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2 Healy, Sj�odin, Rustagi, Whalley and van Engelenthe number of iterations that can be performed by the loops in theprogram. Under certain conditions, such as a loop with a single exit,many compilers statically determine the exact number of loop iterations(Benitez and Davidson, 1988). Applications for determining this num-ber include loop unrolling (Hennessy and Patterson, 1996), softwarepipelining (Lam, 1988), and exploiting parallelism across loop iterations(Stone, 1990). When the number of iterations cannot be exactly deter-mined, it is desirable in a real-time system to know lower and upperbounds on the number of iterations. These bounds can be used by atiming analysis tool to more accurately predict BCETs and WCETs.Many existing timing analyzers require that a user specify the num-ber of iterations of each loop in the program. This speci�cation may berequested interactively (Park and Shaw, 1991; Li et al., 1995). Thus,each time the timing analyzer is invoked for a program, the boundsfor every loop in the program must be speci�ed, which is error proneand tedious for the user. Alternatively, one could specify this infor-mation as assertions in the source code to prevent repeated speci�ca-tions of the same information (Burns et al., 1996; Puschner and Koza,1989; Kligerman and Stoyenko, 1986).However, there are still several disadvantages. First, the user is stillrequired to write the assertions. Second, there is no guarantee thatthe user will specify the correct minimum and maximum number ofiterations. This problem may easily occur when a user changes theloop, but forgets to update the corresponding assertion. Also, codegeneration strategies, such as whether to place instructions for the loopexit condition code at the beginning or end of the loop, may cause thenumber of loop iterations of the transformed loop to vary by one itera-tion from the loop in the source code. Finally, compiler optimizations,such as loop unrolling or software pipelining, may a�ect the numberof times a loop iterates. Inhibiting di�erent code generation strategiesor compiler optimizations to more easily estimate loop bounds wouldsacri�ce performance, which is quite undesirable.It would be more appropriate to have the compiler automaticallyand e�ciently determine the bounds for each loop in a program whenpossible. This paper describes three methods that support timing anal-ysis by bounding the number of loop iterations. First, an algorithmis presented that determines bounds on the number of iterations forloops with multiple exits. Second, support is provided for loops whosenumber of iterations is dependent on loop-invariant variables. Finally, amethod is given to accurately predict the number of iterations for innerloops, whose number of iterations varies depending upon the values ofcounter variables of enclosing outer loops. All three of these methodsare e�ciently implemented and result in less work for a user. The
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Supporting Timing Analysis by Automatic Bounding of Loop Iterations 3last method also results in tighter timing analysis predictions. Thesemethods were implemented by modifying the vpo compiler (Benitez andDavidson, 1988) to analyze loops and the information about number ofloop iterations is passed to a timing analyzer (Arnold et al., 1994; Healyet al., 1995; White et al., 1997; Healy and Whalley, 1999a) to predictperformance. Note that these methods applied in vpo could be used inother compilers or on assembly or machine code �les as well.2. Related WorkPrevious work to bound the number of loop iterations has used ab-stract interpretation (Ermedahl and Gustafsson, 1997) and symbolicexecution (Lundqvist and Stenstr�om, 1998; Liu and Gomez, 1998) toautomatically derive the number of loop iterations. These approachesare quite powerful, but e�ectively requires simulating all paths of aloop for every loop iteration. Thus, they require signi�cant analysisoverhead, which would be undesirable when analyzing long runningprograms.Our work on bounding iterations for nested loops was inspired bythe work of Sakellariou (Sakellariou, 1997; Sakellariou, 1996). He cal-culated the total number of iterations for loops that are dependenton counter variables of outer loops in order to obtain better load bal-ance by assigning approximately the same number of loop iterationsto each processor. The approach used was to formulate summationsrepresenting the number of loop iterations by hand and to interface toa mathematical package o�-line to solve the equations. In this paper,we describe a method to automatically calculate the average number oftimes that a loop will iterate and how to use this information to obtaintighter timing predictions.3. Bounding Iterations for Loops with Multiple ExitsIn this section we present a method to determine a bounded number ofiterations for natural loops with multiple exits. The method includesthe following steps. (1) First, the conditional branches within the loopthat can a�ect the number of loop iterations are identi�ed. (2) Next,we calculate when each of the identi�ed branches can change its resultbased on the number of loop iterations performed. (3) Afterwards, therange of loop iterations when each of these branches can be reachedis determined. (4) Finally, the minimum and maximum number ofiterations for the loop is calculated. These steps are described in thefollowing subsections.
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4 Healy, Sj�odin, Rustagi, Whalley and van Engelen3.1. Identifying the Branches That Can Affect theNumber of Loop IterationsIn this subsection some terms are de�ned to facilitate the presentationof the methods in this paper. A more complete description of theseterms can be found elsewhere (Aho et al., 1986). We de�ne the numberof loop iterations as the number of times the header is executed oncethe loop is entered (Arnold et al., 1994). A basic block is a sequenceof instructions with a single entry point at the beginning and a singleexit point at the end. A natural loop is a loop with a single entry point.The header of a natural loop is the single basic block where the loop isentered. Transitions from within the loop to the header are called backedges. Block A dominates block B if every path from the initial nodeof the control ow graph to B has to �rst go through A. For instance,the header of a natural loop dominates all blocks in the loop. Similarly,block B postdominates block A if all control paths from block A to theexit node of the graph contains block B. A block always dominates andpostdominates itself.An iteration branch in a loop is a conditional transfer of control,where the choice between the two outgoing transitions can directly orindirectly a�ect the number of loop iterations. The iteration branchesin the loop that can directly a�ect this number are branches that have(1) a transition to a basic block outside the loop or (2) a transition tothe header block of the loop or to a block that is postdominated by theheader. Iteration branches that can indirectly a�ect the number of loopiterations are those branches whose two successors are postdominatedby di�erent iteration branches. Figure 1 shows an algorithm to calculatethe set of iteration branches I for a loop. The worst-case complexity ofthe algorithm is O(B2I2), where B is the number of basic blocks in theloop and I is the number of iteration branches. However, we believethat the average complexity would be closer to O(B) since iterationbranches that indirectly a�ect the number of loop iterations are notcommon, particularly in numerical applications.Figure 2(a) contains the code for a toy example C function thatwill be used to illustrate the algorithm for calculating loop iterationbounds for loops with multiple exits. Figure 2(b) depicts the RTLs,representing SPARC assembly instructions, that the vpo compiler hasgenerated for this function. Note that the relational operator in theconditional branches are sometimes reversed from the relational ex-pressions in the source code. (No delay slots have been �lled in orderto simplify the example.) Figure 2(c) explains the RTL notation used.The loop consists of basic blocks 2, 3, 5, 6, 7, and 8. The header ofthe loop is block 7. The algorithm shown in Figure 1 identi�es block 5
paper.tex; 23/09/1999; 14:38; p.4



Supporting Timing Analysis by Automatic Bounding of Loop Iterations 5//Find the iteration branches that can directly a�ect the number of iterationsI = fgFOR each block B in the loop L DOIF (B has two successors S1 and S2) THENIF (S1 62 L) OR (S2 62 L) OR(S1 2 PostDom(Header(L))) OR (S2 2 PostDom(Header(L))) THENI = I [BEND IFEND IFEND FOR//Find the iteration branches that can indirectly a�ect the number of iterationsDO FOR each block in B in the loop L DOIF (B has two successors S1 and S2) AND (B 62 I) THENIF (there exists J;K 2 I AND J 6= K ANDS1 2 PostDom(J) AND S2 2 PostDom(K)) THENI = I [ BEND IFEND IFEND FORWHILE (any change to I)Figure 1. Finding the Set of Iterations Branches for a Loopas containing an iteration branch since it has a transition to block 6,which is postdominated by the loop header. Blocks 3, 5, and 7 areidenti�ed as having iteration branches since they have a transition toblock 4, which is not in the loop. Block 2 is added to the set of blockscontaining iteration branches since it can indirectly a�ect the numberof iterations by transferring control to either block 3 or block 5, whichboth have been identi�ed as containing iteration branches.Once the blocks containing iteration branches for the loop havebeen identi�ed, a precedence is established that represents the orderthat these blocks can be executed on any given iteration of the loop.This precedence relationship can be represented as a Directed AcyclicGraph (DAG). The nodes in the DAG represent the blocks contain-ing the iteration branches and two additional nodes, continue andbreak. Figure 3 shows the DAG depicting the precedence relationshipbetween the blocks containing exit conditions from Figure 2. The con-struction of the DAG can conceptually be accomplished by startingwith the graph representing the loop, replacing all back edges with
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6 Healy, Sj�odin, Rustagi, Whalley and van Engelen
r[10]=0; 1
r[9]=1;
r[11]=HI[_somecond];
PC=L18;

2IC=r[9]?75;L19
PC=IC<=0,L21;

3r[8]=R[r[11]+LO[_somecond]];

L21 5

IC=r[8]?0;
PC=IC==0,L21;

4PC=RT;

IC=r[9]?300;
PC=IC>0,L17;

L17

r[10]=r[10]+1;

L18

6
r[9]=r[9]+3;

IC=r[10]?100; 7
PC=IC>=0,L17;

8PC=L19;

(a) Source Code

   for (i = 0, j = 1; i < 100; i++, j += 3)
      if (j > 75 && somecond || j > 300)
         break;
}

main()
{
   int i, j;
   extern int somecond;

(b) Corresponding RTL Instructions

r[9]
: register allocated to variable ir[10]
: high portion of addressHI[<address>]
: low portion of addressLO[<address>]
: integer memory referenceR[<address>]
: comparisonIC=<item>?<item>;
: conditional branchPC=IC<relop>0,<label>;
: returnPC=RT;
: unconditional jumpPC=<label>;

(c) Explanation of RTL Notation

: register allocated to variable j

Figure 2. Example Loop with Multiple Exitstransitions to continue, replacing each transition out of the loop witha transition to break, and collapsing all nodes that do not representiteration branches. The actual implementation of the DAG construc-tion started with only nodes representing continue, break, and blockscontaining iteration branches and used domination and postdominationinformation to establish the edges between the nodes. This algorithm
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Supporting Timing Analysis by Automatic Bounding of Loop Iterations 7
7

2 break

break 5

3

continue breakFigure 3. Precedence Relationship between Iteration Branches from Figure 2is essentially a sort and requires O(I log I) complexity, where I is thenumber of iteration branches in the loop.3.2. Determining When Each Iteration Branch ChangesDirectionIn this subsection a technique is presented that calculates when eachiteration branch can change its result based on the number of loopiterations performed. This technique is similar to those used by othercompilers that can calculate the number of iterations of a loop with asingle exit (Benitez and Davidson, 1988). For each iteration branch wederive the information shown in Table I. When all of the requirementslisted in Table I are satis�ed, the iteration branch is classi�ed as known.Otherwise, the iteration branch is classi�ed as unknown. Note thatdetection of unknown iteration branches in a loop does not mean thatthe number of iterations of a loop cannot be bounded. Using the derivedvalues, we apply Equation 1 to straightforwardly calculate on whichiteration, Ni, that a known iteration branch i will change direction.Table II shows the values derived for the example in Figure 2. Theiteration branch in block 3 is classi�ed as unknown since the variablesomecond is not a basic induction variable. The complexity of thisalgorithm is O(I), where I is the number of iteration branches, sinceeach iteration branch need only be examined once.Ni = � limit i � (initial i + before i) + adjust ibeforei + after i �+ 2 (1)In addition, we have to select a value for adjust and checks have tobe made in case the iteration branch will always or never be satis�ed.Table III shows under what conditions we can use Equation 1 to de-termine when an iteration branch changes direction. The column \Test
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8 Healy, Sj�odin, Rustagi, Whalley and van EngelenTable I. Information Calculated for Each Iteration BranchTerm Explanation Requirementvariable The control variable on whichthe branch depends, i.e., thevariable being compared in theblock containing the iterationbranch. The control variable must be a basic induc-tion variable, that is a variable v whose onlyassignments within the loop are of the formv := v � c where c is a constant. In addi-tion, we require that the variable change bya constant integer amount on every loop iter-ation. We ensure this by checking that eachbasic block containing an assignment to a ba-sic induction variable dominates all of theblocks containing the tails of the back edgetransitions.limit The value being compared tothe variable in the block con-taining the branch. The limit must be an integer constant. We willdescribe how this requirement can be relaxedin Section 4.relop The relational operator used tocompare the variable and thelimit. I.e., the iteration condi-tion is: \variable relop limit". Our initial description requires that the rela-tional operator be an inequality operator (i.e.<, <=, >=, and >). We will describe how torelax this requirement in Section 3.5 to moreaccurately handle the equality operators (i.e.== and !=).initial The value of the variable whenthe loop is entered.1 The initial value must be an integer constant.We will describe how this requirement can berelaxed in Section 4.before The amount by which the vari-able is changed before reachingthe iteration branch in eachiteration. The amount by which the control variable isincremented or decremented must be an inte-ger constant and these changes must occur oneach complete iteration of the loop.2after The amount by which the vari-able is changed after reachingthe iteration branch in eachiteration. The amount by which the control variable isincremented or decremented must be an inte-ger constant and these changes must occur oneach complete iteration of the loop.adjust An adjustment value of -1,0, or 1, which compensatesfor the di�erence between re-lational operators (e.g. < and<=).1This value is found by searching backwards in the control ow for assignments tovariable. The search starts with the preheader, which is the block outside the looppreceding the loop header.2In other words, the basic blocks containing these changes must dominate everypredecessor block of the header that is in the loop.
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Supporting Timing Analysis by Automatic Bounding of Loop Iterations 9Table II. Derived Information for Each Iteration Branch in Figure 2branch variable register limit relop initial before after adjust class Nblock 2 j r[9] 75 <= 1 0 3 0 known 26block 3 somecond r[8] 0 == N/A 0 0 N/A unknown N/Ablock 5 j r[9] 300 > 1 0 3 0 known 101block 7 i r[10] 100 >= 0 0 1 -1 known 101Table III. How to Determine When a Branch with an Inequality Test Changes DirectionOperator Condition Test Result adjust<= �rst � limit & incr > 0 is false on the Nth iteration 0<= �rst � limit & incr � 0 always true<= �rst > limit & incr � 0 always false<= �rst > limit & incr < 0 is true on the Nth iteration 1< �rst < limit & incr > 0 is false on the Nth iteration � 1< �rst < limit & incr � 0 always true< �rst � limit & incr � 0 always false< �rst � limit & incr < 0 is true on the Nth iteration 0> �rst � limit & incr > 0 is true on the Nth iteration 0> �rst � limit & incr � 0 always false> �rst > limit & incr � 0 always true> �rst > limit & incr < 0 is false on the Nth iteration 1>= �rst < limit & incr > 0 is true on the Nth iteration �1>= �rst < limit & incr � 0 always false>= �rst � limit & incr � 0 always true>= �rst � limit & incr < 0 is false on the Nth iteration 0Where �rst = initial + before , incr = before + after ,N is de�ned in Equation 1, and adjust is used in Equation 1.
Result" shows under what conditions we can conclude that the iterationcondition will always/never be true and when we should use Equation 1to determine at which iteration the branch changes direction, as well as,what value to use for adjust in Equation 1. Note that when before+after= 0 we need not use Equation 1 and thus we do not cause a divide byzero exception.Figure 4 shows two loops where Equation 1 cannot be applied. Ourimplementation detects that the loop in Figure 4(a) exits after a singleiteration. Recall that the number of iterations is the number of timesthat the loop header block (i.e. testing i > 100 in the example) is exe-
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10 Healy, Sj�odin, Rustagi, Whalley and van Engelencuted once the loop is entered (see Section 3.1). The loop in Figure 4(b)is classi�ed as unbounded since the loop may never exit depending onhow overow of negative integer values is handled.for(i = 0; i > 100; i++) for(i = 0; i < 100; i--)A; A;(a) Loop That Exits Immediately (b) Loop That May Never ExitFigure 4. Two Loops Which are Handled Without Equation 13.3. Determining the Iterations When Each IterationBranch Can Be ReachedThe next step is to determine the iterations on which it is possible toexecute each node of the DAG. Calculating these ranges requires O(I)complexity, where I is the number of iteration branches. We record thisinformation as a range of iterations and attach a range to each nodeand edge. The DAG is processed top-down.The head of the DAG is assigned the range [1..1]. All other nodesare assigned a range that is the union of the ranges of all incomingedges. The outgoing edges of a node i are assigned ranges using one ofthe following two rules:1. If iteration branch i is known, then relopi and the direction ofthe increment (i.e. the sign of beforei+after i) is used to determinewhich edge is taken on the �rst Ni � 1 iterations. That edge isassigned the range that is the intersection of [1..Ni � 1] and therange of node i. The other outgoing edge is assigned the range thatis the intersection of [Ni..1] and the range of node i. If a rangeassigned to an outgoing edge is empty, then this edge correspondsto an infeasible transition and is deleted from the DAG.2. If iteration branch i is unknown, then both outgoing edges areassigned the same range as node i.Figure 5 shows the DAG of iteration branches in Figure 3 on page 7with the range of possible iterations for each node and edge also de-picted. Nodes with known iteration branches are marked with a K andunknown iteration branches are marked with a U. Iteration branch 7will take the transition to branch 2 on the �rst 100 iterations. Note thisiteration range of [1..100] corresponds to the variable i's value rangeof [0..99]. At this point, all values of variables have been abstracted as
paper.tex; 23/09/1999; 14:38; p.10



Supporting Timing Analysis by Automatic Bounding of Loop Iterations 11ranges of loop iterations. Node 5's transition to a break is deleted sincethe range associated with that transition is empty (i.e. the transitionis not possible).
[101..     ]

7

[1..   ]

K

2

[1..100]

K break

3

[26..100]

U

break

[26..100]

5

[1..100]

K

[1..100]

continue

[26..100]

[26..100]

[1..100]

[1..25]

Figure 5. DAG of Branches with Ranges of Iterations3.4. Determining the Minimum and Maximum LoopIterationsThe ranges of iterations associated with each node and edge of the DAGcan be used to calculate the minimum and maximum number of itera-tions for the loop. To determine the minimum and maximum iterationvalue for each iteration branch, the DAG is processed in bottom-uporder. The algorithm requires O(I) complexity, where I is the numberof iteration branches. The minimum and maximum iteration valuesfor the root node of the DAG will be the minimum and maximumiteration values for the entire loop. Figure 6 de�nes the notation usedin this subsection. Note that the range has been calculated using thetechnique presented in Section 3.3.The following rules are used to assign minimum and maximumiteration values to edges.1. If an edge is pointing to a break, then both the edge exit min andedge exit max are assigned the value of edge range min. (If thereis a transition to a break, then the loop can only make that tran-sition once.) This is the only point where a bounded value can beintroduced since these are the only points where the loop can exit.2. If an edge is pointing to a continue, then the edge exit min andedge exit max values for that edge are marked as unbounded, which
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12 Healy, Sj�odin, Rustagi, Whalley and van Engelen
[edge_range_min..edge_range_max]

<edge_exit_min, edge_exit_max>

<node_exit_min, node_exit_max>

highest loop iteration when this edge can be reached

lowest loop iteration when this edge can be reached

first iteration when this edge may lead to a break

first iteration when this node may lead to a break

first iteration when this edge must lead to a break

first iteration when this node must lead to a break

(on subsequent iterations it must also lead to a break)

(on subsequent iterations it must also lead to a break)
node_exit_max:

node_exit_min:

edge_exit_max:

edge_exit_min:

edge_range_max:

edge_range_min:

Figure 6. Notation Used in Rules for Assigning Iteration Valueswe will represent with ` '. (These transitions do not supply anyinformation about when the loop exits.)3. If the iteration branch associated with a node is classi�ed as known,then the node exit max for the node is set to the smallest of thebounded edge exit max values on the outgoing edges or is denotedas unbounded if both outgoing edges have unbounded edge exit maxvalues. (The loop has to exit when it will encounter a break.)4. If the iteration branch associated with a node is classi�ed as un-known, then the node exit max for the node is set to the largestof the edge exit max values on the outgoing edges of the node oris denoted as unbounded if either outgoing edge has an unboundededge exit max value. (Use the largest value when it is not guaran-teed that the node will actually reach the exit associated with alower value.)5. The node exit min for a node is set to the smallest of the boundededge exit min values on the outgoing edges of the node or is denotedas unbounded if both outgoing edges have unbounded edge exit minvalues. (The smallest value represents the �rst possibility to exitthe loop.)6. An edge not leading to a break or continue is an edge leading toa node representing an iteration branch. The edge exit min andedge exit max values assigned to the edge depend upon one ofthree possible relations between the range of the edge and theiteration values of the node. These relations and the corresponding
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Supporting Timing Analysis by Automatic Bounding of Loop Iterations 13edge assignments are depicted in Table IV. For example, the edgeassignment when node exit min satis�es case 1 and node exit maxsatis�es case 2 would be hedge range min, node exit max i. Case 1depicts that the edge exit is set to edge range min since this is the�rst iteration the edge can be traversed when the edge may leadto a break. Case 2 shows that the edge exit is set to the node exitwhen it is within the range of iterations that the edge is executed.Case 3 illustrates that the edge exit is set to unbounded when thereis no iteration on which the edge will be traversed after the edgecan lead to a break.Table IV. Rules for Assigning Iteration Values to an Incoming EdgeCase Condition Test Edge Exit1 � node exit < edge range min edge range min2 � edge range min � node exit &node exit � edge range max node exit3 � edge range max < node exitLegend: = [edge range min .. edge range max]� = node exit (i.e. node exit min or node exit max)
7 K

<26,101>
<26,_> <101,101>

break2 K

<26,_>

3 U

<26,_>

break 5 K

<_,_>

continue

<_,_><26,26>

<_,_>

<26,_>

<_,_>Figure 7. DAG of Iteration Branches with Minimum and Maximum Iteration ValuesFigure 7 shows the same DAG as in Figure 5 on page 11, but withminimum and maximum iteration values assigned to edges and nodes.Node 5 and its incoming edges are assigned unbounded values since
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14 Healy, Sj�odin, Rustagi, Whalley and van Engelen
(c) Unbounded Loop

(a) Bounded Loop (b) Potentially Unbounded Loop

for (i = 0; ; i++) {
   if (i < 100 && somecond)
      continue;
   if (i == 50)
      break;
   }

for (i = 0; i != 100; i += 3)
   A;

for (i = 0; i != 100; i++)
   A;

Figure 8. Examples of Loops with Iteration Branches Using Equality Operatorsthere is no transition to a break for the range of loop iterations inwhich they are executed. Node 3 is assigned a minimum iteration valueof 26 since that is the �rst possible iteration at which the node can takea transition to a break. Node 3's maximum iteration value is unboundedsince node 3's iteration branch is classi�ed as unknown and there isno guarantee that the transition to the break from node 3 will ever betaken. The minimum and maximum iterations for the entire loop is 26and 101, respectively, since these are the iteration values in node 7,which is the root exit condition.3.5. Supporting Iteration Branches Using EqualityOperatorsAs stated in Table I on page 8, an iteration branch using an equalityoperator (i.e. == or !=) was earlier described as always being treated asan unknown branch. This may result in looser, but safe iteration boundsfor loops containing equality operators. One reason for not addressingiteration branches that use the equality operators is that they maycause loop iteration ranges to become noncontiguous and would compli-cate the algorithms for bounding the number of iterations. However, inmany cases iteration branches with equality operators can be handledusing only contiguous ranges of iterations. For instance, Figure 8(a)contains a loop with an equality operator that our implementationwas able to successfully bound. Our implementation classi�es iterationbranches with equality operators as known when the following threeadditional requirements to those speci�ed in Table I are satis�ed:1. First, every path ending in a back edge in the loop must includethe iteration branch with the equality operator. Figure 8(b) shows
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Supporting Timing Analysis by Automatic Bounding of Loop Iterations 15Table V. How to Determine When an Equality Test Changes DirectionOperator Condition Test Result adjust== �rst < limit & incr > 0 is true on the Nth iteration �1== �rst > limit & incr < 0 is true on the Nth iteration 1== �rst = limit & incr = 0 always true== �rst = limit & incr 6= 0 is false on the 2nd iteration== otherwise always false!= �rst < limit & incr > 0 is false on the Nth iteration � 1!= �rst > limit & incr < 0 is false on the Nth iteration 1!= �rst = limit & incr = 0 always false!= �rst = limit & incr 6= 0 is true on the 2nd iteration!= otherwise always trueWhere �rst = initial + before , incr = before + after ,N is de�ned in Equation 1, and adjust is used in Equation 1.
an example of a loop that may not execute the test for equality onthe iteration in which the loop could exit.2. Next, one of the outgoing transitions of the iteration branch withan equality operator must be to a break.3. Finally, the following expression, which is part of Equation 1, mustresult in an integral value.limit i � (initial i + before i)before i + after iIn other words, the variable must equal the limit of the iterationbranch on some iteration. Figure 8(c) depicts a situation where thevariable i will be assigned values (0, 3, : : : 99, 102, : : : ) that willskip over the limit (100).When the above requirements are ful�lled we have to check theinitial value and increments to the variable, similar to Table III onpage 9, and also choose a value for adjust. Table V shows when we canuse Equation 1 on page 7 to determine on which iteration an equalitytest will change direction. Note that when before+after = 0 we neednot use Equation 1 and thus we do not cause a divide by zero exception.
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16 Healy, Sj�odin, Rustagi, Whalley and van Engelen4. Supporting a Non-constant Loop-Invariant Number ofIterationsSometimes a bounded number of iterations for a loop cannot be de-termined since the loop exit conditions involve the values of variables.Traditionally, timing analyzers have resolved this problem by requiringa user to specify the maximum number of iterations for a loop inter-actively (Park and Shaw, 1991; Li et al., 1995) or as an assertion inthe source code. (Burns et al., 1996; Puschner and Koza, 1989) Unfor-tunately, there is no guarantee that the user will specify the correctnumber of iterations. Compilers may employ di�erent code generationstrategies or compiler optimizations that can a�ect the number of loopiterations. Thus, even an astute user may specify the number of loopiterations incorrectly.Frequently the variables on which the number of loop iterationsdepend are loop invariant. In this case, a loop-invariant expression iscalculated to represent the number of loop iterations. Essentially, wewill still use Equation 1 on page 7, but relax the requirement thatthe limit and initial values have to be constants. Figure 9 shows anexample function and it's corresponding SPARC RTLs. (Some compileroptimizations, such as loop strength reduction, have not yet been per-formed to simplify the example.) In this example, the control variablefor the loop is r[13] and the limit is r[12], which is loop invariant.The block preceding the loop is examined to determine the expressionassociated with the limit, which is expanded in the following steps:1. r[12] # from instruction 122. r[9]+r[10] # from instruction 53. r[9]+R[r[10]+LO[ n]] # from instruction 44. r[9]+R[HI[ n]+LO[ n]] # from instruction 35. m+nThe register r[9] has been allocated to the argument m, whose valuewas also passed to the function in the same register. The compilerremembers the register and the blocks where each live range of a localvariable or argument is allocated to a register. Thus, the compiler wasable to associate the register r[9] with the argument m and that thememory reference is to the global variable n. We use Equation 1 togenerate a symbolic expression (containing the local variable m andglobal variable n) to represent the number of iterations, as shown inFigure 10.When the compiler can determine that the number of iterations isnon-constant and loop invariant, the loop-invariant expression is passed
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Supporting Timing Analysis by Automatic Bounding of Loop Iterations 17
: address of array a

: argument m

: variable sum

: variable i

r[8]

r[9]

r[11]

r[13]

int sumarray(a, m)
int a[], m;
{
   int i, sum;
   extern int n;

   sum = 0;

   for (i = 1; i < m+n; i++)
      sum += a[i];
   return sum;
}

(a) Source Code

1r[11]=0; # instruction 1
# instruction 2r[13]=1;

r[10]=HI[_n];
r[10]=R[r[10]+LO[_n]];
r[12]=r[9]+r[10];
IC=0?r[12];
PC=IC>=0,L25;

# instruction 3
# instruction 4
# instruction 5
# instruction 6
# instruction 7

L18 2r[10]=r[13]<<2; # instruction 8
r[10]=R[r[8]+r[10]];
r[11]=r[11]+r[10];
r[13]=r[13]+1;
IC=r[13]?r[12];
PC=IC<0,L18;

# instruction 9
# instruction 10
# instruction 11
# instruction 12
# instruction 13

L25 3PC=RT; # instruction 14

   valuebnd m[10:100] n[20:80]

Variable Mapping
(b) Register to

(c) SPARC RTLsFigure 9. Loop with a Non-constant Loop-Invariant Number of Iterationsto the timing analyzer. The user is prompted by the timing analyzerfor the minimum and maximum values for each variable in this expres-sion. To simplify identi�cation of these variables, the timing analyzeralso informs the user of the function and line number associated withthe loop. After receiving the minimum and maximum values for thesevariables, the timing analyzer automatically calculates the minimumand maximum number of loop iterations.33 Note that the timing analyzer will not permit the number of iterations to befewer than 1. In the above example, a user may indicate that the minimum values ofm and n are both 0. Simply substituting these values in the expression would resultin the number of loop iterations being �1. But if the loop is entered, then it has to
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18 Healy, Sj�odin, Rustagi, Whalley and van EngelenN = � limit � (initial + before) + adjustbefore + after �+ 2= �m+ n� (1 + 1) +�11 + 0 �+ 2= m+ n� 1Figure 10. Finding a Symbolic Bound for Example in Figure 9The authors also modi�ed the compiler to allow the user to specifyassertions about the minimum and maximum values of variables asso-ciated with loops. The boldface line in Figure 9(a) contains assertionsfor the minimum and maximum values of the variables m and n. Thecompiler uses the loop-invariant expression and replaces the variableswith the minimum and maximum speci�ed values. The minimum num-ber of iterations of 29 and the maximum number of iterations of 179 isautomatically passed to the timing analyzer and no user interventionis required. Of course, the analysis will only be as accurate as theassertions themselves.When a loop-invariant expression cannot be calculated, the timinganalyzer will prompt the user for the minimum and maximum numberof iterations instead of values of variables. However, we have foundthat a constant or loop-invariant number of iterations can be typicallycalculated for most loops in the numerical benchmarks and applicationswe have examined.5. Bounding Iterations for Non-Rectangular Loop NestsThe previous sections described approaches to determine the minimumand maximum number of iterations for a loop, given that the number ofiterations depends only upon either constant or loop-invariant values.Unfortunately, many nested loops do not ful�ll this requirement.In this section we will describe a novel method to determine thenumber of iterations for a nested loop whose iteration bound dependsupon the loop index of an outer loop. Such a loop nest is called non-rectangular. A typical example of a non-rectangular loop nest is theloop nest of the bubble sort program in Figure 11.execute at least one iteration since the number of iterations is de�ned as the numberof times the loop header block is executed.
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Supporting Timing Analysis by Automatic Bounding of Loop Iterations 19for(i = 0; i < 99; i++)for(j = i+1; j < 100; j++)if(a[i] > a[j]) swap(a,i,j);Figure 11. A Typical Non-Rectangular Loop NestNon-rectangular loop nests have long presented a problem for timinganalyzers since the resulting timing predictions are typically quite loose(Healy et al., 1995; Hur et al., 1995; Li et al., 1995). In fact, these overlypessimistic predictions may indicate that a program does not meet itstiming constraints, when it actually does.This section describes a general and e�cient method for obtainingtight timing predictions for non-rectangular loop nests usually encoun-tered in programs. This is accomplished by formulating the numberof loop iterations in terms of summations, where each summation rep-resents the number of iterations to be executed by a loop. Such anequation can be e�ciently solved given that certain restrictions aremet.5.1. Formulating the Number of IterationsIn this subsection we describe how a loop nest may be formulated interms of summations. The framework we present was based on workby Sakellariou (Sakellariou, 1997; Sakellariou, 1996). The number ofiterations of a single loop, where the loop variable is incremented byone (so called unit stride), can be represented by a summation whenthe lower bound (a) is less than or equal to the upper bound (b), asshown in Equation 2.N = bXi=a 1 = (b� a+ 1 if a � b0 otherwise (2)Figure 12 shows how two di�erent loop nests can be formulated interms of summations. The total number of iterations to be executedby the innermost loop in each loop nest are calculated by solving thecorresponding equation. The Bernoulli formula shown in Equation 3,where p � 1 and n � 1 and Bk is the Bernoulli number of order k, canbe used to evaluate terms in a summation.nXi=1 ip = 1p+ 1 pXk=0�p+ 1k �Bk(n+ 1)p�k+1 (3)
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20 Healy, Sj�odin, Rustagi, Whalley and van Engelen
for (i=1; i<99; i++)for (j=i+1; j<100; j++)A;N = 98Xi=1 99Xj=i+1 1= 98Xi=10@ 99Xj=1 1� iXj=1 11A= 98Xi=1(99� i)= 98Xi=1 99� 99Xi=1 i= 4851(a) Loop Nest fromSort Program

for (j=1; j<=100; j++)for (i=j; i<=100; i++)for (k=1; k<j; k++)A;N = 100Xj=1 100Xi=j j�1Xk=1 1= 100Xj=1 100Xi=j (j � 1)= 100Xj=1 100Xi=1(j � 1)� j�1Xi=1(j � 1)!= 100Xj=1 100Xi=1 j � 100Xi=1 1 j�1Xi=1 j + j�1Xi=1 1!= 100Xj=1 �102j � j2 � 101�= 102 100Xj=1 j � 100Xj=1 j2 � 101 100Xj=1 1= 166650(b) Loop Nest from LU Decom-position ProgramFigure 12. Deriving the Total Number of Iterations for Two Loop Nests
The constraint on the bounds in Equation 2 results from the fact thatthe value of the sum must equal 0 if the lower bound a is greater thanthe upper bound b. The explicit constraint is necessary to accuratelycount the number of iterations of so-called zero-trip loops. Zero-triploops do not execute the loop body when the lower bound exceeds theupper bound, given that the stride is positive.We can represent summations with non-unit strides, where the stride sis speci�ed along with the lower bound a and upper bound b. Equation 4shows how a non-unit stride can be used in a conventional summation,where E is an expression and E[i si+ a] denotes the substitution ofall free occurrences of i by si+a. This is e�ectively a change in variablesand does not change the value of the summation. The change allowssummations with strides to be represented by normalized summations
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Supporting Timing Analysis by Automatic Bounding of Loop Iterations 21(summations with stride 1).I = b;sXi=a E = b(b�a)=scXi=0 E[i si+ a] (4)Summations with non-unit strides are more di�cult to evaluate sinceone has to deal with summations of oors. Equation 5 shows how a oorcan be converted to an expression involving a modulo operation (%). Amodulo operation can often be simpli�ed using Equation 6 (Sakellariou,1996). j nmk = n� n%mm , if m > 0 & n > 0 (5)nXi=0(i%d)p = 8>>>><>>>>: nXi=0 ip if n < dbn=dc�1Xj=0 d�1Xi=0 +ip n%dXi=0 ip if n � d (6)However, summations involving modulo operations are more di�-cult to simplify when two or more loops have non-unit strides and thebounds are symbolic. Fortunately, this situation rarely occurs. Equa-tions 2{6 can be used to correctly determine that the total iterationsfor the loop nest in Figure 13 is 1717. Unfortunately, sometimes anexpression in a summation may contain a product of two or moreterms containing modulo operations. In this case, an approximationof the iteration count is used, which is shown in Equation 7.b;sXi=a E � bb=scXi=a E=s (7)for (i=0; i<100; i++)for (j=i; j<100; j+=3)A;Figure 13. A Loop Nest Containing a Non-unit StrideAs suggested by Sakellariou (Sakellariou, 1996; Sakellariou, 1997), acomputer algebra system can be exploited o� line to solve the equations
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22 Healy, Sj�odin, Rustagi, Whalley and van Engelenof summations. However, computer algebra systems, such as Maple(Char et al., 1988), give inaccurate results when the bounds restrictionon the summation is violated in Equation 2. In general, every loopiteration count problem that is cast as a summation should evaluateto zero if the lower bound is greater than the upper bound. However,it is not always possible to evaluate the test when the bounds aresymbolic. For example, consider the loop nest in Figure 14. The innerloop is a zero-trip loop for values of i greater than 2. We de�ne apartially zero-trip loop to be a loop that is zero-trip depending onvalues of index variables of outer loop(s). By applying Equation 2, theiteration count of the partially zero-trip loop can be de�ned as shownin Figure 14. Clearly, the result is N = 3. However, a naive evaluationwithout the bounds test results in N = �7. This means that when acomputer algebra system is to be used o� line, the summations shouldbe guarded with bounds tests. Unfortunately, computer algebra systemscannot e�ectively deal with the simpli�cation of nested summationswith additional tests on the bounds of inner summations. The reasonis that the test may be symbolic, as shown in Figure 14. The solution isto isolate possible conditions on the iteration variable from the test andto simplify summations as shown in Equation 8 for any expression e.Note that c may not necessarily lie within the range [a..b] and relationsbesides < may be used.bXi=a (E if i < c0 otherwise = (Pmin(b;c)i=a E if a < c0 otherwise (8)for (i=1; i<8; i++)for (j=i; j<3; j++)A;
N = 7Xi=1 (3� i if i < 30 otherwiseFigure 14. A Partially Zero-Trip Loop

paper.tex; 23/09/1999; 14:38; p.22



Supporting Timing Analysis by Automatic Bounding of Loop Iterations 235.2. ImplementationThe implementation for evaluating the summations described in theprevious section was accomplished by using the algebraic simpli�er por-tion of the Ctadel system (van Engelen et al., 1996; van Engelen et al.,1997). The authors' timing analyzer (Healy et al., 1999) and Ctadelwere compiled separately, but Ctadel is directly integrated into thetiming analyzer by linking the object �les. This avoids unnecessaryoverhead that would result from passing expressions between the tim-ing analyzer and Ctadel by operating systems calls. The summationsare formulated in the timing analyzer and Ctadel is invoked as a Cfunction with the summation parameters as arguments.4Another complication when dealing with zero-trip loops in the tim-ing analyzer is due to the way the timing analyzer counts iterations. Asmentioned in Section 3.1, the number of loop iterations is the numberof times the loop header is executed, as opposed to the number oftimes the loop body is encountered. Thus, when a loop is entered, itis guaranteed to iterate at least once. The zero-trip case in Equation 8can be modi�ed to indicate a single iteration, as shown in Equation 9.bXi=a (E if i < c1 otherwise =(Pmin(b;c�1)i=a E if a < c0 otherwise +(Pbi=max(a;c) 1 if c � b0 otherwise (9)Figure 15 shows how the loop nest in Figure 14 can be formulated asa summation and solved to produce an accurate number of iterations.Note that the test in Figure 15 has iteration variable i isolated to theleft of the relation. An isolation algorithm is used byCtadel to analyzethe test and isolate the variable.It is known that the detection of zero-trip loops in the general caseis NP-complete, because it amounts to solving a integer linear pro-gramming problem. Similarly, adjusting the bounds of loops to avoidpartially zero-trip loops is NP-complete. This normalization processcan be performed with the Fourier-Motzkin (FM) elimination method(Wolfe, 1996). However, one can argue that real-world algorithms rarelyexhibit (partially) zero-trip loops, because algorithms with partiallyzero-trip loops are deemed to be ine�cient.The timing analyzer veri�es that there are no zero-trip loops for aninner loop by expanding its initial value and limit. Likewise, the timing4 The authors have created a Web page demonstrating the functionality of theCtadel. It can calculate the number of loop iterations for a loop nest speci�ed bythe user. The URL is http://www.cs.fsu.edu/~engelen/iternum.cgi.
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24 Healy, Sj�odin, Rustagi, Whalley and van EngelenN = 7Xi=1 (3� i if i < 31 otherwise= 2Xi=1(3� i) + 7Xi=3 1= 3 + 5= 8Figure 15. Deriving the Number of Iterations for the Loop Nest in Figure 14analyzer is able to verify that there are no partially zero-trip loops inthe loop nest. However, if the veri�cation is inconclusive, the loop nestmay or may not contain (partial) zero-trip loops. For instance, considerthe loop nest in Figure 16. The expansion of the innermost loop initialvalue and limit is depicted in Figure 17. The timing analyzer is able toguarantee that the inner loop is not zero-trip since the initial value isnever greater than the limit.for (i=0; i<10; i++)for (j=i; j<11; j++)for (k=i-3; k<j+8; k++)A;Figure 16. Innermost Loop Detected Zero-Trip Free by the Timing AnalyzerInitial Value Limiti� 3 j + 8[0::9] � 3 [i::10] + 8[�3::6] [[0::9]::10] + 8[0::10] + 8[8::18]Figure 17. Expanding Initial and Limit Values of Innermost Loop in Figure 16
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Supporting Timing Analysis by Automatic Bounding of Loop Iterations 25Now consider the loop in Equation 18 and the corresponding expan-sion of the initial value and limit in Figure 19. The test is inconclusive.However, the loop nest is not zero-trip due to the j < i condition inthe middle loop. Since the range analysis can be used to safely verify ifa loop is partially zero-trip, it is possible to use the results in decidingwhich summation solver to use. For example, the loop in Figure 16can be safely cast into a summation without a bounds tests, whilethe summations for the loop in Figure 18 requires a bounds test (seeFigure 15 for an example bounds test). The disadvantage of having abounds test is that a loop with a stride poses problems for solving thesummation because the summation bounds test may contain modulooperations on the iteration variable, which prohibits the application ofEquation 9. for (i=1; i<10; i++)for (j=0; j<i; j++)for (k=j; k<i; k++)A;Figure 18. Innermost Loop Nest Detected Zero-Trip Free by CtadelInitial Value Limitj i� 1[0::i] [1::9] � 1[0::[1::9]] [0::8][0::9]Figure 19. Expanding Initial and Limit Values of Innermost Loop in Equation 18The timing analyzer decides among three possible solution methodsto evaluate the summation representing a loop nest:� Ctadel evaluates the summation while testing the bounds of theindex variables.� Ctadel evaluates the summation without testing for bounds.� The timing analyzer derives conservative lower and upper boundson the sum, based on constant bounds given in outer level loops.
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26 Healy, Sj�odin, Rustagi, Whalley and van EngelenThe algorithm for selecting the appropriate method is described inFigure 20. The exact solutions are computed using safe assumptions inthe possible presence of partially zero-trip loops, using either method(1) or (2). This algorithm will resort to method (3) only in the presenceof multiple loops with non-unit strides.The timing analyzer veri�es that the loop nest is not (partially) zero-trip.IF the check is successful THENThe loop nest is formulated into summation without bounds tests andpresented to Ctadel.IF Ctadel is able to solve the summation THENRETURN the integer count.ELSECtadel could not solve the summation in the presence of two or moreloops with non-unit strides.RETURN conservative lower and upper bounds on the sum.END IFELSEThe check is inconclusive and the loop nest is cast into a summation withbounds tests.The rewritten summation is presented to Ctadel.IF Ctadel is able to solve the summation THENRETURN the integer count.ELSECtadel could not solve the summation in the presence of two or moreloops with non-unit strides.RETURN conservative lower and upper bounds on the sum.END IFEND IFFigure 20. Algorithm for Selecting a Solution Method for SummationsThe following approach is used in the timing analyzer to obtaintight predictions of non-rectangular loop nests whose total iterationsin a loop nest are known. The timing analyzer calculates WCET andBCET predictions based on the maximum and minimum number ofiterations, respectively, for the loop whose number of iterations varies.These predictions are made in case a user requests the WCET or BCETpredictions for the loop. In addition to these absolute predictions, thetiming analyzer also calculates average WCET and BCET predictionsfor each loop. To calculate the average number of iterations for a loop,we divide the total iterations by the total number of times the loop isentered. For instance, in the previous subsection we found that the totalnumber of iterations for the innermost loop from the sort program in
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Supporting Timing Analysis by Automatic Bounding of Loop Iterations 27Figure 12 on page 20 was 4851. We also calculate the number of timesthe current loop is entered by calculating the total number of iterationsfor the loop that encloses the current loop. In this example, the inner-most loop is entered 98 times. Thus, the average number of iterationsfor the loop is 49.5 (4851/98). The average number of iterations isused to calculate the average WCET and BCET predictions. When anon-integer is calculated, we round up for the WCET prediction andtruncate for the BCET prediction since our loop analysis algorithm isdesigned to work on an integral number of iterations.5.3. ResultsTable VI shows programs that were evaluated using the approach ofcalculating an average number of iterations for loops. These programsbene�t from using this approach since they each contain one or morenon-rectangular loop nests. Note that the Sort program has been usedin the past as one of the test programs to evaluate our timing analyzer(Arnold et al., 1994; Healy et al., 1995; White et al., 1997). The sizeof a program is measured as number of assembly instructions in thecompiled and optimized program.Table VI. Test Programs Containing Non-Rectangular Loop NestsName Description or Emphasis SizeHes Reduces a 100x100 matrix to Hessenberg Form 221Integ Evaluates a Double Integral over a Trapezoidal Region 45Interp Polynomial Interpolation of 500 Points 178LU LU Decomposition of a 100x100 Matrix 278Sort Bubble sort of 500 Integers 130Sym Tests If a 500x500 Matrix Is Symmetric 50Table VII shows the best and worst-case cycles required for exe-cuting with instruction caching and pipelining for the MicroSPARC I(Texas Instruments, 1993). The previous ratio and current ratio columnsshow that when the timing analyzer used the average inner loop predic-tions, the predicted execution times were signi�cantly tighter. Interpshowed a signi�cant improvement in best case since the best case num-ber of iterations for the inner loop of a non-rectangular loop nest was1, which was signi�cantly lower than the average number of iterations.If the timing analyzer did not use an average number of inner loopiterations in worst case, then the number of loop iterations for thetriangular loops in Interp, Sort, and Sym would have been approxi-
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28 Healy, Sj�odin, Rustagi, Whalley and van Engelenmately double. The WCET of these programs are nearly exact usingthe average number of iterations. The Integ program had a higher best-case previous ratio and a lower worst-case previous ratio since therewere other loops in this program that contributed more signi�cantly tothe total execution time. The Sort and Sym programs did not have asigni�cant underestimation (i.e. previous ratio) in best case. In the bestcase for Sort the values were initially sorted and the sort function exitedonce the array has been detected to be in ascending order. Likewise,the Sym program terminates when it �nds the �rst pair of values thatare not equal. Hes and LU are unlike the other programs in that theycontain some triply nested loops. In some loop nests the loop variablesof the innermost and middle loops depend on the outermost indexvariable. In other loop nests the innermost loop variable depends onthe loop variable of the middle loop, which in turn depends on theloop variable of the outer loop. Ctadel correctly determines the exactnumber of loop iterations in all of these cases and the results are moreaccurate WCET predictions compared to its previous ratios. However,the improvement in BCET for LU was less substantial.5Table VIII shows the response time of the timing analyzer for each ofthe test programs. To obtain these measurements, the timing analyzerwas invoked for each test program ten times on a Sun HPC 3000processor. The �gures in the table represent the averages of the tentrials. Note that the times reported here include the analysis of bothbest and worst case predictions, which occurred in the same invocationof the analyzer. We found that the number of conditional constructs(e.g. if statements) rather than the number of loops and functions,tends to have the biggest impact on the analysis time since it a�ectsthe number of paths that must be analyzed.6. Coding Conventions to Make Loop Bounds PredictableWe have found that a programmer can write code where the timinganalyzer can accurately determine the number of iterations when thefollowing conventions are used. We do realize that these conventions5 The timing predictions for the Hes and LU programs are still fairly loose. Thisis primarily due to the fact that several loops were preceded by guards resulting fromif statements and loop code generation strategies. Each of these guards tests thevalue of a loop control variable. The authors have recently done work in detectingthis type of constraint (Healy and Whalley, 1999b) when dealing with rectangularloop nests. We anticipate to extend this analysis to non-rectangular loop nests forthe �nal version of this paper. This ability to detect constraints on loop controlvariables should substantially tighten both the WCET and BCET predictions forthe Hes and LU programs.
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Supporting Timing Analysis by Automatic Bounding of Loop Iterations 29Table VII. Timing Analysis ResultsBest-Case ResultsObserved Previous Previous Current CurrentName Cycles Estimated Ratio Estimated RatioCycles CyclesHes 306,341 13,614 0.044 256,516 0.837Integ 19,160,842 12,785,618 0.667 19,135,118 0.999Interp 6,485,878 143,064 0.022 6,479,865 0.999LU 13,792,698 278,683 0.020 637,383 0.046Sort 19,966 19,950 0.999 19,950 0.999Sym 160 160 1.000 160 1.000Worst-Case ResultsObserved Previous Previous Current CurrentName Cycles Estimated Ratio Estimated RatioCycles CyclesHes 55,747,317 130,932,770 2.281 57,389,258 1.029Integ 22,538,082 30,023,163 1.332 22,553,163 1.001Interp 25,469,403 50,702,358 1.991 25,479,405 1.000LU 22,436,763 141,900,455 6.324 26,410,255 1.177Sort 7,672,281 15,251,603 1.988 7,672,292 1.000Sym 2,747,654 5,481,220 1.995 2,747,698 1.000cannot always be used for some programs, such as non-numerical ap-plications. However, we believe these conventions can be followed formost numerical applications.1. When possible, make loop exit conditions only dependent on loopcounter variables.2. Use local integer variables for loop counter variables.3. Try not to increment or decrement loop counter variables in condi-tionally executed code.4. When possible, use integer constants for the initial value, limit,and increments of loop counter variables. Otherwise, try to useloop invariant values.5. Try to avoid non-unit strides in non-rectangular loop nests.
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30 Healy, Sj�odin, Rustagi, Whalley and van EngelenTable VIII. Analysis Response Times in SecondsName Analysis TimeHes 0.73Integ 0.14Interp 0.36LU 1.10Sort 0.25Sym 0.22Average 0.476. Try to avoid conditionally executed loops in non-rectangular loopnests. 7. ConclusionsIn this paper we have presented three di�erent methods for boundingthe number of iterations of a loop. First, a method was described thatdetermines the minimum and maximum number of iterations of loopswith multiple exits and also detects infeasible paths. For instance, loopsof the form in Figure 21(a) that can exit prematurely when somecondition becomes true are quite common and the bounded numberof iterations of such loops can be detected by the general algorithmpresented in the paper.Second, a method to derive a symbolic expression representing thenumber of iterations is presented. The symbolic expression is used tobound the number of iterations of loops which have a non-constantnumber of iterations. Figure 21(b) shows an example of this commontype of loop. The user can specify the minimum and maximum valuesof the variables in the symbolic expression by placing assertions inthe source code or by interactively responding to prompts from thetiming analyzer. These assertions are more reliable than specifying theminimum and maximum number of loop iterations directly since theuser does not have to be aware of the code generation strategies oroptimizations performed by the compiler. Also, if value range analysisof variables is deployed the bounds of the variables can be automaticallyprovided by the compiler.
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Supporting Timing Analysis by Automatic Bounding of Loop Iterations 31
   ...
for (i = 0; i < n; i++) {

   }

(b) Loop with a Nonconstant
Number of Iterations

   ...

   if (somecond)

   ...

   }

for (i = 0; i < 100; i++) {

      break;

(a) Loop with Multiple Exits

      ...

      }

for (i = 0; i < 99; i++)
   for (j = i+1; j < 100; j++) {

(c) Inner Loop Whose Number of Iterations
Depends on an Outer Loop Counter VariableFigure 21. Common Forms of LoopsFinally, timing analysis support is given to tightly predict the exe-cution time of a non-rectangular loop nest, i.e. a loop nest where thenumber of iterations of an inner loop is dependent on counter variablesof outer level loops. These loop nests, such as the one shown in Fig-ure 21(c), appear frequently in programs and can result in signi�cantoverestimations in worst-case predictions (as well as underestimationsin best-case predictions). Our approach more tightly predicts the num-ber of iterations when the initial value or limit of the control variablein an inner loop depends on a control variable of an enclosing outerloop.IF A loop variable has a non-constant loop-invariant initial value, limit, or stridethat is not dependent on an outer loop variable ANDThere are no other loop variables to bound the number of loop iterations THENUse information provided by the user (assertions or responses to queries) asdescribed in Section 4 to obtain bounds on these variables.END IFCalculate the minimum and maximum iterations as described in Section 3.IF The value of the loop variable is dependent on an outer loop variable THENCalculate an average number of iterations for the loop,using the techniques described in Section 5.END IFFigure 22. Algorithm for Selecting a Solution Method for Bounding Loop IterationsFigure 22 shows the algorithm used to decide which of the techniquespresented in this paper use for a particular loop.
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