FSU DEPARTMENT OF COMPUTER SCIENCE

~

Bounding Worst-Case Instruction
Cache Performance

by

Robert Arnold
Frank Mueller
David Whalley

Florida State Unersity

Marion Harmon
Florida A&M University

FSU DEPARTMENT OF COMPUTER SCIENCE

~

Motivation

« WCET Required for Scheduling Analysis
- Performance Penalty for Disabling Cache
— Are Caches Unpredictable?
- Limitations
— non-preemptie g/stems
— direct-mapped caches

— RISC architectures

FSU DEPARTMENT OF COMPUTER SCIENCE

4 N

Static Cache Simulator

- Construct a control-fl@ graph for the program.

- Determine which program lines may be in cache for
each basic block, complexity O(n"2).

- Classify the caching behavior for each instruction.

FSU DEPARTMENT OF COMPUTER SCIENCE

-

Definition Of Instruction Cache Categories

« ALWAY S HIT
— all references: hits
« ALWAY S MISS
— all references: misses
« FIRST HIT
— first reference: hit
— subsequent references: misses
* FIRST MISS
— first reference: miss

— subsequent references: hits

FSU DEPARTMENT OF COMPUTER SCIENCE

4 N

Algorithm to Calculate Cache States

- similar data-flev analysis in optimizing compilers

- Input state for a basic block :=
set of program lines that can potentially be
cached at the point the basic block is entered

| nput _state(top) := all invalid Ilines
VWH LE any change DO
FOR each basic bl ock instance B DO
| nput _state(B) := NULL
FOR each immed pred P of B DO
| nput _state(B) += output state(P)
out put _state(B) : =
(1 nput _state(B) + prog lines(B))
- conf _| i nes(B)

FSU

DEPARTMENT OF COMPUTER SCIENCE

-

program line O

program line 4

program line 5

-

main()

save %sp, - 96, ¥sp Block 1 | m h=alays hit
set hi %i (_mn), %0 h m=alays miss
| dsb [Y%©0+% o(_m n)], % 2 h fm=first miss
mv %0, %1 | h_fh=first it
nov %2, %0 m

cal | ~value, 1 Block 2

nov % 1, %00

v

cmp %0, %0 Block 3

bge, a L16

add %1,1,%1

cal | _value, 1 Block 4

nov % 1, %00

nov %0, % 2 Block 5

add %1,1,%1

cnp % 1, 10 Block 6

bl,a L8

nov %2,%0

ret Block 7| h

restore % 2, %g0, %00 h
value() (@) (b)
sethi %i(_a), %1 Block 8| fm/fm/m h_
add %01, % o(_a), %ol m m

| dsb [%00+%1] , %01 h h
retl h h
nov %1, %0 h h

~

FSU DEPARTMENT OF COMPUTER SCIENCE

~

Timing Analyzer

- Construct the timing analysis tree.

- Calculate the warst-case time for each node based
on the Instruction cag®rization, compleity
Oo(n"2).

- Respond to user timing requests.

10

FSU DEPARTMENT OF COMPUTER SCIENCE

4 N

Algorithm for Estimating a
Loop’s Worst-Case Performance

mn tinmne = max tinme for any | oop path assum ng
each path has been previously executed,;
k = 0;
VWH LE k < n - 1 DO
max_time = current max tinme for any | oop path;

|F max_time == mn_tinme THEN
BREAK;

total time += max_tine;

k += 1;

total _tinme += (n - 1 - k) * mn_tine;
total tinme += max tinme for exit paths;

12

FSU

DEPARTMENT OF COMPUTER SCIENCE

Future Work

« Best-Case Predictions

« Data Cache Predictions

* Pipelining

« Verifying Timing Predictions for an Actual Machine

« User Interface

~

14

FSU DEPARTMENT OF COMPUTER SCIENCE

~

Conclusions

« Technique for Predicting Instruction Cache
Performance

— Static Cache Simulation to Cgtwize Each
Instruction

— Timing Analysis for Each Loop in the
Program

« Instruction Cache Behavior is Sigfently Predictable
for Real-Time Applications

15

