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Abstract

Static timing analysis safely bounds worst-case execu-
tion times to determine if tasks can meet their deadlines in
hard real-time systems. However, conventional timing anal-
ysis requires that the upper bound of loops be known stati-
cally, which limits its applicability. Parametric timing anal-
ysis methods remove this constraint by providing the WCET
as a formula parameterized on loop bounds.

This paper contributes a novel technique to allow para-
metric timing analysis to interact with dynamic real-time
schedulers. By dynamically detecting actual loop bounds,
a lower WCET bound can be calculated, on-the-fly, for
the remaining execution of a task. We analyze the bene-
fits from parametric analysis in terms of dynamically dis-
covered slack in a schedule. We then assess the potential
for dynamic power conservation by exploiting parametric
loop bounds for ParaScale, our intra-task dynamic voltage
scaling (DVS) approach. Our results demonstrate that the
parametric approach to timing analysis provides 66 %-80%
additional savings in power consumption. We further show
that using this approach combined with online intra-task
DVS to exploit parametric execution times results in much
lower power consumption. Hence, even in the absence of
dynamic scheduling, significant savings in power can be ob-
tained, e.g., in the case of cyclic executives.

1. Introduction

Embedded systems are increasingly deployed in environ-
ments where safety is of the utmost concern, ranging from
avionics to power plants to the automotive industry. Valida-
tion of software in such systems is of increasing importance
due to this trend. Program validation traditionally concerns
the correctness of the input/output relation. In addition to
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I/O correctness, many embedded systems also impose tim-
ing constraints, which, if violated, may not only render a
system nonfunctional, but is also dangerous to the environ-
ment. These systems are commonly referred to as real-time
systems. They impose deadlines on computational tasks to
ensure that results are supplied on time. Often, an approx-
imate result supplied on time is preferably to a more pre-
cise result that becomes available late, i.e., after the dead-
line. In order to verify that real-time systems will meet
their deadlines, designers require that the worst-case exe-
cution time (WCET) of each task in a real-time system be
known. The process of automatically and statically deter-
mining the WCET of a program or task is called timing
analysis. Scheduling decisions are based on each task’s
WCET and the total time in the schedule.

Timing analysis provides bounds on the WCET, and the
closer these bounds are to the true worst-case, the higher the
value of the analysis. But timing analysis is by no means
an easy task. Any bound on execution time first of all re-
quires constraints to be imposed on the timed code (tasks).
The most striking restriction is the requirement to statically
bound the number of iterations within loops. Loop bounds
are required to address the halting problem, i.e., without
loop bounds, the WCET could not be bounded. Upper
bounds on loops can be supplied by the programmer or,
when possible, inferred by program analysis. In practice,
statically fixed loop bounds not only present an inconve-
nience to programmers who may have to specify them, they
also restrict the programs that worst-case timing analysis
can bound.

Parametric timing analysis (PTA) [42] lifts this require-
ment. Instead of statically known loop bounds, variable-
length loops are permitted, e.g., loops can be bounded by
n iterations. The only restriction imposed is that the loop
bound n be known prior to entering the loop during execu-
tion. Such a relaxation considerably widens the scope of
analyzable programs and makes timing analysis more at-
tractive for real-world embedded applications.



Past work on PTA focused on the challenges of timing
analysis to derive parametric expressions that bound the
WCET of parametric loops as polynomial functions. The
values affecting the execution time, such as loop bound 7,
are the parameters to such a function.

This paper focuses on assessing the benefits of PTA for
online scheduling and, most significantly, for dynamic volt-
age scaling. Our work contributes a novel technique to let
PTA interact with a dynamic scheduler. When discover-
ing actual loop bounds during execution prior to entering
a loop, a lower WCET bound can be calculated on-the-fly.
This tighter bound on the remaining execution overhead of
a task may then allow scheduling decisions to be triggered
synchronously with the execution of the task. We analyze
these benefits of PTA resulting from dynamically discov-
ered slack.

Slack may not only be utilized for execution of additional
tasks in admission scheduling, it can also be exploited for
power management. Recently, numerous approaches to dy-
namic voltage scaling (DVS) methods have been studied,
both for general-purpose systems [16, 18, 34, 44] and as
well as real-time systems [17, 39, 35, 6, 14, 6,22, 46, 37,23,
27]. The core voltage of contemporary embedded proces-
sors can be reduced when also lowering their frequency. At
a lower execution rate, power is significantly reduced since
power is proportional to the frequency and to the square of
the voltage: P o< V2 x f.

Past real-time scheduling algorithms have exploited
static and dynamic slack in inter-task DVS approaches
[17,39,35,6,22,46,37,23,27] as well as intra-task saving
schemes [31, 14, 6, 2]. Dynamic slack discovery is typically
based on early task completion or assessing the progress of
execution based on past executions.

Our work takes a novel approach. Instead of depend-
ing on savings from past execution, slack can be safely pre-
dicted for future execution. To this extent, we exploit early
knowledge of parametric loop bounds, which allows us to
more tightly bound the remainder of execution of a task.
We then assess the potential for dynamic power conserva-
tion via ParaScale, our intra-task DVS algorithm. ParaScale
allows tasks to be slowed down when more slack becomes
available, in contrast to past real-time DVS schemes where
tasks were actually sped up in later stages as they approach
their deadline [17].

To evaluate ParaScale, we perform PTA on MIPS-like
assembly generated by gcc. We then assess the benefits of
exploiting PTA in the context of DVS by simulating execu-
tion within a customized SimpleScalar framework [10] that
supports multi-tasking, allows the specification of a custom
scheduler with or without DVS policies, and supports an
assessment of consumed power through enhanced Wattch
power models [9]. Our results demonstrate that the para-
metric approach to timing analysis, such as in ParaScale,

provides significant savings, not only in terms of generat-
ing dynamic slack but also in its potential for power sav-
ings. We further show that using this approach combined
with online intra-task DVS to exploit parametric execution
times results in much lower power consumption by itself,
i.e., without any scheduler-assisted DVS savings. Hence,
even in the absence of dynamic scheduling, significant sav-
ings in power can be obtained, e.g., in the case of cyclic
executives.

The paper is structured as follows. Sections 2 and 3 pro-
vide information on static as well as parametric timing anal-
ysis. Section 4 discusses the context in which parametric
timing results are used. Section 5 introduces the simulation
framework. Section 6 elaborates on the experiments and
results that we have obtained. Section 7 discusses related
work, and Section 8 summarizes the work.

2. Timing Analysis

Knowledge of worst-case execution times (WCETS) is
necessary for most hard real-time systems. The WCET
must be known and safely bounded, so that the feasibility
of scheduling task sets in the system may be determined,
given a scheduling policy, such as rate-monotone or earliest-
deadline-first scheduling [26]. Timing analysis methods
typically fall into two categories — static and dynamic. It has
been shown that dynamic timing analysis methods, based on
trace-driven or experimental methods, cannot guarantee the
safety of WCET values obtained [43]. Architectural com-
plexities, difficulties in determining worst-case input sets
and the exponential complexity of performing exhaustive
testing over all possible inputs are also reasons why dy-
namic timing analysis methods are infeasible in general.

In contrast, static timing analysis methods guarantee up-
per bounds on WCET of tasks. In the following, we con-
strain ourselves to a toolset developed in our previous work
[20, 32, 45, 30]. Static timing analysis models the traversal
of all possible execution paths in the code. Execution tim-
ing is determined independent of program traces or values
of program variables. The behavior of architectural com-
ponents is captured as execution paths are traversed. Paths
are composed to form functions, loops, etc. until finally the
entire application is covered. Hence, we obtain a bound on
the WCET and the worst-case execution cycles (WCECs).

The organization of this timing analysis framework is
presented in Figure 1. An optimizing compiler is modi-
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tion, as a side-effect of the compilation process. Control-
flow graphs and instruction and data references are obtained
from assembly code. One of the prerequisites of static tim-
ing analysis is that an upper bound on the number of loop
iterations be provided to the system.

The control-flow information is used by a static instruc-
tion cache simulator to construct a control-flow graph of
the program and caching categorizations for each instruc-
tion. This control-flow graph consists of the call graph and
the control flow for each function. The control-flow graph
of the program is analyzed, and a caching categorization
for each instruction and data reference in the program is
produced. Each loop level containing the instruction and
data references is analyzed to obtain separate categoriza-
tions. These categorizations for instruction references are
described in Table 1.

| Cache Category]| Definition |
always miss |Instruction may not be in cache when
referenced.
always hit  |Instruction will be in cache when refer-
enced.
first miss Instruction may not be in cache on 1st
reference for each loop execution, but is
in cache on subsequent references.
first hit Instruction is in cache on 1st reference
for each loop execution, but may not be
in cache on subsequent references.

Table 1. Instruction Categories for WCET

The control-flow, the constraint information, the
architecture-specific information and caching categoriza-
tions are used by the timing analyzer to derive WCET
bounds. Effects of data hazards (load-dependent instruction
stalls if a use immediately follows a load instruction), struc-
tural hazards (instruction dependencies due to constraints
on functional units), branch prediction and cache misses
(obtained from the caching categorizations) are considered
by a pipeline simulator for each execution path through a
function or loop. We can accommodate static branch pre-
diction in the WCET analysis by adding the misprediction
penalty to the non-predicted path.

Path analysis is then performed to select the longest ex-
ecution path, and once timing results for alternate paths
are available, a fixed-point algorithm quickly converges to
safely bound the time for all iterations of a loop.

WCET bounds for each path, then each loop, for each
function and finally for the entire task is then derived by the
timing analyzer by the construction of a timing tree, which
is processed in a bottom up manner. WCET’s for outer loop
nest/caller functions are not evaluated until the times for in-
ner loop nests/callees are calculated.

3. Parametric Timing Analysis

In the static timing analysis method presented above, up-
per bounds on loop iterations must be known. They can be
provided by the user or may be inferred by analysis of the
code. This severely restricts the class of applications that
can be analyzed by the timing analyzer. We refer to this
class of timing analyzers as numeric timing analyzers since
they provide a single, numeric cycle value provided that up-
per loop bounds are known.

Parametric timing analysis (PTA) [42], in contrast,
makes it possible to support timing predictions when the
number of iterations for a loop is not known until run-time.

call IntraTaskScheduler(eval loop_k(n));
for (i=0;i<n;i++ ) // max n = 1000
loop body ;

// Parametric Evaluation Function

int eval loop k(int loop_bound) {
return (102 * loop_bound);

}

Figure 2. Use of Parametric Timing Analysis

Consider the example in Figure 2. The for loop denotes
application code traditionally subject to numerical timing
analysis for an annotated upper loop bound of 1000 iter-
ations. PTA requires that the value of n be known prior
to loop entry. The bold-face code denotes additional code
generated by PTA.

PTA enhances this code with a call to the intra-task
scheduler and provides a dynamically calculated, tighter
bound on the WCET of the loop. The tighter WCET bound
is calculated by an evaluation function generated by the
PTA framework. It performs the bounds calculation based
on the dynamically discovered loop bound n. The scheduler
has access to the WCET bound of the loop derived from the
annotated, static loop bound by static timing analysis. It
can now anticipate dynamic slack as the difference between
the static and the parametric WCET bounds provided by
the evaluation function. Without parametric timing analy-
sis, the value of n would have been assumed to be the max-
imum value, i.e., 1000 in this case.

The concept is to calculate a formula (or closed form)
for the WCET of a loop, such that the formula depends
on n, the number of iterations of the loop. The calcu-
lation of this formula, [102*n in Figure 2 ], needs to be
relatively inexpensive since it will be used at run-time to
make scheduling decisions. These decisions may entail se-
lection/admission of additional tasks or modulation of the
processor frequency/voltage to conserve power. Hence, in-
stead of passing a numeric value representing the execution
cycles for loops or functions up the timing tree, a symbolic
formula is provided if the number of iterations of a loop is
not known.



cycles =iter = 0;
do {
iter = iter + 1;
wcpath = find the longest path;
cycles = cycles + wcpath—cycles;
} while (caching behavior of wepath changes);
base_cycles = cycles - (wcpath—cycles * iter);

Figure 3. Parametric Loop Analysis Algorithm

The algorithm in Figure 3 is an abstraction of the revised
loop analysis algorithm for PTA. This algorithm iterates to a
fixed point, i.e., until the caching behavior does not change.
The number of base cycles obtained from this algorithm, be-
fore the final worst-case path time is obtained, is then saved.
It can subsequently be used to detect the number of cycles
in a loop as follows:

WCEToop = WCETpan *n + base_cycles (1)

Equation 1 illustrates that the WCET of the loop depends
on the base cycles and the WCET path time (both constants)
as well as on the number of loop iterations, which will only
be known at run-time for variable-length loops.The tim-
ing analyzer processes inner loops before outer loops, and
nested inner loops are represented as single blocks when
processing a path in the outer loop. We represent loops with
symbolic formulae (rather than a constant number of cycles)
when the number of iterations is not statically known. The
WCET for the outer loop is simply the symbolic sum of the
cycles associated with a formula representing the inner loop
as well as the cycles associated with the rest of the path.

Similar to numeric timing analysis, certain restrictions
still apply. Indirect calls and unstructured loops (loops with
more than one entry point) cannot be handled. Recursive
functions can, in theory, be handled if the recursion depth
is known statically or, via parametric analysis, if the depth
can be inferred dynamically prior to the first function call.
Upper bounds on the loop iterations, parametric or not, still
need not be known but the bounds can be pessimistic as the
actual bounds are now discovered during runtime. In addi-
tion, the timing analysis framework has to be enhanced to
automatically generate symbolic expressions reflecting the
parametric overhead of loops, which will be evaluated at
runtime.

Based on these symbolic formulae for loops, a scheduler
can dynamically adjust the schedule based on the paramet-
ric estimate of the WCET of a task. Additional tasks may
be introduced, and the voltage and frequency can also be
reduced to save power.

If the code within a task is changed to include symbolic
WCET formulae as well as calls to calculate these formulae,
then previous timing estimates as well as caching behavior
of the task might be changed. Hence, rather than inserting a
formula directly into the source code at the point of usage,
a function is invoked that evaluates the symbolic formula.

C Source File
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C Source File
Annotated with
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Functions
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for execution on Simulator

Figure 4. Flow of Parametric Timing Analysis

Once a task has been enhanced with these parametric
functions and their calls prior to loops, the timing analyzer
must be reinvoked to analyze the newly enhanced code.
This allows us to capture the WCET of generated functions
and their invocations in the context of a task. Notice that any
re-invocation of the timing analyzer potentially changes the
parametric formulae and their corresponding functions such
that we have to iterate through the timing analysis process.
This is illustrated in Figure 4 where the process of generat-
ing formulae is iterated. The iterative process converges to
a fixed point when parametric formulae reach stable states.
Typically, the parametric timing analysis and calculation of
the parametric formulae take less than a second to complete.
Since this is an offline process, it does not add to the over-
head of the execution of the parameterized system.

4. Using Parametric Expressions

In the previous section, we illustrated the process of em-
bedding parametric expressions and associated evaluations
functions into the code of tasks. Apart from these inserted
function calls, we also insert calls to transfer control to the
DVS component of an optional dynamic scheduler before
entering parametric loops, as shown in Figure 2. The para-
metric expressions are evaluated at run-time (using evalua-
tion functions similar to the one in the Figure) as knowledge
of actual loops bounds becomes available. The newly cal-
culated, tighter bound, on the execution time for the para-
metric loop is passed along to the scheduler. The scheduler
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Figure 5. Experimental Framework

is able to calculate savings in execution time by comparing
WCEC:s for that particular loop with the newly available
execution time. The WCECs for each loop and the task as
a whole are provided to the scheduler by the static timing
analysis toolset. Static loop bounds for each loop are pro-
vided by hand. Automatic detection of bounds is subject to
future work.

Savings gained from the evaluation of parametric expres-
sions at run-time can be exploited by the scheduler. The
slack gained from the reduced execution can be used to ad-
mit additional tasks. The scheduler may also reduce the
operating frequency and voltage (DVS) of the processor
to save power. In our work, we use the knowledge of re-
duced execution times to reduce the voltage and operating
frequency of the processor.

Our work is unique in that we exploit early knowledge of
parametric loop bounds, thus allowing us to tightly bound
the overall execution of the remainder of the task. To this
effect, we have developed an intra-task DVS algorithm to
slow down the processor. Another unique aspect of our ap-
proach is that every successive parametric loop that is en-
countered during the execution of the task potentially pro-
vides more slack and, hence, allows us to further slow down
the processor. This is in sharp contrast to past real-time
schemes where DVS-regulated tasks are sped up as execu-
tion progresses, mainly due to approaching deadlines.

5. Framework

An overview of our experimental framework is depicted
in Figure 5. In addition to the typical instruction and data
information fed to any timing analyzer, in this case obtained
from the gcc-generated PISA assembly by a P-compiler, C
source files are fed simultaneously to both the static and the
parametric timing analyzers. Safe (but, due to the paramet-
ric nature of loops, not necessarily tight) upper bounds for
loops are provided as inputs to the static timing analyzer
(STA). The worst-case execution times/cycles, for tasks as
well as loops, provided by the STA are provided as inputto a
scheduler. The C source files are also provided to the PTA.

The PTA produces source files annotated with parametric
evaluation functions as well as calls to transfer control to
the scheduler before the entry of any parametric loop. These
annotated source files form the task set for execution by the
scheduler. To simplify the presentation, Figure 5 omits the
loop that iterates over parametric functions till they reach a
fixed point (as discussed in Figure 4). This would create a
feedback between the PTA output and the C source files that
provide the input to the toolset. For the sake of this discus-
sion, we also combine the set of timing analysis tools as one
component in Figure 5, i.e., we omit the internal structure
of a static cache simulator and the timing analyzer depicted
in Figure 1.

We have implemented an EDF scheduler that creates an
initial execution schedule based on the pessimistic WCET
values provided by the STA. This scheduler is also capable
of lowering the operating frequency (and, hence, the volt-
age) of the processor by way of its interaction with two DVS
schemes: (a) a static DVS scheme that uniformly scales
down frequency based on static slack and (b) ParaScale, an
intra-task DVS scheme that, on top of the uniformly scaled
frequency from (a), provides further opportunities to reduce
the frequency based on dynamic slack gains due to PTA.

The static DVS scheme is similar to the static EDF policy
by Pillai and Shin [35]. However, it differs in that the pro-
cessor frequency and voltage are reduced to their respective
minimum during idle periods. ParaScale, our parametric
DVS algorithm, starts a task at the static frequency value. It
then dynamically reduces the frequency and voltage accord-
ing to slack gains from the knowledge on the recalculated
bounds on execution times for parametric loops. The effect
of scaling is purely limited to intra-task scheduling, i.e., the
frequency can only be scaled down as much as the comple-
tion due to the non-parametric WCET allows. Hence, each
call to the scheduler due to entering a parametric loop po-
tentially results in slack gains and lower frequency/voltage
levels.

The simulation environment (used in a prior study [4]) is
a customized version of the SimpleScalar processor simu-



lator that executes so-called PISA instructions (MIPS-like)
[10]. PISA assembly, generated by gcc, also forms the in-
put to the timing analyzers. The framework supports multi-
tasking and the use of schedulers that operate with or with-
out DVS policies. Our enhanced SimpleScalar is config-
ured to model a static, in-order pipeline, with universal, un-
pipelined function units. We use a 64k instruction cache
and no data cache. A static instruction cache simulator ac-
curately models all accesses and produces categorizations,
such as those illustrated in Table 1. The data cache mod-
ule has not been modeled, as our priority was to accurately
gauge the benefits and energy savings of using parametric
timing analysis. For the time being, we assume a con-
stant memory access latency for each data reference and
leave static data cache analysis for future work. The Wattch
model [9], along with certain enhancements, also forms part
of the framework, in that it closely interacts with the simu-
lator to assess the amount of power consumed. The original
Wattch model provides power estimates assuming perfect
clock gating for the units of the processor. An enhancement
to the Wattch model provides more realistic results in that
apart from perfect clock gating for the processor units, a
certain amount of fixed leakage power is also consumed by
units of the processor that are not in use.

The minimum and maximum processor frequencies un-
der DVS are 100MHz and 1GHz, respectively. Volt-
age/frequency pairs are loosely derived from the XScale
architecture by extrapolating 37 pairs (five reported pairs
between 1.8V/1IGHz and 0.76V/150MHz) starting from
0.7V/100MHz in 0.03V/25MHz increments. Idle overhead
is equivalent to execution at 100MHz, regardless of the
scheduling scheme.

6. Experiments and Results

We created several task sets using a mixture of floating-
point and integer benchmarks from the C-Lab benchmark
suite [11]. The actual tasks used are shown in Table 2. For
each of the tasks, the main control loop was parameterized.
We had initially parameterized loops at all nesting levels,
but we observed diminishing returns as the levels of nesting
increased. In fact, the large number of calls to the para-
metric scheduler due to nesting had adverse effects on the
power consumption relative to the base case. Hence, we
limit parametric calls to outer loops only.

Table 3 depicts the period (equal to deadline) of each
task. All task sets have the same hyperperiod of 1200 ms.
All experiments executed for exactly one hyperperiod. This
facilitates a direct comparison of energy values across all
variations of factors mentioned in Table 4.

The parameters for the experiments are depicted in Table
4. We vary utilization, the ratio of worst-case to parametric
execution times (PETs), and DVS support as follows:

Base executes tasks at maximum processor frequency and

C Benchmark WCET

Cycles  |Time [ms]
Adaptive Differ-|121,386,894| 121.39
ential Pulse Code
Modulation

cnt Sum and count of| 6,728,956 6.73
positive and nega-
tive numbers in an

Function

adpcm

array

Ims An LMS adaptive| 1,098,612 10.9
signal  enhance-
ment

mm Matrix Multipli-| 67,198,069 67.2
cation

Table 2. Task Sets of C-Lab Benchmarks and
WCETSs (at 1GHz)

Utilization Period = Deadline [ms]
adpcm | cnt [ Ims | mm
20% 1200 | 240 | 600 | 1200
50% 1200 75 60 | 600
80% 1200 50 | 40 | 240

Table 3. Periods for Task Sets

up to n, the actual number of loop iterations (not neces-
sarily the maximum number of statically bounded iter-
ations) for parametric loops. The frequency is changed
to the minimum available frequency during idle peri-
ods.

Static DVS lowers the execution frequency to the lowest
valid frequency based on system utilization. For ex-
ample, at 80% utilization, the frequency chosen would
be 80% of the maximum frequency. Idle periods, due
to early task completion, are handled at the minimum
frequency.

Parametric is the same as Base except that calls to the
parametric scheduler are issued prior to parametric
loops without taking any scheduling action. This as-
sesses the overhead in scheduling of the parametric ap-
proach over the base case.

ParaScale combines static and intra-task DVS so that tasks

| Parameter | Range of Values |
Utilization 20%, 50%, 80%
Ratio WCET/PET | 1x, 2x, 5x, 10x, 15x, 20x
Base
DVS Static DVS
algorithms Parametric
ParaScale

Table 4. Parameters Varied in Experiments



start their execution at the lowest valid frequency based
on system utilization. Before a parametric loop is en-
tered, the frequency is scaled down further according
to the difference between the WCET bound of the loop
and the parametric bound of the loop calculated dy-
namically. ParaScale also exploits savings due to al-
ready completed execution relative to the WCET for
frequency scaling. (These savings are small compared
to the savings of parametric loops since parametric
loops generally occur early in the code.)

Notice that all scheduling cases result in the same
amount of work being executed during the hyperperiod (or
any integer multiple thereof) due to the periodic nature of
the real-time workload. Hence, to assess the benefits in
terms of power awareness, we can measure the energy con-
sumed over such a fixed period of time and compare this
amount between scheduling modes. Two types of energy
measurements are carried out during the course of our ex-
periments:

PCG: Energy used with perfect clock gating (PCG) — only
processor units that are used during execution con-
tribute to the energy measurements. This isolates the
effect of the parametric approach on dynamic power.

PCGL: Energy used with perfect clock gating for the pro-
cessor units and a leakage (PCGL) value for the re-
mainder of the processor. This illustrates the effect of
static power, which is becoming more and more im-
portant for smaller fabrication (die) sizes.

We also vary the ratio of worst-case to actual (paramet-
ric) execution times to study the effect of variations in exe-
cution times and make the experimental results more realis-
tic. More often than not, the worst-case analysis of systems
results in overestimations of WCET. ParaScale can take ad-
vantage of this to obtain additional energy savings.
Overall Trends

Figure 6 depicts the total energy consumption for each
experiment. While Figure 6(a) depicts the energy consump-
tion for the case where the WCET overestimation is as-
sumed to be twice that of PET, Figure 6(b) depicts the en-
ergy consumption for an overestimation factor of ten. Both
graphs break down the data into different utilization factors
for the implementations. In both graphs, we see that the en-
ergy consumption by the ParaScale implementation is much
lower than for the base or static DVS cases. In fact, ParaS-
cale always consumes the least amount of energy for any
given utilization.

From both graphs, we see significant savings while using
our ParaScale model over the Base case, ranging from 66%
for Figure 6(b) to 80% for 6(a). The savings over static are
16-60% for 2x under 20% and 80% utilization, respectively.
Leakage Power

The results presented in Figure 6 are for energy values
assuming perfect clock gating (PCG) within the processor,

i.e., they reflect the dynamic power consumption of the pro-
cessor. These results isolate the actual gains due to the para-
metric approach. However, dynamic power is not the only
source of power consumption on contemporary processors,
which usually have some leakage power caused by inactive
processor units. In Figure 7, we present energy consump-
tion with perfect clock gating and a constant leakage power
(PCGL) for function units that are not being used. We still
see that results for experiments that use the parametric for-
mulae outperform those that do not. Most noticeable are the
results for ParaScale (at the right end), which uses a com-
bination of static DVS and intra-task parametric DVS. We
observe the least amount of energy consumption for these
cases under all utilization scenarios. ParaScale, our com-
bined static and parametric DVS, in contrast, outperforms
all others by significant margins.

WCET/PET Ratio and Utilization

We observe slightly smaller energy savings for higher
WCET factors (10x) when compared to lower ones (2x).
This is due to the fact that more slack is available in the sys-
tem for the static algorithm to reduce frequency and volt-
age. Irrespective of the overestimation factor, ParaScale
performs the best for all utilizations. Another useful result
is that our technique performs better for higher utilizations,
as seen for the results for the experiments with 80% utiliza-
tion in Figures 6 and 7. As the ParaScale technique is able
to take advantage of intra-task scheduling based on knowl-
edge about past as well as future execution for a task, it is
able to lower the frequency more aggressively than other
DVS algorithms. This is more noticeable for higher utiliza-
tion tasksets because less static slack is available to static
algorithms for frequency scaling.

Parametric Scheduler Overhead

In Figures 6 and 7, we observe a striking similarity be-
tween results for base and parametric cases, but parametric
results are slightly worse. In the parametric case, there is
additional overhead in calling the parametric scheduler be-
fore entering into parametric loops while that both sets of
experiments are identical in every other regard. Hence, the
difference illustrates the low overhead of such additional
scheduler calls. As mentioned before, we also experimented
with nested parametric loops, which showed significantly
higher energy values of the parametric case when compared
to the base counterparts. Hence, nested parametric loops
were considered an impractical approach.

Overall, these results show that our parametric imple-
mentation, when combined with DVS, as seen in ParaS-
cale, outperforms implementations that do not make use of
parametric knowledge. The most significant gains in energy
conservation are seen when leakage is considered in the pro-
cessor. Without taking leakage into account, we still obtain
solid gains. Thus, we can achieve significant energy sav-
ings on contemporary processors, without significant leak-
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age as a contributor to power consumption. Any technique
that further reduces leakage will inadvertently result in ad-
ditional gains while using our parametric techniques, i.e.,
our parametric approach complements leakage awareness.

7. Related Work

Timing analysis has become an increasingly popular re-
search topic. This can be attributed in part to the problem
of increasing architectural complexity, which makes appli-
cations less predictable in terms of their timing behavior,
but it may also be due to the abundance of embedded sys-
tems that we have recently seen. Often, application areas
of embedded systems impose stringent timing constraints,
and system developers are becoming aware of a need for
verified bounds on execution times. While dynamic timing
methods cannot provide safe bounds on the WCET, static
timing analysis can [43]. Nonetheless, dynamic bounds can
complement static ones by providing a means to assess their
tightness.

These developments are reflected in the research com-
munity where numerous methods for static timing analysis
have been devised, ranging from unoptimized programs ex-
ecuting on simple CISC processors to optimized programs
on pipelined RISC processors and even uncached architec-
tures to instruction and data caches as well as branch pre-
diction and locking caches [33, 36, 19, 25, 21, 32, 45, 15,
28, 24, 13, 29, 41, 40].

In the past, path expressions were used to combine
a source-oriented parametric approach of WCET analysis
with timing annotations, verifying the latter with the for-
mer, particularly by Chapman et al. [12]. Bernat and Burns
proposed algebraic expressions to represent the WCET of
programs [7]. Bernat at el. used probabilistic approaches
to express execution bounds down to the granularity of ba-
sic blocks that could be composed to form larger program
segments [8]. Yet, the combiner functions are not without
problems, and timing of basic blocks requires architectural



knowledge similar to static timing analysis tools.

Parametric timing analysis by Vivancos et al. [42] first
introduced techniques to handle variable loop bounds as an
extension to static timing analysis. Their work focuses on
the use of static analysis methods to derive parametric for-
mulae to bound variable-length loops. Our work, in con-
trast, assesses the benefits of this work, particularly in the
realm of power-awareness.

The effects of DVS on WCET have been studied in the
FAST framework [38]. Here, parametrization was used to
model the effect of memory latencies on pipeline stalls as
processor frequency is varied. In our timing analyzer, we
currently do not model these effects. This does not affect the
correctness of our approach since WCET bounds are safe
without such modeling, but they may not be tight, as shown
in the FAST framework. Hence, the benefits of parametric
DVS may even be larger than we report here.

The VISA framework suggested architectural enhance-
ments to gauge progress of execution by sub-task partition-
ing and exploits intra-task slack with DVS techniques [4, 5].
Their technique did not exploit parametric loops. Our work,
in contrast, takes advantage of dynamically discovered loop
bounds and does not require any modifications at the micro-
architecture level.

The most closely related work in terms of intra-task
DVS is the idea of power management points (PMPs)
[2, 3, 1]. In this work, path-dependent power manage-
ment hints (PMHs) were used to aggregate knowledge about
“saved” execution time compared to the worst-case execu-
tion that would have been imposed along different paths.
This work differs in that it exploits knowledge about past
execution while we discover loop bounds that let us provide
tighter bounds on past and future execution within the same
task. The work is also evaluated with SimpleScalar, albeit
with a more simplistic power model (E = C'V?) while we
assess power at the micro-architecture level using enhance-
ments of Wattch [9]. Again, our results could potentially be
further improved by also benefiting from knowledge about
past execution, which may lead to additional power savings.
This is subject to future work.

8. Conclusion

In this paper, we have shown how parametric timing
analysis can benefit decision-making processes during on-
line scheduling, particularly for power-aware scheduling.
The technical contributions are as follows. First, a fixed-
point approach for embedding parametric formulae into ap-
plication code is developed, which bounds the worst-case
execution time of not only the application code but also
the embedded parametric functions and their calls. Prior
to entering a parametric loop, the actual loop bounds are
discovered and can thus provide a lower WCET bound for
the remaining execution of the task. Second, we quantify

the benefits from parametric analysis in terms of power sav-
ings for sole intra-task DVS as well as ParaScale, our com-
bined intra-task and static inter-task DVS. Here, parametric
loops are exploited to gradually scale down the frequency
as parametric loop bounds are discovered one by one. We
observe savings ranging from 66% to 80% in power over
DVS-oblivious techniques, depending on system utilization
and the amount of overestimation for loop bounds. These
benefits are unique to parametric timing analysis and can-
not be achieved by conventional timing analysis methods
due to lack of knowledge about remaining execution times.
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