Integrating the Timing Analysis of Pipelining and I nstruction Caching*

Christopher A. HealyDavid B. Whalley Marion G. Harmon
Computer Science Dept., Florida StatewJni Comp. & Info. Sys. Dept., Florida A&M Ui
Talahassee, FL 32306-4019 Talahassee, FL 32307-3101
e-mail: whalley@cs.fsu.edu, phone: (904) 644-3506 e-mail: harmon@cis.famu.edu, phone: (904) 599-3042
Abstract cycles to resolg. Predictingthe caching behavior of an

Recently designed machines contain pipelines anesac instruction is gen more difficult since it may be &cted
While both features pride significant performance Dy memory references that occurred long before the
advantayes, the also pose problems for predictingeeu- Instruction was xecuted.

tion time of code ggnents in real-time systemBipeline Unfortunately the timing analysis of these features is
hazads may result in multicycle delays$nstruction or exacerbated since pipelining and caching behavior are not
data memory efeences may not be found in bacand independent. &r instance, consider the codgsent and
these misses typicallyequire sweral cycles to esolve. pipeline diagram in Figure 1 consisting of threeARE
Whether an instruction will stall due to a pipeline hakar instructions' Each number within the pipeline diagram
or a cache miss depends on the dynamic sequence-of prrepresents that the specified instruction is currently in the
vious instructions executed and memogfeences per pipeline stage shown to the left and is in that stage during
formed. Furtherma, hese penalties armot independent the cycle indicated ale. The first instruction performs a
since delays due to pipeline stalls and cache miss penalfloating-point addition and requires a total of 3les.

ties may werlap. Thispaper describes an appach for Fetching the second instruction results in a cache miss,
bounding the worst-case performance ofyaimde sg- which is assumed to ha a niss penalty of nine addi-
ments on machines that exploit both pipelining and tional g/icles. Thethird instruction has a data dependenc
instruction cabing. First, a method is used to analyze a with the first instruction and thexecution of its MEM
program’s aontrol flow to statically caigorize the calging stage is delayed until the floating-point addition is
behavior of edg instruction. Ngt, these catgorizations calculated? The miss penalty associated with the access
are wsed in the pipeline analysis of sequences of instruc-to main memory to fetch the second instruction is com-
tions representing paths within the ggram. A timing pletely overlapped with the xeecution of the floating-point
analyzer uses the pipeline path analysis to estimate theaddition in the first instruction. If the pipeline analysis
worst-case execution performance of ledmop and func- and cache miss penalty were treated independenéy

tion in the pogram. Fnally, a graphical user interface is the number of estimated cycles associated with these
invoked that allows a user toequest timing mdictions SPARC Ingtructions

on portions of the jmgram. inst 1: faddd 9%2,9%0, %2
inst 2: sub %4, g1, % 2
inst 3: std % 2, [Y%90+8]

1. Introduction Pipeline Diagram
cycle

Many architectural features, such as pipelines and 1y2 3| [5[...[11][12]13[14[15 14 17 1§ 1b 21|22
caches, in recent processors present a dilemma for archi- %99 I'[F) ! i 21212]..12 2 -
tects of real-time systemdJse of these architectural fea- Ex 2130333 33
tures can result in significant performance inveroents. FEX tfafaffafafafafafa]afafs
In order to eploit these performance imprements in a “CVEEZ" 2 : 313]3
real-time system, the WCET (Worst CaseeE&ixion FWB 1
Time) must be determined staticallyet these same fea-
tures introduce a potentially highvk of unpredictability. Figure 1. Overlapping pipeline stages with a cache miss.
Dependencies between instructions can cause pipeline :
hazards that may delay the completion of instructions. The pipeline cycles and stages represent teeution of these

instructions on a MicroSPARC | processor [1].

2 A st d instruction has no write back stage since a store instruc-
tion only updates memory and not gister The st d instruction also
requires three cycles to complete the MEM stage on the Mi&RSR.

Instruction or data cache misses can also requirerae

*This work was supported in part by the Office ofvileResearch
under contract number N00014-94-1-0006.

instructions would be increased from 22 to 31 (i.e. by theconstructed. Thisncludes the control fle within each
cache miss penalty). function and a function instance grapt function

This paper describes an approach forgraéing the instance graph is simply a call graph where each function
timing analysis of pipelining and instruction caching IS uniquely identified by the sequence of call sites
behavior Let a task be the portion of codeeeuted required for its imocation. Thusa drected acyclic call
between tw scheduling points (context switches) in a graph (without recursion) is transformed into a tree of
system with a non-preempéi <heduling paradigm. function instances.

When a task startsxecution, the cache memory is Next, this program control-flo graph is analyzed to
assumed to be validated. During task eecution, determine the possible program lines that can be in cache
instructions are brought into cache and often result inat the entry andx@ of each basic block within the pro-
mary hits and misses that can be predicted statically gram. Thdterative dgorithm in Figure 3 is used to calcu-
These predictions can be integrated with pipeline analysidate an input and output cache state for each basic block in
to estimate tight WCET bounds. the function instance graptA cache state is simply the

Figure 2 depicts an verview of the approach subset of all program lines that can potentially be cached
described in this paper for bounding therst-case per atthat pointin the control fa

formance of lage code segments on machines with input_state(top) = all invalid lines

pipelines and instruction cache€ontrol-flov informa- ‘AH::(LJE 22&%22‘?3 Eloock stance B DO

tion, which could hee been obtained by analyzing assem- i nput_state(B) = NULL

bly or object files, is stored as the side effect of the compi- FOR each immed pred P of B DO

lation. Thecontrol-flov information is passed to a static out gg:” gts;?fe?é)B) _*+= output_state(P)

cache simulator It constructs the control-fle graph of (input_state(B) + prog_lines(B))

the program that consists of the call graph and the control - conf_lines(B)

flow of each function. The program control-flograph is Figure 3. Algorithm to calculate cache states.
then analyzed for a ggn cache configuration and a cate-))))
gorization of each instructionyotential caching behvior Finally, the input state for each basic block is used to
is produced. The timing analyzer uses these gaiéza- catagyorize the caching behiar of each instruction within

tions to determine whether an instruction fetch should bethe block. An instructiors caching behavior is assigned
treated as a hit or a miss during the pipeline analysis. [© one of four categories for each loopdein which an

produces a wrst-case estimate for each loop and function instruction is containedNote that each function is treated
within the program.Finally, user interface windows are @S @ loop thatxecutes for a single iteration. The four cat-

displayed allowing one to request the timing bounds for €9ries of caching behavior are:

portions of the program. Always Miss. The instruction is not guaranteed to be in cache
)] . . when it is referenced.
2. Instruction caching categorization Always Hit. The instruction is guaranteed tavays be in cache

. . L ~when it is referenced.
The method of static cache simulation is used to Statl'First Miss. The instruction is not guaranteed to be in cache on

ca!ly Cat@miz_? the caching. beha_vior_ of eaph instruction s first reference each time the loop is entered, but is guaranteed
using a specific cache configuration in @egiprogram:
The static simulation consists of three phasesst, a 3 Static cache simulation is only briefly introduced in this section.
program control-flav graph of the entire program is Itis described in more detail elsewhere [2], [3], [4], [S].

[User Timing Requests

C Control o ! .
Timing | User Timing
Source Flow | L
; . Analyzer 1 Interface Predictions
Files Information !

Static Instruction
Cache .
) . Cache Caching
Configuration . e
Simulato Categorizations

Figure 2. Overvie/ of bounding pipeline and cache performance.

to be in cache on subsequent references. Table 2 represents the information foroaling data haz-
First Hit. The instruction is guaranteed to be in cache on its ards. Onlythe information for the registers referenced in
first reference each time the loop ieeuted, It is not guaran- the instructions in Figure 1 are shown.

teed to be in cache on subsequent references.

Stage IF| ID | EX | FEX | MEM | WB | FWB
3. Pipeline path analysis Beg Inst 1] 21 2 | 2| 1
CyclesfromBeg| 0 | 1 12 2 13 14 19
. End | 3 3 3 1 3 2 1
This section describes Wwahe analysis of the pipeline cyder; er;tEnd 0] 9 3| 3 0 7 2
performance of a sequence of instructions is accom-
plished. Firstinformation about each type of instruction Table 1. Structural hazard information
is read from a machine-dependent data file. This pipeline for the instructions in Figure 1.
information for each type of instruction includes the
worst-case number ofyclis required by each stage of the Register | %gl) %00 | %od| %i2 | %f0 | %f2
i i H H first needed 12 13 12 N/A 2 2
pipeline for its &ecution.” The analyzer alsq stores_ the last produced| NiA | NIA | NA | 9 | nA | 3
latest stage each source operand of the instruction can
receve its value via fonarding without delay and the ear Table 2. Data hazard information
liest stage in which the result of the instruction type can for the instructions in Figure 1.

be forwarded. Finally information about the specific

instructions in the sequence is obtained. This information ~ This set of pipeline information is created by process-

includes the actual registers associated with the sourcéd one instruction at a time from the sequence of instruc-
and destination operands, which is obtained from the contions that comprise a path. Each instruction can be repre-
trol-flow information generated by the compijlend the sented by the same form of pipeline information that is

instruction caching categorization of each instruction, Shovn in Tables 1 and 2 for a patfihis information is
which is produced by the static cache simulator. modified if it is found that the inStrUCtimtBChing cate-

During the analysis of a path, the analyzer keeps tracigorization indicates that the instruction fetchsaa miss.
of the total number ofycles reqlJired by the path and a The miss penalty is used to increment the total number of

set of pipeline information.This information includes ~ CYcles and the cycles from the beginning (structural haz-

when each pipeline stage was first and last used within thé&rd information) for all qther stages beSide_S the ":_ stage
path for aoiding structural hazardslt is represented as and the first needed registers (data hazard information) for

the number of cycles from the beginning and end of thethat instruction. The addition of an instruction to the
path for each pipeline stage. In addition, information pipeline information for a path W”_I not on_Iy update _the
indicating when each register was first and last used in thd0tal number of cycles and the information associated

path is also maintained tvad data hazard&Again, this ~ With the end of the pipeline, but also the beginning of the
information is represented as the number of cycles fromplpelme if a referenced stage or register in the instruction

the beginning and end of the path for eaajister The nad not been previously used.

set of pipeline information forvaiding hazards after the Retaining this set of pipeline information alle addi-
three instructions in Figure 1 vekeen analyzed is shm tions to the beginning or end of a patSince both the

in Tables 1 and 2Table 1 represents the information for Pipeline requirements for a path and a single instruction
avading structural hazardsOnly the numbers shown in can be represented with this set of pipeline information,
bold are required to be stored. These values represerfioncatenating tw paths together can be accomplished in
when each stage was first used from the beginning of thdhe same manner as concatenating an instruction onto the
path and last used from the end. The values in the tabl€nd of a path.The concatenation is accomplished one
correspond to the information associated with the instruc-Stage at a timeA stage from the second set of pipeline

tion numbers that are represented in bold in Figure 1.information is meed to the earliest cycle that does not
violate ary of the following conditions.

4 The number of cycles required for some floating-point instruc-

tions on processors can vary depending upon the values of its operands.(l) Thereis no structural hazard with another instructidfor

instance, the lggnning of the IF stage of instruction 2 in

5 S . .
A structural hazard indicates that a stage of an instruction can- . . R
g Figure 1 could not be placed igate 1 since that stageas

not be &ecuted earlier due to the pipeline stage already being used.

6 A data hazard indicates that a particular stage of an instruction alread_y occupied. . . .
cannot be xeecuted earlier due to the pipeline stage using a sougie re Thereis no data hazard due to a previous instruction pro-

ter that matches the destination register not yet updated by a pipeline ducing a result that is needed by a source operand of the
stage of another instruction. current instruction in that stageFor example, the

beginning of the MEM stage for instruction 3 in Figure 1 pipeline effects of the paths for an iteration of a loop

could not be meed past the FEX stage of instruction 1 at tggether This unioning of pipeline information simplified

cycle 19 due to the data hazard betweenftaddd and the glgorithm and also did not cause a noticeabseesti-

std instructions. , , , , mation. All paths through a loop start with the same loop
(3) Theplacement of the instruction does not violate itgo header block. Thus, the beginning pipeline information

pipeline requirements.For instance, the ID stage of o .

instruction 2 has to occur at least Meles after the tggn- (stages and reglsf[ers) is rareljesfed. Bt.hs throggh a

loop often end with the same block of instructions.

ning of its IF stage in Figure 1. "
Other inf " iated with the pioeli | addition, one path may be longer than the others, so the
er information associated wi € Pipeline analy- ending pipeline information is often not affected.

sis of a path need not be stordebr instance, it does not _ . _ .
matter when instruction 2 entered the ID stage after the _19uré 4 shows a fofunction and its corresponding
pipeline information has been calculated for all three SFARC assembly _COd -There are tw_possmle paths
instructions in Figure 1. No instruction being added to thfough an iteration of the loop in the program,
either the beginning or end of the pipeline could possibly<_7'8'12'13’14’15’16> gnd <_7’8'9‘10’11’13’14’15’1§>‘
have a sructural hazard with the ID stage of instruction 2 F19uré 5 shows the instructions and corresponding
since it would first hee a gructural hazard with the 1D PiPeline diagrams for the tvpaths within the loof. To

stage of instruction 1 or instruction 3, respestgi. Thus, ~ SIMPIify the eample, it is assumed that the loop has
the amount of pipeline information associated with a path@/ready beemecuted and all of the instructions and data

is dramatically reduced as opposed to storing leach are in cache (i.e. there are no instruction fetch or data
stage is used duringvey cycle. Furthermoreno limit memory misses).Table 3 shows the structural hazard

need be imposed on the amount of potentiatlap when ?nformat@on _for the tw paths in Figure > and Imo_the
concatenating the analysis ofcaths. information in path 1 has to be adjusted before gt

be unioned. The union of the number of cycles from the
4. Loop analysis beginning and end of the paths for aei gage will sim-
ply be the minimum number encountered. The structural
In order to predict the worst-casgeeution time of a hazard information indicating the number of cycles from
loop, the timing analyzer has to predict theagition time the end of path 1 has to be adjusted since its total number
of each possible path within the loop. The timing ana- of cycles is 13 less than the cycles required by path 2.
lyzer will resene dther one cycle or the number ofdaes The resulting union of the structural hazard information of
associated with a cache miss for the IF (instruction fetch)the two paths would be identical to the structural hazard
stage for each instruction categorized as amal hit or information for path 2. Note that the data hazard informa-
always miss, respectély. If an instruction is caigorized tion would change slightly since instruction 12 references
as a first miss, then the timing analyzer will treat the register %00 as a source operand afl as both a
instruction fetch as a miss if the program line has not yetsource and destinatioriet, representing access to these
been encountered as a first miss in the timing of the loopregisters would not likely hae a éfect when the timing
If the program line has been encountered, then the instrucanalysis is performed between this path and its predeces-
tion fetch will be treated as a hit insteddkewise, if an sor and successor paths since the EX stage is used before
instruction is categorized as a first hit, then the timing and after cycle 6, which is when instruction 12 enters the
analyzer will treat the instruction fetch as a cache hit onEX stage.
the first reference and a cache miss thereafter.
” Note that the generated assembly code has been optimized by

With pipelining it is possible that the C(?mblnaIIO!'] ofa the compiler The local wariablesi , count , anddcount have keen al-
set of paths may produce a longeeation time than just |ocated to rgisters%2, %1, and % 2, respectiely. The instruction
selecting the longest pathtor instance, consider a loop following each transfer of control takes effect before the transfer of con-
with two paths that ta& sbout the same number oj(ﬂes trol is taken since the SPARC has delayed branchlke.cnp compari-

PSR " son preceding thbge branch (instruction 7) has been wed to oth
to execute. an)ath has a ﬂoatmg point addition near the immediately precede the loop and in the delay slot (instruction 16) of the

beginning of the path and the other path has a floating-p| pranch (instruction 15). Branches with za™ represent that the re-
point addition near the endAlternating between the sult of the instruction within the delay slot will be annulled if the branch
paths will produce the erst case xecution time since is not taken.

there will be a structural hazard between the tiwating- & Note instructions 7, 10, and 15 are transfers of confrbk ac-

point additions tual transfer of control (i.e. updating the program counter) occurs in the
’ ID stage. Thus, there are no additional pipeline stages associated with

To avoid the problem of calculating all combinations these instructions. Also note the one cycle stall between instructions 8

of paths, which would be the onIy method for obtaining and 12 in thg EX stage'of path 1 due to a load haZ&rlly, thel dd
perfectly accurate estimations, it was decided to union théoad (instruction 9) requires twoycles to complete the MEM stage [1].

C Sour ce Code
_______________________ Path 1 Instructions

mai n() inst 7: bge,a L19
inst 8: Id [Y%04+% o(_i ncr)], %0
int i, cnt = 0; inst 12: add %1, %0, Y%l
doubl e dent = 0.0; inst 13: add %2, 1, %2
extern int incr; inst 14: cnp %2, 10
extern doubl e dincr; inst 15: bl,a L18

inst 16: cnp %2, 5
for (i=0; i < 10;

i ++) Path 1 Pipeline Diagram
if (i <5) cycle
dent += dincr; 1(2|3|4|5/6|7]|8]9]10/11]12
el se stagel IF |7 8]1213 1314|1516
cnt += incr; ID 7|812/12/ 13 14 1516
} EX 8| |12(1314 |[16
FEX
I nst Assenbl y Code MEM 8| [12/1314 |16
R R TR wB 8| |12]1314 |16
0 nmov %90, %01 FWB
1 sethi %i (LO1), %0
2 | dd [%©0+% o(LO1)], % 2
3 nmv %90, Y02 Path 2 Instructions
4 sethi %i (_dincr), %3 inst 7: bge,a L19
5 sethi %i (_incr), %4 inst 8 Id [Y04+% o(_i ncr)], %0
6 cnp %2, 5 inst 9: ldd [%3+%o(_dincr)], %0
7 L8: bge,a L9 inst 10: ba L16
8 Id [Y04+% o(_incr)], %0 inst 11: faddd %2, 9%0, %2
9 | dd [%©3+% o(_dincr)], %0 inst 13: add %2, 1, %2
10 ba L6 inst 14: cnp %2, 10
11 faddd % 2, % 0, % 2 inst 15: bl,a L18
12 L9: add %01, %00, %01 inst 16: cnp 9%2,5
13 L6: add %2, 1, %02
14 cnp %02, 10 Path 2 Pipeline Diagram
15 bl,a L8 cycle
16 cnp %2, 5 1(2]3]4|5/6|7]8]9]/10 11 12 13 14 .|24|25
17 retl stagel IF | 7|8|9|10 11 131314/15/16
18 nop D 7|8|9(10[11 1113 14/15/16
. EX 8|9 1314/ |16
Figure 4. Example C source code and FEx FIETIETIRT R R T INET!
corresponding SPARC instructions. MEM 8|99 1314] |16
wB 8 1314 |16
Let n be the maximum number of iterations associated FWB 9 u

with a loop. The algorithm for estimating theosst-case
time for a loop is shown in Figure @he WHILE loop in
the algorithm terminates when the number of calculated

Figure 5. Pipeline diagrams for thedymaths
through the loop in Figure 4.

iterations reaches - 1 or o more first misses (first hits) Pah 1 Info IF 11D | EX | FEX | MEM | WB | FWB
are encountered as misses (hit§hus, the WHILE loop CyclesfromBg | 0| 1| 3 | NA 4 5 | NA
will either iterate § - 1) or (m + 1), wherem s the num- Cycles fromEnd = 4 | 3| 2| NA) 1 0 | NA

. AdjEnd Cycles | 17 | 16 | 15 N/A 14 13 N/A
ber of paths in the loop since a first miss (first hit) can : 4
Pah 2 Info IF | ID | EX | FEX | MEM | WB | FWB

miss (hit) at most once during the loogeution.
() 9 Cycles from Bg 0 1 3 4 5

The algorithm selects the longest path on each itera- | cyclesfromEnd| 15 | 14 | 13 71 2 | 1
tion of the loop.In order to demonstrate the correctness
of the algorithm, one must siahat no other path for a Table 3. Structural hazard information
given iteration of the loop will produce a longemrst- for the paths in Figure 5.
case time than that calculated by the algoritt8mnce the
pipeline effects of each of the paths within the loop aremachines. Theache miss time is the cache hit time plus
unioned, it only remains to be sk that the caching the miss penalfywhich is the time required to access
effects are treated properlyThe instruction fetch time main memory All categorizations are treated identically
used for each instruction depends on whether it ison repeated references, except for first misses and first
assumed to be a hit or miss, which depends on itg@ate hits. Assumingthat the instructions ka been catgo-
rization. The cache hit time is one cycle on most rized correctly for each loop and the pipeline analysis w

correct, it remains to be shown that first misses and first

o~

pi peline_information = NULL.

first_m sses_encountered = NULL.

first_hits_encountered = NULL.

curr_iter = 0.

WH LE curr_iter !'=n- 1 DO
curr_iter += 1.

Find the | ongest continue path.
first_m sses_encountered +=
first msses that were m sses
in this path.
first_hits_encountered +=
first hits that were hits in this path.
Concatenate pipeline_information with the
union of the information for all paths.
IF no new first msses or first hits
are encountered in the path THEN
br eak.

Concat enate pipeline_information with the union
of the pipeline information for all paths
(n- 1- curr_iter) tines.

FOR each set of exit paths that have a

transition to a unique exit block DO

loops that will iterate only once when entered.

The loops in the timing analysis tree are processed in a
bottom-up mannerin other words, the worst-case time
for a loop is not calculated until the times for all of its
immediate child loops are kmm. Thealgorithm gven in
the prerious section described Woa loop containing no
other loops wuld be analyzed. The timing of a non-leaf
loop is accomplished using this algorithm and the pipeline
information and total times from its immediate child
loops. Associateavith each loop is a set of exit blocks,
which indicates the possible blocks outside the loop that
can be reached from the last block in each exit path.
unique set of timing information is stored for the child
loop with each of these exit blocks. If a path within a
loop enters a child loop, then the pipeline information and
total time from the appropriate exit block are used at that

point during the analysis of the peﬁ%.

The transition of an instruction cagtarization from the
child loop level to the current loop kel will be used to
determine if ap adjustment to the the child loop time is
required. Thesetransitions between cajerizations
requiring adjustments are described in Table #he
fm=>fm adjustment is necessary since there should be
only one miss associated with the instruction and a miss
should only occur the first time the child loop is entered.
The m=>fh adjustment is necessary since the first refer
ence to the instruction in the outer loop will be a hit.

Find the longest exit path in the set.
first_m sses_encountered +=
first msses that were m sses
in this path.
first_hits_encountered +=
first hits that were hits in this path.
Concatenate pipeline_information with the
union of the information for all exit
paths in the set.
Store this information with the exit bl ock
for the | oop.

Figure 6. Loop analysis algorithm.

hits are interpreted appropriately for avai iteration of
the loop. A correctness gument about the interpretation
of first hits and first misses isvgh in previous work [4].

Once no more first hit or first miss instructions are
encountered that hit or miss respedti, the pipeline
effects associated with the path chosen will not change m=>fh
since the caching behavior of the instructions within a
path will alvays be treated the sam&he pipeline gects
of the last path are fefiently replicated for all but one of
the remaining iterationsThe last iteration of the loop is
treated separatelyThe longest exit path for a loop may
be shorter than the longest continue p&ly. examining
the exit paths separatelya fighter estimate can be
obtained. Thusthe algorithm estimates a bound that is at
least as great as the actual worst-case bound.

Child => Rarent | Actionto Adjust Child Loop Time
fm =>fm

Use the child loop time for the
first iteration. For al remaining
iterations subtract the miss pena
ty from the child loop time.

For the first iteration subtract th
miss penalty from the child log
time. For all remaining iteration
use the child loop time directly.

"5 o

Table 4. Use of child loop times.

Making these adjustments when pipelining isined
resulted in some slightverestimations. Theoroblem is
that the caching behavior of a particular instruction
depends on the loop vd being analyzed. When an
adjustment at an outervid would be needed for an
instruction, the authors consatively added the maxi-

5. Program analysis)) .
J y mum number of ycles associated with a cache miss

A timing analysis tree is constructed to predict the : : . _
worst-case times of code segments containing nested A natural loop is a loop with a single entry blocWhile the

| df ti llsEach node of the t t static simulator can process unnatural loops, the timing analyzer is re-
00ps and funclion calls=ach node of the tree represents gy 1o only analyzing natural loops since it would be difficult for

either a loop or a function in the function instance graph.poth the timing analyzer and the user to determine the set of possible
Each node is considered a natural I8d'me nodes repre- blocks associated with a single iteration in an unnatural l¢oghould

senting the outer Vel of function instances are treated as Pe noted that unnatural loops occur quite infrequently.
0The timing analysis across looés is only briefly introduced
in this section. It is described in more detail elsewhere [2], [4].

penalty to the total time of the path containing the instruc-assuming that only a single pipeline stage could be
tion and treated the instruction fetch as a cache hit withinexecuting at one time (i.e. noverlap). Thecading only

the path pipeline analysiswhen the instruction fetch observedcycles andcaching only estimateaycles were
should be viewed as a cache hit at an outer log, e obtained with the assumption that the pipeline had only a
previously added miss penaltyydes were subtracted single stage (an IF), a cache hit required a singtdec

from the loops tme. This stratgy permitted a single and a cache miss required an additional miss penalty of
pipeline analysis of each loop, yet adjustments could stillnine g/cles. Thenaive cabing only cycles were calcu-

be made at outervels of the program. An \erestima- lated by assumingvery instruction fetch resulted in a
tion occurs when the instruction fetch is treated as a missache miss.The pipeline and caching estimatexycles

and the cache miss penalty could werlapped with the were produced by the techniques that were described in
execution of other instructions or stalls (as shown in Fig- this paper for intgrating the analysis of pipelining and
ure 1). Fortunately these adjustments are not that com- instruction caching bek#r. All data cache references
mon. Resultsindicated that only about 4.5% of the were assumed to be hits in the three sets of measurements.
instructions within the function instance graph were clas-
sified as first misses or first hits and mahthese did not

Pipeline Obsered Estimated | Estim. | Nave

. . . . Only Cycles Cycles Ratio | Ratio
require adjustmentsThus, these adjustments resulted in

L . . Des 66,594 68,254 1.02 | 3.82

only small and relately mfrequent werestimations. Matcnt 1,063,572| 1,063,572 1.00 2.38

Matmul 4,347,806, 4,347,806 1.00| 213

esu Matsum 933,540 933,540 1.00 2.28

6. R Its Sort 3,380,660, 6,748,925 2.00| 8.13

Stats 900,231 900,231 1.00 1.70

Measurements were obtained on code generated for : : : :
the SPARC architecture by thgo optimizing compiler Caching | Obseed | Estimated| Estim. | Nave

[6]. Six simple programs described in Table 5 were used | Only Cliczle:% Clge;w F;ai'z Rsagz
. .. es s , . .

to assess the fettiveness of the timing analyzerA Matent 1169055 1259055 1.08| 3.79

direct-mapped instruction cache configuration containing Matmul 1,527,648| 1,527,648| 1.00| 9.36

8 lines of 16 bytes was used. Thus, the cache contained g/'attsum . gg;éﬁ’ 1572%;%%92 12-%% g-?g
. . or , , ,) . .

128 bytes of instructionsThe programs were 4 to 17 Stats 372410 372.410| 1.00 | 4.90

times lager than the cache as shown in column 2adfl§
5. Column3 shows the hit ratio of each progran©nly
Matmul had a very high ratio due to three tightly nested

Pipeline Obsered Estimated | Estim. | Nave
& Caching Cycles Cycles Ratio | Ratio

. . g X = Des 149,706| 169,613 113 | 5.02
loops in a single function to perform the matrix multipli- Matcnt 1,769,321| 1,859,323 1.05| 3.69
cation. Eactprogram was highly modularized to test the matmul ?4;4;4;31615 411,42147133%3 :1[.88 jgg
. . . . atsum) y ’ y . .
handling of timing predictions across function calls. Sort 7765125 15504172| 200 | 10.78
: Stats 1,016,048 1,016,145/ 1.00| 3.12
Num Hit . .
Name Bytes Ratio Descriptioor Emphasis
. Table 6. Dynamic results for the test programs.
Des 2,240| 81.41% | Encryptand Decrypts 64 Bits y prog
Matcnt | 812 81.81% fggfltgoaagtri“ms dllles in 3 The pipelining onlytiming analysis had exact predic-
Matmul 768 | 99.24% | Multiplie=2 50x50 Matrices tions for all programsxeeptDesand Sort The analysis
Matsum | 644| 88.22% | Sum¥alues in a 100x100 Matri of these tw programs depicts problems faced by all tim-
Sort 556 | 83.99% | Bubblesorf 500 Numbers ; H ;
ing analyzers. The timing analyzer did not accuratel
Stats 1,428| 88.41% | Calcs Sum, Mean, &, StdDe., 9 . y 9 y . . g y
& Linear Corr Coeff. determine the worst-case paths in a function witbes
primarily due to data dependencie®r longer path
Table 5. Test programs. deemed feasible by the timing analyzer could not bertak

in a function due to aariables value in an f statement.

The results of edluating these programs are shown in rhg 5ot program contains an inner loop whose number
Table 6. The observedycles for these measurements ¢ jiorations depends on the counter of an outer lo%p.

were obtained by enhancing a traditional cache simulatory,.q point the timing tool either automatically resi e
[7]. The simulator produced thpipeline only observed 5yimum loop iterations from the controlftdinforma-
cycles and the timing analyzer produced piigeline only jon produced by the compiler or requests a maximum
estimatedcycles by assuming that all instruction fetches .\ her of iterations from the useYet. the tool wuld

(IF stages) were cache hits and only required a singlé,eeq 5 sequence ofilues representing the number of
cycle. Thepipeline only naivecycles were obtained by

iterations for each irocation of the inner loopThe num- miss penalty to the total timeWhen the instruction

ber of iterations performedag werrepresented onvar- should be viewed as a hit at an outeelethen this miss

age by a factor of tav for this specific loop.Note that penalty was simply subtracted and an accurate estimation

both of these problems are encountered by other timings obtained.However, in these three programs the poten-

tools and are not directly related to the pipeline analysis. tial overlap between a miss penalty and a stall due to a
As reported preiously [4], the caching only timing hazard were not ahys detected! The Des Matcnt and

analysis results were also quite accurate. This analysi$>0rt programs had its usuabverestimations due to data

had exact predictions foMatmul Matsum and Stats dependencies, a cache conflict, and an inaccurate number

since there were ¥e conditional constructs except taie Of estimated loop iterations, respeely. The nave ratio

|oops_ TheMatcnt program used amf -t hen-el se indicates that much tighter WCET bounds can be obtained
construct to either add a nomztive \value to a sum and When the benefits of pipelining and instruction caching
increment a counter for the number of nogative de- are analyzed.

ments or just increment a counter for theyaiwe de-)
ments. Thedding of the nonmgtive \alue to a sumas /- User interface
accomplished in a separate function, which was purposely
placed in a location thatauld conflict with the program

line containing the code to increment a counter for the
negdive dements. Multipleexecutions of the hen path,

which includes the call to the function to perform the

addition, still required more ycles than alternating Wheneer a dfferent construct is selected, the highlighted

between the tav paths. “ét, the algorithm for estimating . T -
; . . lines in windows containing the source and assembly code
the worst-case instruction caching performance assumes

. . e are automatically updated and scrolled to the appropriate
that the first reference to a program line within a path i, . .
o position. Thusthe user can quickly obsenhe relation-
would aways be a miss if there were accesses tp an ' . - . . ;
- : L ship between timing constraints associated with the
other conflicting program lines within the same loop.

This assumption simplified the algorithm since tHeaf source che and_squences of m"?‘Ch'”e Instructinis.
S interface is described in more detail elsewhere [8].

of all combinations of paths need not be calculaféuls,

one reference as counted repeatedly as a miss instead of,

a hit. This path was xecuted 10,000 times and accounted

for a 90,000 ycle [10,000*miss penalty] or an 8%es- There has been muchovk on the issue of predicting
estimation. Notethat the &ecution of this SIﬂg'e path execution time of programsMost approaches in the past
accounted for 40.61% of the total instructions referencedhave rot dealt with the décts of pipelining and instruc-
during the programecution. TheprogramsDes and tion caching [9], [10], [11]. There hae dso been some
Sort had werestimations caused by the same problemsrecent studies on predicting pipeline performance by Har
described previously for theipeline onlymeasurements. mon et. al. [12] and Narasimhan and Nilsen [13Yet,
The nave ratio was lower than initially anticipated by the these studies did not address caching is¥uEmirther-
authors. Thesgest programs contained mafong run- more, the former study as limited to nonnested functions
ning instructions (floating-point operations and g&e and the latter study required the sequence xetited
multiply and dvides) that were frequentlyxecuted and nstructions to be knen. Finally there has been some
often resulted in stalls. In addition, transfers of control recent vork on predicting instruction Caching per.for
were also quite frequent and were only considered tomance. Arnoldet. al.[4] implemented a timing analysis

Once the initial timing analysis has been completed, a
graphical user inteafce is ivoked. Thisinterface allavs

the user to quickly request timing predictions for func-
tions, loops, paths, or subpaths via mouse clicks and
reports the best and worst-case timing estimations.

8. Comparison with previouswork

require tvo pipeline stages in our analysis. system to tightly bound instruction cache performance.
The intgrated pipeline and caading analysis also However, this approach did not address pipelining issues.
resulted in quite tight predictionsAgain the predictions There has been only one pieus study that attempted

for the programsMatmul Matsum and Statswere \ery o address the issue of predicting the WCET of programs

accurate. Notehat the estimated cycles were Sllghﬂy on machines with both p|pe||n|ng and an instruction
greater than the obsew cycles for these programg$his
overestimation vas due to the problem of an instruct®n’ ™ For instance, the 502 cycle/@estimation inMatmul occurred

caching behavior changing between Ioopellaa These from 50 miss penalties completelyeplapping with stalls from an inte-
changes require an adjustment asashin Table 4. The ger multiply instruction and 52 missesedapping with one cycle load

) hazards.
approach used by the authors was to treat such an instruc- 12 Harmon assumed the entire codgreent would fit into cache.

tion as a hit in the pipeline analysis and simply add therthys, he assumed at most one miss for each cache reference.

cache. Limet. al.[14] described an method based on an
extension of a pndous timing tool [15]. Lim’s method
differs quite significantly from our approach described in
this paper which instead builds on flo analysis tech-
nigues found in optimizing compilerdim’s method uses

a iming schema associated with each soureel-lkan-
guage program construcithey sored information about

a predetermined number of/cles at the head and tail of a

resenation table produced as a result of the pipeline anal-

The approach that Limat. al.used to analyze caching
behaior limits the accurag of the analysis.They used a
single bottom-up pass when performing the timing analy-
sis of a program. The caching behavior of a large percent-
age of the instruction fetches within a construct would be
unknavn until mary of the surrounding constructs were
processed. Theiapproach was to treat the instruction
fetch as a hit within the pipeline and add tlyeles asso-
ciated with a cache miss penalty to the total time of the

ysis on the instructions associated with a program con-construct. Wheiit was later found that an instruction ref-

struct. Inaddition, this method stored information about

erence ws a hit, thg would subtract the miss penalty

the set of memory blocks whose first reference depend$rom the total time. However, an overestimation may

upon the cache contents prior to thxecaition of the con-
struct. Limalso stored the set of memory blocks wmno

to remain in cache after thexeeution of the construct.
Eventually this timing information is concatenated with
another construct that ould be @ecuted immediately
before the current construct. Their timing analyzer
attempted to eerlap the head of the reservation table of
the current construct with the tail of the resgion table

of the other construct as much as possilili&ewise, the
list of memory blocks known to be in cache afteecait-

result when the instruction is not found in cachfs
shavn in Figure 1, the instruction fetch miss penalty of
one instruction (instruction 2) can be completely hidden
by a stall with a long running instruction (data hazard stall
on instruction 3). Whether the fetch of instruction 2 was a
hit or a miss wuld hare ro dfect on the total number of
cycles. TheLim method vould rarely detect instruction
fetches that would alays be misses until the surrounding
constructs are analyzed, which is after the pipeline analy-
sis of a construct has already occurré€lr approach of

ing the other construct is used to adjust the time of thecategorizing the caching bel®r of each instruction

current construct by comparing this list to the list of first

before starting the timing analysis allows the detection of

reference blocks in the current construct. This methodsuch situations.For instance, we found that thpgpeline
stored multiple paths for conditional constructs, such asand cating estimated ratio for the six test programs

ani f -t hen- el se. They pruned or eliminated a partic-
ular path when it @&s found that the worst-casgeeution
time of the path wasakter than the best-casgeeution
time of another path within the same construct.

There are some limitations with Lisymethod. The
accurag of their results is limited by the length of the
head and tail of the reservation table stored with the pro
gram constructs.They concluded that the length of this
head and tail only had to be d&renough to contain infor
mation for five g/cles. Thisconclusion was based on
experiments indicating that their timing analysis results
did not change significantly when the lengthasw
increased further Howeve, there are some instructions
that require may cycles. for instance, a floating-point
division on the MicroSPARC | can require up to 36les
to complete [1].If such an instruction were at the end of
a onstruct, then manmore than fie integer instructions
at the head of a folleing construct could beverlapped
with the floating-point diision. Inaddition, their method
stores information about each stage feerg cycle in the
head and tail of the reservation tablen contrast, our
method requires much less information and imposes n
limit on the length of the potential pipelingenlap. Only
the relatve dstance from the lggnning and end of the
path has to be stored for each stage for the structural ha
ard pipeline information as swa by the numbers repre-
sented in boldface in Table 1.

V4

increased on\arage by about 3% when the complete
miss penalty was a&hys added for each predicted miss.

9. Futurework

We ae working on seeral enhancements to the timing
analyzer An dgorithm that predicts best-case pipelining

and instruction cache performance is currently being
implemented. W gan to automate the detection of ngan
data dependencies using existing compiler optimization
techniques to obtain tighter performance estimations [16].
The retargetability of the timing analyzer will also be
enhanced by isolating ynmemaining machine dependent
information in data files.

We ae eploring methods to predict the timing of
other architectural features associated with RISC proces-
sors. Vrk is currently ongoing to verify that our tech-
nique accurately predicts performance for the
MicroSFARC | by using a logic analyzerThis will
require predicting the performance of other features, such
as wrap-around filling of cache lines. The effect of data

gaching is also an area that we are pursuibiglike

instruction caching, manof the addresses of references
to data can change during theeeution of a program.
Thus, obtaining reasonably tight bounds foorst-case
and best-case data cache performance is significantly
more challenging.However, mary of the data references

are knavn. For instance, static or global data references [3]
retain the same addresses during tkection of a pro-
gram. Dueto the analysis of a function instance tree (no
recursion allowed), addresses of run-time stack references
can be statically determinegien when the addresses may
differ for different irvocations of the same function.
Compiler flav analysis can be used to detect the pattern
of mary calculated references, such as ixidg through

an array While the benefits of using a data cache for real-
time systems will probably not be as significant as using
an instruction cache, its effect on performance should still
be substantial. 6]

(5]

10. Conclusions

This paper has presented a technique for predicting theh]
worst-case xecution time of programs on machines with
pipelining and instruction caches. First, a static cache
simulator analyzes the controlflcof a program to stati-
cally catgorize the caching behavior of each instruction [g]
within the program. Second, a timing analyzer uses these
instruction categorizations when analyzing the pipeline
performance of a path of instruction$hird, the timing
analyzer uses a concise representation of the pipeline
information to concatenate the performance of paths in ari9l
efficient manner when predicting the performance of
loops. Murth, a timing analysis tree is used to predict the
performance of an entire progrankinally, a gaphical
user interface has been implemented that allows users to
obtain timing predictions of portions of the prograirhe
results indicate that the timing analyzer can quickly obtain[ll]
tight predictions of WCET.

11. Acknowledgements [12]

The authors thank Robert Arnold and Frank Mueller
for providing advice and the platform for this research.
The current timing analyzewhich includes pipeline anal-
ysis, was a directx¢ension of the previous timing ana-
lyzer implemented by Robert Arnold, which bounded
instruction cache performance. The static simulator
implemented by Frank Mueller was also used in this Pro-[14
ject. LoKo and Emily Ratlif implemented the user inter
face. Theanorymous reiewers also provided helpful
suggestions that impved the quality of the paper.

(13]

12. References [15]

[1] Texas Instruments, Inc.,Product Peview of the

TMS390S10 Integrated SPARC Proces$993. [16]

[2] F. Mueller, Static Cache Simulation and Its Applications,
PhD Dissertation, Florida State Waisity, Tallahassee,
FL (August 1994).

-10-

F. Mueller and D. Whallg “Efficient On-the-fly Analy-
sis of Program Behavior and Static Cache Simuldtion,
Static Analysis Symposiympp. 101-115 (September
1994).

R. Arnold, E Mueller, D. Whalley, and M. Harmon,
“Bounding Worst-Case Instruction Cache Performance,
Proceedings of the iffeenth IEEE Real-Time Systems
Symposiumpp. 172-181 (December 1994).

F. Mueller and D. B. Whallg “Fast Instruction Cache
Analysis via Static Cache SimulatibrRroceedings of
the 28th Annual Simulation Symposjuipp. 105-114
(April 1995).

M. E. Benitez and J. WDavidson, ‘A Portable Global
Optimizer and Linkr,” Proceedings of the SIGPLAN '88
Symposium on Bgramming Languge Design and
Implementation pp. 329-338 (June 1988).

J. W. Davidson and D. B. Whallg “A Design Eriron-
ment for Addressing Architecture and Compiler Interac-
tions,” Microprocessos and Microsystems 15(9) pp.
459-472 (Neember 1991).

L. Ko, D. B. Whalley, and M. G. Harmon, “Supporting
UserFriendly Analysis of Tming Constraint$,Proceed-
ings of the ACM SIGPLAN oafkshop on Languge,
Compiler and Tool Support for Real-Time Systenysp.
107-115 (June 1995).

C. Y. Park, “Predicting Program Execution Times by
Analyzing Static and Dynamic ProgranatRs,” Real-
Time System§(1) pp. 31-61 (March 1993).

D. Niehaus, “Program Representation andhriBlation

for Predictable Real-Time Systeth®roceedings of the
Twelfth IEEE Real-Time Systems Symposipm 53-63

(December 1991).

P Puschner and C. ¢za, “Calculating the Maximum
Execution Time of Realime Program$,Real-Tme Sys-
tems1(2) pp. 159-176 (September 1989).

M. G. Harmon, TP. Baker and D. B. Whallg, “A Retar-
getable Technique for Predicting Executiom@&,” Pro-
ceedings of the Thirteenth IEEE Reah& Systems Sym-
posium pp. 68-77 (December 1992).

K. Narasimhan and K. D. Nilsen, “Portable é€xtion
Time Analysis for RISC Processdr®roceedings of the
ACM SIGPLAN Workshop on Langga, G@mpiler and
Tool Support for Real-Time Systerfiune 1994).

S.S. Lim, Y. H. Bae, G. TJang, B. D. Rhee, S. L. Min,
C. Y. Park, H. Shin, K. Park, and C. S. Kim, “An Accu-
rate Worst Case ihing Analysis Technique for RISC
Processors,’Proceedings of the iffeenth IEEE Real-

Time Systems Symposjupp. 97-108 (December 1994).

A. C. Shav, “Reasoning about Time in Highkevel
Language Softare,” IEEE Tansactions on Softwar
Engineeringl5(7) pp. 875-889 (July 1989).

F. Mueller and D. B. Whalle “Avoiding Conditional
Branches by Code ReplicatidrRroceedings of the SIG-
PLAN '95 Confeence on Rsgramming Languge
Design and Implementatiorpp. 56-66 (June 1995).

-11-

