
FSU DEPARTMENT OF COMPUTER SCIENCE

1

Bounding Worst-Case Instruction

Cache Performance

by

Robert Arnold
Frank Mueller
David Whalley

Florida State University

Marion Harmon
Florida A&M University



FSU DEPARTMENT OF COMPUTER SCIENCE

2

Motivation

• WCET Required for Scheduling Analysis

• Performance Penalty for Disabling Cache

— Are Caches Unpredictable?

• Limitations

— non-preemptive systems

— direct-mapped caches

— RISC architectures



FSU DEPARTMENT OF COMPUTER SCIENCE

4

Static Cache Simulator

• Construct a control-flow graph for the program.

• Determine which program lines may be in cache for
each basic block, complexity O(nˆ2).

• Classify the caching behavior for each instruction.



FSU DEPARTMENT OF COMPUTER SCIENCE

5

Definition Of Instruction Cache Categories

• ALWA YS HIT

— all references: hits

• ALWA YS MISS

— all references: misses

• FIRST HIT

— first reference: hit

— subsequent references: misses

• FIRST MISS

— first reference: miss

— subsequent references: hits



FSU DEPARTMENT OF COMPUTER SCIENCE

7

Algorithm to Calculate Cache States

• similar data-flow analysis in optimizing compilers

• input state for a basic block :=
set of program lines that can potentially be
cached at the point the basic block is entered

input_state(top) := all invalid lines
WHILE any change DO
FOR each basic block instance B DO

input_state(B) := NULL
FOR each immed pred P of B DO

input_state(B) += output_state(P)
output_state(B) :=

(input_state(B) + prog_lines(B))
- conf_lines(B)



FSU DEPARTMENT OF COMPUTER SCIENCE

8

save %sp,-96,%sp

main()

sethi %hi(_min),%o0
ldsb [%o0+%lo(_min)],%l2

restore %l2,%g0,%o0

ret

mov %l2,%l0

cmp %l1,10

add %l1,1,%l1

mov %o0,%l2

mov %l1,%o0

call _value,1

add %l1,1,%l1

cmp %l0,%o0

mov %l1,%o0

mov %l2,%l0

mov %g0,%l1

bge,a L16

bl,a L18

call _value,1

program line 3

program line 4

program line 2

program line 1

program line 0

m
h
h
h
m

fh=first hit
fm=first miss
m=always miss
h=always hitBlock 1

fh / fh
h

m
fm / fm
h

h
h

fm / fm
h

fm / fm
h
h

h
h

Block 7

Block 6

Block 5

Block 4

Block 3

retl

mov %o1,%o0

add %o1,%lo(_a),%o1

sethi %hi(_a),%o1

value()

ldsb [%o0+%o1],%o1
program line 5

(a)
fm / fm / m

h

(b)
h
m
h

Block 8
m

hh
h h

Block 2



FSU DEPARTMENT OF COMPUTER SCIENCE

10

Timing Analyzer

• Construct the timing analysis tree.

• Calculate the worst-case time for each node based
on the instruction categorization, complexity
O(nˆ2).

• Respond to user timing requests.



FSU DEPARTMENT OF COMPUTER SCIENCE

12

Algorithm for Estimating a
Loop’s Worst-Case Performance

min_time = max time for any loop path assuming
each path has been previously executed;

k = 0;
WHILE k < n - 1 DO

max_time = current max time for any loop path;
IF max_time == min_time THEN

BREAK;
total_time += max_time;
k += 1;

total_time += (n - 1 - k) * min_time;
total_time += max time for exit paths;



FSU DEPARTMENT OF COMPUTER SCIENCE

14

Future Work

• Best-Case Predictions

• Data Cache Predictions

• Pipelining

• Verifying Timing Predictions for an Actual Machine

• User Interface



FSU DEPARTMENT OF COMPUTER SCIENCE

15

Conclusions

• Technique for Predicting Instruction Cache
Performance

— Static Cache Simulation to Categorize Each
Instruction

— Timing Analysis for Each Loop in the
Program

• Instruction Cache Behavior is Sufficiently Predictable
for Real-Time Applications


