
FLORIDA STATE UNIVERSITY

COLLEGE OF ARTS AND SCIENCES

INTER-PROCEDURAL GLOBAL VARIABLE DATA DEPENDENCE DETECTION

By

PHALGUNA RUPANAGUDI

A Thesis submitted to the
Department of Computer Science

in partial fulfillment of the requirements for graduation with
Honors in the Major

Degree Awarded:
Spring,2018

The members of the Defense Committee approve the thesis of Phalguna Rupanagudi defended on
April 24, 2018 (Signatures on file with Florida State University Honors Program).

David Whalley

Thesis Director

Michael Mascagni

Committee Member

Timothy Stover

Outside Committee Member

ii

ACKNOWLEDGMENTS

My sincerest thank you goes out to Dr. Mascagni, and Dr. Stover for their guidance and eagerness

to help over the past few semesters. Many thanks go out to Dr. Whalley for taking me into his

compilers group and helping me mature as a researcher and a student. Finally, thanks to everyone

in the compilers group, especially Ryan Baird, for helping me in every step of the process, even

with helping configure my vimrc file.

iii

TABLE OF CONTENTS

Abstract . v

1 Introduction 1
1.1 Background . 1
1.2 Motivation . 1
1.3 Purpose . 1
1.4 Types of Data Dependencies Detected . 2

2 Background 3
2.1 Sensitivities . 3
2.2 Path Sensitivity . 4
2.3 Popular Techniques Referenced . 4

2.3.1 Andersen Style Pointer Analysis (ASPA) . 4
2.3.2 Iterative Data Flow Analysis (IDFA) . 5

3 Implementation 6
3.1 Technologies . 6

3.1.1 VPO . 6
3.2 Compile Time Analysis . 7

3.2.1 Transfer Function . 7
3.2.2 Compile Time Psuedocode . 8

3.3 Call Graph Analysis . 11

4 Discussion 14
4.1 Results . 14
4.2 Future Work . 14
4.3 Conclusion . 14

Bibliography . 15

iv

ABSTRACT

Compiler optimization is an area of research in computer science dealing with improving perfor-

mance of an executable, given the source code. Performance improvement can be measured by

faster execution time, or less memory usage. When implementing compiler optimizations, it is

important for the compiler to ensure that the functionality of the program does not change. The

purpose of this project is to perform analysis to determine whether certain optimizations can be

performed.

This project deals with the inter-procedural detection of data dependencies of global variables.

If we can determine that for a given function which global variables can be accessed, then it may

be possible to overlap the execution of the function with other functions that invoke it. they do

not have overlapping dependencies, they may possibly be scheduled by the compiler in the optimal

order.

The program will conservatively determine points-to sets; a set of global variables which may

be referenced, for every function in the program. The two stage process includes the initial intra-

procedural computation of points-to sets. The subsequent stage, performed outside of the compiler,

will traverse the function call-graph for the program being analyzed and propagate the pointer

information up the graph.

v

CHAPTER 1

INTRODUCTION

1.1 Background

Compiler optimizations, carried out by statically by an optimizing compiler, are intended to im-

prove performance of programs. Performance can be measured by run time, memory use, or power

consumption. The most popular optimizations involve decreasing execution time of programs and

such optimization usually involve manipulating the original code for better performance. However,

not all optimizations can be applied on each program, so the compiler must initially detect which

techniques are allowed to be performed before applying the optimizations. This project will explore

an initial detection technique for memory dependencies, which can be used to determine whether

certain compiler optimizations, such as parallelization, are implementable.

1.2 Motivation

Multiprocessing, the method of using multiple processors or machines to carry out a single task,

has significantly increased computing power through parallelization. However, since most programs

are sequential in nature, we must ensure that parallelization doesn’t change the semantics of the

program. Much research has been done on instruction level parallelism, but DDD(Data Dependence

Detection) explores possible exploitation of function level parallelism. Compared to sequential

execution of programs, function level parallelization can potentially achieve a speed up of up to the

number of processors in the system [4].

1.3 Purpose

The purpose of DDD is to conservatively determine memory reads and memory writes at the

function level. Detecting potential data hazards is a necessary step in determining whether two

functions can be parallelized. If any given two functions have overlapping memory dependencies

then we can conclude that they cannot be parallelized, but if they don’t have any overlapping

dependencies, they are possible candidates for parallelization.

1

1.4 Types of Data Dependencies Detected

DDD will assist in determining the read and write dependencies in memory for each function in

the program. The compile time analysis will determine all of the possible memory locations that can

be written to or read from by a single function and call graph analysis will propagate all read and

write information through functions calls. By detecting memory dependencies before performing

optimization, the compiler can detect potential data hazards which could cause an optimization to

generate invalid code.

Listing 1.1: Read After Write

int a , b , c ;

int main (){
f oo () ; ←−
bar () ; ←−

}

void f oo () {
a = 10 ;
foo2 () ;

}

void bar () {
i f (a == 10)

b=101;

}
void foo2 () {

i f (b)
. . .

}

This is an example of a Read after Write de-
pendency. Global variable a is being written
in function foo and being read from in func-
tion bar.

Listing 1.2: Write after Read

int a , b , c ;

int main (){
bar () ;←−
f oo () ;←−

}

void f oo () {
a = 10 ;
foo2 () ;

}

void bar () {
i f (a == 10)

. . .

}
void foo2 () {

i f (b)
. . .

}

This code snippet is an example of a write
after read dependency, when bar is called be-
fore foo.

This example also illustrates the need for call graph propagation of memory accesses. Since foo2

reads from b and foo2 is called from foo, we must declare that foo writes to a and reads from b.

2

CHAPTER 2

BACKGROUND

2.1 Sensitivities

Context Free Sensitivity. An intra-procedural analysis for each function is only executed

once, so calling context will not be considered. More specifically, the compiler side analysis doesn’t

analyze a function each time it is called. However, for each function call the points-to set information

for each parameter is stored and used in the call graph analysis. The consequence of this method

is a more conservative list of memory accesses in a program. Consider this example:

Listing 2.1: Context Free Example

int a , b ;

int ∗x ;

void f oo (){
∗x = 1 ;

}

int main (){
x = &a ;
foo () ;

x = &b ;
foo () ;

}

3

foo

ret

p1 p2 p3 p4

x Any_Glob

main

ret

p1 p2 p3 p4

Figure 2.1: Intra-procedural analysis of Listing 2.1

Since the analysis of function foo is done only once, the analysis of functions shows that it will

write to(designated by the green arrow) an unspecified global, which provides a more conservative

analysis.

2.2 Path Sensitivity

In the compile time analysis, we employ path sensitivity, the principle of taking into account

the order of statements in the program. This is made possible by the traversal of basic blocks in

the intra-procedural analysis. By traversing all basic blocks, we ensure that we take every possible

path through the function.

2.3 Popular Techniques Referenced

2.3.1 Andersen Style Pointer Analysis (ASPA)

Andersen-Style Pointer Analysis [2] is among the most popular pointer analysis techniques used

in the industry. It is flow insensitive; all instructions are considered regardless of control flow, and

context insensitive; assumes one behavior at all call sites.

4

Table 2.1: Andersen Style Pointer Analysis

PTS(A) = PointsToSet(A)
Instruction Constraint Meaning of Constraint

A = &B A ⊇ {B} B ∈ PTS(A)

A = B A ⊇ B PTS(A) ⊇ PTS(B)

A = *B A ⊇ *B PTS(A) ⊇ PTS(*B)

∗A = B *A ⊇ B PTS(*A) ⊇ PTS(B)

1. Iterate through the input program and collect constraints as referenced in the table

2. Build a Directed Graph G = <V,E> where V is the set of pointers and E is the set of edges

between pointers

3. Edge A → B iff one of the following is true:

• PTS(A) ⊆ PTS(B)

• A ∈ PTS(v) and PTS(*v) ⊆ PTS(B)

• A ⊆ PTS(*v) and B ∈ PTS(v)

Using the first two basic constraints from Andersen Style Pointer Analysis, we build our modified

version of pointer analysis. The motivation to build points to set information for each register comes

from the the analysis.

2.3.2 Iterative Data Flow Analysis (IDFA)

For both the compile time analysis, and call graph analysis we use the popular iterative data

flow analysis technique [1]. IDFA involves three main basic principles:

1. Assign an inState and an outState for each designated block. In the compile analysis a block

is defined to be a basic block, and in the call graph analysis a block is defined to be a function.

2. Apply the transfer function on each block and collect the outState, which is a function of the

inState.

3. Propagate the inState and outState along control flow edges until all inState and outState

converge.

5

CHAPTER 3

IMPLEMENTATION

3.1 Technologies

3.1.1 VPO

The Very Portable Optimizer (VPO), a C language compiler system, will be used for the com-

piler side analysis of this project. VPO uses nontraditional code generation approaches which

prove to be advantageous for development and portability purposes. As opposed to performing

optimizations on multiple code representations,VPO uses RTL’s (Register Transfer Lists) in all

phases of optimization. This is beneficial in reordering of optimizations. RTL’s represent legal

machine language instructions, which are easy to understand and manipulate [3]. For example,

RTL : r[1] = r[2] + r[3]

MIPS : add $t1, $t2, $t3

these two instructions represent the same machine language instruction.

VPO stores all RTL’s in a data structure that groups them by basic blocks. Basic blocks are

sets of instructions such that the only entrance into the block is the first instruction, and the

only exit from the block is the last instruction. By grouping the RTL’s by basic blocks, VPO

provides a mechanism for traversing functions through their natural control flow. Furthermore, in

the data structure, pointers to all predecessors of each basic block are stored. This data structure

is extremely important for DDD as traversing the control graph is necessary for ensuring flow

sensitivity [5].

6

3.2 Compile Time Analysis

3.2.1 Transfer Function

The transfer function for the compile time analysis is a modified version of the Andersen’s

constraint collection method.

//r[a],r[b] are registers

//M[a] is value at memory address a

def CollectConstraints:

if(r[a] = r[b]):

PTS(a) = PTS(b)

else if(r[a] = M[g]): // a load instruction

PTS(a) = SetOfAllGlobals

else if(r[a] = g):

PTS(a) = {g}

Figure 3.1: Compile Time Transfer Function

Table 3.1: DDD vs ASPA

Type DDD ASPA

1 r[a] = g A = &B

2 r[a] = r[b] A = B

3 r[a] = M [g] A = ∗B

The instructions r[a] = g and A = &B are logically equivalent. Within the back end of the

compiler, the variable g is a label which represents memory that was allocated. The label g can be

viewed as a constant pointer.

The type 2 constraints represent direct assignments of variables. In this case the points to set

of the right hand side is directly assigned to the point to set of the left hand side. For the cases

where there are two registers on the left hand side such as r[1] = r[2] + r[3], the union of the points

to sets is assigned to the left hand side.

The modification of the ASPA comes with the two complex constraints that he proposes. In

our case, we do not follow pointer information through memory, so we conservatively declare that

the points-to set information resulting from a load is the set of all globals.

7

3.2.2 Compile Time Psuedocode

The following code illustrates the compile time analysis algorithm used in DDD. The initial

do-while loop illustrates the iterative data flow analysis technique implemented. The subsequent

pass through the RTL’s creates the call graph with the possible stores and loads of a function.

do{

CHANGE = False

for each Basic Block B in function F:

{

for each register r:

for each predecessor P of B:

Inset[B][r] = Union(Inset[B][r], Outset[P][r])

COPY = Inset

for each RTL R in B:

COPY = CollectConstraints(R)

for each register r:

if COPY[B][r] != Outset[B][r]:

CHANGE = True

Outset[B][r] = Copy[B][r]

}

}while(CHANGE)

for each Basic Block B in function F:

{

for each RTL R in Basic Block B:

{

if is_a_store(R): //R[r[a]] = r[b]

print F + "stores to" + PTS(a)

if is_a_load(R): //r[a] = R[r[b]]

print F + "loads from" + PTS(b)

}

}

Figure 3.2: Compile Time Pseudocode

8

IN:R1 ={a} R2={b}

IN: R1 = {} R2={}

R1 = a
R2 = b

OUT: R1={a} R2={b}

R1 = R2

R2 = c

OUT: R1={b} R2={c}

IN: R1={b} R2={c}

R2 = R1

R1 = x

OUT:R1={x} R2={b}

IN: R1={b} R2={c}

R1 = R2

R2 = x

OUT: R1={c} R2={x}

IN:R1={x,c} R2={x,b}

R3 = p

OUT: R1={x,c}
R2={x,b} R3={p}

R2={x,b} R3={p}

IN: R1={x,c}

NO instructions
with globals

IN: R1={x,c}
R2={x,b} R3={p}

BLK 1

BLK 3 BLK 4

BLK 5

BLK 6

BLK 2

Figure 3.3: First iteration of loop

9

IN: R1 = {} R2={}

R1 = a
R2 = b

OUT: R1={a} R2={b}

R1 = R2

R2 = c

R2 = R1

R1 = x

R1 = R2

R2 = x

R3 = p

OUT: R1={x,c}
R2={x,b} R3={p}

R2={x,b} R3={p}

IN: R1={x,c}

NO instructions
with globals

IN: R1={x,c}
R2={x,b} R3={p}

BLK 1

BLK 3 BLK 4

BLK 5

BLK 6

BLK 2

IN:R1={a,x,c}
R2={x,b}, R3={p}

OUT: R1={x,b}
R2={c} R3={p}

IN: R1={x,b}
R2={c} R3={p}

OUT: R1={x}
R2={x,b} R3={p}

IN: R1={x,b}
R2={c} R3={p}

OUT: R1={c}
R2={x} R3={p}

IN: R1={x,c}
R2 ={x,b} R3={p}

Figure 3.4: Second iteration of loop

10

Figures 3.2 and 3.3 are an illustration of the propagation of the points to sets through the basic

blocks of a function. This specific part of the function contains a loop and six basic blocks. Only

instructions that affect points to set data are shown for each block. Notice the change in the points

to sets for block 2 between the two iterations. Blocks 1 and 5 are both predecessors of block 2, and

when the in sets of block 2 were calculated in the first iteration, the out sets of block 5 were empty.

In the second iteration, block 2 reflects the changes made in the loop. The third iteration of the

algorithm will show no changes, meaning all propagation was completed in the second iteration.

3.3 Call Graph Analysis

Call graph analysis takes the output of the compile time analysis; the call graph, and propagates

the points-to set information through function calls. This step is independent of the compile time

analysis since we chose to use context free pointer analysis. Since each function is only analyzed

once in VPO, we may not have information about the memory dependencies about the callee

functions at call time.

In order to conservatively determine what memory dependencies a function has, we must also

consider the memory dependencies of all of the callee functions. Consider the call graph from listing

2.1:

foo

ret

p1 p2 p3 p4

a

foo2

ret

p1 p2 p3 p4

b

bar

ret

p1 p2 p3 p4

main

ret

p1 p2 p3 p4

Figure 3.5: Pre-Call Graph Analysis

11

Function foo does not directly read from global b, but since foo2 reads from b, we must declare

that foo and bar have overlapping memory dependencies. In order to correctly propagate the

information through the call graph, we once again use a version of IDFA.

Figure 3.6: Call Graph Analysis Pseudo-code

Graph G = FunctionCallGraph // edge A -> B denotes A calls B

do {

CHANGE = False

for each function F in G

{

twrites = F.writes

treads = F.reads

tcalls = F.calls

for each function F2 in tcalls

{

treads = Union(treads,F2.reads),

twrites = Union(twrites,F2.writes)

tcalls = Union(calls,F2.calls)

}

if(treads!=F.reads || twrites!=F.writes

|| tcalls!=F.calls)

{

CHANGE = True

F.reads = treads, F.writes = twrites, F.calls = tcalls

}

}

}while(CHANGE)

12

foo

ret

p1 p2 p3 p4

a

b

foo2

ret

p1 p2 p3 p4

bar

ret

p1 p2 p3 p4

main

ret

p1 p2 p3 p4

Figure 3.7: Call Graph Analysis Result

Figure 3.4 illustrates the propagation of the reads and writes through function calls. At then

end of the analysis main will point to all memory locations since every function is a descendant of

main in the call graph.

13

CHAPTER 4

DISCUSSION

4.1 Results

DDD has been implemented and is working on single file test files. However, the final results of

the project have not been gathered. The next few steps involve testing the analysis on multiple files

and the C-Standard library. Furthermore, the analysis will be run with the SPEC 2000 benchmarks.

4.2 Future Work

Once the project is completed with the current constraint methods, we plan on adding more

constraint collection methods in order to support loads and stores of pointers, which are the last

two constraints referenced by Andersen Style Pointer Analysis. If we can detect that a global

variable’s address is never stored to memory, then a load would not include that global variable

in the points to set. Thus we would be making more precise calculations about the points-to sets.

There are also some concerns about the scalability of the analysis, so we will explore methods for

possible speed up of both the compile time analysis and call graph analysis.

4.3 Conclusion

Multi-core processors have significantly increased parallel computing power. Parallel computa-

tion of independent programs can of course be done without hesitation, but in order for parallel

computation of a single program to be undertaken, one must take into account data dependencies.

This project was made with the intention of exploring possible function level parallelism. At this

point, we cannot conclude information about possible speed ups, but the results from the small

test cases, are very promising.

14

BIBLIOGRAPHY

[1] F. E. Allen and J. Cocke. A program data flow analysis procedure. Commun. ACM, 19(3):137–,
March 1976.

[2] Lars Ole Andersen. Program Analysis and Specialization for the C Programming Language.
PhD thesis, University of Copenhagen, 1994.

[3] M. E. Benitez and J. W. Davidson. A portable global optimizer and linker. SIGPLAN Not.,
23(7):329–338, June 1988.

[4] Sean Rul Hans Vandierendonck Koen De Bosschere. Function level parallelism driven by data
dependencies. ACM SIGARCH Computer Architecture News, 35(1):55–62, 2007.

[5] Mickey R. Boyd and David B. Whalley. Graphical visualization of compiler optimizations. J.
Prog. Lang., 3(2), 1995.

15

