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Timing Analysis for Data and Wrap-Around FillCachesRANDALL T. WHITE rwhite@cs.fsu.eduFlorida State University, Computer Science Department, Tallahassee, FL 32306-4530FRANK MUELLER mueller@informatik.hu-berlin.deHumboldt-Universit�at zu Berlin, Institut f�ur Informatik, 10099 Berlin (Germany), phone: (+49)(30) 2093-3011, fax:-3010CHRIS HEALY AND DAVID WHALLEY [healy,whalley]@cs.fsu.eduFlorida State University, Computer Science Department, Tallahassee, FL 32306-4530, phone:(850) 644-3506, fax:-0058MARION HARMON harmon@cis.famu.eduFlorida A&M University, Computer & Information Systems Department, Tallahassee, FL 32307-3101, phone: (850) 599-3042, fax: -3221Editor: Wolfgang A. HalangAbstract. The contributions of this paper are twofold. First, an automatic tool-based approachis described to bound worst-case data cache performance. The approach works on fully optimizedcode, performs the analysis over the entire control ow of a program, detects and exploits bothspatial and temporal locality within data references, and produces results typically within a fewseconds. Results obtained by running the system on representative programs are presented andindicate that timing analysis of data cache behavior usually results in signi�cantly tighter worst-case performance predictions.Second, a method to deal with realistic cache �lling approaches, namely wrap-around-�llingfor cache misses, is presented as an extension to pipeline analysis. Wrap-around �ll analysisis more challenging than traditional cache analysis since the words within a program line areloaded into cache in di�erent cycles according to a predetermined sequence, rather than all at thesame time. Results indicate that worst-case timing predictions become signi�cantly tighter whenwrap-around-�ll analysis is performed.Overall, the contribution of this paper is a comprehensive report on methods and results of worst-case timing analysis for data caches and wrap-around caches. The approach taken is unique andprovides a considerable step toward realistic worst-case execution time prediction of contemporaryarchitectures and its use in schedulability analysis for hard real-time systems.Keywords: Timing Analysis, Data Cache, Wrap-Around Fill Cache, Worst-Case ExecutionTime1. IntroductionReal-time systems rely on the assumption that the worst-case execution time(WCET) of hard real-time tasks be known to ensure that deadlines of tasks can bemet { otherwise the safety of the controlled system is jeopardized [18, 3]. Static
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Figure 1. Framework for Timing Predictions
analysis of program segments corresponding to tasks provides an analytical ap-proach to determine the WCET for contemporary architectures. The complexityof modern processors requires a tool-based approach since ad hoc testing methodsmay not exhibit the worst-case behavior of a program. This paper presents a sys-tem of tools that perform timing prediction by statically analyzing optimized codewithout requiring interaction from the user.The work presented here addresses the bounding of WCET for data caches andwrap-around-�ll mechanisms for handling cache misses. Thus, it presents an ap-proach to include common features of contemporary architectures for static pre-diction of WCET. Overall, this work �lls another gap between realistic WCETprediction of contemporary architectures and its use in schedulability analysis forhard real-time systems.The framework of WCET prediction uses a set of tools as depicted in Figure 1.The vpo optimizing compiler [4] has been modi�ed to emit control-ow information,data information, and the calling structure of functions in addition to regular objectcode generation. A static cache simulator uses the control-ow information andcalling structure in conjunction with the cache con�guration to produce instructionand data categorizations, which describe the caching behavior of each instructionand data reference, respectively. The timing analyzer uses these categorizationsand the control-ow information to perform path analysis of the program. Thisanalysis includes the evaluation of architectural characteristics such as pipeliningand wrap-around-�lling for cache misses. The description of the caching behaviorsupplied by the static cache simulator is used by the timing analyzer to predictthe temporal e�ect of cache hits and misses overlapped with the temporal behaviorof pipelining. The timing analyzer produces WCET predictions for user selectedsegments of the program or the entire program.



32. Related WorkIn the past few years, research in the area of predicting the WCET of programshas intensi�ed. Conventional methods for static analysis have been extended fromunoptimized programs on simple CISC processors [23, 20, 9, 22] to optimized pro-grams on pipelined RISC processors [30, 17, 11], and from uncached architecturesto instruction caches [2, 15, 13] and data caches [24, 14, 16]. While there has beensome related work in analyzing data caching, there has been no previous work onwrap-around-�ll caches in the context of WCET prediction, to our knowledge.Rawat [24] used a graph coloring technique to bound data caching performance.However, only the live ranges of local scalar variables within a single function wereanalyzed, which are fairly uncommon references since most local scalar variablesare allocated to registers by optimizing compilers.Kim et al. [14] have recently published work about bounding data cache perfor-mance for calculated references, which are caused by load and store instructionsreferencing addressing that can change dynamically. Their technique uses a versionof the pigeonhole principle. For each loop they determine the maximum numberof references from each dynamic load/store instruction. They also determine themaximum number of distinct locations in memory referenced by these instructions.The di�erence between these two values is the number of data cache hits for theloop given that there are no conicting references. This technique e�ciently de-tects temporal locality within loops when all of the data references within a loop�t into cache and the size of each data reference is the same size as a cache line.Their technique at this time does not detect any spatial locality (i.e. when the linesize is greater than the size of each data reference and the elements are accessedcontiguously) and detects no temporal locality across di�erent loop nests. Fur-thermore, their approach does not currently deal with compiler optimizations thatalter the correspondence of assembly instructions to source code. Such compileroptimizations can make calculating ranges of relative addresses signi�cantly morechallenging.Li et al. [16] have described a framework to integrate data caching into theirinteger linear programming (ILP) approach to timing prediction. Their implemen-tation performs data-ow analysis to �nd conicting blocks. However, their linearconstraints describing the range of addresses of each data reference currently haveto be calculated by hand. They also require a separate constraint for every elementof a calculated reference causing scalability problems for large arrays. No WCETresults on data caches are reported. However, their ILP approach does facilitateintegrating additional user-provided constraints into the analysis.3. Data CachesObtaining tight WCETs in the presence of data caches is quite challenging. Unlikeinstruction caching, addresses of data references can change during the execution ofa program. A reference to an item within an activation record could have di�erentaddresses depending on the sequence of calls associated with the invocation of the



4function. Some data references, such as indexing into an array, are dynamicallycalculated and can vary each time the data reference occurs. Pointer variables inlanguages like C may be assigned addresses of di�erent variables or an address thatis dynamically calculated from the heap.Initially, it may appear that obtaining a reasonable bound on worst-case datacache performance is simply not feasible. However, this problem is far from hope-less, since the addresses for many data references can be statically calculated. Staticor global scalar data references do retain the same addresses throughout the exe-cution of a program. Run-time stack scalar data references can often be staticallydetermined as a set of addresses depending upon the sequence of calls associatedwith an invocation of a function. The pattern of addresses associated with manycalculated references, e.g. array indexing, can often be resolved statically.The prediction of the WCET for programs with data caches is achieved by au-tomatically analyzing the range of addresses of data references, deriving relativeand then virtual addresses from these ranges, and categorizing data references ac-cording to their cache behavior. The data cache behavior is then integrated withthe pipeline analysis to yield worst-case execution time predictions of program seg-ments.3.1. Calculation of Relative AddressesThe vpo compiler [4] attempts to calculate relative addresses for each data referenceassociated with load and store instructions after compiler optimizations have beenperformed (see Figure 1). Compiler optimizations can move instructions betweenbasic blocks and outside of loops so that expansion of registers used in addresscalculations becomes more di�cult. The analysis described here is similar to thedata dependence analysis that is performed by vectorizing and parallelizing compil-ers [5, 6, 7, 21, 28, 29]. However, data dependence analysis is typically performedon a high-level representation. Our analysis had to be performed on a low-levelrepresentation after code generation and all optimizations had been applied.The calculation of relative addresses involves the following steps.1. The compiler determines for each loop the set of its induction variables, theirinitial values and strides, and the loop-invariant registers.12. Expansion of actual parameter information is performed in order to be able toresolve any possible address parameters later.3. Expansion of addresses used in loads and stores is performed. Expansion isaccomplished by examining each preceding instruction represented as a registertransfer list (RTL) and replacing registers used as source values in the addresswith the source of the RTL setting that register. Induction variables associatedwith a loop are not expanded. Loop invariant values are expanded by proceedingto the end of the preheader block of that loop. Expansion of the addresses ofscalar references to the run-time stack (e.g. local variables) is trivial. Expansion



5of references to static data (e.g. global variables) often requires expanding loop-invariant registers since these addresses are constructed with instructions thatmay be moved out of a loop. Expansion of calculated address references (e.g.array indexing) requires knowledge of loop induction variables. This approachto expanding addresses provides the ability to handle non-standard inductionvariables. We are not limited to simple induction variables in simple for loopsthat are updated only at the head of the loop.Consider the C source code, RTLs and SPARC assembly instructions in Figure 2for a simple Initialize function. The code in Initialize goes through elements1 to 51 in both array A and array B and initializes them to random integers. Notethat although delay slots are actually �lled by the compiler, they have not been�lled when compiling the code for most of the �gures in this paper, in order tosimplify the examples for the reader.2
.
.
.

r[27]=r[18]+LO[_A];           #  7. add    %l2,%lo(_A),%i3
r[28]=r[20]+LO[_B];           #  8. add    %l4,%lo(_B),%i4
r[24]=204+r[28];              #  9. add    %i4,204,%i0
r[24]=r[24]+200;              # 10. add    %i0,200,%i0
r[29]=r[28]+200;              # 11. add    %i4,200,%i5
r[29]=r[29]+r[26];            # 12. add    %i5,%i2,%i5

r[14]=SV[r[14]+-96];          #  1. save   %sp,(-96),%sp
r[20]=HI[_B];                 #  2. sethi  %hi(_B),%l4
r[18]=HI[_A];                 #  3. sethi  %hi(_A),%l2
r[25]=204;                    #  4. mov    204,%i1
r[26]=HI[10200];              #  5. sethi  %hi(10200),%i2
r[26]=r[26]+LO[10200];        #  6. add    %i2,%lo(10200),%i2

r[20]=4+r[25];                # 13. add    %i1,4,%l4
r[20]=r[20]+r[28];            # 14. add    %l4,%i4,%l4
r[21]=r[25]+r[27];            # 15. add    %i1,%i3,%l5
r[22]=r[25]+r[28];            # 16. add    %i1,%i4,%l6
r[21]=r[21]-r[22];            # 17. sub    %l5,%l6,%l5
r[22]=r[24];                  # 18. mov    %i0,%l6

ST=HI[_Rand]+LO[_Rand],68,0;  # 21. call   _Rand,0
R[r[20]+r[21]]=r[8];          # 22. st     %o0,[%l4 + %l5]
R[r[20]]=r[8];                # 23. st     %o0,[%l4]

PC=RT;                        # 32. ret
NL=RS[];                      # 33. restore

ST=HI[_Rand]+LO[_Rand],68,0;  # 19. call   _Rand,0
NL=NL;                        # 20. nop

store of A[i][j]
store of B[i][j]

r[20]=r[20]+4;                # 24. add    %l4,4,%l4
IC=r[20]?r[22];               # 25. cmp    %l4,%l6
PC=IC<0,L40;                  # 26. bl     L40
NL=NL;                        # 27. nop

r[24]=r[24]+204;              # 28. add    %i0,204,%i0
IC=r[24]?r[29];               # 29. cmp    %i0,%i5
PC=IC<0,L37;                  # 30. bl     L37

int B[MAX][MAX];

int A[MAX][MAX];

#define MAX 50

Initialize()

{

}

  int i, j;

  for (i=1; i<MAX; i++)

    for (j=1; j<MAX; j++)

      A[i][j] = Rand();

      B[i][j] = Rand();

    }

    {
L37

L40

r[25]=r[25]+204;              # 31. add    %i1,204,%i1Figure 2. Example C Function, RTLs, and SPARC Assembly for Function InitializeThe �rst memory address, r[20] + r[21] (instruction 22), is for the store ofA[i][j]. The second memory address, r[20] (instruction 23), is for the store of



6B[i][j]. Register r[20] is the induction register for the inner loop (instructions 19-27) and thus cannot be expanded. It has an initial value, a stride, and a maximumand minimum number of iterations associated with it, these having been computedand stored earlier in the compilation process.3 The initial value for r[20] consistsof the �rst element accessed (base address of B plus 4) plus the o�set that comesfrom computing the row location, that of the induction variable for the outer loop,r[25]. The stride is 4 and the minimum and maximum number of iterations arethe same, 50. Once the initial value, stride, and number of iterations are available,there is enough information to compute the sequence of addresses that will beaccessed by the store of B[i][j]. Knowing that both references have the samestride, the compiler used index reduction to avoid having to use another inductionregister for the address computation for A[i][j], since it shares the same loopcontrol variables as that for B.The memory address r[20] + r[21] for A[i][j] includes the address for B(r[20]) plus the di�erence between the two arrays (r[21]). This can be seenfrom the following sequence of expansions and simpli�cations. Remember that reg-ister r[20] cannot be immediately expanded since it is an induction register for theinner loop, so the expansion continues with register r[21] as follows. Note thatregister r[25] will not be expanded either since it is the induction variable for theouter loop (instructions 13-31).1. r[20] + r[21] # load at 222. r[20]+(r[21]-r[22]) # from 173. r[20]+(r[21]-(r[25]+r[28])) # from 164. r[20]+(r[25]+r[27]-(r[25]+r[28])) # from 155. r[20]+(r[25]+r[27]-(r[25]+r[20]+LO[ B])) # from 86. r[20]+(r[25]+(r[18]+LO[ A])-(r[25]+r[20]+LO[ B])) # from 77. r[20]+(r[25]+(HI[ A]+LO[ A])-(r[25]+r[20]+LO[ B])) # from 38. r[20]+(r[25]+(HI[ A]+LO[ A])-(r[25]+HI[ B]+LO[ B])) # from 2The e�ect of this expansion is simpli�ed in the following steps.9. r[20]+(r[25]+( A)-(r[25]+ B)) # eliminate HI and LO10. r[20]+(r[25]+ A-(r[25]+ B)) # remove unnecessary ()'s11. r[20]+r[25]+ A-r[25]- B # remove ()'s and distribute +'s and -'s12. r[20]+ A- B # remove negating termsThus, we are left with the induction register r[20] plus the di�erence between thetwo arrays. The simpli�ed address expression string is then written to a �le contain-ing data declarations and relative address information. When the address calculatorattempts to resolve this string to an actual virtual address, it will use the initialvalue of r[20], which is r[25]+ B+4, and the B's will cancel out (r[25]+ B+4+ A- B= r[25]+4+ A). Note this gives the initial address of the row in the A array. Therange of relative addresses for this example can be depicted algorithmically as shownin Figure 3. For more details on statically determining address information fromfully optimized code see [26].



7for (r[25] = 204; r[25] < 10200; r[25] += 204)for (r[20] = r[25]+4+_A; r[20] < r[25]+200+_A; r[20] += 4)address{Ar[25]r[20]}Figure 3. Algorithmic Range of Relative Addresses for the Load in Figure 2
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Figure 4. Virtual Address Space (SunOS)3.2. Calculation of Virtual AddressesCalculating addresses that are relative to the beginning of a global variable or anactivation record is accomplished within the compiler since much of the data owinformation required for this analysis is also used during compiler optimizations.However, calculating virtual addresses cannot be done in the compiler since theanalysis of the call graph and data declarations across multiple �les is required.Thus, an address calculator (see Figure 1) uses the relative address information inconjunction with control-ow information to obtain virtual addresses.Figure 4 shows the general organization of the virtual address space of a processexecuting under SunOS. There is some startup code preceding the instructionsassociated with the compiled program. Following the program code segment is thestatic data, which is aligned on a page boundary. The run-time stack starts athigh addresses and grows toward low addresses. Part of the memory between therun-time stack and the static data is the heap, which is not depicted in the �guresince addresses in the heap could not be calculated statically by our environment.Static data consists of global variables, static variables, and non-scalar constants(e.g. strings and oating-point constants). In general, the Unix linker (ld) placesthe static data in the same order that the declarations appeared within the assembly�les. Also, static data within one �le will precede static data in another �le speci�ed



8later in the list of �les to be linked. (There are some exceptions to these rulesdepending upon how such data is statically initialized.)In addition, padding between variables sometimes occurs. For instance, variablesdeclared as int and double on a SPARC are aligned on word and double-wordboundaries, respectively. In addition, the �rst static or global variable declaredin each of the source �les comprising the program is aligned on a double-wordboundary.Run-time stack data includes temporaries and local variables not allocated toregisters. Some examples of temporaries include parameters beyond the sixth wordpassed to a function and memory used to move values between integer and oating-point registers since such movement cannot be accomplished directly on a SPARC.The address of the activation record for a function can vary depending upon theactual sequence of calls associated with its activation. The virtual address of anactivation record containing a local variable is determined as the sum of the sizesof the activation records associated with the sequence of calls along with the initialrun-time stack address. The address calculator (along with the static simulator andtiming analyzer) distinguishes between di�erent function instances and evaluateseach instance separately. Once the static data names and activation records offunctions are associated with virtual addresses, the relative address ranges can beconverted into virtual address ranges.Only virtual addresses have been calculated so far. There is no guarantee thata virtual address will be the same as the actual physical address, which is used toaccess cache memory on most machines. In this paper we assume that the systempage size is an integer multiple of the data cache size, which is often the case. Forinstance, the MicroSPARC I has a 4KB page size and a 2KB data cache. Thus,both a virtual and corresponding physical address would have the same relativeo�set within a page and would map to the same line within the data cache.3.3. Static Simulation to Produce Data Reference CategorizationsThe method of static cache simulation is used to statically categorize the cachingbehavior of each data reference in a program for a speci�ed cache con�guration (seeFigure 1). A program control-ow graph is constructed that includes the controlow within each function, and a function instance graph which uniquely identi�eseach function instance by the sequence of call sites required for its invocation. Thisprogram control-ow graph is analyzed to determine the possible data lines that canbe in the data cache at the entry and exit of each basic block within the program[19].The iterative algorithm used for static instruction cache simulation [2, 19] isnot su�cient for static data cache simulation. The problem is that the calculatedreferences can access a range of possible addresses. At the point that the data accessoccurs, the data lines associated with these addresses may or may not be broughtin cache, depending upon how many iterations of the loop have been performedat that point. To deal with this problem a new state was created to indicatewhether or not a particular data line could potentially be in the data cache due to



9WHILE any change DOFOR each basic block instance B DOIF B == top THENinput state(B) = calc input state(B) = all invalid linesELSEinput state(B) = calc input state(B) = NULLFOR each immed pred P of B DOinput state(B) += output state(P)calc input state(B) += output state(P) + calc output state(P)IF P is in another loop THENinput state(B) += calc output state(P) + data lines(remaining in that loop)output state(B) = input state(B)FOR each data reference D in B DOIF D is scalar reference THENoutput state(B) += data line(D)output state(B) -= data lines(D conicts with)calc output state(B) += data line(D)calc output state(B) -= data lines(conicts with)ELSEoutput state(B) -= data lines(D could conict with)calc output state(B) += data lines(D could access)calc output state(B) -= data lines(D could conict with)Figure 5. Algorithm to Calculate Data Cache Statescalculated references. When an immediate predecessor block is in a di�erent loop(the transition from the predecessor block to the current block exits a loop), thedata lines associated with calculated references in that loop that are guaranteed tostill be in cache are unioned into the input cache state of that block. The iterativealgorithm in Figure 5 is used to calculate the input and output cache states foreach basic block in the program control ow.Once these cache state vectors have been produced, they are used to determinewhether or not each of the memory references within the bounded virtual addressrange associated with a data reference will be in cache. The static cache simulatorneeds to produce a categorization of each data reference in the program. The fourworst-case categories of caching behavior used in the past for static instructioncache simulation [2] were as follows. (1) Always Miss (m): The reference is notguaranteed to be in cache. (2) Always Hit (h): The reference is guaranteed toalways be in cache. (3) First Miss (fm): The reference is not guaranteed to be incache the �rst time it is accessed each time the loop is entered, but is guaranteedthereafter. (4) First Hit (fh): The reference is guaranteed to be in cache the �rsttime it is accessed each time the loop is entered, but is not guaranteed thereafter.These categorizations are still used for scalar data references.



10 int a[100][100]; int a[100][100];main() { /* row order sum */ main() { /* column order sum */int i, j, sum = 0; int i, j, sum = 0;for (i = 0; i < 100; i++) for (j = 0; j < 100; j++)for (j = 0; j < 100; j++) for (i = 0; i < 100; i++)sum += a[i][j]; sum += a[i][j];} }row order: c 25 2500 from [m h h h m h h h m h h h ... m h h h]col order: m from [m m m m m m m m m m m m ... m m m m](a) Detecting Spatial Localityint i, j, sum = 0, same = 0, a[50], b[50];...for (i = 0; i < 50; i++)sum += a[i]; /* a[i] is ref 1 */for (i = 0; i < 50; i++)for (j = 0; j < 50; j++)if (a[i] == b[j]) /* a[i] is ref 2 and b[i] is ref 3 */same++;ref 1: c 13 from [m h m h h h m h h h m h h h ... m h h h]ref 2: h from [h h ... h h] due to temporal locality across loops.ref 3: c 13 13 from [m h h m h h h ... m h] on �rst execution of inner loop,and [h h h h ... h] on all successive executions of it.(b) Detecting Temporal Locality across and within LoopsFigure 6. Examples for Spatial and Temporal LocalityTo obtain the most accuracy, a worst-case categorization of a calculated datareference for each iteration of a loop could be determined. For example, somecategorizations for a data reference in a loop with 20 iterations might be as follows:m h h h m h h h m h h h m h h h m h h hWith such detailed information the timing analyzer could then accurately deter-mine the worst-case path on each iteration of the loop. However, consider a loopwith 100,000 iterations. Such an approach would be very ine�cient in space (stor-ing all of the categorizations) and time (analyzing each loop iteration separately).The authors decided to use a new categorization called Calculated (c) that wouldalso indicate the maximum number of data cache misses that could occur at eachloop level in which the data reference is nested. The previous data reference cate-gorization string would be represented as follows (since there is only one loop levelinvolved): c 5



11The order of access and the cache state vectors are used to detect cache hits withincalculated references due to spatial locality. Consider the two code segments inFigure 6(a) that sum the elements of a two dimensional array. The two codesegments are equivalent, except that the left code segment accesses the array inrow order and the right code segment uses column order (i.e., the for statementsare reversed). Assume that the scalar variables (i, j, sum, and same) are allocatedto registers. Also, assume the size of the direct-mapped data cache is 256 byteswith 16 cache lines containing 16 bytes each. Thus, a single row of the array arequiring 400 bytes cannot �t into cache. The static cache simulator was able todetect that the load of the array element in the left code segment had at most onemiss for each of the array elements that are part of the same data line. This wasaccomplished by inspecting the order in which the array was accessed and detectingthat no conicting lines were accessed in these loops. The categorizations for theload data reference in the two segments are given in the same �gure. Note in thiscase that the array happens to be aligned on a line boundary. The speci�cation ofa single categorization for a calculated reference is accomplished in two steps foreach loop level after the cache states are calculated. First, the number of references(iterations) performed in the loop is retrieved. Next, the maximum number ofmisses that could occur for this reference in the loop is determined. For instance,at most 25 misses will occur in the innermost loop for the left code segment. Thestatic cache simulator determined that all of the loads for the right code segmentwould result in cache misses. Its data caching behavior can simply be viewed as analways miss. Thus, the range of 10,000 di�erent addresses referenced by the loadare collapsed into a single categorization of c 25 2500 (calculated reference with25 misses at the innermost level and 2500 misses at the outer level) for the left codesegment and an m (always miss) for the right code segment.Likewise, cache hits from calculated references due to temporal locality bothacross and within loops are also detected. Consider the code segment in Figure 6(b).Assume a cache con�guration with 32 16-byte lines (512 byte cache) so that botharrays a and b requiring 400 bytes total (200 each) �t into cache. Also assume thescalar variables are allocated to registers. The accesses to the elements of array aafter the �rst loop were categorized as an h (always hit) by the static simulatorsince all of the data lines associated with array a will be in the cache state oncethe �rst loop is exited. This shows the detection of temporal locality across loops.After the �rst complete execution of the inner loop, all the elements of b will bein cache, so then all references to it on the remaining executions of the inner loopare also categorized as hits. Thus, the categorization of c 13 13 is given. Relativeto the innermost loop, 13 misses are due to bringing b into cache during the �rstcomplete execution of the inner loop. There are also only 13 misses relative to theoutermost loop since b will be completely in cache on each iteration after the �rst.Thus, temporal locality is also detected within loops.The current implementation of the static data cache simulator (and timing an-alyzer) imposes some restrictions. First, only direct-mapped data caches aresupported. Obtaining categorizations for set-associative data caches can be ac-complished in a manner similar to that described in other work on instruction



12caches [27]. Second, recursive calls are not allowed since it would complicate thegeneration of unique function instances. Third, indirect calls are not allowed sincean explicit call graph must be generated statically.3.4. Timing AnalysisThe timing analyzer (see Figure 1) utilizes pipeline path analysis to estimate theWCET of a sequence of instructions representing paths through loops or functions.Pipeline information about each instruction type is obtained from the machine-dependent data �le. Information about the speci�c instructions in a path is obtainedfrom the control-ow information �les. As each instruction is added separately tothe pipeline state information, the timing analyzer uses the data caching catego-rizations to determine whether the MEM (data memory access) stage should betreated as a cache hit or a miss.The worst-case loop analysis algorithm was modi�ed to appropriately handlecalculated data reference categorizations. The timing analyzer will conservativelyassume that each of the misses for the current loop level of a calculated referencehas to occur before any of its hits at that level. In addition, the timing analyzeris unable to assume that the penalty for these misses will overlap with other longrunning instructions since the analyzer may not evaluate these misses in the exactiterations in which they occur. Thus, each calculated reference miss is alwaysviewed as a hit within the pipeline path analysis and the maximum number of cyclesassociated with a data cache miss penalty is added to the total time of the path.This strategy permits an e�cient loop analysis algorithm with some potentiallysmall overestimations when a data cache miss penalty could be overlapped withother stalls.The worst-case loop analysis algorithm is given in Figure 7. The additions to thepreviously published algorithm [11] to handle calculated references are shown inboldface. Let n be the maximum number of iterations associated with a given loop.The WHILE loop terminates when the number of processed iterations reaches n- 1 or no more �rst misses, �rst hits, or calculated references are encountered asmisses, hits, and misses, respectively. This WHILE loop will iterate no more thanthe minimum of (n - 1) or (p + r) times, where p is the number of paths and r isthe number of calculated reference load instructions in the loop.The algorithm selects the longest path for each loop iteration [11, 10]. In order todemonstrate the correctness of the algorithm, one must show that no other path fora given iteration of the loop will produce a longer time than that calculated by thealgorithm. Since the pipeline e�ects of each of the paths are unioned, it only remainsto be shown that the caching e�ects are treated properly. All categorizations aretreated identically on repeated references, except for �rst misses, �rst hits, andcalculated references. Assuming that the data references have been categorizedcorrectly for each loop and the pipeline analysis was correct, it remains to be shownthat �rst misses, �rst hits, and calculated references are interpreted appropriatelyfor each loop iteration. A correctness argument about the interpretation of �rsthits and �rst misses is given in [2].



13total cycles = curr iter = 0.pipeline info = �rst misses encountered = �rst hits encountered = NULL.WHILE curr iter != n - 1 DOFind the longest continue path.�rst misses encountered += �rst misses that were misses in this path.�rst hits encountered += �rst hits that were hits in this path.IF �rst miss or �rst hit encountered in this path THENcurr iter += 1.Subtract 1 from the remaining misses of each calculated reference in this path.Concatenate pipeline info with the union of the info for all paths.total cycles += additional cycles required by union.ELSE IF a calculated reference was encountered in this path as a miss THENmin misses = the minimum of the number of remaining misses of eachcalculated reference in this path that is nonzero.min misses = min(min misses, n - 1 - curr iter).curr iter += min misses.Subtract min misses from the remaining misses of each calc ref in this pathConcatenate pipeline info with the union of info for all paths min misses times.total cycles += min misses * (additional cycles required by union).ELSEbreak.Concatenate pipeline info with the union of pipeline info for all paths (n - 1 - curr iter) times.total cycles += (n - 1 - curr iter) * (additional cycles required by union).FOR each set of exit paths that have a transition to a unique exit block DOFind the longest exit path in the set.�rst misses encountered += �rst misses that were misses in this path.�rst hits encountered += �rst hits that were hits in this path.Concatenate pipeline info with the union of the info for all exit paths in the set.total cycles += additional cycles required by exit union.Store this information with the exit block for the loop.Figure 7. Worst-Case Loop Analysis AlgorithmThe WHILE loop will subtract one from each calculated reference miss count forthe current loop in the longest path chosen on each iteration whenever there are �rstmisses or �rst hits encountered as misses or hits, respectively. Once no such �rstmisses and �rst hits are encountered in the longest path, the same path will remainthe longest path as long as its set of calculated references that were encountered asmisses continue to be encountered as misses since the caching behavior of all of thereferences will be treated the same. Thus, the pipeline e�ects of this longest pathare e�ciently replicated for the number of iterations associated with the minimumnumber of remaining misses of the calculated references that are nonzero withinthe longest path. After the WHILE loop, all of the �rst misses, �rst hits, andcalculated references in the longest path will be encountered as hits, misses, andhits, respectively. The unioned pipeline e�ects after the WHILE loop will not



14change since the caching behavior of the references will be treated the same. Thus,the pipeline e�ects of this path are e�ciently replicated for all but one of theremaining iterations. The last iteration of the loop is treated separately since thelongest exit path may be shorter than the longest continue path.A correctness argument about the interpretation of calculated references needs toshow that the calculated references are treated as misses the appropriate numberof times. The algorithm treats a calculated reference as a miss until its speci�ednumber of calculated misses for the loop is exhausted. The IF-THEN portion ofthe WHILE loop subtracts one from each calculated reference miss count since onlya single iteration is analyzed and each calculated reference can only miss once ina given loop iteration. The ELSE-IF-THEN portion of the WHILE loop subtractsthe minimum of the misses remaining in any calculated reference for that path andthe number of iterations remaining in the loop. The number of iterations analyzedis again the same as the number of misses subtracted for each calculated reference.Since the misses for the calculated references are evaluated before the hits, theinterpretation of calculated references will not underestimate the actual number ofcalculated misses given that the data references have been categorized correctly.An example is given in Figure 8 to illustrate the algorithm. The if statementcondition was contrived to force the worst-case paths to be taken when executed.Assume a data cache line size of 8 bytes and enough lines to hold all three arrays incache. The �gure also shows the iterations when each element of each of the threearrays will be referenced and whether or not each of these references will be a hitor a miss. Two di�erent paths can be taken through the loop on each iteration asshown in the integer pipeline diagram of Figure 8. Note that the pipeline diagramsreect that the loads of the array elements were found in cache. The miss penaltyfrom calculated reference misses is simply added to the total cycles of the path andis not directly reected in the pipeline information since these misses may not occurin the same exact iterations as assumed by the timing analyzer.Table 1 shows the steps the timing analyzer uses from the algorithm given inFigure 7 to estimate the WCET for the loop in the example shown in Figure 8.The longest path detected in the �rst step is Path A, which contains referencesto k[i] and c[i]. The pipeline time required 20 cycles and the misses for thetwo calculated references (k[i] and c[i]) required 18 cycles. Note that each misspenalty was assumed to require 9 cycles. Since there were no �rst misses, the timinganalyzer determines that the minimum number of remaining misses from the twocalculated references is 13. Thus, the path is replicated an additional 12 times.The overlap between iterations is determined to be 4 cycles. Note that 4 is notsubtracted from the �rst iteration since any overlap for it would be calculated whendetermining the worst-case execution time of the path through the main function.The total time for the �rst 13 iterations will be 446. The longest path detected instep 2 is also Path A. But this time all references to c[i] are hits. There are 37remaining misses to k[i]. The total time for iterations 14 through 50 is 925 cycles.The longest path detected in step 3 is Path B, which has 25 remaining misses tos[i]. This results in 550 additional cycles for iterations 51 through 75. After step3 the worst-case loop analysis has exited the WHILE loop in the algorithm. Step
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  for (i = 0; i < 100; i++)

}

{

main()

char c[100];

short s[100];

int k[100];

  int i, sum;

  sum = 0;

    if ((i & 3) != 1)

      sum += k[i]+c[i];

    else

      sum += s[i];

   Path B:  Blocks 2, 4, & 5

   Path A:  Blocks 2,3, & 5

Paths in the loop:

load of s[i]

load of c[i]

load of k[i]

r[8]=(B[r[17]]{24)}24; # 16. ldsb  [%l1],%o0

r[9]=R[r[16]];         # 17. ld    [%l0],%o1

r[9]=r[9]+r[8];        # 18. add   %o1,%o0,%o1

PC=L17;                # 19. ba    L17 

r[12]=r[12]+r[9];      # 20. add   %o4,%o1,%o4

r[8]=(W[r[7]]{16)}16;  # 21. ldsh  [%g7],%o0

r[12]=r[12]+r[8];      # 22. add   %o4,%o0,%o4

Instructions 1 through 11

Instructions 12 through 15

Block 1

Block 2

Block 3

Block 4

Instructions 23 through 28

Instructions 29 through 30

Block 5

Block 6

L17

0 1 2 3 4 5

data line 0 data line 1 data line 2 data line 3 data line 50 data line 51 data line 76 data line 77

2 3 40 1 5 6 7 ...

...

0 1 2 3 4 5 6 7

...

...k:

h

0 1 2 3 4 5 6 7 8 9

miss

1

miss hit miss miss hit miss miss

3 4 5 7 8

result:

accessed:
iteration

elements:
array

2 6

m

1

h h h h h m h h h h

3 4 5 7 8 9
2 3 5 6

1
1

1 1 1 1

1 1 1 1 1 1

...

...

data lines:

s: c:

k[i]: c 50 from [m h m h .. m h ]s[i]: c 25 from [m h h h m h h h .. m h h h]c[i]: c 13 from [m h h h h h h h m h h h h h h h .. m h h h h h h h m h h h]
MEM 12 13 15 16 17 18 20 23 24 25 26 28

WB 12 13 15 16 17 18 20 23 24 25 26 28

MEM 12 13 15 21 22 23 24 25 26 28

WB 12 13 15 21 22 23 24 25 26 28

EX

ID

IF

2 3 4 5

cycle
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Pipeline Diagram for Path B:  Instructions 12-15 and 21-28 (blocks 2,4,5)
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Pipeline Diagram for Path A:  Instructions 12-20 and 23-28 (blocks 2,3,5)

Figure 8. Example to Illustrate Worst-Case Loop Analysis Algorithm4 calculates 384 cycles for the next 24 iterations (76-99). Step 5 calculates thelast iteration to require 16 cycles. The timing analyzer calculates the last iterationseparately since the longest exit path may be shorter than other paths in the loop.The total number of cycles calculated by the timing analyzer for this example wasidentical to the number obtained by execution simulation.A timing analysis tree is constructed to predict the worst-case performance. Eachnode of the tree represents either a loop or a function in the function instance graph,where each function instance is uniquely identi�ed by the sequence of calls resultingin its invocation. The nodes representing the outer level of function instances aretreated as loops that will iterate only once. The worst-case time for a node isnot calculated until the time for all of its immediate child nodes are known. For



16Table 1. Timing Analysis Steps for the loop in Figure 8start longest totalstep iter path cycles min misses iters additional cycles cycles1 1 20+18=38 min(13,50)=13 13 20+((20-4)*12)+(18*13)=446 4462 14 20+9=29 min(37)=37 37 ((20-4)*37)+(9*37)=925 13713 51 17+9=26 min(25)=25 25 ((17-4)*25)+(9*25)=550 19214 76 20+0=20 N/A 24 (20-4)*24=384 23055 100 20+0=20 N/A 1 20-4=16 2321instance, consider the example shown in Figure 8 and Table 1. The timing analyzerwould calculate the worst-case time for the loop and use this information to nextcalculate the time for the path in main that contains the loop (block 1, loop, block6). The construction and processing of the timing analysis tree occurs in a similarmanner as described in [2, 11].3.5. ResultsMeasurements were obtained on code generated for the SPARC architecture bythe vpo optimizing compiler [4]. The machine-dependent information containedthe pipeline characteristics of the MicroSPARC I processor [25]. A direct-mappeddata cache containing 16 lines of 32 bytes for a total of 512 bytes was used. TheMicroSPARC I uses write-through/no-allocate data caching [25]. While the staticsimulator was able to categorize store data references, these categorizations wereignored by the timing analyzer since stores always accessed memory and a hit ormiss associated with a store data reference had the same e�ect on performance.Instruction fetches were assumed to be all hits in order to isolate the e�ects of datacaching from instruction caching.Table 2 shows the test programs used to assess the timing analyzer's e�ectivenessof bounding worst-case data cache performance. Note that these programs wererestricted to speci�c classes of data references that did not include any dynamicallocation from the heap. Two versions were used for each of the last �ve testprograms. The a version had the same size arrays that were used in previousstudies [2, 11]. The b version of each program used smaller arrays that wouldtotally �t into a 512 byte cache. The number of bytes reported in the table is thetotal number of bytes of the variables in the program. Note that some of thesebytes will be in the static data area while others will be in the run-time stack. Theamount of data is not changed for the program Des since its encryption algorithmis based on using large static arrays with preinitialized values.Table 3 depicts the dynamic results from executing the test programs. The hitratios were obtained from the data cache execution simulation. Only Sort hadvery high data cache hit ratios due to many repeated references to the same arrayelements. The observed cycles were obtained using an execution simulator, modi�edfrom [8], to simulate data cache and pipeline a�ects and count the number ofcycles. The estimated cycles were obtained from the timing analyzer discussed in



17Table 2. Test Programs for Data CachingNumName Bytes Description or EmphasisDes 1346 Encrypts and Decrypts 64 bitsMatcnta 40060 Count and Sum Values in a 100x100 Int MatrixMatcntb 460 Count and Sum Values in a 10x10 Int MatrixMatmula 30044 Multiply 2 50x50 Matrices into a 50x50 Int MatrixMatmulb 344 Multiply 2 5x5 Matrices into a 5x5 Int MatrixMatsuma 40044 Sum Values in a 100x100 Int MatrixMatsumb 444 Sum Values in a 10x10 Int MatrixSorta 2044 Bubblesort of 500 Int ArraySortb 444 Bubblesort of 100 Integer ArrayStatsa 16200 Calc Sum, Mean, Var., (2 arrays[1000 doubles])Statsb 600 ..., StdDev., & Corr. Coe�. (2 arrays[25 doubles])Section 3.4. The estimated ratio is the quotient of these two values. The naive ratiowas calculated by assuming all data cache references to be misses and dividing thosecycles by the observed cycles.The timing analyzer was able to tightly predict the worst-case number of cyclesrequired for pipelining and data caching for most of the test programs. In fact, for�ve of them, the prediction was exact or over by less that one-tenth of one percent.The inner loop in the function within Sort that sorted the values had a varyingnumber of iterations that depends upon a counter of an outer loop. The numberof iterations performed was overrepresented on average by about a factor of twofor this inner loop. The strategy of treating a calculated reference miss as a hit inthe pipeline and adding the maximum number of cycles associated with the misspenalty to the total time of the path caused overestimations with the Statsa andStatsb programs, which were the only oating-point intensive programs in the testset. Often delays due to long-running oating-point operations could have beenoverlapped with data cache miss penalty cycles. Matmula had an overestimationTable 3. Dynamic Results for Data CachingHit Observed Estimated Est/Obs NaiveName Ratio Cycles Cycles Ratio RatioDes 75.71% 155,340 191,564 1.23 1.45Matcnta 71.86% 1,143,014 1,143,023 1.00 1.15Matcntb 70.73% 12,189 12,189 1.00 1.15Matmula 62.81% 7,245,830 7,952,807 1.10 1.24Matmulb 89.40% 11,396 11,396 1.00 1.33Matsuma 71.86% 1,122,944 1,122,953 1.00 1.15Matsumb 69.98% 11,919 11,919 1.00 1.15Sorta 97.06% 4,768,228 9,826,909 2.06 2.88Sortb 99.40% 188,696 371,977 1.97 2.92Statsa 90.23% 1,237,698 1,447,572 1.17 1.29Statsb 89.21% 32,547 37,246 1.14 1.29average 80.75% N/A N/A 1.24 1.55



18of about 10% whereas the smaller data version Matmulb was exact. The Matmulprogram has repeated references to the same elements of three di�erent arrays.These references would miss the �rst time they were encountered, but would be incache for the smaller Matmulb when they were accessed again since the arrays �tentirely in cache. When all the arrays �t into cache there is no interference betweenthem. However, when they do not �t into cache the static simulator conservativelyassumes that any possible interference must result in a cache miss. Therefore, thecategorizations are more conservative and the overestimation is larger. Finally, theDes program has several references where an element of a statically initialized arrayis used as an index into another array. There is no simple method to determinewhich value from it will be used as the index. Therefore, we must assume that anyelement of the array may be accessed any time the data reference occurs in theprogram. This forces all conicting lines to be deleted from the cache state andthe resulting categorizations to be more conservative. The Des program also hasoverestimations due to data dependencies. A longer path deemed feasible by thetiming analyzer could not be taken in a function due to the value of a variable.Despite the relatively small overestimations detailed above, the results show thatwith certain restrictions it is possible to tightly predict much of the data cachingbehavior of many programs.The di�erence between the naive and estimated ratios shows the bene�ts forperforming data cache analysis when predicting worst-case execution times. Thebene�t of worst-case performance from data caching is not as signi�cant as the ben-e�t obtained from instruction caching [2, 11]. An instruction fetch occurs for eachinstruction executed. The performance bene�t from a write-through/no-allocatedata cache only occurs when the data reference from a load instruction is deter-mined by the timing analyzer to be in cache. Load instructions only comprised onaverage 14.28% of the total executed instructions for these test programs. However,the results do show that performing data cache analysis for predicting worst-caseexecution time does still result in substantially tighter predictions. In fact, for theprograms in the test set the prediction improvement averages over 30%.The performance overhead associated with predicting WCETs for data cachingusing this method comes primarily from that of the static cache simulation. Thetime required for the static simulation increases linearly with the size of the data.However, even with large arrays as in the given test programs this time is rathersmall. The average time for the static simulation to produce data reference catego-rizations for the 11 programs given in Table 3 was only 2.89 seconds. The overheadof the timing analyzer averages to 1.05 seconds.4. Wrap-Around-Filling for Instruction Cache MissesSeveral timing tools exist that address the hit/miss behavior of an instruction cache.But modern instruction caches often employ various sophisticated approaches todecrease the miss rate or reduce the miss penalty [12]. One approach to reducethe miss penalty in an instruction cache is wrap-around �ll. A processor employingthis feature will load a cache line one word at a time, starting with the instruction



19Table 4. Order of Fill When Loading Words of a Cache LineFirst Requested Word Miss Delay for Wordwithin Cache Line 0 1 2 3 4 5 6 70 7 8 10 11 13 14 16 171 8 7 10 11 13 14 16 172 16 17 7 8 10 11 13 143 16 17 8 7 10 11 13 144 13 14 16 17 7 8 10 115 13 14 16 17 8 7 10 116 10 11 13 14 16 17 7 87 10 11 13 14 16 17 8 7that caused the cache miss. For each word in the program line that is being loadedinto the cache, the associated instruction cannot be fetched until its word hasbeen loaded. The motivation for wrap-around �ll is to let the CPU proceed withthis instruction and allow the pipelined execution to continue while subsequentinstructions are loaded into cache. Thus, the bene�t is that it is not necessary towait for the entire cache line to be loaded before proceeding with the execution ofthe fetched instruction. However, this feature further complicates timing analysissince it can introduce dead cycles into the pipeline analysis during those cycles whenno instruction is being loaded into cache [25]. Wrap-around �ll is used on severalrecent architectures, including the Alpha AXP 21064, the MIPS R10000 and theIBM 620.Table 4 shows when words are loaded into cache on the MicroSPARC I processor[25]. In each instruction cache line there are eight words, hence eight instructions.The rows of the table are distinguished by which word w within a cache line wasrequested when the entire line was not found in cache. The leftmost column showsthat any of the words 0-7 can miss and become the �rst word in its respective pro-gram line to be loaded into cache. It takes seven cycles for the requested instructionto reach the instruction cache. During the eighth cycle, the word with which w ispaired, either w + 1 if w is even or w - 1 if w is odd, gets loaded into cache. Aftereach pair of words is loaded into cache, there is a dead cycle during which no wordis written. Table 6 indicates that the MicroSPARC I has dead cycles during theninth, twelfth and �fteenth cycles after a miss occurs. It takes seventeen cycles foran entire program line to be requested from memory and completely loaded intocache. Note that on the MicroSPARC I there is an additional requirement that anentire program line must be completely loaded into cache before a di�erent programline can be accessed (whether or not that other program line is already in cache).For wrap-around-�ll analysis, information stored with each path and loop includesthe program line number and the cycles during which the words of the loop's �rstand last program lines are loaded into cache. These cycles are called the availabletimes, and the timing analyzer calculates beginning and ending available times foreach path in a particular loop. For loop analysis, this set of beginning and endinginformation is propagated along with the worst-case path's pipeline requirementsand data hazard information. Keeping track of when the words of a program line



20are available in cache is analogous to determining when a particular pipeline stage islast occupied and to detecting when the value of a register is available via hardwareforwarding. These available times are used to carry out wrap-around-�ll analysis ofpaths and loops. This analysis detects the delays associated with dead cycles andcases where these delays can be overlapped with pipeline stalls to produce a moreaccurate WCET prediction.4.1. Wrap-Around-Fill Delays Within a PathDuring the analysis of a single path of instructions, it is necessary to know when theindividual words of a cache line will be loaded with the appropriate instructions.When the timing analyzer processes an instruction that is categorized as a miss, itcan automatically determine when each of the instructions in this program line willbe loaded into cache, according to the order of �ll given in the machine-dependentinformation. The timing analyzer stores the program line number and the relativeword number in that line for every instruction in the program. During the analysisof a path, the timing analyzer can update information about which program lineis arriving into cache and when the words of that line are available to be fetchedwithout any delay. At the point the timing analyzer is �nished examining a path, itwill store the information associated with the �rst and last program lines referencedin this path, including the cycles during which words in these lines become availablein cache, plus the amount of delay caused by latencies from the �lling of cache lines.Such information will be useful when the path is evaluated in a larger context,namely when the �rst iteration of a loop or a path in a function is entered or calledfrom another part of the program.Figure 9 shows the algorithm that is used to determine the number of cyclesassociated with a instruction fetch while analyzing a path. The cycles when thewords become available in the last line fetched are calculated on each miss. In orderto demonstrate the correctness of the algorithm, one must show that the requirednumber of cycles are calculated for the wrap-around-�ll delay on each instructionfetch. There are three possible cases. The �rst case is when the instruction beingfetched is in the last line fetched, which means the instruction fetch must be a hit.Line 4 in the algorithm uses the arrival time of the associated word containing theinstruction to determine if extra cycles are needed for the IF stage. The secondand third cases are when the reference was not in the last line fetched and theinstruction fetch could be a hit or a miss, respectively. In either case, cycles forthe IF stage of the instruction have to include the delay to complete the loading ofthe last line, which is calculated at line 6. Line 8 calculates the additional cyclesfor the IF stage required for a miss to load the requested word in the line. Lines9-10 establish the arrival times of the words in the line when there is a miss. Allthree cases are handled. Thus, the algorithm is correct given that arrival times ofthe current line preceding the �rst instruction in the path are accurate. Techniquesto determine the arrival times at the point a path is entered are described in thefollowing sections.



21// matrix containing information from Table 4const int waf delay[WORDS PER LINE][WORDS PER LINE]// indicates when each word of the last line fetched become availableint available[WORDS PER LINE]const int max delay // delay required to load the last word of a line1: curr word num = inst word num % WORDS PER LINE.2: �rst cycle = �rst vacancy of IF stage.3: IF instruction in last line fetched THEN4: cycles in IF = max(0, available[curr word num] - �rst cycle).5: ELSE6: cycles in IF = previous line delay = max(0,last word avail - �rst cycle).7: IF reference was a miss THEN8: cycles in IF += waf delay[curr word num][curr word num].9: FOR i = 0 TO WORDS PER LINE-1 DO10: available[i] = �rst cycle + previous line delay + waf delay[curr word num][i].11: last word avail = �rst cycle + previous line delay + max delay.12: last line fetched = line of current instruction.13: cycles in IF += 1.Figure 9. Algorithm to Calculate WAF Delay within a Path4.2. Delays Upon Entering A Loop or FunctionDuring path analysis, when the timing analyzer encounters a loop or a function callin that path (child), it determines if the �rst instruction in the child lies in a di�erentprogram line than the instruction executed immediately before entering the loopor function. If it does, then the �rst instruction in the child must be delayed frombeing fetched if the program line containing the last instruction executed beforethe child is still loading into cache. If the two instructions lie in the same programline, then it is only necessary to ensure that the instructions belonging to the �rstprogram line in the child will be available when fetched. Often, these availabletimes (and corresponding dead cycle delays) have already been calculated by thechild. Likewise, the available times could have been calculated in some other childencountered earlier in the current path, i.e. in the situation where the path callstwo functions that share a program line.Figure 10 shows a small program containing a loop that has ten iterations andcomprises instructions 5-9. The �rst instruction in the loop is instruction 5, andin memory this instruction is located in the same program line (0) as instructions0-4. At the beginning of the program execution, instruction 0 misses in cache andcauses program line 0, containing instructions 0-7, to load into cache. On the �rstiteration of the loop, the timing analyzer detects that instruction 5 only needs to



22spend 1 cycle in the IF stage; there is no dead cycle associated with instruction 5even though program line 0 is in the process of still being fetched into cache duringthe �rst iteration.
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SPARC Instructions
inst 0: save  %sp,-104,%sp

inst 1: mov   %g0,%o3

inst 2: add   %sp,.1_a,%o0

inst 3: mov   %o0,%o4

inst 4: add   %o0,40,%o5

inst 6: add   %o4,4,%o4

inst 7: cmp   %o4,%o5

inst 8: bl    L16

inst 10: ret

inst 9: add   %o3,1,%o3

inst 11: restore %g0,%g0,%o0

inst 5: st    %o3,[%o4]L16:

C Source Code
main()

{

  int i, a[10];

  for (i = 0; i < 10; ++i)

    a[i] = i;

  return 0;

}

Figure 10. Example Program and Pipeline Diagram for First 2 Loop Iterations4.3. Delays Between Loop IterationsIn the loop analysis algorithm, it is important to detect any delay that may resultfrom a program line being loaded into cache late in the previous iteration thatcauses the subsequent iteration to be delayed. For example, consider again theprogram in Figure 10. The instruction cache activity can be inferred by how longvarious instructions occupy the IF stage. Before timing analysis begins, the staticcache simulator [19] had determined that instruction 8 is a �rst miss. The pipelinebehavior of the �rst two iterations of the loop is given in the pipeline diagram inFigure 10. The instruction cache activity can often be inferred by how long variousinstructions occupy the IF stage. On the �rst iteration, instruction 6 is delayedin the IF stage during cycle 16 because of the dead cycle that occurs when itsprogram line is being loaded into cache. Note that if instruction 6 had not beendelayed, it would have later been the victim of a structural hazard when instruction5 occupies the MEM stage for cycles 18-19.4 Thus, the dead cycle delay overlapswith the potential pipeline stall. Later during the �rst iteration, instruction 8 is amiss, so it must spend a total of 8 cycles in the IF stage. Program line 1 containinginstructions 8-11 (and 12-15 if they existed) takes 18 cycles (from cycle 19 to cycle36) to be completely loaded from the time instruction 8 is referenced. That is,the program line �nishes loading during cycle 36, so instruction 5 on the second



23iteration cannot be fetched until cycle 37. This is a situation where a delay due tojumping to a new program line takes place between loop iterations.4.4. ResultsThe results of evaluating the same test programs as in section 3.5 are shown inTable 5. The �fth column of the table gives the ratio of the estimated cycles tothe observed cycles when the timing analyzer was executed with wrap-around-�llanalysis enabled. The sixth column shows a similar ratio of estimated to observedcycles, but this time with wrap-around-�ll analysis disabled. In this mode, thetiming analyzer assumes a constant penalty of 17 cycles for each instruction cachemiss, which is the maximum miss penalty an instruction fetch would incur. Thefetch delay actually attains this maximum only when there are consecutive misses,as in the case when there is a call to a function and the instruction located in thedelay slot of the call and the �rst instruction in the function are both misses. Inthis case, this second miss will incur a 17 cycle penalty because the entire programline containing the delay slot instruction must be completely loaded �rst. All datacache accesses are assumed to be hits in both the timing analyzer and the simulatorfor these experiments.Table 5. Results for the Test ProgramsHit Observed Estimated Ratio with Ratio withoutName Ratio Cycles Cycles w-a-f Analysis w-a-f AnalysisDes 86.16% 154,791 171,929 1.11 1.38Matcnta 81.86% 2,158,038 2,161,172 1.00 1.12Matmula 98.93% 4,544,944 4,547,299 1.00 1.01Matsuma 93.99% 1,131,964 1,132,178 1.00 1.13Sorta 76.06% 14,371,854 30,714,661 2.14 2.52Statsa 88.45% 1,020,769 1,020,810 1.00 1.11average 87.58% N/A N/A 1.21 1.38The WCET of these programs when wrap-around-�ll analysis is enabled is sig-ni�cantly tighter than when wrap-around �ll is not considered. Des and Sorta hasoverestimations for the same reasons as described in Section 3.5. The small over-estimations in the remaining programs primarily result from the timing analyzer'sconservative approach to �rst miss-to-�rst miss categorization transitions. Theseslight overestimations also occurred when the timing analysis assumed a constantmiss penalty [11]. Because this situation occurs infrequently, this approach resultedin only small overestimations. The overhead of executing the timing analysis wasquite small even with wrap-around-�ll analysis. The average time required to pro-duce the WCET of the programs in Table 5 was only 1.27 seconds.



245. Future WorkThere are several areas of timing analysis that can be further investigated. Morehardware features, such as write bu�ers and branch target bu�ers, could be modeledin the timing analysis. Best case timing bounds for various types of caches andother hardware features may also be investigated. An eventual goal of this researchis to integrate the timing analysis of both instruction and data caches to obtaintiming predictions for a complete machine. Actual machine measurements using alogic analyzer could then be used to gauge the accuracy of our simulator and thee�ectiveness of the entire timing analysis environment.6. ConclusionThere are two general contributions of this paper. First, an approach for boundingthe worst-case data caching performance is presented. It uses data ow analysiswithin a compiler to determine a bounded range of relative addresses for eachdata reference. An address calculator converts these relative ranges to virtualaddress ranges by examining the order of data declarations and the call graphof the program. Categorizations of the data references are produced by a staticsimulator. A timing analyzer uses the categorizations when performing pipelinepath analysis to predict the worst-case performance for each loop and function inthe program. The results so far indicate that the approach is valid and can resultin signi�cantly tighter worst-case performance predictions.Second, a technique for WCET prediction for wrap-around-�ll caches is presented.When processing a path of instructions, the timing analyzer computes when eachinstruction in the entire program line will be loaded into cache based on instruc-tion categorizations that indicate which instruction fetches could result in cachemisses. The timing analyzer uses this information to determine how much delay,if any, a fetched instruction will su�er due to wrap-around �ll. When analyzinglarger program constructs such as loops or function instances, the wrap-around-�llinformation associated with each path is used to detect delays beyond the scopeof a single path. The results indicate that WCET bounds are signi�cantly tighterthan when the timing analyzer conservatively assumes a constant miss penalty.Overall, this paper contributes a comprehensive report on methods and results ofworst-case timing analysis for data caches and wrap-around caches. The approachtaken is unique and provides a considerable step toward realistic worst-case exe-cution time prediction of contemporary architectures and its use in schedulabilityanalysis for hard real-time systems.AcknowledgmentsThe authors thank the anonymous referees for their comments that helped improvethe quality of this paper and Robert Arnold for providing the timing analysis plat-form for this research. The research on which this article is based was supportedin part by the O�ce of Naval Research under contract number N00014-94-1-006
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