
A Retargetable Technique for Predicting Execution Time�Marion G. HarmonDepartment of Computer And Information SystemsFlorida A & M UniversityTallahassee, FL 32307, U. S. A.T. P. BakerDavid B. WhalleyDepartment of Computer ScienceFlorida State UniversityTallahassee, Fl 32306, U. S. A.AbstractPredicting the execution times of straight-line code sequences is a fundamental problem in the designand evaluation of hard-real-time systems. The reliability of system-level timings and schedulability analysisrests on the accuracy of execution time predictions for the basic schedulable units of work. Obtaining suchpredictions for contemporary microprocessors is di�cult.First a summary of some of the hardware and software factors that make predicting execution time di�cultis presented, along with the results of experiments that evaluate the degree of variation in execution timethat may be caused by these factors. Traditional methods of measuring and predicting execution time areexamined, and their strengths and weaknesses discussed.Second, we present a new technique for predicting point-to-point execution times on contemporary micro-processors. This technique is called micro-analysis. It uses machine-description rules, similar to those thathave proven useful for code generation and peephole optimization, to translate compiled object code into asequence of very low-level instructions. The stream of micro-instructions is then analyzed for timing, via athree-level pattern matching scheme. At this low level, the e�ect of advanced features such as caching andinstruction overlap can be taken into account. This technique is compiler and language-independent, andretargetable.Finally, we describe a prototype system in which the micro-analysis technique is integrated with an existing Ccompiler. This early version predicts the bounded execution time of statement ranges or simple (non-nested)C functions at compile time.Keywords: Real-time systems, point-to-point execution time, best case time, worst case time, and predictingexecution time.�This work was supported in part by grant N00014-87-J-1166, from the U.S. O�ce of Naval Research.
1



1 MotivationA computer program that interacts with and reponds to real world processes in a timely fashion, and mustcomplete execution prior to it's scheduled deadline, is called a \hard" real-time program. It is not su�cient for theimplemented algorithm to be correct. The real-time program must provide the correct response (computation)on time. A late computation is usually no better, possibly even worse, than one that is on time but imprecise.The timing behavior of each real-time program component (task) must be predictable if one is to build reliabledeterministic real-time systems.Much of the research in hard-real-time scheduling theory assumes that the execution time of each task is constant,and available a priori (e.g., Liu and Layland [?], Mok [?]). Stoyenko's work [?] on the schedulability analyzer forReal-Time Euclid addressed the problem of worst case timing analysis of a task, by assuming the execution timeof each instruction is constant. However, the hardware builders [?] concede that the exact execution time of agiven instruction may vary, depending upon the surrounding instructions and the current state of the machine.Recently some researchers have challenged this basic assumption made by much of the hard-real-time schedulingtheory as being unrealistic and have begun to develop tools to assist in determining more precise bounds on theexecution time of programs. Mok and his students [?] have implemented a timing tool that analyzes a stream ofassembly language instructions generated from the compilation of C programs (using a graph method to �nd theworst case path) and computes the execution time by simulating the hardware. Park and Shaw [?] implementeda timing tool for a subset of C, based on the notion of timing schema presented in [?]. A method very similar tothat of Shaw is presented by Puschner and Koza [?]. These approaches are similar in that they all assume thatthe execution time of each machine instruction is constant and that the behavior of the underlying hardware isboth deterministic and known. Shaw acknowledges that although his approach seems to work well when appliedto simple deterministic hardware (e.g., 68010), more research is needed to determine timing predictability onmore complex contemporary machines (e.g., 68020, 68030, 80386, etc.).
2



1.1 OrganizationFirst, we brie
y examine several traditional methods of measuring and/or predicting execution time. Second,we present a new technique for predicting best and worst case bounds for point-to-point execution times, basedon a pattern matching scheme that uses a machine description and a set of timing rules similar to those thathave proven useful for code generation and peephole optimization. This new technique, which we call micro-analysis, is capable of taking into account the architectural characteristics of the target processor and theire�ect on instruction execution time. We also present results of experiments that compare the performance ofmicro-analysis and traditional timing methods. Finally we, describe a prototype system which integrates themicro-analysis technique with a C compiler. This early version predicts execution times for statment ranges orentire functions (non-nested).2 Traditional Timing MethodsSeveral methods for predicting the execution time of time-critical code segments have evolved over the years.In this section a discussion of some more commonly used methods for predicting and/or measuring executiontime of code segments is presented along with an examination of their strengths and weaknesses when appliedto contemporary processors.2.1 Table Lookup MethodThis approach analyzes the target code segment at the assembly language instruction level. The execution timeof each individual instruction is computed by adding the time to prepare the operands to the time to performthe operation. The sum of the execution times of the instructions is considered the total execution time of thetarget code segment. This method will be referred to later as the table lookup method. Timing informationrelative to each instruction and addressing mode is usually determined by the processor's manufacturer and isprinted in the user's manual or programmer's reference manual.3



This method is easy to implement. In fact, there are two approaches to implementing this method. One approachis to perform a post analysis on the assembly listing produced by the compiler, assuming the compiler producesan assembly language listing. Another approach is to integrate the accumulation procedure with the compiler,so that the analysis will be performed as the code is generated.The table lookup method has several disadvantages. First, some compilers do not generate assembly code (e.g.,the Verdix Ada compiler version 5.5). This problem can be overcome by disassembling the object code, althoughit does add an extra step to the analysis process. Second, using the code disassembly approach, it may be di�cultto match the assembly code which requires timing analysis with the corresponding high-level language code. Apossible solution to this problem is to insert markers (i.e., identi�able labels) around the target source codesegment, that will remain in place and be compiled through to the object code level. The main di�culty hereis to insure that the markers are not repositioned or eliminated during optimization. Third, the accuracy of thetiming predictions made using this approach is dependent on the accuracy of the timing information providedby the vendor. Fourth, the table lookup method performs poorly when applied to processors that implement ahigh degree of concurrency (e.g., instruction prefetching, pipelining, etc). For example, Intel suggests increasingperformance estimates that are computed using cycle counts provided in their user's manual by 5% in orderto account for occasional degradation in performance due to re�lling the pipeline after a successful branch [?].Also, operand size and addressing mode can in
uence program performance, but both are generally overlookedin discussions on execution time.2.2 Dual Loop BenchmarkThe dual loop benchmark paradigm is a commonly used method of measuring code execution time using astandard system clock [?]. In fact, this dual loop paradigm can be found in three commonly used Ada benchmarksuites, namely the Ada Compiler Evaluation Capability (ACEC) test suite [?], the Performance Issues WorkingGroup (PIWG) test suite developed by a working group of the Association for Computing Machinery's SpecialInterest Group for Ada (SIGADA), and the University of Michigan test suite [?].4



The resolution of the system clock varies widely from one implementation to another. The dual loop benchmarkapproach deals with imprecise clocks by extending the duration of the test to a length that the clock can measure.This is accomplished by inserting the test code in a loop that is sandwiched between calls to the system clock.The execution time of the test code is determined by executing the loop many times, (e.g., 100K times) andcomputing the average time for the benchmark loop. The overhead introduced by the loop construct distorts themeasurement and must be subtracted away. This is done by measuring the execution time of a second loop thatis identical to the benchmark loop without the test code (a null body). Dual loop benchmarking requires addingnew code to the code segment to be timed (i.e., the loop, increment, test, and bound). Removing this codeafter the measurements are taken can change instruction alignment and execution time. The misalignment ofword and long-word operands can cause contemporary processors to perform multiple bus cycles for the operandtransfer.A major weakness of the dual loop benchmark method is that it assumes that textually equivalent code constructsrequire the same amount of time to execute. In particular, the time required to execute the loop constructs ofthe control loop and the benchmark loop may not be same. Altman and Weiderman in [?] showed that identicalloops exhibited substantial variations in execution time (as much as 12 percent) on speci�c test systems. Forexample, if the control loop �ts into cache but the benchmark loop does not, then the control loop will executefaster than the benchmark loop. This variation in the execution time of the control loop and benchmark loopwill cause the �nal time calculation to be erroneous.Another problem with the dual loop approach is that the application copy of the timed routine and the test copymay yield di�erent executions times, due to di�erences in cache and alignment (instructions and data). Timinga code segment in isolation requires a specially constructed test harness in which to make the measurement. Theconstructed dual loop test with its supporting code will be di�erent from the actual application environment. Alsodata dependences and optimizations issues apply here as well. For instance, a compiler may remove instructionsfrom the control loop through optimization making it necessary to write additional code to suppress the e�ectsof optimization; it is unlikely that the same context would exist in the application.5



2.3 SimulationUsing software to simulate [?] the target processor is another common approach to determining the timingbehavior of a code segment. For instance, the General Code Analyzer component which is part of the SARTOR(Software Automation for Real-Time OpeRations) environment implements a general hardware simulator [?].The accuracy of the prediction depends on two important factors: how well the simulator models the executionalgorithm of the target processor, and the accuracy of the timing data used by the simulator.The implementation of an accurate simulator requires very detailed and precise information about the internalfunctions of the target processor; information that is usually proprietary. This is still a common method ofpredicting processor performance. Software developers who need accurate timing can purchase simulators fromthe processor manufacturer if necessary.2.4 Direct MeasurementAn oscilloscope or a logic analyzer may be used to measure the execution time of a code segment. A logic analyzeris particularly useful when looking at time relationships of data on a bus (e.g., a microprocessor address, data,or control bus). Most logic analyzers are two analyzers in one. The �rst part is the timing analyzer and thesecond is a state analyzer. The state analyzer captures all state information between trigger points, while thetiming analyzer computes the elapsed time between states and trigger points. Hardware timing tools are usuallymore accurate than the other timing methods discussed here, however they also tend to be expensive in severalrespects.There are several disadvantages to using hardware instruments to measure software timing. First, the timinginstrument itself is expensive. Second, it requires a skilled individual to perform the measurements. One musthave a working knowledge of the instrument as well as the software to be timed. Third, this method requiresthat the target processor be available, because the timing data is measured directly on the processor. It is notuncommon to develop software systems to run on hardware that has not yet been built, in order to shortenthe total system development cycle. Fourth, this method produces a single execution time measurement for the6



code segment in question; that measurement is accurate only for the data and processor state present when themeasurement is taken. Variables that in
uence timing, like data size, cache contents, operand and instructionalignment, wait states, interrupts and virtual memory will cause the execution time of a code segment to varyfrom one execution to another when it is executed within the context of a complete application. Some of thesevariables (e.g., cache contents) will become stable, once the code segment starts up and runs for a while, andso are not a major problem for the direct measurement approach. To acquire accurate timings using a logicanalyzer the timing technician must take several measurements under various processing conditions. Still, thereis a possibility of missing the test case that would cause the code segment to execute longer than the maximummeasurement or less than the minimummeasurement observed.3 The Micro-analysis TechniqueThe micro-analysis approach was in
uenced by results produced in the area of compiler design, most notablywork by Davidson and Fraser [?] involving retargetable peephole optimizers. It is based on the concept of usinga machine description, in the form of a set of translation rules, to translate compiler object code into a sequenceof very low level instructions. The stream of micro-instructions is then analyzed for timing, via a multi-levelpattern matching scheme. At this level, the e�ects of advanced features such as caching and instruction overlapcan be taken into account. micro-analysis is a three step process. The three steps are:1. Compile the program and disassemble the object module. The tool suite includes a retargetable disassem-bler generator [?] that was used to build disassemblers for the MC68020 and 80386.2. Transform machine instructions into a sequence of primitive operations which express the functionality ofeach machine instruction in �ne-grain detail. The transformations are performed by a parser that uses themachine description of the target processor to produce a sequence of primitive operations. This process isknown as micro-translation.3. Scan the stream of primitive operations, identifying patterns and applying rules which either specify areplacement pattern or an execution time. The execution times are speci�ed as integers which represent7



the number of clock cycles required for a pattern of primitive operations to execute. When the analysis iscomplete, the execution time of the target code segment is displayed as a bounded integer time interval(i.e., [best case, worst case]).The parser (i.e., micro-translator) is constructed using a parser generator developed by Baker [?]. This parsergenerator was modi�ed so that it would produce a parser capable of emitting primitive operations as it parsedthe assembly language instructions of a code segment. The disassembler generator, parser generator and execu-tion time analyzer were used to construct a timing tool for the MVME133A-20 single-board computer (68020processor) and a Mitsuba personal computer (80386 processor). The tool has been used to predict the executiontime of programs written in Ada, C, and assembly language.4 The Timing ToolThe timing tool predicts a best case and worst case execution time of code segments (i.e, point-to-point executiontime). The tool is composed of three independent retargetable components that correspond to the three stepsin the micro-analysis process:� Disassembler : a program that disassembles object code and produces assembly level instructions.� Parser: a program that transforms machine instructions into a sequence of primitive operations whichexpress the functionality of each instruction in �ne grain detail. The parser is driven by a machinedescription speci�ed in the form of an attributed grammar.� Timer : a rule-driven pattern matching program that evaluates sequences of primitive operations to deter-mine execution time.The tool also includes an interactive user interface which prompts the user to input information that is generallyundecidable, such as the minimum and maximum number of loop iterations, and the beginning and endingpoint of the code segment to be analyzed. The timer component is designed to take into account the speci�carchitectural features of the target processor through its parameterized interface. For instance, the current8



Input: object module?Disassembler?assembler codeParser MachineDescription��?primitive codeTimer TimingRules��? Output: execution time
Timing Tool

Figure 1: Overview of tool componentsversion of the tool predicts timing for code segments executed on the 68020 and 80386 processors. They bothhandle the processor features that in
uence instruction timing, such as memory speed, cache memory size (68020version), memory refresh, pipelining, etc. Figure ?? shows the organization of the tool.5 A Simple Timing Analysis ExampleThe Ada procedure in Figure ?? is used to illustrate the use of our tool. This sample Ada procedure wascompiled using the VERDIX 5.7 cross compiler. Figure ?? shows the output that the user sees after thedisassembly stage. The source level code is annotated with line numbers that are used by the user to specifywhich code segments to time. The assembly code corresponding to the source level statements speci�ed bythe user are passed on to the parser, which transforms each assembly language instruction into a sequence ofprimitive operations (Figure ??) that express the functionality of the corresponding machine instruction(s) in�ne grain detail. For this example, let's assume the user has requested timing for statements 4 through 5. Each9



primitive denotes a speci�c machine level operation, for instance fetch denotes an instruction fetch, =Ms denotesa data write operation, and =sM denotes a data read operation.1 procedure EXAMPLE is2 X, Y: integer:= 5;begin3 for i in 1..100 loop4 X := X + Y;5 Y := i + X6 end loop;7 end EXAMPLE;Figure 2: Line numbered Ada procedure30: fetch =%p =sM =+sa<6> =%s =sM +p =<d0>s NZVC34: fetch =%p =sM =+sa<6> =%s =sM +p =dd<0> +sd NZVCX =<d0>s38: fetch trappv3a: fetch =sd<0> =%p =dM +da<6> =%d =Ms NZVC3e: fetch =%p =sM =+sa<6> =%s =sM +p =%p =dM +da<6> =%d =Ms NZVC44: fetch =sd<0> =%p =dM +da<6> =dM +sd NZVCX =%d =Ms48: fetch trappv Figure 3: Fine-grain primitives for lines 4-5 in Figure 2The timer component uses a set of timing rules which incorporate the architectural features and executionparidigm of the target processor. A timing rule consists of a left-hand side (LHS) and a right-hand side (RHS).The LHS is always a pattern (e.g., one or more primitives). The RHS may be another (higher level) pattern, or atime . For example, the MC68020 always reads a long word (32 bits), thus providing an opportunity for overlapduring the instruction prefetch cycle. The rule to handle prefetching is as follows: fetch & fetch ! pgr. Thisrule will replace a pattern of fetch primitives with the higher level pattern pgr which denotes a program readoperation. After applying the rules to the stream of primitives in a systematic manner until it converges, thetimer predicts a bounded execution time for the code segment. For this example our tool predicted a best casetime of 39 clock cycles and a worst case time of 62 clock cycles. This time bound is very close to that measuredunder the same assumptions on our logic analyzer. In particular, the logic analyzer predicted a best case timeof 37 clock cycles and a worst case of 59 clock cycles. There is a 5% di�erence in the measurements predictedby these two techniques. 10



Micro-analysis 39 62Timing TechniqueTable Lookup 29 77Instruction Counting 21 70Logic Analyzer 37 59Worst caseBest caseExecution Times
Figure 4: Time is expressed in clock cyclesThe table in Figure ?? compares timings predicted by micro-analysis to those measured or predicted using somewell-known techniques of evaluating execution time. The instruction counting technique predicts execution timeby multiplying the number of machine instructions in the code segment by a pair of constants which representthe average best and worst case instruction execution time for the target machine. The table lookup approachpredicts execution time by accumulating the execution times given in the hardware user's manual. The logicanalyzer provides a measurement for a one particular execution of the code segment. This is a fundamentaldisadvantage of the logic analyzer approach, since there is no why of knowing whether or not the measured timeis the true worst case execution time of the code segment.6 Experimental EvaluationEvaluation of the micro-analysismethod was done by comparing its performance to that of four traditional timingmethods, on �ve programs. Since micro-analysis predicts the execution time of code segments, rather than wholeprograms, each program in our test suite represents many tests at the code segment level. For example, the sortprogram in our test suite contained more than 10 code segments and over 56 execution paths. Each program hadto be subdivided into code segments (basic blocks) and each code segment measured separately. Some special
ow-analysis programs were written to automate the process of �nding all the code segments that make up anexecution path and preparing them for timing. The best and worst case execution time for the program weredetermined by comparing the timing results of each execution path. The execution time of each program was11



computed by table lookup, averaging, dual loop, logic analyzer and micro-analysis. The results are displayed,using bar and line charts, in Figures ??- ??.Our test suite consisted of �ve programs varying in size, instructions used and structure. All of the programswere tested on the primary development processor, the MC68020. One program uses the MC68881 coprocessorfor 
oating point operations. One of these programs was also run on the 80386 machine to demonstrate theretargetability of micro-analysis. Programs tested on the MC68020 were compiled by the Verdix Ada crosscompiler and the one tested on the 80386 processor was compiled by the Janus Ada compiler.The programs compiled for the MC68020 processor were executed on a 32-bit monoboard computer (MVME133A-20) and the program designed for the 80386 was executed on a Mitsuba computer. Logic analyzer measurementsfor these programs were made with a Hewlett Packard 1650A logic analyzer. The clock resolution of the HP1650A is 10 nanoseconds. Dual loop measurements were performed on the same computer and the timing resultsprinted to a console connected through an I/O port on the MVME133A-20 monoboard computer. Predictionsmade using the table lookup, averaging, and micro-analysis methods were performed with software tools writtenin the course of this research and timing data found in users manuals.6.1 Results of Timing ExperimentsThe D Tree program tests an operation that might be performed frequently during the insertion of a taskidenti�cation number into a priority queue data structure based on a decision tree. A static integer array is usedto implement the decision tree. In this example we only measure the execution time of the insert procedure. Thebody of the insert procedure consists of a single bounded loop with one entry point and multiple exit points. TheD Tree program has the shortest execution time of our test programs. The bar chart in Figure ?? compareseach method's best and worst case performance on the D Tree program. It is important to note that the logicanalyzer and dual loop measurements are the observed best and worst case execution times across all data setsused in the experiments. Micro-analysis is designed to predict the absolute best case and worst case executiontime over all possible data sets. 12



Micro-analysis predicts a best case time that is 35% below the time measured by the logic analyzer and aworst case prediction that is 12% above the logic analyzer's worst case measurement. Table lookup predicts abest case time that is 77% below the logic analyzer's best case time, and its worst case time is 23% greaterthan the logic analyzer's worst case time. Averaging performs poorly in the worst case (95% over the logicanalyzer's measurement), but does much better in its best case prediction (only 28% below the logic analyzer),far better than table look up. Dual loop performance is within 6% of the logic analyzer performance for bothmeasurements. In the �nal analysis, dual loop provides the tightest upper bound for this example, howevermicro-analysis predicted a very realistic upper bound, and possibly a more comfortable bound for schedulingreal-time programs. The bar charts in Figures ?? and ?? compare the performance (for best and worstcase) of each timing method on four di�erent programs. The Vector Add program simply adds correspondingelements of two 1000 element integer arrays; unlike the other programs it was also tested on the 80386 processor.Figure ?? compares the results measured on the 80386. Matrix Multiply computes the product of two 10 by 10integer arrays. The implementation includes a triple level nested loop. Quick Sort is a recursive program thatsorts a 100 element integer array. FFT is a discrete Fast Fourier Transform program that uses a large numberof 
oating point operations, and it contains several nested loops. All 
oating point operations are performed bythe MC68881 coprocessor.The graphs in Figure ?? and Figure ?? are the line graph versions of the bar graphs above. These graphsprovide a better view of how well each method performs as program execution time increases. If the logicanalyzer is considered to be the most accurate of the timing methods then the data suggest that the dual loopmethod performed quite well on all tests. In fact, for all tests the measurements computed by dual loop arewithin 6% of those computed by the logic analyzer. The performance of table lookup is unpredictable. It isworth noting the poor performance of the table lookup approach when applied to the Matrix Multiply program.This result illustrates the inability of the table lookup approach to accurately account for the e�ects of executionoverlap in its predictions. The Matrix Multiply program consists of 3 nested loops that remain in cache untilthe program terminates after the initial iteration. This characteristic allows the processor to achieve maximumexecution overlap, resulting in an actual best case execution time that is signi�cantly less than that predicted bythe table lookup approach, or by the averaging approach. We were not so surprised by the results of averaging,13



Figure 5: D Tree program
Figure 6: Best case performance comparison
Figure 7: Worst case performance comparison14



Figure 8: Vector Add program (80386 version)
Figure 9: Best case graph comparison

Figure 10: Worst case graph comparison15



since each instruction is assigned the same (constant) execution time regardless of its type, length, addressingmode, or execution context. The graph showing the best case analysis indicates that micro-analysis predicts atime that is consistently less than that measured by the logic analyzer. The performance of these two methodsbegins to converge as the execution time increases. This is the result of small errors compounding over time,causing the predictions to drift higher. The worst case analysis shows that micro-analysis predicts executiontimes that are slightly greater than those measured by the logic analyzer, but well below averaging and tablelookup. These results indicate that micro-analysis out-performs table lookup and averaging by a small marginfor short programs but this margin increases as the execution time of the programs increases.7 Predicting timing at Compile timeThe retargetable timing analysis tool described in section 4 has been adapted to interface with ease (Environmentfor Architecture Study and Experimentation) [?]. The ease environment is designed to measure code producedby the back end of a C compiler known as vpo (Very Portable Optimizer) [?,?,?]. In this section we will describerevisions made to ease to support the timing analysis tool. The tool is capable of providing best and worstcase execution time bounds for a user speci�ed range of contigious C statements or it can predict the boundedexecution time for complete non-nested C functions. To invoke the tool the user need only specify the appropriateoption along with the command to compile a C program. This integration of the timing tool with a compilermakes the tool easier to use and retarget, improves its e�ciency (no parsing of assembly instructions is required),and results in more accurate predictions.7.1 The Compiler InterfaceModi�cations to the ease environment to support the timing tool were minor. When compiling a C source �lewith the option to collect static or dynamic frequency measurements, a �le is produced that contains informationabout the characteristics of the instructions generated by the compiler. ease was modi�ed to emit additionalinformation to this information �le about instructions, basic blocks, loops, and the control 
ow. The timing toolreads the information from the information �le to predict execution times associated with the source code.16



Data about each compiled function in the information �le is structured in the following manner. First the nameof the functions is emitted. Next a record is generated for each loop within the function. The informationrepresented for each loop includes the loop nesting level, the number of iterations (if known), the set of basicblocks that comprise the loop, and the exit blocks (the set of blocks within the loop that have a successor thatis not in the loop). Information about each basic block is produced after the loop information. First a recordcontaining information about the entire block is emitted. The block record contains the block number, the rangeof source lines associated with the block, a list of basic block predecessors, and a list of basic block successors.Source lines are associated with basic blocks instead of individual instructions due to the optimizations performedby the vpo back end. Thus, a request for the bounded execution times of a range of C statements in the prototypemust include entire basic blocks. Following the basic block record is a description of each instruction withinthe basic block. Each instruction record consists of the instruction type, data type processed by the instructionoperation, and indication of whether the condition codes are set and used by a subsequent instruction. Inaddition, the instruction record contains information about the data type, addressing mode, and register usagefor each operand within the instruction. A sample information �le for the C function displayed in Figure ??is illustrated in a readable format in Figure ??. The corresponding assembly instructions produced by thecompiler are also listed to the right of each instruction record. The for loop in the C function spans source lines20-21.To interface the timing tool with the information �le required only minor modi�cations to the timing toolimplementation. First, the disassembler component was removed completely and the parser component wasreduced to a simple translator since the characteristics of each instruction is contained in the information �le. Thetiming component was modi�ed to compute the bounded execution time of basic blocks rather than individualinstructions. Thus, even if a basic block is used in more than one path, its bounded execution time is onlycalculated once. The basic blocks execution times, loop iteration data, and 
ow-control information are used tocalculate a bounded execution time for all execution paths.Preliminary results indicate that this approach holds some promise. It is easy to use, retargetable, and reasonablyaccurate. Since ease can be used to emulate features of proposed architectures, it could also be used to predict the17



void summ(data1, data2, data3)int data1[], data2[], data3[];{int i;for (i = 0; i < 10; i++)data3[i] = data1[i] + data2[i];} Figure 11: A simple C function
function name: summloop: <nesting level 1> <num iters 10> <blocks 2 3> <exit blocks 3>block: <block 1> <lines 20-20> <succs 2><link> <areg long (a6)> <immed anyint ()> link a6,#-4<mov long> <indirect|mem long (a7)> <areg long (a5)> movl a5,a7@<clr long> <dreg long (d1)> <immed anyint ()> clrl d1<mov long> <areg long (a0)> <disp|mem long (a6)> movl a6@(data1.),a0<mov long> <areg long (a1)> <disp|mem long (a6)> movl a6@(data2.),a1<mov long> <areg long (a5)> <disp|mem long (a6)> movl a6@(data3.),a5block: <block 2> <lines 21-21> <preds 3 1> <succs 3><mov long> <dreg long (d0)> <autoinc|mem long (a0)> L41: movl a0@+,d0<add long> <dreg long (d0)> <autoinc|mem long (a1)> addl a1@+,d0<dreg long (d0)><mov long> <autoinc long (a5)> <dreg long (d0)> movl d0,a5@+block: <block 3> <lines 20-20> <preds 2> <succs 4 2><addq long> <dreg long (d1)> <immed anyint ()> addql #1,d1<dreg long (d1)><cmp long ccset> <dreg long (d1)> <immed anyint ()> cmpl #10,d1<jlt long> <label long ()> jlt L41block: <block 4> <lines 20-20> <preds 3><mov long> <areg long (a5)> <disp|mem long (a6)> movl a6@(-4),a5<unlk> <areg long (a6)> unlk a6<ret> rtsFigure 12: Loop, basic block, and instruction information18



performance of software on a proposed machine. Future research will �rst focus on developing a RISC versionof the tool. One challenge will be to correctly predict the stalls due to pipeline hazards. Another plannedimprovement is to allow the prediction of execution times of functions containing calls which will require theconstruction of a call graph. A �nal interesting area of research would be to attempt to provide more accurateestimates of cache performance for execution paths. Better accuracy could be accomplished by determining thedi�erent states a cache can be in at the point a path can be executed.8 ConclusionThis paper describes a retargetable tool for predicting best case and worst case execution time of code segments.In addition to being retargetable, micro-analysis has the added advantage of being language and compilerindependent. The timing tool is currently predicting execution time of code segments targeted for the 68020and 80386 processor. The timing tool has been integrated with a version of the vpo C compiler and the easeenvironment. A prototype has been built and preliminary test are very promising.References[1] N. Altman and N. Weiderman, \Timing Variation in Dual Loop Benchmarks", Technical Report CMU/SEI-87-TR-22, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA 15213, October,1987.[2] C. N. Arnold, \Using the ETA System Multiprocessing Simulator To Prepare for The ETA10 I/O", 4, 4(1),9-12. (1987)[3] T. P.Baker, \A Single-Pass Syntax-Directed Front End for Ada", Proceeding of the SIGPLAN'82 Symposiumon Compiler Construction, (1982), pp. 318-326.[4] M. E. Benitez and J. W. Davidson, \ A Portable Global Optimizer and Linker", Proceedings of the SIGPLANNotices '88 Symposium on Programming Language Design and Implementation, Atlanta, GA, Jun 1988, 329-338.[5] R.M. Clapp et al. \Toward Real-Time Performance Benchmarks for Ada" Communications of the ACM29(8):760-7788, August, 1986.[6] J. W. Davidson and C.W. Fraser, \Automatic Generation of Peephole Optimization", Proceedings of theSIGPLAN'84 Symposium on Compiler Construction, (1984), pp. 111-116.[7] J. W. Davidson and C. W. Fraser, \Code Selection through Oject `Code Optimization", Transactions onProgramming Languages and Systems 6, 4(October 1984), 7-32.19



[8] J. W. Davidson, \A Retargetable Instruction Reorganizer", Proceedings of the SIGPLAN NOTICES '86Symposium on Compiler Construction, Palo Altp, CA, June 1986, 234-241.[9] J. W. Davidson and D. B. Whalley, \Ease: An Environment for Architecture Study and Experimentation",Proceedings SIGMETRICS '90 Conference on Measurement and Modeling of Computer Systems, Boulder,CO. May 1990 P 259-260.[10] A. Hook, G. A. Riccardi, and M. Vilot, \Rational For The Prototype Ada Compiler Evaluation Capability(ACEC) Version 1 and Recommendations for Research and Development of Successive Versions", IDA paper-1915, Dec 1985.[11] Intel Corporation, 80386 Programmer's Reference Manual, Intel Corporation, Santa Clara, CA, 1988.[12] C. L. Liu and J.W. Layland, \Scheduling Algorithms for Multiprogramming in a Hard-Real-Time Environ-ment", Journal of the Association for Computing Machinery, Vol. 20, No. 1, (January 1973), pp. 46-61.[13] A. K. Mok, \SARTOR-a design environment for real-time systems", in Proc. 9th IEEE COMPSAC, Oct.1985, pp. 174-181.[14] A. K. Mok, \The Design of Real-Time Programming Systems Based on Process Models", Proceedings of the1984 IEEE Real-Time Systems Symposium, (December 1984), pp. 5-17.[15] A. K. Mok, \Evaluating Tight Execution Time Bounds of Programs by Annotations", Sixth IEEE Workshopon Real-Time Operating Systems and Software, (May 1989), pp. 74-80.[16] Motorola MC68020 User's Manual, second edition Prentice-Hall. MC68020UM/AD REV 1.[17] Oh, D.I., \A Table Driven Retargetable Disassembler Generator", Master's Project (1989), Department ofComputer Science, Florida State University.[18] C. Y. Park, C.Y. and Shaw, A.C., \A Source-Level Tool for Predicting Deterministic Execution Times ofPrograms", Technical Report # 89-09-12 (Sep. 1989), Department of Computer Science and Engineering,University of Washington.[19] P.Puschner and Koza, CH., \Calculating the Maximum Execution Time of Real-Time Programs", TheInternational Journal of Time-Critical Computer Systems, Vol. 1, number 2, September 1989.[20] A. C. Shaw, \Reasoning About Time in High-Level Language Software", Research Report, LaboratoireMASI, University of Paris 6, April 1987.[21] A. D. Stoyenko, \A Real-Time Language With A Schedulability Analyzer", Ph. D. Thesis, University ofToronto, August 1987.
20


