WCET Code Positioning

Wankang Zhaa), David Whalleyl, Christopher Healg/, Frank Muellef
1Computer Science Dept., Florida State University, Tallahassee, FL 32306-4530; e-mail: whalley@cs.fsu.edu
2Computer Science Dept., Furman University, Greenville, SC 29613; e-mail: chris.healy@furman.edu
3Computer Science Dept., North Carolina State University, Raleigh, NC 27695; e-mail: mueller@cs.ncsu.edu

Abstract constraints that were prieusly infeasible.Improving the
WCET may also allw an anbedded system deoper to
use a lower clock rate (still meeting the timing constraints)
and s&e power, which is valuable for mobile applications.

Some pocessos incur a pipeline delay whewer an
instruction tansfes control to a taget that is not the nd
sequential instructionCompiler writes atempt to educe

these delays by positioning the basic blocks within a func- One type of compiler optimization is to reorder or posi-
tion to minimize the number of unconditional jumps and tion the basic blocks within a functioriThe benefits of

taken conditional bandhes that occur Such a ode posi- such a transformation include impiog instruction cache
tioning algorithm is taditionally driven by profile data locality and reducing misfetch penalties recent years
representing typical mgram executions wher pairs o instruction cache performance has become less of a con-

blocks ae placed in contiguous order when tharsitions ¢ as instruction cachesveancreased in size. Iratt,
between these blocks occur mostjfrently In this paper ~ mary embedded processorswearo instruction cache and
we describe an appadc to perform code positioning an embedded application is instead often placeddMR

without profiling in an attempt teeduce WCET instead of However, some processors still incur a pipeline delay
ACET. Our compiler inteacts with a timing analyzer to associated with each transfer of control. Such delays are

obtain WCET path information to guide the tqmsi- more common for embedded machines where branch pre-
tioning. The results show over a 9% amge eduction in diction and target iffers may not exist in order to reduce
WCET is ahieved after code positioning is performed and the compleity of the processorCompiler writers attempt

our greedy WCET code positioning algorithm always to reduce these delays by ordering the basic blocks to min-

achieves optimal results for our benchmark suite. imize the number of unconditional jumps and etak
branches that occuiThe optimization phase that performs
1. Introduction this transformation in a compiler is typically referred to as

a mde positioning or branch alignment optimization.
Generating acceptable code for applications residing onExisting code positioning algorithms weight the directed
embedded systems is challengingnlike most general- edges (transitions) between the nodes (basic blocks) of a
purpose applications, embedded applications oftga tva control-flov graph by the number of times the edgasw
meet various stringent constraints, such as time, space, andaversed at run-time [1, 2, 3, 4, 5]. In general, these algo-
powet Constraints on time are commonly formulated as rithms order basic blocks by attempting to mdke most
worst-case(WC) constraints. If these timing constraints frequently traersed edges contiguous in memory.

are not met, en only occasionally in a hard real-time Unfortunately traditional code positioning algorithms
system, then the system may not be considered functional, .o ot guaranteed to reduce the WCET of an application
The worst-case recution timgWCET) must be calcu- since the most frequentlkecuted edges may not be con-
lated to determine if a timing constraint willways be tained in the WC pathsEven if WCET path information
met. Accurateand safe WCET predictions can only be were used by the code positioning algorithm, a change in
obtained by a tool that statically analyzes an application tothe positioning may result in a different path becoming the

calculate an estimated WCEBuch a tool is called am- WC path in a loop or a function. In contrast, the fre-
ing analyzer and the process of performing this calcula- queng of the edges based on profile data, which is used in
tion is calledtiming analysis traditional code positioning, does not changgamdiess of

It is desirable to not only accurately predict the WCET Now the basic blocks are ordered. Thus, WCET code
but to dso improve it. Improving the WCET of a task positioning is inherently more challenging tharCEAT

may enable an embedded system to meet its timing(2VErage casexecution time) code positioning.

In this paper we describe an approach for imjom and Masticola outlined hoa variety of standard compiler
the WCET of an application by code positioningv/e optimizations could potentially f&fct timing constraints of
have integgrated a timing analyzer with a compiler where critical portions in a task.However, no implementation
the WCET of the application and the current function canwas described [20]. Hong and Gerber deloped a pro-
be calculated on demand. After each edge is selected fogramming language with timing constructs and used a
positioning, the timing analyzer isvioked and up-to-date trace scheduling approach to impeocode in what the
WCET path information is obtained. After positioning all deemed to be critical sections of the prograrawever,
of the edges in a function, we also align the blocks whichno empirical results were\gn snce the implementation
are targets of transfers of control to further reduce WCETdid not interface with a timing analyzer toakiate the

by minimizing target misalignment penalties. impact on reducing WCET [21]Both of these papers out-
lined strategies to nve @de outside of critical sections
2. RelatedWork within an application that lva been designated to contain

timing constraints.However, most real-time systems use

A timing analyzer is a tool that can statically analyze athe WCET of entire tasks to determine if a schedule can
program and predict its WCETThere hae been a num- be met. Leeet al.used WCET information to selectwio
ber of general approaches thavédeen used to delop to generate code on a dual instruction set processor for the
timing analyzers.One approach to predict WCET uses ARM and the Thumb [22]. ARM code is generated for a
ILP (integer linear programming)An ILP based approach selected subset of basic blocks that can impact the WCET
examines the control fle of a program and deves ©n- Thumb code is generated for the remaining blocks to min-
straints that can be input to an ILP solver to predict theimize code size. In contrast, wevieacevdoped a com-
WCET [6, 7, 8]. This approach is appealing since con- piler optimization to reduce the WCET of an application
straints due to the structure of the controwflgraph on a single instruction set processdinally, a genetic
(structural) and program values (functional) can both bealgorithm has been used to search for dacéfe oti-
provided to the same sav Howeve, the result of the mization phase sequence that best reduces WCET for an
ILP analysis is a single WCET prediction for the entire gpplication [23]. This approach uses standard compiler

task, which means that it does not\pde the detailed optimizations, whereas we V& devdoped optimizations
information needed by a compiler to optimize for WCET that are dsien by WCET path information.

The ILP approach can also become more time consuming L .
. : There hae keen seeral code positioning (basic block
as the size of the program and the corresponding number .
; . reordering) approaches thatveabeen deeloped. Some
of constraints increase. Other researcherge haed a aloorithms. hee the qoal of imoreing instruction cache
symbolic-executiorapproach to calculate the WCET [9, 9 9 praing

10]. This approach symbolically simulates the program performance .[1’ 2, 8]. Other aIgonthm;Nbaihe primary
instructions by allwing the values of variables to be goal of reducing the number of dynamic transfers of con-

. . . trol (e.g. unconditional jumps and &k branches) and the
unknavn. Symbolicexecution can preide a very accu- ; L o
X . . L associated pipeline penalty on specific processors [4, 5].
rate WCET estimate since it can implicitly handle most o : .
. . ST All of these approaches use profile information to obtain a
functional constraintsHowever, the analysis time is pro- weiaht for each directed edae in a controwflaraph b
portional to the WC number ofxecuted instructions. 9 9 grapn by

Thus, the analysis can be prohiéty slow, which is not coun'tlng the number of times the edgasvuraersgd at
. . . :) run-time. Thus,these approaches attempt to im@o
ideal for interfacing with a compilerin contrast, we use a

path-basedapproach for timing analysis, where each path ACET. In contrast, we describe a code positioning algo-
at each function and loopvd is analyzed for its WCET rithm in this paper o imps@ WCET. Other approaches

[11, 12, 13, 14, 15, 16, 17, 18, 19]. Our timing analyzer have performed code positioning in combination with

also calculates WCET predictions very quickly [19], code duplication towmid the eecution of unconditional

which means performing timing analysis during compila- J; mfjacilds (l:)c:?nnecshii trgg,enzsse]];?einfrigeszt d 2]; dt:essige
tion would not significantly increase compilation time. bp '

Thus, it is feasible to use a path-based timing analysisWhICh may not be appropriate for embedded applications.

approach to supply WCET path information to a compiler . .
in an attempt to reduce the WCET of a function. 3. Experimental Environment

While there has been much work orveleping com- In this section we provide a brief description of the
piler optimizations to reducexecution time and, to a experimental environment in which this researchsvper
lesser gtent, to reduce space and power consumption,formed. W gve an overview of the compiler and timing
there has beerewy little work to reduce WCETMarlowe analyzer that we use andvinahey interact. V¢ dso

describe the processor for which the compiler generatesegister numbers that are referenced.

code and the timing analyzer calculates the WCET.

We have developed a system where a compiler can
obtain WCET information from a timing analyzer upon
demand [23]. Figure 1 shows aweoview of the flowv of
information. Thecompiler will send information about
the control flev and the current instructions thatJealeen
generated to the timing analyzeWCET predictions will
be sent back to the compileiThe compiler we use is
VPO, which performs its optimizations on avitevd rep-
resentation that is equaent to machine instructions [26].
This level is appropriate for inteidicing with a timing ana-
lyzer so that accurate WCETSs can be obtained.

Source Timing
Files Analyzer

Figure 1: Overview of the Worst-Case
Aware Compilation Process

control flow and
instruction info

e Assembly

WCET predictions Files

The timing analyzer we use for this study calculates the
WCET for each path, loop, and function in the program.
It performs this analysis in a bottom up fashion, where the
WCET for an inner loop (or called function) is calculated
before determining the WCET for an outer loop (or calling
function). Ourtiming analyzer has been used in the past
to predict WCETs for applications thatxeeute on
machines with an instruction cache [11, 15], a pipeline
[12, 15], and a data cache [13, 17]. In addition, it can
automatically calculate the maximum number of iterations
of mary loops, including those wolving nonrectangular
loop nests [14, 18]Finally, the timing analyzer can also
detect map constraints on branches that restrict the set of
paths that can be taken in a program [16, 19].

We haveported both the VPO compiler and our timing

analyzer to the StarCore SC100 processor [27]. This pro-

cessor has neither a memory hiergrého caches or vir
tual memory system) nor an OS, which facilitates obtain-
ing tight WCET predictions [23]It has no architectural
support for floating-point operations since it is a digital
signal processor and was designed instead fed{point
arithmetic. Ithas 16 data registers and 16 addregss+e
ters. TheSC100 also has a simple divdage pipeline,
where most instructions can perform ik®eution in a sin-

The most releant feature of the SC100 for WCET code
positioning is that all transfers of control (taken branches,
unconditional jumps, calls, and returns) result in a one to
three cycle penalty depending on the addressing mode
used and if a transfer of control uses a delay d\g.have
found that transfers of control penalties can lead to nonin-
tuitive WCET results. Consider the fla graph in Figure
2. A superficial inspection of the corresponding function
might lead one to bele that the path L.2-3 is the
WCET path since it results in more instructions being
executed than in the path-13. However, if the talen
branch penalty in path-13 outweighs the cost ofxecut-
ing the instructions in block 2, then path. 3 would be
the WCET path. This simplexample illustrates the
importance of using a timing analyzer to calculate the
WCET. Measuring the»ecution time is not safe since it
is very dificult to manually determine both the WC paths
and the input data to d@g the execution of these paths.

block 1 insts

block 2 insts

block 3 insts

Figure 2: Example Control-Flow Graph

Another particularly releant feature of the SC100 for
WCET code positioning is that SC100 instructions are
grouped into fetch sets, which are four words (eight bytes)
in size and are aligned on eight byte boundaries. When a
transfer of control occurs to an instruction in avrfetch
set and the target instruction spans more than one fetch
set, then the processor stalls for an additiogealec This
situation is illustrated in Figure 3, where thegitrinstruc-
tion spans fetch sets+1 andn+2.

. fetchsetn | fetchsetn+l | fetchsetn+2 |
| transfer o | target |
1 control ! instructior !
| | | |
| | |

Figure 3: Example of a Misaligned Target Instruction

4. WCET Code Positioning

gle stage. There are no pipeline interlocks and it is the

responsibility of the compiler to schedule instructions an

to insert noops when a subsequent instruction uses th&

result of a preceding instruction that will not beilable

in the pipeline. The size of the instructions can vary from
one word (tvo bytes) to five words (ten bytes) depending
on the instruction type, addressing modes used, an

-3-

d The goal of most code positioning algorithms is to

educe the ACET by positioning the basic blocks within
the frequent flw of control contiguously in memory
Code positioning is essentially an attempt to find the most
efficient permutation of the basic blocks in a function.

dExhausN/e gproaches are not typically feasiblgcept

when the number of blocks is small since therenhpmos-
sible permutations, whemreis the number of basic blocks

Consider the source code in Figure 5, which is a con-
trived example to illustrate the algorithnfigure 6 shars

in the function. Thus, most approaches use a greedy algothe corresponding control fiothat is generated by the

rithm to avoid excessie increases in compilation time.

The goal of a WCET positioning algorithm is to select
edges between blocks to be contiguous that will minimize
the WCET A directed edge connecting avibasic blocks
is contiguousif the source block is immediately folleed
by the target block in memanHoweve, not all edges can
be contiguous. Consider the portion of a control-flo
graph shown in Figure 4. If edde(shavn as a solid line)
is selected to be contiguous, then no other edges to th
same target can be contiguousor example, edge can

compiler While the control flav in the figure is repre-
sented at the source codedeo simplify its presentation,

the analysis is performed by the compiler at the assembly
instruction level after compiler optimizations are applied
to allov more accurate timing prediction®ote that some
branches in Figure 6 fia conditions that are wersed
from the source code in Figure 5 to depict the branch con-
ditions that arewluated at the assembly instructionde
ge/eral unconditional jumps, represented in Figure 6 as
goto statements underneath dashed linesyeh&een

no longer be contiguous since its source block 4 cannot bénserted to mad dl transitions between basic blocks result

positioned immediately before its ¢@t block 2. Like-

wise, only a single edge among the set that share the san|

source block can contiguougor instance, selecting edge
b to be contiguous will makedge ¢ noncontiguous since
the taget block 3 cannot be positioned immediately after
source block 1.

Figure 4: Slecting an Edge to Be Contiguous

WCET code positioning needs to beven by WCET
path information. Our timing analyzer calculates all paths
within each loop and the outenv& of a function. Apath

in a transfer of control penaltyThe unconditional jumps

B blocks 3 and 6 were already preser@onditional
branches are representedifastatements in Figure 6The
jumps (shown agoto statements) immediately follong
each conditional branch are actually placed in separate
basic blocks within the compilar'representation, but are
shavn in the same block as the corresponding branch in
the figure to simplify the presentation of theample. The
transitions (directed edges) between nodes are labeled so
they can be referenced latefFigure 7 shows the paths
through the control flw graph. Riths A-D represent paths
within the loop. Pah E represents the outewvét path,
where the loop is considered a single node within that
path. W oconsider backedges (directed edges back to the
entry point of the loop) to be part of the paths within the
loop since these edges can bevdrsed on all loop itera-

consists of nodes that are basic blocks and edges that atins, except for the last ond.ikewise, the git edges

control-flov transitions. EacHoop path starts with the
entry block in the loop and is terminated by a block that
has a transition back to the entry block or outside the loop
A function path starts with the entry block to the function
and is terminated by a block containing a retufra path

enters a nested loop, then the entire nested loop is consid-

ered a single node along that path.

Our compiler obtains the WCET for each path in the
function from the timing analyzenf the timing analyzer
calculates the WCET path information on the original

positioned code, then changing the order of the basic
blocks may result in unanticipated increases in the WCET

for other paths since prmusly contiguous edges may
become noncontiguousWe cecided instead to treat the
basic blocks as being initially unpositionedhus, we
actually modify the code so that all transitions between

blocks are accomplished using a transfer of control and

will result in a transfer of control penaltyrhis means an

unconditional jump is added after each basic block that
does not already end with an unconditional transfer of

control (i.e., unconditional jump or return).

(directed edges leaving the loop) are considered part of the
outer paths containing the loop since aft eedge is
executed at most once each time the loop is entered.

for (i =0; i < 1000; i++) {
if (a[i] < 0)
al[i] = 0;
el se {
a[i] += 1;
sumal la += a[i];
}
if (b[i] < 0)
b[i] = 0;
el se {
b[i] += 1,
sumal I'b += b[i];
b[i] =a[i] - 1;
}
return;

Figure 5: Source Code Example

all current unpositioned edges are assumed to be noncon-
tiguous. ThelLB-WCET (lower bound WCET) of a path
indicates the WCET when all current unpositioned edges
are assumed to be contiguouths are also classified as
contributing or noncontributingto the WCET A path is
considerednoncontributingwhen its UB-WCET is less
than the LB-WCET of another path within the same loop

il=0 . S
Zg]to 5 (or outermost ledl of a function). Noncontribting paths
cannot affect the WCET.
afi] +=1; Our WCET code positioning algorithm is described in
|sumalla+=all; | Figure 8. At this point tayet alignment penalties are not
goto 5; assessed by the timing analyzer since WCEgetaalign-

ment, described in Section 5, is performed after WCET
code positioning. The algorithm selects amgpositioned
edge at a time to makcontiguous These edges are

bl = 0 Lt selected by firstxamining the paths that most aﬁegt the
goto 8 WCET. Thus, we also weight paths by the maximum
number of times that tlgecan be gecuted in the function
bi] += 1; to ensure its effect on the WCET is accurately
sumallb += bli]; represente&.After selecting an edge to beontiguous
bi] = afi] - 1; (and possibly making one or more other edgescon-
goto 8 tiguoug, the UB-WCET and LB-WCET of each path are
Ji recalculated. Thalgorithm continues until all edgesvea
i++; been positioned.
i< —19992 gz Table 1 shows hoe WCET code positioning is accom-
goto 5 & plished for the example siva in Figures 5, 6, and 7At
[rewm; 9] each step the status for each edge and the current UB-

WCET and LB-WCET for each path calculated from the
timing analyzer are skn. Initially all edges are unposi-
tioned, as shen in step 0. For each step an edge is
selected to beontiguousand one or more edges become
noncontiguous Thus, after each step one or more paths
have their UB-WCET reduced and one or more pathgeha
their LB-WCET increased. In the first step, the algorithm
selects edg¢ to be contiguoussince it reduces the UB-
WCET of all four paths in the loop. This selection also
causes edgea and k to becomenoncontiguous which
results in only a small increase for the LB-WCET of the
entire function (pattE) since these edges are outside the
loop. Inthe second step, edgés selected since it is part
of pathD, which contains the greatest current UB-WCET
The algorithm chooses ed@énstead of another edge in
pathD since edgeé is also part of patlB, which contains
There are a fg terms that need to be defined before the second greatest WCET at that poifidge g is
our WCET code positioning algorithm can be presented.selected to beontiguousn the third step since that is also
Edges are denoted as being contiguous, noncontiguous, qrart of pathD, which still contains the greatest UB-
unpositioned. Acontiguousedge has its source block WCET. Edge e becomescontiguousin the fourth step
immediately positioned before its target block in memory
In contrast, anoncontiguousedge does notAn unposi- ! Different loops may he a dfferent maximum number of itera-
tionededge means that it has not yet been determined if it:!ons' Ourtiming analyzer automatically determines the number of itera-
will be contiguous or noncontiguousThe UB-WCET ions for each loop in the function [14, 18h addition, the number of it-

I erations in which a path may breeuted can be restricted due to con-
(upper bound WCET) of a path indicates the WCET when straints on branches [16, 19].

Figure 6: Control Flow Graph of Code in Figure 5

ane: [} =]] “={5]

Figure 7: Paths in Figure 6

@)

Addan unconditional jump at the end of each basic block that does not end with an unconditional transfer of con-
trol. Markall edges asnpositioned

(2) Invoke the timing analyzer to calculate the UB-WCET and LB-WCET path informafitve. LB-WCET path in-
formation is calculated by not including jumps or taken branch penalties associatadpuagitionededges.

(3) Sortthe paths in the function in descending order based on first iE@nigibuting next the number of times it
can be recuted that is the product of the number of iterations of each loop in which it is nested, next its UB-
WCET, and finally its LB-WCET Thus, edges igontributingpaths will be addressed first sinmencontributing
edges cannot affect the WCET.

(4) If all of the edges in the functionveabeen positioned, then go to step 8.

(5) Selecthe first path in the list that has at least onpositionedzdge.

(6) Choosehe edge within this path to makontiguousthat minimizes the UB-WCET of this path. Break ties by
selecting the edge that produces a lower UB-WCET of a path that is first encountered in the sorted list. Break re-
maining ties by selecting the edge that results in a smaller increase in the LB-WCET of a path that is first encoun-
tered in the sorted list.

(7) Markthe chosen edge asntiguous All paths that include this edge willvetheir UB-WCET reduced Mark
other edges that becomencontiguouss a result of choosing tltentiguousedge. Allpaths that contain these
edges will hae teir LB-WCET increased. Go to step 2.

(8) Connecthecontiguousdges with common nodes to perform the final positioning of the basic blocks.

Figure 8: WCET Code Positioning Algorithm
since it is part of patiC, which currently contains the While the edges lva been positioned according to the

greatest UB-WCET At this point pathD’s UB-WCET selections shown in Table 1, the final positioning of the
becomes 29, which is less than the LB-WCET of 30 for basic blocks still has to performed. The list of contiguous
pathA. Thus, pathD is nav noncontributing During the edges in the order in which thevere selected are-82,

fifth step edgé is selected since it is part of pathwhich 7-8, 5-7, 4-5, and 2-3. Connectinghese edges by
contains the current greatest UB-WCEAt this point all their common nodes, we are able to determine that six of
of the edges h& keen positioned and the UB-WCET and the nine blocks should be positioned in the order
LB-WCET for each path are noidentical. Theoriginal 4.,5.,7-8-2-3. Theremaining blocks, which are 1,
positioning shown in Figure 6ubwithout the extra jumps 6, and 9, can be placed either before or after this contigu-
inserted to mak dl transitions noncontiguous, has a ous set of blocks. In general, there may beersd con-
WCET of 31,018 or about 14.8% greater than after WCET tiguous sets of blocks in a function and these sets can be
code positioning. placed in an arbitrary orderWe dways designate the

Table 1: Information for Each Step of the Algorithm in Figure 8 for the Example Shown in Figures 5, 6, and 7

S - I WCETSs of Paths Shown in Figure 7

‘ Status of Edges Shown in Figure ¢ UB-WCET L B-WCET

e

pllalbjc|d|el flglh|i|j|k|A B cC| D E A | B cC | D E
O|fujufuflululujlul u u u u 8| 40| 37| 41| 3,020 21| 25| 22| 26 22,018
1{{njujujujululu u u o m 3| 37| 34| 38| 3,024| 21| 254 22| 26 22,024
2 njujufulululu n clc|n|33]| 34| 34| 35| 31,024 24 25 25 26 22,024
3 nfuflujulu|ln|cln cc|n|33| 31| 34| 32| 30,024 27 26 28 26 24,024
4| nfuflu|nic|/nl c n gc|n|33| 31| 31| 29| 29,024 30 28 28 26 26,024
5| njic|ininic|injc|njcl ¢ n30| 28| 31| 29| 27,024 30 28 31 29 27,024

u = unpositioned, & contiguous, nr= noncontiguous

entry block of the function as the first block in the final Table 1 and Figure 9. Thus, the timing analyzer V®led
positioning to simplify the generation of the assembly at mostn-1 times for each function, which is much less
code by our compiler and the processing by our timingthan then! invocations that would be required ivaey
analyzer Note that the entry block canvee be the taget possible basic block ordering permutation was checked.
of an edge in the control fhodue to prologue code for the

function being generated in this blocBy contrasting the 5. WCET Target Alignment

code in Figure 6 with the final positioning in Figure 9, one

can obserg that performing the final positioning some- Even after the basic blocks\eteen positioned within
times requires nersing branch conditions, changing-tar @ function, there can still be extra transfer of control penal-
get labels of branches, labeling blocks that ame tangets ties due to misaligned gets. TheSC100 fetches instruc-
of branches or jumps, insertingwenconditional jumps, tions in sets of four words that are aligned on eight byte
and deleting other jumps. All of the loop patAsD, prior boundaries. Théearget of a transfer of control is consid-
to WCET code positioning required three transfers of con-€red misaligned when the gt instruction is in a dér-

trol. After WCET code positioning paths A and C each ent fetch set from the transfer of control and thgear
require three transfers of control and pahandD each instruction spans more than one fetch set, as showit pre
require only one. Note that patBsandD had higher UB- ously in Figure 3. In this situation, the processor stalls for

WCETSs before the edges were positioned. an additional cycle after the transfer of control.
We atempt to minimize the number of target misalign-
.l i20; 1 ment penalties in the folleing manner Frst, we partition
goto 2; the function into relocatable sets of basic blocks. The first
block in a relocatable set is natllien into from a prede-
afi] += 1; 4 cessor block and the last block ends with an unconditional
sumalla += afi]; transfer of control, such as an unconditional jump or a
le return. Arelocatable set of blocks can be e without
[if (blil<0) goto 6; 5 requiring the insertion of additional instructiongzor
: 9 instance, the code in Figure 9 after WCET positioning has
a b +=1; _ ! four relocatable sets of blocks, which are {1},
Eﬁr_a!l%f:;[']’ ¢ {4,5,7,8,2,3}, {6}, and {9}. In contrast, the original fi

graph of blocks in Figure 6 without the additional uncon-

e ' 8 d ditional jumps to mak edgesunpositionechas three relo-
Hly (i’>: 1000) goto 9; catable sets, which are {1,2,3}, {4,5,6}, and {7,8,9}.
I After WCET code position?ng.we align .the relpcatable
[if (@li}>=0) goto 4 5 sets of blocks one set at a timgince each instruction has
I to be aligned on aevd boundary (2 bytes) and each fetch
ali] = 0; 3 h set consists of 4 words, we try four different positionings
K goto 5; for each set. The ddrent alignments are accomplished
by inserting 0, 1, 2, or 3 noops before thgibring of the
b[i] = 0; 6 relocatable set, where each noop is one word in Sike.
goto 8; insertion of noops before each relocatable set of blocks is
illustrated in Figure 10. Note that these noop instructions
... return; 9] are not reachable in the control viloand are neer
) o executed. V¢ invake the timing analyzer to determine the
Figure 9: Control Flow Graph of Code in Figure 5 WCET of the function with each combination. Thus, we
after WCET Positioning have © invoke the timing analyzem*4 times, wheremis

the number of relocatable sets of blocks to be aligivéel.
choose the number of noops to insert before each set that
will minimize the WCET for the function.To help sup-

port this analysis, we added an option to the timing ana-
lyzer to only assess misalignment penalties within a range
of blocks where tayet alignment has been performdd.

the case that the WCET is the same foo tar nore
options, we select the option with the fewest noops.

The portion of the greedy algorithm sto in Figure 8
that most dects the analysis time is the computation per
formed by the timing analyzewhich is irvoked each time
an edge is selected to become contiguoGsven that
there aren basic blocks in a function, there can be at most
n-1 contiguous edges and sometimes there are E3s.
instance, only fig edlges were selected to be contiguous
instead ofn-1 or eight edges for the example shown in

conditional constructs and mostvieakeen used in pré
ous studies by various groups (FSU, SNU, Uppsatakw
ing on WCET timing analysis.

j; Table 3 shows the accuraof our timing analyzer and

, first relocatable set the efect on WCET after code positioning and getr

| alignment. Theaesultsbefole WCET positioningindicate
the measurements taken after all optimizationse Haen
applied except for WCET code positioning and WCET
target alignment.The observed cyclewere obtained from
running the compiled programs through the SC100 simu-
lator [28] using WCET input data All input and output

second relocatable set were accomplished by reading from and writing to global
variables, respeatély, to avoid having to estimate the
WCET of performing actual I/0.The WCET cyclesare
the WCET predictions obtained from our timing analyzer
The WCET atio is the WCET cyclesdivided by the
observed cyclesin general, our timing analyzer is able to

"7 ihird relocatable set obtain tight WCET predictions for code generated for the

- SC100. Theresultsafter WCET positioningndicate the
measurements taken after the positioning algorithm
described in Section 4 is applied immediately folltg
the preceding optimization phaseehe WCET cyclesep-

We oould attempt a more aggressigpproach by trying resent the ne predicted WCET by the timing analyzer
all permutations of ordering relocatable sets of blocks in The positioning atio indicates the ratio of th&VCET
addition to inserting noopsThis approach could poten- cycles after WCET positioningivided by the WCET
tially reduce the number of noops insertddowever, we cycles befar WCET positioning There was wver a %%
have found that the code size increase is small and ouraveage reduction in WCET by applying the WCET code

|

Figure 10: Example of Inserting Noop Instructions
before Each Relocatable Set of Blocks

current approach is quite efficient. positioning algorithm. The resultfter WCET alignment
indicate the measurements that were obtained after the
6. Experimental Results WCET target alignment algorithm in Section 5 is applied

following WCET code positioning.The WCET cycles

This section describes the results of a setxpes- agin represent the mepredicted WCET by the timing
ments to illustrate the fefctiveness of improving the
WCET by performing WCET code positioning and %2 The WCET input data had to be meticulously determined since
WCET taget alignment.Table 2 shows the benchmarks the WCET' paths were often_ diff_icult to detect manua}lly due to control-

. flow penalties, as illustrated in Figure BVe dd not obtain thebserved

we used for our xperiments. The benchmark cyclesafter WCET positioning or WCET alignment since this would re-
sumposclrnegontains the xample code shown in Figure quire nev WCET input data due to changes in the WCET paths.
5. Theother benchmarks were selected sincey thave

Table 2: Benchmarks Used in the Experiments

Program Description
bubblesort performs kubble sort on 500 elements
keysearch performa linear search wolving 4 nested loops for 625 elements
summidall sumshe middle half and all elements of a 1000 integer vector

summinmax sumthe minimum and maximum of the corresponding elements@fi®®0 integer vector
sumoddeen ums the odd andven dements of a 1000 integer vector

°A

sumngpos sumshe n@ative, positive, and all elements of a 1000 integer vector

sumposclrng | sums positie values from tw 1000 element arrays and setgagre values to zero
sym testsf a 100x100 matrix is symmetric

unweight cowerts an adjaceryc100x100 matrix of a weighted graph to an unweighted graph

Table 3: Results after WCET Code Positioning and Target Alignment

Before WCET Positioning After WCET Positionin&; After WCET Alignment
Time
Program Obsened WCET | WCET WCET Positioning WCET Alignment Ratio
Cycles Cycles Ratio Cycles Ratio Cycles Ratio

bubblesort 7,497,532 7,748,545 1.033| 7,747,046 1.000 7,622,296 0.984 1.94
keysearch 30,667 31,143 | 1.016 29,268 0.940 29,268 0.940 2.17
summidall 19,508 19,515| 1.000 16,721 0.857 16,721 0.857 1.33
summinmax 24,010 24,015 | 1.000 22,021 0.917 21,023 0.875 1.56
sumngpos 20,010 20,015| 1.000 18,021 0.900 18,021 0.900 1.33
sumoddeen 2,021 23,027| 1.046 18,030 0.783 16,543 0.718 1.67
sumposclrng 31,013 31,018 1.000 27,024 0.871 27,024 0.871 1.90
sym 223,168 223,472| 1.001 208,622 0.934 208,622 0.934 1.70
unweight 350,507 350,814 | 1.001 341,020 0.972 341,020 0.972 2.00
avaage 913,160, 941,285| 1.011 936,419 0.908 922,282 0.895 1.73

analyzer The alignment atio indicates the ratio of the optimization occurs after positioningrhus, the WCETs
WCET cycles after WCET alignmeag compared to the are in general slightly lower than the WCETs whoin
WCET cycles befeWCET positioning Three of the nine Table 3. The number ofpermutationsvaried depending
benchmarks impned due to WCET target alignment, upon the number ofoutinesin the benchmark and the
which resulted in wer an aditional 1% &erage number of basic blocks in each functiofihe minimum
improvement in WCET Thetime ratio indicates the com- WCETrepresents the Weest WCET found by performing
pilation overhead of performing WCET code positioning the exhaustve sarch. Therare typically multiple code
and target alignment. Most of thisreshead is due to positionings that result in an equainimum WCET We
repeated calls to the timing analyz&¥hile this overhead found that thegreedy WCETobtained by our algorithm

is reasonable, it could be significantly reduced if the tim- was dways identical to theninimum WCETor each func-
ing analyzer and the compiler were in the saree@able tion in each benchmark for our test suite. While we can-
and passed information via arguments instead of files. not alvays guarantee an optimal result, it does appear that
our greedy algorithm is very fettive & finding an -
cient WCET code positioningThe default WCETrepre-
sents the WCET with the drflt code positioning.On

While the results in Table 3 shoa sgnificant
improvement in the predicted WCETE would be informa-

tive o know if better positionings than those obtained by . =
our greedy WCET code positioning algorithm are possi- 2v&age thedefault WCETis 11.6% worse than thini-

ble. Like most benchmarks used for WCET prediction Mum WCET The maximum WCETepresents the highest
studies, the size of each benchmark is fairly small so that//CET found during theaustve sarch. Theresults

. . i % hi
the WCET input data can be manually determined and the>hV that themaximum WCETs 50.2% higher onwerage
WCET observed cycles can be measur&tie functions than theminimum WCET While thedefault WCETis rel-
in these benchmarks were small enough so that the WCERIVEly efficient _I(I:qmpar_ed _]:[_o thenaximum WCETthe
for every possible permutation of the basic block ordering grgedthCEfTstll IS a signi _|ca_%t Impreement aver just
could be estimated. The number of possible orderings foSing the default code positionifig.
each function is)!, wheren is the number of basic blocks, 3 _ __ _ _
since each block can be represented at most once in th Invoking the timing analyzent times when performing arnxe
. p . I?ausu'/e arch for each function would require axcessve anount of

ordering. Eble 4 shws the results of performing an time. insteadwe initially invoked the timing analyzer once without as-
exhaustve earch for the best WCET code positioning for sessing transfer of control penalties to obtain a base WCET time for each
each benchmark, where the WCET is calculated for eactpath. for each permutation we adjusted each saiCET by adding

ossible permutationUnlike the measurements shown in the appropriate transfer of control penalty to each noncontiguous edge.
p p . . After finding the minimum WCET permutation, wevaked the timing
Table 3, these WCET results exclude target mispredictionanalyzer again for this permutation to verify that our preliminary WCET
penalties. OUWCET positioning algorithm does not tak prediction without using the timing analyzelsvaccurate. While this
tamget misprediction penalties into account when making approach is potentially less accurate, we were able to obtain results in a

S few hours. Irvoking the timing analyzer for each permutatiomuld
positioning decisions since the WCET target alignment, . o significantly longer.

Table 4: Minimum, Greedy, Default, and Maximum WCET Code Positioning Results

Program Rou- Permuta- | Minimum Greedy Dedult Maximum
tines tions WCET WCET Ratio WCET Ratio WCET Ratio

bubblesort 4 40,328 | 7,747,045 7,747,045 1.000 | 7,748,545| 1.000f 9,248,54p 1.194
keysearch 2 39,916,801 29,238 29,238 1.000 31,113 | 1.064 59,574 2.038
summidall 1 5,040 16,721 16,721 1.000 18,515 | 1.107 28,721 1.718
summinmax 1 362,880 21,021 21,021 1.000 24,015 | 1.142 30,021 1.428
sumn@pos 1 5,040 18,021 18,021 1.000 20,015| 1.111 24,021 1.333
sumoddgen 1 3628,800 16,029 16,029 1.000 22,044 | 1.375 31,044 1.937
sumposclrng 1 $2,880 27,024 27,024 1.000 31,018 | 1.148 37,024 1.370
sym 2 5041 208,622 208,622 1.000 223,472 | 1.071 238,922 1.145
unweight 1 40,320 341,020 341,020 1.000 350,714 | 1.028 461,320 1.3%3
aveaage 15 5,540,851 936,082 936,082 1.000 941,050 | 1.116] 1,128,799 1.502
7. Future Work estimate the WC paths in the function based on the cur

rently unpositioned edges and use this information to

The WCET code positioning algorithm could be select the next edge to neakontiguous. W dso deter
adapted to impnee WCETSs on processors with an instruc- mine which paths cannot contuile to the WCET by cal-
tion cache. Improving instruction cache performance culating when its UB-WCET is less than the LB-WCET of
would require the optimization to be performed at a later another path in the same loop or outermosd lef a func-
stage in the compilation process where all of the applica-tion. Edgeghat appear in only nonconttiting paths hee
tion code is accessibléVe arrently perform WCET code the lowest priority for being made contiguoud/e have
positioning during the compilation of a single function. implemented the algorithm andveademonstrated that it

So far we hee dways obtained an optimal positioning Ccan improe tie WCET of applications on a machine
using our WCET code positioning algorithnit may be Which has transfer of control penalties. In fact, wensttb
that the algorithm for a processor such as the SC100 ighat our greedy WCET code positioning algorithm obtains
actually optimal and it muld be interesting to attempt to Optimal results on the SC100 for our test suite of pro-
prove the optimality of the algorithm. grams. Ve havealso implemented and/@uated a related
compiler optimization to reduce WCET due togetr mis-
alignment penalties. Thus, weMgahown it is feasible to
develop specific compiler optimizations that are designed
to improve WCET using WCET path information as
opposed to improving ACET using frequegrdata.

There are also a number of other compiler optimiza-
tions that can be redesigned to im@OCET as opposed
to improving ACET. Rather than impnging the frequently
executed portions of the program, we can use WCET
information to determine the portions that conité the
most to the WCET For instance, there ka dso been
mary compiler optimizations that ka keen deeloped to
improve the code within frequentlyxecuted paths.These
optimizations can be redesigned to instead iwvgriie

WC path. Similar to issuesded in WCET code position- {he necessary sofare and documentation that were used
ing, the compiler will hee © consider that the WCET i his project. This research was supported in part by
path may change as optimizations are applied. NSF grants EIA-0072043, CCR-0208581, CCR-0208892,
CCR-0310860, CCR-0312493, and CCR-0312695.

9. Acknowledgements

The anonymous wewers’ suggestions impved the
quality of the paperWe dso thank StarCore for pvading

8. Conclusions

In this paper we ha described a code positioning 10. Refeences

algorithm that is dren by WCET path information, as [1] S. McFarling, “Program Optimization for Instruction

opposed to ACET frequenc data. Our algorithm Caches,"Proceedings of the Thirinternational Confer
addresses the issue of causing &edéht path to increase ence on Achitectural Support for Pegramming Lan-
its WCET and become the WC path after changing the %gg%‘? and Operating Systemspp. 183-191 (April

positioning. V& accomplish this by initially assuming that
all edges are unpositionedt each step we consetwely

-10-

(2]

(3]

(4]

(5]

(6]

(7]

(8]

E)

(10]

(11]

(12]

(13]

(14]

W. W. Hwu and PP. thang, Achieving High Instruction
Cache Performance with an Optimizing Compgil&tro-
ceedings of the 16th Annual Symposium on Computer
Architecture pp. 242-250 (May 1989).

K. Pettis and R. Hansen, “Profile Guided Code Position- [16]
ing,” Proceedings of the SIGPLAN '90 Conference on
Programming Languge Design and Implementatiorpp.

16-27 (June 1990).

B. Calder and D. Grunwald, “Reducing Branch Costs via
Branch Alignment, Proceedings of the Sixth Interna-
tional Conference on &hitectural Support for Pogram-
ming Languges and Operating Systemspp. 242-251
(October 1994).

C. Young, D. S. Johnson, D. R. Kgar, and M. D. Smith,
“Near-optimal Intraprocedural Branch Alignmen®ro-
ceedings of the SIGPLAN '97 Corgace on Rvgram-
ming Languge Design and Implementatiorpp. 183-193
(June 1997).

Y. S. L, S. Malik, and A. Wolfe, “Efficient Microarchi-
tecture Modeling and Path Analysis for Reah& Soft-
ware,” Proceedings of the Sixteenth IEEE Real-Time Sys-
tems Symposiunpp. 298-307 (December 1995).

H. Theiling, C. Ferdinand, and R. ilfelm, “Fast and
Precise WCET Prediction by Separate Cache aatti P
Analyses,"Real-Time Systeni(May 2000).

J.Engblom and A. Ermedahl, “Modeling ComplElows
for Worst-Case Execution Time AnalySiRroceedings
of the IEEE Real-Time Systems Symposilacember
2000).

T. Lundqvist and PSenstrom, “Integrating Path and
Timing Analysis using Instruction-kel Simulation
Technigues,”ACM SIGPLAN Workshop on Langges,
Compiles, and Tools for Embedded Systerpp. 1-15
(June 1998).

T. Lundqvist and PStenstrém, “An Intgrated Path and
Timing Analysis Method based on CyclevieeSymbolic
Execution,”Real-Tme System&7 pp. 183-207 (Neem-
ber 1999).

R. Arnold, E Mueller, D. Whalley, and M. Harmon,
“Bounding Worst-Case Instruction Cache Performdnce,
Proceedings of the iffeenth IEEE Real-Time Systems
Symposiumpp. 172-181 (December 1994).

C. A. Healy D. B. Whalley, and M. G. Harmon, “Inte-
grating the Timing Analysis of Pipelining and Instruction
Caching,” Proceedings of the Sixteenth |IEEE Reat&
Systems Symposiurpp. 288-297 (December 1995).

R.T. White, F Mueller, C. A. Healy, D. B. Whalley, and

M. G. Harmon, “Timing Analysis for Data Caches and
Set-Associatie Caches,’Proceedings of the IEEE Real-
Time Echnolgy and Applications Symposiumpp.
192-202 (June 1997).

C. A. Healy M. Sjédin, V. Rustagi, and D. B. Whalje
“Bounding Loop lterations for ifming Analysis, Pro-
ceedings of the IEEE Real-Timechnolgy and Applica-
tions Symposiumpp. 12-21 (June 1998).

(15]

(17]

(18]

(19]

[20]

[21]

(22]

(23]

(24]

(25]

(26]

[27]

(28]

-11-

C.Healy R. Arnold, F Mueller, D. Whalley, and M. Har
mon, “Bounding Pipeline and Instruction Cache Perfor
mance,” IEEE Tansactions on Computer48(1) pp.
53-70 (January 1999).

C. A. Healy and D. B. Whallg “Tighter Timing Predic-
tions by Automatic Detection and Exploitation cdlite-
Dependent ConstraintsProceedings of the IEEE Real-
Time Bchnolgy and Applications Symposiumpp. 79-88
(June 1999).

R. T. White, F Mueller, C. A. Healy, D. B. Whalley, and

M. G. Harmon, “Timing Analysis for Data Caches and
Wrap-Around Fill Caches, Real-Tme Systems pp.
209-233 (Neember 1999).

C. Healy, M. Sjédin, V. Rustagi, D. Whallg, and R. \an
Engelen, “Supporting iming Analysis by Automatic
Bounding of Loop lterations,Real-Tme Systems pp.
121-148 (May 2000).

C. Healy and D. Whallg “Automatic Detection and
Exploitation of Branch Constraints for Timing Analysis,
IEEE Transactions on Softwar Engineering 28(8) pp.
763-781 (August 2002).

T. Marlove and S. Masticola, “Safe Optimization for
Hard Real-Time ProgrammirigSystem Inigration, pp.
438-446 (June 1992).

S.Hong and R. GerbefCompiling Real-Time Programs
into Schedulable CodeProceedings of the SIGPLAN
'93 Conference on Pgramming Languge Design and
Implementation pp. 166-176 (June 1993).

S.Lee, J. Lee, C. &k, and S. Min, A Flexible Tradeoff
between Code Size and WCET Emyigy Dual Instruc-
tion Set Processots|nternational Workshop on &tst-
Case Execution Time Analysigp. 91-94 (July 2003).

W. Zhao, PKulkarni, D. Whallg, C. Healy, F. Mueller,
and G. Uh, “Tining the WCET of Embedded Applica-
tions,” Proceedings of the IEEE Real-Time and Embed-
ded Bchnolgy and Applications SymposiunfMay
2004).

F. Mueller and D. B. Whalle “Avoiding Unconditional
Jumps by Code ReplicatidnProceedings of the SIG-
PLAN '92 Confeence on Rsgramming Languge
Design and Implementatiorpp. 322-330 (June 1992).

F. Mueller and D. B. Whallg “Avoiding Conditional
Branches by Code ReplicatibrRroceedings of the SIG-
PLAN '95 Conference on Bgramming Languge
Design and Implementatiorpp. 56-66 (June 1995).

M. E. Benitez and J. WDavidson, ‘A Portable Global
Optimizer and Linkr,” Proceedings of the SIGPLAN ’'88
Symposium on Bgramming Languge Design and
Implementation pp. 329-338 (June 1988).

StarCoreJnc. and Atlanta, GASC110 DSP Cer Refer-
ence Manual2001.

StarCoreInc. and Atlanta, GASC100 Simulator Refer
ence Manual2001.

