Bounding Worst-Case Instruction Cache Performance

Robert Arnold, Frank MuelleDavid Whalley

Computer Science Dept., Florida Statewni
Tallahassee, FL 32306-4019
e-mail: whalley@cs.fsu.edu, phone: (904) 644-3506

Abstract

The use of caches poses a difficiddgof for architects
of real-time systemsWhile caches mwvide significant
performance advantgs, thg have also been viewed as
inherently unpredictable since the behavior of alemef-
erence depends upon the history of thevipus refer-
ences. Thaise of caches will only be suitable faal-
time systems if aeasonably tight bound on the peror
mance of pygrams using cate memory can be @dicted.
This paper describes an amach for bounding the wat-
case instruction cdwe performance of lge ®de sg-
ments. Kst, a nev method calledStatic Cache Simula-
tion is used to analyze a ggram’s control flow to stati-
cally categorize the caching behavior of kaacstruction.
A timing analyzerwhich uses the categorization informa-

tion, then estimates the worst-case instruction cache perassumed to be validated.

formance for edeloop and function in the pgram.

1. Introduction

Marion Harmon

Comp. & Info. Sys. Dept., Florida A&M Ui
Tallahassee, FL 32307-3101
e-mail: harmon@cis.famu.edu, phone: (904) 599-3042

use of data cachesn addition, code generated for RISC
machines often results in four times more instruction ref-
erences than data references [2]. There also tends to be
greater locality for instruction references than data refer
ences, resulting in higher hit ratios for instruction cache
performance. Unli& mary data references, the address of
each instruction remains the same during a program’
execution. Thus,instruction caching bekar should be
inherently more predictable than data caching behavior.

This paper shows that with certain restrictions it is pos-
sible to predict much of the instruction caching wédbra
of a program.Let a task be the portion of codeeeuted
between tw scheduling points (conk switches) in a
system with a non-preempéi sheduling paradigm.
When a task startsxecution, the cache memory is
During task eecution,
instructions are brought into cache and often result in
mary hits and misses that can be predicted statically.

Figure 1 depicts anverview of the approach described
in this paper for bounding instruction cache performance

Caches present a dilemma for architects of real-timeqf |arge code sgments. Control-flev information, which
systems. These of cache memory in the context of real- coy|d hae dso been obtained by analyzing assembly or

time systems introduces a potentially higheleof unpre-
dictability. An instructions ececution time can ary

object files, is stored as the side effect of the compilation
of a file. The control-flv information is passed to a

greatly depending on if the instruction causes a cache hiktatic cache simulator It constructs the control-fio
or miss. Whether or not a particular reference is in cacheyraph of the program that consists of the call graph and

depends on the prograsirevious dynamic behaor. As

the control flev of each function. The program control-

a result, it has been common practice to simply disablefiow graph is then analyzed for avgn cache configura-
the cache for sections of code where predictability istjon and a cagorization of each instructios’potential

required [1]. Unfortunately even the use of other archi-
tectural features, such as a prefetchffdr, cannot
approach the &ctiveness of using a cach&urthermore,

caching behavior is producedNext, a timing analyzer
uses the instruction caching aadeizations along with the
control-flov information preided by the compiler to esti-

as processor speeds continue to increase faster than thgate the worst-case instruction caching performance for
speed of accessing memaifye performance advantage of each loop within the programA user is then allowed to

using cache memory becomes more significdiis, the

request the instruction cache performance bounds for an

performance penalty for not using cache memory in real-fynction or loop within the program.

time applications will continue to increase.

Bounding instruction cache performance for real-time 2. Relatedwork

applications may be quite beneficidlhe use of instruc-

Several tools to predict thexecution time of programs

tion caches has a greater impact on performance than thgye teen designed for real-time systems. The analysis

*This work was supported in part by the Office ofdeResearch
under contract number NO0014-94-1-0006.

has been performed at thevdeof source code [3], inter
mediate code [4], and machine code [5]. Only the last
tool attempted to estimate thdezft of instruction caching

[User Timing Requests

Timing
Analyzer

Timing
Predictions

C Control
Source Flow
Files Information

Static Instruction
Cache .
) . Cache Caching
Configuratio . o
Simulato Categorizations

Figure 1: Overviw of Bounding Instruction Cache Performance

justification for using their approachaw that "it is ery
and vas only able to analyze code segments that con-itficylt, if not impossible, to determine theorst-case

tained no function calls and fit entirely into cachiéus, execution path and, therefore, the worst-casecetion
this tool was able to assume that at most one miss Willime of a task” when instruction caching is enygio.

occur for each reference. Their analysis measured a 45% imgsment of the pre-

Niehaus outlined he the effects of caching orxecu- dicted worst-case time as compared to no prefetching (and
tion time can be estimated [6]. He suggested that cache$o instruction cache).This improzement is probably
be flushed on comté switches to provide a predictable quite optimistic since bus contentiorasvnot taken into
cache state at the dgianing of each task’execution. He consideration (contention between instruction prefetching,
provided a rough estimate of the speedup benefit ofdata access, and thread prefetchinglrthermore, mis-
caches and tried to determine the percentage of instructiompredicted branches may result in an uninterruptible block
cache references that can be predicted as fie. sug- fetch along the wrong path that cannot be aboriHus
gested leel of analysis was very abstract since it only rec- misprediction penalty may mocause worst-case behar
ognized spatial locality for sequentiadeeution and some along the (previously) shorter path. It will be sholater
temporal locality for simple loopsiNo general method to in this paper that much better worst-case performance pre-
analyze the call graph of a program and the contrel flo dictions can be made in the presence of instruction
within each function was described. caching than with just a prefetch buffer.

Lin and Liou suggested that more frequenthgaaited . . .
tasks be placed entirely in cache and other tasks be denieﬁ' Staticcache simulation

ary cache access [7]While this approach may he The method of static cache simulation is used to stati-
some slight benefit for avietasks, the performance of the cally catgorize the caching behavior of each instruction
remaining tasks will be significantly decreasdeiat of for a given program/task with a specific cache configura-
their rationale was that if a task could not entirely fit in tion. Thestatic simulation consists of three phasgsst,
cache, then the worst-caseseution would be the same as a program control-flav graph is constructedNext, this

an uncached system since cache hits could not be guaramgraph is analyzed to determine the possible program lines
teed. Itwill be shown later that a high percentage of that can be in cache at the entry and exit of each basic
instruction cache hits for such programs can be guaranblock within the programFinally, the control-flev analy-

teed and that the worst-case performance is significantlysis information is used to caierize the caching bebhiar
better than a comparable system with a disabled cache. of each instruction. The following subsectionvegia

brief overview of the static simulator A more formal

There hae been attempts to impve the performance
P mpe P approach can be found elsewhere [10], [11].

and predictability of accessing memory for real-time sys-
tems by architectural modificationgzor instance, Kirk .
described a system that relied on the ability tgmeent 3.1. Constructingthe control-flow graph

cache memory into a number of dedicated partitions, each Information is obtained from the compiler that
of which can only be accessed by a dedicated task [8]describes the control flo for each function within the
But this approach introducedweoroblems that included program. This control-flov information includes the
lower hit ratios due to the partitioning and an increased number of instructions in each basic block, the successors
compleity of scheduling analysis by introducing another of each block, and an identification of the blocks with
resource (cache partitioning) in the allocation process.function calls within the programEFrom this information
Leeet. al. suggested to prefetch instructions in the direc- a cll graph between functions is constructed. In addition,
tion that impraes the worst-casexecution time [9]. The

a oontrol-flov graph is constructed for each function, referenced. Thecaching behavior of these remaining
where the nodes are basic blocks and the edges denoiastructions can be viewed fifently depending upon the
control-flow transitions between basic blocks. loop being analyzedFor instance, consider thexample

To gatically estimate the caching befa of a pro- in Figure 2. Instructiona is the first instruction that can

gram as accurately as possible, functions are distinguishe® &ecuted within the program ling in the outer loop.
by function instancesAn instance depends on the calling Instructionb is the first instruction that can beeeuted

sequence, that is, it depends on the immediate call sitdVithin the program ling in the inner loop. Assume pro-
within its caller as well as the callsraall site, etc. The gram linesx andy are the only tw lines that map to
instancel of a function corresponds to tiikh occurrence cache linec and there are no conditional transfers of con-

of the function within a depth-first wersal of the call trol within the two loops. Inother words, instructiona

graph. Thusa drected agclic call graph (without recur ~ @nd b will always be &ecuted on each iteration of the
sion) is transformed into a tree of function instances. outer and inner loops, respeely. How should instruc-
tion b be classified?With respect to the inner loop,

instructionb will not be in cache when referenced on the
) . first iteration, but will be in cache when referenced on the
The static cache simulator calculates abstract cachgemaining iterations. This situation can be ascertained by
states associated with basic blockBnis calculation is e static cache simulator since it can determine that there
performed by a repeated wesal of the call grapk'func- are no other program lines within the inner loop that con-
tion instances and the basic blocks within each functiongict with program liney and the abstract cache state at
instances control-flow graph. Thenotion of an abstract he exit point of the basic block preceding the inner loop
cache state is a concession from the choice okhaus- 4oeg not contain program liye With respect to the outer
tive 2t of all possible cache states that may occur atjop instructiorb will always cause a miss on each itera-

execution time and the exponential grh of such an o since it will not be in cache as the outer loop initially
exhaustive st during simulation. enters the inner loop.

3.2. Instruction categorization

Definition 1: A program line canpotentially be cached if ther
exsts a sequence ofatmsitions in the combined coalflow outer loop |
graphs and call graph (with function instances) tsuicat the e instd

program line is cached when the basic Kas entered. ' 1prog line x Instruction Cache
Definition 2: An abstract cache state of a basic blok in a func-
tion instance is the subset of allogram lines that can poten- | . .| |
tially be cached prior to the execution of the basic block. inner loop cache line ¢

1instb prog line y

An obvious goal of the static cache simulation is to
determine whether each instruction reference willags
result in a cache hit orwabys result in a cache miss dur
ing program gecution. Aninstruction in a basic block
within a function instance can be classified aslavays
miss if the instruction is guaranteed tovee be in ache Figure 2: Example of a First Miss and First Hit
when it is referencedAn always miss will occur when

the instruction is the first reference to a specific program
P prog also be predicted, assuming that the instruction thgiph

line in the basic block and the program line is not in the I des th er | has to kecated i di
abstract cache state associated with the block. An instruc®®"Y Précedes the outer loop has 1o kecated Immedi-

tion in a basic block within a function instance can be ately before t_he Ioop. Is en.tered. In _this situation the first
classified as aalways hit if the instruction is guaranteed reference to n_1$tructlgla W'.” be a.h't' Al sgbsgqugnt

to alays be in cache when it is referencetin always references to m;trucuoa will be misses. This ;ltuatlpn
hit is guaranteed when other instructions in the basic ©@N be. ascertained by the s.ta_tlc simulator since It can
block hare dready referenced the same program line or determine that no other (;onfl|ct|ng program lines can be
the program line is in the abstract cache state associateaccessed before mstrucgan IS refergnced for the flr_st
with the block and no other program line that maps to thet!me and program lina will never be in @ache on transi-
same cache line is in the abstract cache state. tions back to the loop header.

The caching behavior of instructi@in Figure 2 can

The static cache simulator will produce a classification
for each loop teel in which an instruction is contained.
The classifications indicate Wwo references to an

Unfortunately some instructions cannot be guaranteed
to be alays in cache or alays not in cache when

instruction should be treated in the worst-case estimationnumber of program linesbb is the number of basic

given that an alays hit and alays miss cannot be guar
anteed and the current loop is the most deeply nested loo
containing the instructionThese conditions and classifi-
cations are depicted in Table A first misssimply indi-
cates that the first reference to the instruction should b
treated as a cache miss and all remaining references du
ing the eecution of the loop should be considered cache
hits. Likewise, afirst hitindicates that the first reference
to the instruction will be a hit and all remaining references
during the gecution of the loop will be misseswhen

blocks, andfi is the number of function instance¥he
porrectness of iteratt data-flav analysis has been dis-
cussed elsewhere [12].

A simple example will be used to illustrate the

eapproach for bounding instruction cache performance.

'f:igure 4 contains C code for a simplg fwogram that
finds the largest value in an arrafigure 5 shows the
actual SRRC assembly instructions generated for this
program within a control-fl@ graph of basic blocks.
Note the immediate successor of a block with a call is the

processing an outer loop, the timing analyzer can adjustj st piock in that instance of the called functiohssume

the value obtained from the timing associated with an
inner loop by gamining the transitions between classifi-
cations from one loop Vel to the net. Theseadjust-
ments will be described in the Timing Analysis section.

Other program| The instruction is| In the worst
lines in the loop| always executed in | case treat the
that map to the| the loop and is in| instruction
same cache line? | cache initially? as:
no no first miss
no yes always hit
yes no always miss
yes yes first hit

Table 1: Categorizations for the Remaining Instructions

3.3. Implementationof static cache simulation

The iteratve dgorithm in Figure 3 was used to calcu-
late the abstract cache statdsach basic block has an
input and output state of program lines that can poten-
tially be in cache at that pointnitially, the top blocks
input state (the entry block of timai n function) is set to
all invalid lines. The input state of a block is calculated
by taking the union of the output states of its immediate
predecessors. Thmutput state of a block is calculated by
taking the union of its input state and the program lines

accessed by the block and subtracting the program lines

with which the block conflicts.The calculation of these
abstract cache states requires a timerhead comparable
to that of data-flav analysis used in optimizing compilers
and a spaceverhead ofO(pl * bb * fi), wherepl is the

input_state(top) := all invalid lines
WH LE any change DO
FOR each basic bl ock instance B DO
i nput _state(B) := NULL
FOR each immed pred P of B DO
i nput _state(B) += output_state(P)
out put _state(B) :
(input _state(B) + prog_lines(B))
- conf_lines(B)

Figure 3: Algorithm to Calculate Cache States

there are 4 cache lines and the line size is 16 bytes (4
SFARC instructions). Block 8a corresponds to the first
instance ofval ue() called from block 2 and block 8b
corresponds to the second instancevaf ue() called
from block 4. The instruction categorizations areegito

the right of each instructionFor instructions that were
not categorized aswadys being a hit or alays a miss for
each loop led, a categorization of each loopvét is
given, proceeding left to right from the innermost to the
outermost loop. Note that a function is considered a loop
with a single iteration.Two passes are required to calcu-
late the input and output states of the blockgergthat

the blocks are processed in the order shown in Figure 6.
Pass 3 results in no more changes.

1 extern char mn,a[10];

2

3 main()

4

5 int i, high;

6

7 high = mn;

8 for (i = 0;i < 10;i++)
9 if (high < value(i))
10 high = val ue(i);
11 return high;

12 '}

13

14 int val ue(index)

15 int index;

16

17 return a[index];

18 }

Figure 4: C Program to Find the Largest Array Value

After determining the input states of all the blocks,
each instruction is cagerized according to the criteria
specified in the prgous section. By examining the input
states of each block, one can maksenations that may
not be detected by a wmai inspection of only pysically
contiguous sequences of referencésx instance, the
static cache simulator determined that the last instruction
in block 6 will alvays be in cache (anwiys hit) due to
spatial locality It also determined that the first instruction
in block 8b will alvays be in cache (anvadys hit) due to

temporal locality It detected that the first instruction of
block 3 and the second instruction of block 8 willzere

main() . h - . h i
source lines 7-8| save %sp, - 96, %p Block 1 | m h=aways hit be In Ca.C. € (ways I:nISSES). since the program lines asso-
sethi %i(_nin), %0 h m=aways miss ciated with the tw instructions map to the same cache
program line 0 | dsb [%0+% o(_nin)], %2 h fm=first miss line and the xecution of block 8 a/l/ays prECEdeS block 3.
,,,,,,,,,,,,,, mov %0, %1 | h fhefirsthit The static cache simulatorag also able to predict the
0, 0,
mv___%2.%0 m caching behavior of instructions that could not be classi-
source fines 9.9 cal | _val ue, 1 Block 2 fied as akays being a hit or alays a miss.It determined
programline 1 |mov %1, %0 that the second instruction in block 3 will miss on its first
Y reference and all subsequent references will be Bitsce
__sourcelines9-9cmp %0,%0 Block 3 | the first instruction in block 5 and first instruction in block

bge,

o L/:i Lot 6 are both classified as first misses andytaee in the
program line 2) same program line, then only one miss will occur associ-

source lines 10-10cal | _val ue, 1 Block 4 ated with both instructions during the prograxecition.

mv_ %1 %0 Finally, the first instruction in block 2 will alays be in
””””””””””””” oo cache on its first reference and may or may not be in
source lines 10-10 nov %0, % 2 Block 5 .

add b1 1 os1 cache on subsequent references depending on whether the
program line 3] second call toral ue() is executed. Thusjn the worst

source lines 8-8[crp % 1, 10 Block 6 case the instruction is viewed as a first hit.

bl , a L18
************** o wowmo The current implementation of the static simulator
source lines 11-11] imposes some restrictions. first, only direct-mapped

ret Block7 | h cache configurations are alfed:” Second, recurge [ro-
program line 4 [restore % 2, %90, %0 h grams are not allowed since cycles in the call graphlav

value() @ ®) complicate the generation of unique function instafices.
source lines 17-17]sethi 9 (_a), %1 Block | fm/fm/m h Finally, indirect calls are not h_andled since an explicit call
_ add %1, %o(_a), %1 m m graph must be generated statically.
program line 5

| dsb [%00+%01] , %01 h h

retl h h 3.4. Timing analysis

nov %1, %00 h h

The goal of this research is to alla wser to acquire
the most accurate bounds on instruction caching perfor
mance of code segments that can be obtained in a reason-

Figure 5: SPARC Insts with Categorizations for Figure 4

"I" =invalid i i i
cache 0123012301 cache 0123012301 able amount qf tlmeA_fter the ;tatl_c cache S|mulatqr has
program | 111012345 program | 111012345 produced the instruction cajerizations, the user will be
PASS 1 gueried for a maximum number of iterations for each loop
i n(%)f Il : : o1] OU:(%) = : : 8% that the compiler could not determine staticallyext, a
i'n(”gagg 1oL } ng(gag ;{ X 45 timing analysis tree is constructed and thersk:case
in(3)=[Il 45] out(3)=[| 12 4 instruction cache performance is estimated for each loop
in(4)= 1241 out(4)=[112 4] in the tree. Once this initial timing analysis has been
! I”g?gg; : 122 ‘25]] Ofu(t?tg)‘:[[' 5322 completed, the timing analyzer accepts timing requests for
in(6)= | 12345] out (6)=[12345 either functions or loops.
in(7)= 12345] out(7)=[12345]
PASS 2
in()=[1111 out(1)=[1101
in(2)=[11012345] out(2)=[1101234
! Pg?gg z : : 013225]] 0 ghg (823 z{ I : 1%%25% ! Recent studies ke siown that direct-mapped caches typically
in(4)= | 1234] out (4)=[| 1234] have a Bster access time for hits, which outweighs the benefit of a high-
i n(8b) = | 1234] out(8b)=[| 2345] er hit ratio in set-associg# aganizations for large caches [13].
in(5)= I 2345] out(5)=[2345] 2 while cycles in a call graph can be detectedy tire also difi-
in(6)= | 12345] out(6)= 12345] cult to describe to a user and it is difficult for the user to estimate the
in(7)= 12345] out (7)=[12345] maximum number of recuss iterations that will be performed.

Figure 6: Calculation of States for Blocks in Figure 5

3 Work is currently progressing on processing timing requests for
ranges of source lines within a single iteration of a loop.

3.5. Constructingthe timing analysis tree through the loop.Blocks representing a child loop in a
path are denoted by having a dashed line boundary
this example all paths can both continue andgt.eThe
worst-case instruction cache performance iemgiaja-

cent to each loop node. The calculation of these results is
described in the next section.

A timing analysis tree is constructed to simplify the
process of predicting the osst-case times. Each node
within the tree is considered a natural Iélowhe outer
level of each function instance is treated as a loop that
will iterate only once when entered.

The timing analyzer ne¢ determines the set of possible
paths through each loofA path is a sequence of unique
blocks in the loop connected by controMfldransitions.

Each path starts with the loop header and is terminated by
a dock with a backdge or a transition to an exit block
outside the loop.Figure 7 shows a simple example that
identifies a loop headebackedges, exit blocks, continue
paths, and exit paths. Each path is designated as either a
continue path (the last block is the head of a bdgk
transition), an exit path (the last block has a transition to
an exit block outside the loop), or both. Thus, each path
corresponds to a possible sequence of blocks that could be 7 €% 2 misses. 3 8
executed during a single loop iteratiomhe number of Figure 8: Timing Analysis Tree for Program in Figure 5
loop iterations indicates the number of times the header of

the loop is gecuted once the loop is entered. 3.6. Loopanalysis

The loops in the timing analysis tree are processed in a
bottom-up mannerin cother words, the worst-case time
for a loop is not calculated until the times for all of its
immediate child loops are knm. Therewill be a worst-
case time calculated that corresponds to each exit block.
Thus, when the timing analyzer is calculating tharst
case time for a path containing a child loop, it uses the
child loop times associated with the exit block of the child

{worst case: 44 misses, 183 hits}
r--a
[1]mi2 7]

{worst case: 42 misses, 178 hits}

{worst case: 1 miss, 4 (b)

exit block ™ loop that is the next block along the paffor instance,
i _ ,) the time associated with the loop in Figure 7 exiting to
Figure 7: Example Introducing Loop Terminology block 5 would be less than the time exiting to block 7

If a path within a loop enters a child loop, then the since block 6 would not bexecuted on the last iteration.

entire child loop is represented as a single block along Letn be the maximum number of iterations associated
that path. Associated with each loop is a set xift e with a loop. The algorithm for estimating therst-case
blocks, which indicates the possible blocks outside thetime for the loop is as follows:
loop that can be reached from the last block in eaith e (1) Calculatethe maximum time required tocecute ay con-
path. Thusthe possible paths within non-leaf loops that tinue path assuming that all first misses are counted as hits
contain child loops can also be calculated. and first hits are counted as miss> the number of cal-
. . L L culated iterations to 0.

F'gl‘!re 8 shows some of the. 'nfo_rmat'on_'n_the timing (2) Goto step 6 if the number of calculated iterations 4l
analysis tree for the program in Figure ®/ithin each 3) Calculatethe maximum time required toecute ay con-
loop node the maximum number of iterations is indicated. tinue path in the current iteration, where each instruction
To the right of each loop node are the possible paths classified as a first miss and not yet encountered is counted
”)) ' _ as a miss and all first hits are counted as misses.

" Anatural loop is a loop with a single entry blocWhile the —(4) Goto step 6 if the time calculated in step 3 is equal to the
static simulator can process unnatural loops, the timing analyzer is re- time calculated in step 1.

stricted to only analyzing natural loops since @uhd be difficult for . . .

both the timing analyzer and the user to determine the set of possible(®) Add the maximum time calculated in step 3 to the total
blocks associated with a single iteration in an unnatural loop. It should worst-case time for the loop. If this is the first iteration,
be noted that unnatural loops occur quite infrequently. subtract the difference between a miss and a hit from the

total worst-case time for each first hit in the loopenote

which first misses will n@ be counted as hits. Add one to Once the maximum time of the current iteration is

the number of calculated iterations. Go to step 2. equal to the time calculated in step 1 (where all first
(6) Add(n-1 - number of calculated iterations) * (time from mijsses are treated as hits), then this value is replicated for
step 1) to the total worst-case time for the loop. all remaining iterations, xeept for the last oneOnce

(7) Calculatethe times for all it paths within the loop for the here are no more first misses encountered for the first
last iteration. For each set of exit paths that\ea tansi- 4,6 (anq the first iteration has encountered all first hits),
tion to a uniquedt block, add the longest time within that then the wrst-case cache performance for a path will not
set to the time calculated in step 6 to produce a taiedtw chanae since the instructiopns within a oath Wg\l'ays be
case time associated with that exit block for the loop. 9 i L P .

.) treated the samerlhe last iteration is treated separately in
The algorithm terminates when the number of calcu- step 7. The longesixi¢ path for a loop may be shorter

lated iterations reaches- 1. The algorithm can terminate han the longest continue path. By examining tki¢ e

earlier if the maximum time required taeeute ay con- paths separatelp ighter estimate can be obtainethus,

tinue path is equal to the maximum time required 10 the aigorithm estimates a bound that is at least as great as
execute a continue path where all first misses are treateqpe gctual worst-case bound.

as hits. In fact, the upper bound on the number of times
that step 3 has to be processednisl, wherem is the
number of paths in the loogEach path will hee its first
misses treated as misses at most onkBer all first
misses are eliminated, the xbemaximum path found
would be equal to the value calculated in step 1.

The timing of a non-leaf loop is accomplished using
this algorithm and the times from its immediate child
loops. Wheneer a path in a non-leaf loop contains a
child loop, then the time associated with that child loop
will be used in the calculation of the path time. The tran-

)] ~ sition of a categorization from the child loopéeto the

The algorithm selects the longest path on each iteration,, rent loop leel will be used to determine if gradjust-
of thg loop. In order to demonstrate the correctness of thepent to the the child loop time is required. These transi-
algorithm, one must shothat no other other path for a {jons petween categorizations and appropriate adjustments
given iteration of the loop will produce a longeomt- 516 gyen in Table 2. The fm=>fm adjustment is neces-
case time than that calculated by the algorithrhe cal- gary since there should be only one miss associated with
culation of a worst-case time associated with a path sim-heinstruction and a miss should only occur the first time

ply requires summing the times associated with each ofiha child loop is enteredThe m=>fh adjustment is nec-
the instructions in the pathThe time used for each essary since the first reference will be a hit.

instruction depends on whether it is assumed to be a hit or

miss, which depends on its cg¢eization. Thecache hit Child => Rarent | Actionto Adjust Child Loop Timé
time is one cycle on most machines. The cache miss time fm => fm Use the child loop time for the
is the cache hit time plus the miss penaltitich is the first iteration. For al remaining
time required to access main memoAll categorizations iterations subtract the miss penal-
are treated identically on repeated references, except for ty from the child loop time.
first misses and first hitsAssuming that the instructions fm=>m Use the child loop time directly.
have been catgorized correctly for each loop, it remains th =>fh Use the child loop time directly.
to be shown that first misses and first hits are interpreted m=> fh For the first iteration subtract the
appropriately for a gen iteration of the loop. miss penalty from the child loop
A first hit implies that the instruction will be a hit on time. For all remaining iterations
- . use the child loop time directly.
its first reference after the loop is entered and all subse- : g :
quent references to the instruction during tkecation of m=>m Use the child loop time directly.

the loop will be missesThe definition the authors used Table 2:
for a first hit requires that the instruction be withirery

path of the loop.Thus, the first path chosen for step 3 To illustrate the use of the worst-case algorithm, the
will encounter gery first hit in the loop. After the first calculation of the worst-case instruction cache perfor
iteration, first hits are treated as misses. mance for the example sko in Figures 4, 5, 6, and 8

A first miss implies that the instruction will be a miss s » i)

its first reference after the loop is entered and all sub-. Note that‘a‘ddltl_onal v_vorkas regwred when the number of dis-
on its firs . ; p b tinct paths containing first misses to different program linegeds the
sequent references will be misses. Step 3 indicates that aRumber of loop iterationsThis situation can commonly occur within
instruction classified as a first miss will be counted as afunctions. Amaximum adjustment value was used to compensate in an

miss only the first time it is encountered. efficient manner for the remaining loop iterations.

Use of Child Loop Times

will be described.The worst-case performance results for
each loop in the timing analysis tree are shown in Figure
8. Sincea loop cannot be timed until its immediate child
loops are processed, thearfunction instances ofal ue

will be processed first, followed by loop 1 1mi n, and
finally the functionmai n. For loops with just a single
iteration, only step 7 in the worst-case algorithm con-
tributes to the calculated performance of that loop.

The worst-case performance for the example is calcu-
lated in the following mannerThe leaf loops of the tim-
ing analysis tree are the dwinstances of the function
val ue and are processed first. The worst-case instruc-
tion cache performances whl ue(a) andval ue(b)
are {2 misses, 3 hits} and {1 miss, 4 hits}, respesyi
For loop 1 innai n, step 1 of the algorithm calculates a
cache performance of {4 misses, 18 hitsyegi that all

3.7. Effectiveness of the timing analyzer

To assess the &fctiveness of the timing analyzesix
simple programs were selectedes (Data Encryption
Standard) encrypts and decrypts 64 bitdatmul multi-
ples 2 50x50 matricesMatsumdetermines the sum of the
nonngaive values in a 100x100 matrixMatcntis a \ari-
ation fromMatsumsince it also counts the number of ele-
ments that were summedort uses the bubblesort algo-
rithm to sort 500 numbers into ascending ordBre final
program, Stats calculates the sum, meanariance, and
standard deviation for twarays of numbers and the lin-
ear correlation coefficient between theotarays.

These programs and the results wdlgating these pro-
grams are shown inables 3 and 4For each program a
direct-mapped cache configuration containing 8 lines of
16 bytes was usedThus, the cache contains 128 bytes.

first misses are treated as hits and first hits are treated Fne programs were 4 to 17 times larger than the cache as

misses. Thisesult was obtained from {2 misses, 10 hits}
from instructions directly in loop 1 and {1 miss, 4 hits}
from both of the imoked function instances ofal ue.
Note that the time obtained from the first function
instance ofval ue was aljusted as described in Table 2
(fm => fm). The result found for the first iteration in step
3 is {6 misses, 16 hits}, which was obtained by adding {3
misses, 9 hits} from instructions directly in loop 1, {2
misses, 3 hits} fronval ue(a), and {1 miss, 4 hits}
from val ue(b). The next result calculated in step 3 is
equal to the result from step By applying step 6, 8*{4

shavn in column 2 of &ble 3. Column 3 shows that each
program was highly modularized to illustrate the handling
of timing predictions across functions. Columns 4-Asho
the static percentage of each type of instructiongcate
rization in the function instance tredzach instruction
within the tree was weighted equallyf an instruction
receves dfferent categorizations for each loop nesting
level, then the ratio of the number of instances for a cate-
gorization to the number of loop nestingdis for the
instruction will be used to calculate the percentager.
example, gven that an instruction is classified as

misses, 18 hits} will be used to represent the performance s/m/m/m" over 4 loop nesting lesls, then 0.25 of the

of the next 8 iterations. Since both paths through the loop

instruction is considered a first miss and 0.75 of the

are exit paths, the worst-case time for the exit paths calcujnstruction is considered anvays miss.

lated in step 7 is the same as the result in stephus,

the total vorst-case performance for loop 1 iimi n is

{42 misses, 178 hits} ({6+9*4 misses, 16+9*18 hits}).
The loop representing the entire functioai n only iter
ates once and is calculated in step The worst-case
instruction cache performance for the entire program is
{44 misses, 183 hits}.This result was obtained by {2
misses, 5 hits} from instructions directly in the outesmle

of mai n and {42 misses, 178 hits} from loop 1imi n.

The worst-case performance result of loop 1 did nateha
to be adjusted in the calculation of the performance of the
function mai n since the functionmai n only iterates
once. Thamplementation of the algorithm calculates the
exact worst-case instruction cache performance for this
example. Thisanalysis requires a complgy of O(p*l),
wherep is the number of paths in each loop dnd the
number of loops in the timing tree.

Table 4 shaws the dynamics results associated with
these test programsColumn 2 indicates the hit ratio for
each programOnly Matmulhad a very high hit ratio due
to spending most of its cycles in 3 tightly nested loops
containing no calls to perform the actual multiplication.
Column 3 shows theycles spent for anxecution with
worst-case input data. The number gtles was mea-
sured using a traditional cache simulator [14], where a hit

Num | Num | Always | Always First First
Name Bytes | Func Hit Miss Miss Hit
Des 2,232 5 70.62% | 26.76%| 1.83% 0.79%
Matmul 788 7 71.15% | 24.51%| 3.57% 0.77%
Matcnt 800 8 70.64% | 25.48%| 2.65% 1.22%
Matsum 632 7 | 69.89% | 26.24%| 3.87% 0.00%
Sort 536 5 68.18% | 27.60%| 4.22% 0.00%
Stats 1,488 8 71.76% | 24.30%| 3.55% 0.39%

Table 3: Static Results for the Test Programs

required one cycle and a miss required ten cycles (a misassumption simplified the algorithm since thieef of all

penalty of nine ycles). These assumptions were
described as realistic by other researchers [13], Cjl-

umn 4 shows the number of cycles estimated by the tim-

ing analyzer Column 5 shass the ratio of the predicted

combinations of paths does notvhao be @lculated and

an exponential time compligy was aoided. Thus,one
reference was counted repeatedly as a miss instead of a
hit. This path was wecuted 10,000 times and this

worst-case instruction cache performance using the timingaccounted for a 90,00¢de [10,000*miss penalty] or 9%

analyzer in column 5 to the obsedsworst-case perfor
mance in column 3. Column 6 she a similar ratio
assuming a disabled cache. Thisveairediction simply

determines the maximum number of instructions that

could be gecuted and assumes that each instruction+efer
ence requires a memory fetch of ten cycles (miss time).

N Hit Obsened Estimated | Estim. | Nave
ame Ratio Cycles Cycles Ratio | Ratio
Des 81.59%| 142,079 158,678 1.12 3.88
Matcnt 85.32%| 959,064 1,049,064 1.09 4.31
Matmul | 99.05% | 2,917,887 2,917,887 1.00 9.21
Matsum | 87.09%| 677,210 677,210 1.00 4.63
Sort 84.05%| 7,620,684 | 15,198,004 1.99 8.18
Stats 88.59%| 357,432 357,432 1.00 4.93

Table 4: Dynamic Results for the Test Programs

The example programs illustrate various point§he
Matmul and Stats programs hee ro conditional state-
ments except to exit loops. The only conditional control
statement besides loops in th&tsumprogram was an
i f-then statement to check if an array elemerdsw
nonngdive. For such programs, predictions forovst-
case performance as compared to oleservorst-case
performance can be estimated very tightly.

The Matcnt program not only determines the sum of
the nonngaive dements (lilke the Matsumprogram), it
also determines the number of nogaee and n@aive
elements in the matrix. Thus, there wasidn t hen-
el se construct used in the code to either add a ngnne

ative value to a sum and increment a counter for the num-

ber of nonngaive dements or just increment a counter
for the ngaive dements. Theadding of the nonmgtive
value to a sum as accomplished in a separate function.
This function vas placed in a location thabwld conflict

overestimation. Notehat the gecution of this single path
accounted for 43.56% of the total instructions referenced
during the &ecution of the program.

The analysis of the final twprograms,Desand Sort,
depicts problems faced by all timing analyzers. The tim-
ing analyzer did not accurately determine thersircase
paths in a function withirDes primarily due to data
dependencies. honger path could not be taken in a func-
tion due to a ariables value in an if statementThe Sort
program contains an inner loop whose number of itera-
tions depends on the counter of an outer loop. At this
point the timing tool either automatically reees te
maximum loop iterations from the controlsfanforma-
tion produced by the compiler or requests a maximum
number of iterations from the useyet, the tool wuld
need a sequence of values representing the number-of iter
ations for each wocation of the inner loop. The number
of iterations performed as werrepresented onvarage
by a factor of tw for this specific loop. This inaccurac
accounted for the werestimation in both the estimated
and naie ratios since most of the cycles for the program
were produced within this loop. Note that both of these
problems hee rothing to do with cache predictability.

3.8. Processing user timing requests

Once the timing analyzer has calculated @strcase
time for each loop in the timing analysis tree, the user can
request specific timing information about portions of the
program. Theuser first specifies the name of a function.
The user is then presented with the set of loops that are
within the function. Each loop is identified by its loop
nesting leel within the function and the source line num-
bers it spans. The user can choose to obtaipratwase
performance for the entire function or select a loSmce
there may be more than one instance of a function within

with the program line containing the code to increment athe timing analysis tree, the timing analyzer will deter

counter for the ngative dements. Multipleexecutions of
thet hen path, which includes the call to the function to
perform the addition, still required more cycles than alter
nating between the twpaths. ‘et, the algorithm for esti-

mine the worst-case times from all function instances
associated with the user request.

4. Future work

mating the worst-case performance assumed that the first We tavedesigned and partially implemented an algo-

reference to a program line within a path wouldagis be
a miss if there were accesses ty ather conflicting pro-
gram lines within the same loop (seable 1). This

rithm to estimate the best-case instruction cache perfor
mance for each loop within a prograr.naive kest-case
estimation, which assumes all instructions along the short-
est paths will be hits, will be much closer to the observ

best-case performance since locality within programs memory in real-time systems will only increase.

causes most instruction references to be Nite. expect

that the estimated best-case performance can be as tightl§. Refeences

predicted as the estimated worst-case performance. [1]

We ae eploring methods to predict the timing of
other architectural features associated with RISC proceslz]
sors. Work is currently ongoing that uses a micro-
analysis technique [5] to predict pipeline performance for
the MicroSPARC |I. The effect of data caching is also an
area that we are pursuingJnlike instruction caching,
mary of the addresses of references to data can chang?4]
during the gecution of a program.Thus, obtaining rea-
sonably tight bounds for avst-case and best-case data
cache performance is significantly more challenging.
However, mary of the data references are ko For 5]
instance, static or global data references retain the same
addresses during theeeution of a program.Due to the
analysis of a function instance tree (no recursiomaett),
addresses of run-time stack references can be statically6]
determined as well. Compiler fioanalysis can be used
to detect the pattern of mamalculated references, such
as indexing through an arrayVhile the benefits of using
a data cache for real-time systems will probably not be asl’]
significant as using an instruction cache, its effect on per
formance should still be substantial.

(3]

5. Conclusions [8]

Predicting the worst-casexeeution time of a program
on a processor that uses cache memory has long been con-
sidered an intractable problem [1], [7], [9This paper [9]
has presented a technique for predictingrsircase
instruction cache performance indweps. Firsta datic
cache simulator analyzes the controWflof a program to
statically categorize the caching beioa of each instruc-
tion within the program. Second, a timing analyzer uses![10]
this instruction caigorization information to estimate the
worst-case instruction cache performance for each loop in
the program.A user is allowed to query the timing ana-
lyzer for the vorst-case performance of yafunction or
loop within the program.

It has been demonstrated that instruction cachevbeha [12]
ior is sufficiently predictable for real-time applications.
Thus, instruction caches should be enabled, yielding a
speedup of four to nine for the predicted worst case ag13]
compared to disabled caches (depending on the hit ratio
and miss penalty). This speedup is a considerable [14]
improvement aver prior work, such as requiring special
architectural modifications for prefetching, which only
results in a speedup factor of 2 [9]. As processor speeds
continue to increaseaster than the speed of accessing
memory the performance benefits for using cache

[11]

-10-

D. Simpson, “Real-Time RISCSSystems Intgation,
pp. 35-38 (July 1989).

J. Hennessy and D.a&tersonComputer Achitecture: A
Quantitative Appsach, Morgan Kaufmann, San Mateo,
CA (1990).

C. Y. Park, “Predicting Program Execution Times by
Analyzing Static and Dynamic ProgranmatRs,” Real-
Time System§(1) pp. 31-61 (March 1993).

D. Niehaus, “Program Representation anriElation

for Predictable Real-Time Systeth®roceedings of the
Twelfth IEEE Real-Time Systems Symposipm 53-63

(December 1991).

M. G. Harmon, TP, Baker and D. B. Whallg, “A Retar-
getable Technique for Predicting Executiom@&,” Pro-
ceedings of the Thirteenth IEEE Re&h& Systems Sym-
posium pp. 68-77 (December 1992).

D. Niehaus, E. Nahum, and J. A. Stavik, “Predictable
Real-Time Caching in the Spring SysténiRroceedings
of the Seventh IEEE Workshop on Real-Time &gy
Systems and Softwarep. 80-87 (April 1990).

T. H. Lin and W S. Liou, “Using Cache to Impre Task
Scheduling in Hard Real-Time Systeim$EEE Work-
shop on Achitecture Support for Real-me Systemspp.
81-85 (December 1991).

D. B. Kirk, “SMART (Stratggic Memory Allocation for
Real-Time) Cache Desigh,Proceedings of the efth
IEEE Real-Time Systems Symposiupp. 229-237
(December 1989).

M. Lee, S. L. Min, C. YPark, Y. H. Bae, H. Shin, and C.
S. Kim, ‘A Dual-mode Instruction Prefetch Scheme for
Improved Worst Case anderage Case Program Esu-
tion Times,” Proceedings of the Fourteenth IEEE Real-
Time Systems Symposjupp. 98-105 (December 1993).

F. Mueller and D. Whallg “Efficient On-the-fly Analy-
sis of Program Behavior and Static Cache Simuldtion,
Static Analysis Symposiympp. 101-115 (September
1994).

F. Mueller, Static Cache Simulation and Its Applications,
PhD Dissertation, Florida State Waisity, Tallahassee,
FL (August 1994).

A. V. Aho, R. Sethi, and J. D. Ullma@ompiles Princi-
ples, Bdniques, and dols, Addison-Weslg, Reading,
MA (1986).

M. D. Hill, “A Case for Direct-Mapped CachesEEE
Computer21(11) pp. 25-40 (December 1988).

J.W. Davidson and D. B. Whalig “A Design Enriron-
ment for Addressing Architecture and Compiler Interac-
tions,” Microprocessos and Microsystems 15(9) pp.
459-472 (Nwember 1991).

