exits have to be identical to the exit points in its counterpart
region. If an exit point in one region does not exist in its
counterpart, then that exit point is added to its counterpart

add pred blocks to region(region, block)
{

FOR each predecessor P of block DO
IF (!in region(region, block)) THEN

add block to region(P, region);
add pred blocks to region(P, region);

block->start = first RTL in block;
P->end = last RTL in block;

}

calculate insts in region(blkschanged, blksadded,
domblk, region)

{
FOR each block B in blkschanged DO

B->start = first RTL that was changed in B;
B->end = last RTL that was changed in B;
add block to region(B, region);

FOR each block B in blksadded DO
B->start = first RTL in B;
B->end = last RTL in B;
add block to region(B, region);

IF (!in region(region, domblk)) THEN
add block to region(domblk, region);

FOR each block B in blkschanged or blksadded DO
add pred blocks to region(B, region);

IF domblk->start == NULL THEN
domblk->start = conditional branch in domblk;

}

Figure 1: Calculating the Extent of a Region

IC=r[8]?0;

PC=IC<0,L14;

... 1

...
r[8]= ; M[r[14]+.c] 4

r[8]=r[9];

r[8]=-r[8];

 =r[8];M[r[14]+.c]

3r[8]=r[9];

PC=L15;

M[r[14]+.c] =r[8];

2

...
4

M[r[14]+.c]

3r[8]=r[9];

PC=L15;

M[r[14]+.c]

2

IC=r[8]?0;

PC=IC<0,L14;

... 1

 M[r[14]+.c]r[8]= ;

r[8]=-r[8];

r[8]=r[9];

...
4

M[r[14]+.c]

3r[8]=r[9];

PC=L15;

M[r[14]+.c]

2

IC=r[8]?0;

... 1

 M[r[14]+.c]r[8]= ;

r[8]=-r[8];

r[8]=r[9];

PC=IC<0,L14;

 =r[8];

 =r[8]; =r[8];

 =r[8];

(b) Extent of Region

after Propagating

to Dominating Block

(c) Extent of Region

after Including Branch

in Dominating Block

(a) Program Representation before

a Register Allocation Transformation

with Changes Identified

Figure 2: Example of Calculating the Extent of a Region

r[16]=0;

r[17]=HI[_string];

r[19]=r[17]+LO[_string];

r[17]=r[19];

...

...

r[16]=0;

r[17]=HI[_string];

r[19]=r[17]+LO[_string];

r[17]=r[16]+r[19];

...

...

r[16]=0;

r[17]=HI[_string];

r[19]=r[17]+LO[_string];

r[17]=r[19];

...

...

r[16]=0;

r[17]=HI[_string];

r[19]=r[17]+LO[_string];

r[17]=r[16]+r[19];

...

...

(a) Old Region before Extension (b) New Region before Extension (c) Old Region after Extension (d) New Region after Extension

Figure 3: Example of Extending the Scope of a Region

region and the extent of the region is recalculated. Some-
times a region needs to be extended since its effects are not
the same as its counterpart region. For instance, consider
Figures 3(a) and 3(b). Only one change was detected, so the
old and new regions initially consist of a single instruction
shown in boldface. Obviously, these two regions in isolation
do not have the same effect. However, there is a reference to
r[16] in one region that is not in the other. If the effects of
the two regions are not identical and there are more uses or
sets of a specific register or a variable in one region, then the
regions are extended to include an additional set of that reg-
ister or variable. Figures 3(c) and 3(d) show the extension
of the old and new regions to include the set of r[16], which
allows identical effects to be calculated for each region.

4. CALCULATING A REGION’S EFFECTS
Each region consists of a single entry point and one or

more exit points. A separate set of effects is calculated for
each exit point from the region. The old and new regions are
considered equivalent only if for each exit point they have
the same effects. Figure 4 shows the algorithm to calculate
the effects of a region. Loops are processed innermost first.
The effects of each node at the same loop level are calculated
only after all of its non-back edge predecessors have been
processed. More details regarding this algorithm will be
illustrated in the following subsections.

4.1 Merging Effects
Effects in a region are merged for two reasons. First, merg-

ing obtains an order-independent representation of effects.
Second, merging eliminates the use of temporaries within
the region. Figure 5 displays the merging of effects in the
regions shown in Figure 3(c) and Figure 3(d). Each RTL is
merged into the effects one at a time. Note that when the
destination of an effect is no longer live, then the effect is
deleted. The point where a register dies is depicted to the
right of that RTL. The liveness of registers and variables in
a region is calculated using a demand-driven approach, as
opposed to the traditional dataflow analysis used in vpo. For
instance, step 2 in Figure 5(a) deletes the effect that updates
r[17] since the register is no longer live. The final effects
of the old and new regions in Figure 5 will be identical after
simplification, which is described later in the paper.

The actual implementation of the merging was accom-
plished using a directed acyclic graph (DAG), which con-
serves storage since common-subexpressions occurring in the
effects of a region are stored only once. A DAG node is
created for each source term in an RTL assignment and the
source term is replaced by a reference to the node. For exam-
ple, the merging of r[10]=r[8]-2; with r[11]=r[10]+r[10];

results in r[10]=n1 and r[11]=n2, where two DAG nodes n1

and n2 are created with n1=r[8]-2 and n2=n1+n1. Without
a DAG representation for effects, merging can quickly result
in exponentially growing storage requirements for effects.

4.2 Representing Conditional Effects
Sometimes assignments of expressions to registers or vari-

ables need to be conditional. Conditional assignments can
occur due to two reasons, determining if the addresses of two
memory references are equal and conditional control flow.
Vpo cannot always determine if the addresses of two mem-
ory references are equal. Consider merging the effects for
the region in Figure 6(a), where a set and a use may refer-

ence the same memory location. The value assigned to r[5]

depends on whether r[2] equals r[3]. Figure 6(b) shows
the merged effect with a guarded expression. All guards in a
guarded expression are disjoint. Figures 6(c) and 6(d) show
how guards are introduced due to potential aliasing from
two sets to memory. An alias between a use followed by a
set does not require a conditional assignment when merged
since the subsequent set cannot affect the preceding use.

Conditional assignments also occur due to conditional con-
trol flow. Consider the region in Figure 7. Step 1 shows the
results after merging effects in each of the three basic blocks
separately. Note that the value assigned to the PC (program
counter) is a guarded expression. Step 2 shows the effects
from block 1 on the transition to block 2. A guarded ex-
pression is now assigned to the variable val since a change
in state should only occur in this effect if the transition to
block 2 is taken. Step 3 shows comparable effects from block
1 on the transition to block 3. Step 4 shows the effects in
block 2 after merging with the effects in block 1. The ef-
fect from block 1 shown in step 2 is removed since we have
an assignment to the same variable in block 2. Guards are
propagated along transitions between nodes in the region.
Thus, the assignment in block 2 only occurs when r[8]<0.
Step 5 shows the effect in block 3 after merging with the
effects in blocks 1 and 2. Step 6 shows the same effects after
simplifying the guards.

4.3 Representing Effects from Loops
A region may span multiple basic blocks that cross loop

nesting levels. Merging the effects across loop nesting levels
requires calculating the effects of an entire loop. One issue
that must be addressed is how to represent a recurrence,
which involves the use of a variable or register that is set
on a previous loop iteration. An induction variable is one
example of a simple recurrence. We represent a recurrence
as a recursive function using the following notation. The
label distinguishes the loop in which the recurrence occurs.
The new value represents the next value of the recurrence.
References to w in the new value represent the previous value
of the recurrence. The initial value is the initial value of the
recurrence. The condition indicates when the recurrence is
no longer applied. Thus, this notation is used to represent a
sequential ordering of effects, where each instance represents
the effect on a different iteration of a loop.

y(〈label〉, 〈new value〉, 〈initial value〉) until 〈condition〉
We define the semantics of the recurrence
y(〈label〉, 〈initial value〉, 〈new value〉) by defining function
F as

F = λf.λi.if i =
0 then 〈initial value〉 else (λw.〈new value〉) (f (i − 1))

The semantics of y is defined as the application of the fix-
point Y combinator to F , which results in a function that
given an iteration number i (i ≥ 0) returns the value of the
recurrences at that iteration. For example, the value of the
recurrence y(B2, w + 1, 1) at iteration 10 is
Y(λf.λi.if i = 0 then 1 else (λw.w + 1〉) (f (i − 1)) 10 = 11

A sequence can be used to represent recursive functions
when the new value is obtained by incrementing the current
value, which is the case for basic induction variables. We
adopt a notation that is similar to the notation used for
chains of recurrences [1, 17] (CRs). CRs represent Newton
series conversion for polynomials. Each sequence has the

merge effects in node(n, effects)
{

effects = "";
FOR each RTL r in n DO

merge effects(effects, r);
}

calc pred effects(preds, preds effects, guard)
{

p = first pred in preds;
guard = p->guard;
FOR each remaining p in preds DO

guard ||= "∨" || p->guard;
FOR each unique dst d

of the effects in preds DO
new effect = "<d>=";
FOR each effect e in preds DO

IF e->dst == d THEN
new effect ||=

"<e->src> if <guard of e>";
IF other preds q that did not set d THEN

new effect ||=
"<d> if (∨ of all guards of q)";

new effect ||= ");";
}

process node in region(n)
{

IF any unprocessed pred of n THEN
return;

calc pred effects(n->preds, pred effects, n->guard);
merge effects(preds effects, n->effects);
add guard to effects(n->guard, n->effects);
mark n as being processed;
FOR each successor s of n DO

process node in region(s);
}

calculate region effects(region)
{

FOR each node n in region DO
merge effects in node(n);

FOR each loop l in region (innermost first) DO
process node in region(l->header->node);
calculate exit condition

(l->effects, exit cond);
replace recurrs with fp funcs

(l->effects, exit cond);
replace loop with single node

(region, l->effects);
process node in region(region->top);

}

Figure 4: Calculating the Effects of a Region

r[16]=0;0.
r[17]=HI[_s];
r[19]=r[17]+LO[_s]; r[17]:

1. r[17]=HI[_s]; r[16]=0;
r[19]=r[17]+LO[_s]; r[17]:

2. r[19]=HI[_s]+LO[_s]; r[16]=0;
r[17]=r[16]+r[19]; r[16]:

3.

r[17]=r[16]+r[19]; r[16]:

r[17]=r[16]+r[19]; r[16]:

r[17]=0+HI[_s]+LO[_s]; r[19]=HI[_s]+LO[_s];

0.
r[17]=HI[_s];
r[19]=r[17]+LO[_s]; r[17]:

1. r[17]=HI[_s];
r[19]=r[17]+LO[_s]; r[17]:
r[17]=r[19];

2. r[19]=HI[_s]+LO[_s];
r[17]=r[19];

3. r[17]=HI[_s]+LO[_s]; r[19]=HI[_s]+LO[_s];

r[16]=0; r[16]:

r[17]=r[19];

(b) Merging Effects in New Region(a) Merging Effects in Old Region

Figure 5: Merging Effects within a Single Block

M[r[2]]=r[4];
r[5]=M[r[3]];

r[5]=

{

r[4] if r[2] = r[3]
M[r[3]] if r[2] 6= r[3]

}

; M[r[2]]=r[4];

(a) Potential Set/Use Alias (b) Potential Set/Use Alias
Region before Merging Region after Merging

M[r[2]]=r[4];
M[r[3]]=r[5];

M[r[3]]=r[5]; M[r[2]]=

{

r[5] if r[2] = r[3]
r[4] if r[2] 6= r[3]

}

;

(c) Potential Set/Set Alias (d) Potential Set/Set Alias
Region before Merging Region after Merging

Figure 6: Conditional Effects Due to Potential Aliasing

1. Block 1 after merging effects:
M[r[14]+.val]=r[8]; PC=(B3 if r[8]≥0);
Block 2 after merging effects:
M[r[14]+.val]=-r[8];
Block 3:
r[8]=M[r[14]+.val];

2. Effects from block 1 on transition to block 2:
M[r[14]+.val]=(r[8] if r[8]<0);

3. Effects from block 1 on transition to block 3:
M[r[14]+.val]=(r[8] if r[8]≥0);

4. Block 2 after merging effects with block 1:
M[r[14]+.val]=(-r[8] if r[8]<0);

5. Block 3 after merging effects with blocks 1 and 2:

r[8]=

{

r[8] if r[8]≥0
-r[8] if r[8]<0

}

if r[8] ≥ 0 ∨ r[8] < 0;

.val:

r[9]:

. .

. . .

IC=r[8]?0;

M[r[14]+.val]

M[r[14]+.val]

 =r[8];

 =r[9];

r[8]= ; M[r[14]+.val]

.

r[9]=-r[8];

B1

B2

B3

PC=(B3 if IC>=0); IC:

6. Block 3 after simplification:

r[8]=

{

r[8] if r[8]≥0
-r[8] if r[8]<0

}

;

Figure 7: Example of Calculating Effects with Conditional Control Flow

following form, which is similar to a recursive function. Un-
like recursive functions, some algebraic operations can be
applied to sequences. An example of representing effects
from loops can be found in [18].

{〈label〉, 〈initial value〉, 〈increment〉} until 〈condition〉

5. SIMPLIFYING EFFECTS
Merging and subsequent simplification of effects results

in canonical representations that enable a structural com-
parison to show that effects are semantically identical. The
canonical representations of the effects corresponding to the
exit points of old and new regions are compared by vpo to
determine that the semantic effect of the transformed re-
gion of code is unchanged. The equivalence of the modified
region is a sufficient condition for the correctness of a trans-
formation, but is not a necessary condition.

Normal forms are essential for theorem proving systems
for proving the equivalence between two programs, see e.g. [3].
In our approach, a normal form defines an equivalence class
of effects that are semantically identical. We developed a
rewrite system that derives normal forms whenever possi-
ble (e.g. expanded forms for arithmetic expressions and dis-
junctive normal forms for logical expressions) but does not
attempt to calculate normal forms for logical expressions
involving relations. More details about the rewriting rules
used to simplify effects can be found in [18].

The effects of each exit point of the region need to be
simplified and compared with its counterpart effects within
vpo. While analyzing the control–flow graph of the affected
region of code, vpo builds a directed acyclic graph (DAG)
representation for the effects, as described previously. The
nodes in the final DAG (obtained after all effects have been
merged) are marked when the node is used in an effect corre-
sponding to an exit point of the region of code. The marking
proceeds by recursively analyzing the expressions stored at
the nodes in the DAG. Marking the DAG effectively elimi-
nates unused expressions. Unused expressions typically are
expressions assigned to registers or variables that are not
live at the exit point of the region.

For each marked node visited in a postorder traversal of

the DAG, the term stored at the marked node is simplified if
not already simplified by rewriting the term into a canonical
representation, where references in the term to other nodes
are replaced by references to canonical representations of
the terms in the nodes. When calculating the canonical
representation of an effect, embedded references to canonical
representations need not be simplified again. Finally, the
effects at the exit points of the regions are simplified and
the DAG node references are replaced by their canonical
representations.

It is possible to use an existing algebra system (e.g. Mapletm,
Mathematicatm, Reducetm) for the purpose of expression
simplification. However, this approach would be hampered
by implementation problems. To integrate a computer al-
gebra system with another program, a software bus (e.g.
MathLinktm) would have to be adopted for exchanging sym-
bolic data between the computer algebra system and the
program. The overhead of exchanging symbolic expressions
over a software bus is prohibitive. On both sides of the
software bus, expressions have to be represented internally
and in possibly different formats. The storage saving DAG
representation in vpo for effects and their canonical repre-
sentations cannot be adopted when a software bus is used.

5.1 Simplifying Effects Using Ctadel
We modified the vpo compiler by inserting calls to Ctadel

to simplify effects. Ctadel [16] is an extensible rule-based
symbolic manipulation program implemented in SWI-Prolog
[20]. The expression simplification is applied in the address
space of the vpo compiler by linking with the SWI-Prolog
interpreter.

Besides the efficiency consideration of linking Prolog to
the vpo compiler, another reason for integrating Ctadel

with vpo is the ability of Ctadel to easily implement a rule-
base for simplifying effects. Using Ctadel allows us to more
easily experiment with the effect simplification as compared
to implementing the simplification directly in C.

The matching mechanism in Ctadel for applying rules is
very powerful. The system respects the properties of oper-
ators in an expression to align the subexpression with the

Program Description Num Trans Validated Region Size Overhead
ackerman benchmark that performs recursive function calls 89 100.0% 3.18 13.64
arraymerge benchmark that merges two sorted arrays 483 89.2% 4.23 63.89
banner poster generator 385 90.6% 5.42 34.13
bubblesort benchmark that performs a bubblesort on an array 342 85.4% 6.10 34.37
cal calendar generator 790 91.1% 5.16 105.64
head displays the first few lines of files 302 89.4% 8.42 152.64
matmult multiplies 2 square matrices 312 89.7% 5.55 28.97
puzzle benchmark that solves a puzzle 1928 78.5% 5.85 128.98
queens eight queens problem 296 85.8% 6.79 73.65
sieve finds all prime numbers between 3 and 16383 217 80.6% 6.85 21.90
sum prints the checksum and block count for a file 235 91.9% 8.62 195.19
uniq report or filter out repeated lines in a file 519 91.1% 4.21 163.26
average 492 88.6% 5.87 84.64

Table 1: Benchmarks

left-hand side of a transformation rule. Associative and com-
mutative properties of operators are declared and the system
will apply the rules by taking these properties into account.

6. CURRENT STATUS

We have modified vpo to validate code-improving transfor-
mations using the techniques described in this paper. Table
1 shows some small test programs that we have compiled
while validating code-improving transformations. The third
column indicates the number of improving transformations
that were applied during the compilation of the program.
The fourth column represents the percentage of the trans-
formations where the effects of the old and new regions as-
sociated with the transformation were identical. The only
transformations that have not been validated are those with
regions that span basic blocks at different loop nesting levels
since the ability to represent effects containing entire loops
(as shown in Section 4.3) has not yet been implemented.
All transformations applied to these test programs with re-
gions within a single loop level have been validated. We
also plan to later test our validation approach with larger
test programs as well. The fifth column represents the aver-
age static number of instructions for each region associated
with all code-improving transformations during the compila-
tion. This average illustrates that the typical region associ-
ated with a transformation is quite small. The final column
denotes the ratio of compilation times when validating pro-
grams versus a normal compilation. The use of an interpre-
tive Prolog system to simplify effects did impact the speed of
the validation process. However, an overhead of about two
orders of magnitude would probably be acceptable, as com-
pared to the cost of not detecting potential errors. As can be
seen in the table, the compilation overhead is correlated with
the size of the regions associated with the transformations.
Note that a user can select a subset of transformations (e.g.
ones recently implemented) to be validated. In addition,
validation would not be performed on every compilation. If
excessive compilation time becomes an issue, then we will
investigate slicing [19] the regions to reduce the number of
effects to simplify.

A variety of types of transformations in the vpo compiler
have been validated using our approach. These transfor-
mations include algebraic simplification of expressions, ba-

sic block reordering, branch chaining, common subexpression

elimination, constant folding, constant propagation, unreach-

able code elimination, dead store elimination, evaluation or-

der determination, filling delay slots, induction variable re-

moval, instruction selection, jump minimization, register al-

location, strength reduction, and useless jump elimination.
Unlike an approach that requires the compiler writer to
provide invariants for each different type of code-improving
transformation [13], our general approach was applied to all
of these transformations without requiring any special infor-
mation. Thus, we believe that our approach could be used
to validate many hand-specified transformations on assem-
bly code by programmers of embedded systems.

7. CONCLUSIONS

This paper has described a general approach for validat-
ing low-level code-improving transformations. First, the
region in the program representation associated with the
changes caused by a code-improving transformation is iden-
tified. Second, the effects of the region before and after the
transformation are calculated. Third, a set of rules are ap-
plied in an attempt to obtain a normal form of these effects.
Finally, the effects of the region before and after the trans-
formation are compared. If the two sets of effects are iden-
tical, then the transformation is deemed valid. One should
note that the approach presented in this paper does not
guarantee to show that two arbitrary regions are semanti-
cally equivalent. However, we have demonstrated that it is
feasible to use our approach to validate many conventional
code-improving transformations.

Validating code-improving transformations has many po-
tential benefits. Validation provides greater assurance of
correct compilation of programs, which is important since
software is being used as a component of an increasing num-
ber of critical systems. The time spent by compiler writ-
ers to detect errors can be dramatically reduced since the
transformations that do not preserve the semantics of the
program representation are identified during the compila-
tion. Finally, validation of hand-specified transformations
on assembly code can be performed, which can assist pro-
grammers of embedded systems.

8. REFERENCES

[1] O. Bachmann, P.S. Wang, and E.V. Zima. Chains of
recurrences - a method to expedite the evaluation of
closed -form functions. In International Symposium on

Symbolic and Algebraic Computing, pages 242–249,
Oxford, 1994. ACM.

[2] M. E. Benitez and J. W. Davidson. A Portable Global
Optimizer and Linker. In Proceedings of the SIGPLAN
’88 Symposium on Programming Language Design and
Implementation, pages 329–338, June 1988.

[3] J.A. Bergstra, T.B. Dinish, J. Field, and J. Heering. A
complete transformational toolkit for compilers. In
H.R. Nielson, editor, 6th European Symposium on
Programming (ESOP’96), LNCS 1058, Linköping,
Sweden, April 1996. Springer.

[4] A. Cimatti and et. al. A Provably Correct Embedded
Verifier for the Certification of Safety Critical
Software. In International Conference on Computer
Aided Verification, pages 202–213, June 1997.

[5] P. Dybjer. Using Domain Algebras to Prove the
Correctness of a Compiler. Lecture Notes in Computer
Science, 182:329–338, 1986.

[6] J. Guttman, J. Ramsdell, and M. Wand. VLISP: a
Verified Implementation of Scheme. Lisp and Symbolic
Computation, 8:5–32, 1995.

[7] S. Horwitz. Identifying the Semantic and Textual
Differences between Two Versions of a Program. In
Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation,
pages 234–245, 1990.

[8] J. Moore. A Mechanically Verified Language
Implementation. Journal of Automated Reasoning,
5:461–492, 1989.

[9] F. Morris. Advice on Structuring Compilers and
Proving Them Correct. In Proceedings of the ACM
Symposium on Principles of Programming Languages,
pages 144–152, 1973.

[10] G. Necula. Proof-Carrying Code. In Proceedings of the
ACM Symposium on Principles of Programming
Languages, pages 106–119, January 1997.

[11] G. Necula and P. Lee. The Design and Implementation
of a Certifying Compiler. In Proceedings of the ACM
SIGPLAN Conference on Programming Language
Design and Implementation, pages 333–344, 1998.

[12] G. C. Necula. Translation Validation for an
Optimizing Compiler. In Proceedings of the SIGPLAN
’00 Symposium on Programming Language Design and
Implementation, pages 83–94, June 2000.

[13] M. Rinard and D. Marinov. Credible Compilation
with Pointers. In Proceedings of the FLoC Workshop
on Run-Time Result Verfication, 1999.

[14] D. Tarditi, J. Morrisett, P. Cheng, C. Stone,
R. Harper, and P. Lee. TIL: A Type-Directed
Optimizing Compiler for ML. In Proceedings of the
ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 181–192,
1996.

[15] J. Thatcher, E. Wagner, and J. Wright. More on
Advice on Structuring Compilers and Proving Them
Correct. In Proceedings of a Workshop on
Semantics-Directed Compiler Generation, pages
165–188, 1994.

[16] R. van Engelen, L. Wolters, and G. Cats. Ctadel: A
generator of multi-platform high performance codes
for pde-based scientific applications. In Proceedings of
the 10th ACM International Conference on
Supercomputing, pages 86–93, May 1996.

[17] R.A. van Engelen. Symbolic evaluation of chains of

recurrences for loop optimization. Technical report,
TR-000102, Computer Science Deptartment, Florida
State University, 2000.

[18] R.A. van Engelen, David Whalley, and Xin Yuan.
Automatic validation of code-improving
transformations. Technical report, TR-000601,
Computer Science Deptartment, Florida State
University, 2000.

[19] M. Weiser. Program Slicing. IEEE Transactions on
Software Engineering, 10(4):352–357, July 1984.

[20] J. Wielemaker. SWI-Prolog Reference Manual.
University of Amsterdam, 1995. Available by
anonymous ftp from swi.psy.uva.nl.

