1-26 ()
1)
© Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Timing Analysis for Data and Wrap-Around Fill
Caches

RANDALL T. WHITE rwhite@cs.fsu.edu
Florida State University, Computer Science Department, Tallahassee, FL 32306-4530

FRANK MUELLER mueller@informatik.hu-berlin.de

Humboldt-Universitat zu Berlin, Institut fir Informatik, 10099 Berlin (Germany), phone: (+49)
(30) 2093-3011, fax:-3010

CHRIS HEALY AND DAVID WHALLEY [healy,whalley]Qcs.fsu.edu

Florida State Unwversity, Computer Science Department, Tallahassee, FL 32306-4530, phone:
(850) 644-8506, faz:-0058

MARION HARMON harmon@cis.famu.edu

Florida AE&M University, Computer & Information Systems Department, Tallahassee, FL 32307-
3101, phone: (850) 599-3042, fax: -3221

Editor: Wolfgang A. Halang

Abstract. The contributions of this paper are twofold. First, an automatic tool-based approach
is described to bound worst-case data cache performance. The approach works on fully optimized
code, performs the analysis over the entire control flow of a program, detects and exploits both
spatial and temporal locality within data references, and produces results typically within a few
seconds. Results obtained by running the system on representative programs are presented and
indicate that timing analysis of data cache behavior usually results in significantly tighter worst-
case performance predictions.

Second, a method to deal with realistic cache filling approaches, namely wrap-around-filling
for cache misses, is presented as an extension to pipeline analysis. Wrap-around fill analysis
is more challenging than traditional cache analysis since the words within a program line are
loaded into cache in different cycles according to a predetermined sequence, rather than all at the
same time. Results indicate that worst-case timing predictions become significantly tighter when
wrap-around-fill analysis is performed.

Overall, the contribution of this paper is a comprehensive report on methods and results of worst-
case timing analysis for data caches and wrap-around caches. The approach taken is unique and
provides a considerable step toward realistic worst-case execution time prediction of contemporary
architectures and its use in schedulability analysis for hard real-time systems.

Keywords: Timing Analysis, Data Cache, Wrap-Around Fill Cache, Worst-Case Execution
Time

1. Introduction

Real-time systems rely on the assumption that the worst-case execution time
(WCET) of hard real-time tasks be known to ensure that deadlines of tasks can be
met — otherwise the safety of the controlled system is jeopardized [18, 3]. Static

C
Source Machine
Files Dependent

Information

Timing ; User Timing
Control Flow Analyzer | Interface Predictions
Information |/D-Cache '
Configurations \
Data Decls Virtual Static 1/D-Caching User
and Relative Address Cache o Timing
Information Simulat Categorizations R
Addr Info mulator equests

Figure 1. Framework for Timing Predictions

analysis of program segments corresponding to tasks provides an analytical ap-
proach to determine the WCET for contemporary architectures. The complexity
of modern processors requires a tool-based approach since ad hoc testing methods
may not exhibit the worst-case behavior of a program. This paper presents a sys-
tem of tools that perform timing prediction by statically analyzing optimized code
without requiring interaction from the user.

The work presented here addresses the bounding of WCET for data caches and
wrap-around-fill mechanisms for handling cache misses. Thus, it presents an ap-
proach to include common features of contemporary architectures for static pre-
diction of WCET. Overall, this work fills another gap between realistic WCET
prediction of contemporary architectures and its use in schedulability analysis for
hard real-time systems.

The framework of WCET prediction uses a set of tools as depicted in Figure 1.
The wvpo optimizing compiler [4] has been modified to emit control-flow information,
data information, and the calling structure of functions in addition to regular object
code generation. A static cache simulator uses the control-flow information and
calling structure in conjunction with the cache configuration to produce instruction
and data categorizations, which describe the caching behavior of each instruction
and data reference, respectively. The timing analyzer uses these categorizations
and the control-flow information to perform path analysis of the program. This
analysis includes the evaluation of architectural characteristics such as pipelining
and wrap-around-filling for cache misses. The description of the caching behavior
supplied by the static cache simulator is used by the timing analyzer to predict
the temporal effect of cache hits and misses overlapped with the temporal behavior
of pipelining. The timing analyzer produces WCET predictions for user selected
segments of the program or the entire program.

2. Related Work

In the past few years, research in the area of predicting the WCET of programs
has intensified. Conventional methods for static analysis have been extended from
unoptimized programs on simple CISC processors [23, 20, 9, 22] to optimized pro-
grams on pipelined RISC processors [30, 17, 11], and from uncached architectures
to instruction caches [2, 15, 13] and data caches [24, 14, 16]. While there has been
some related work in analyzing data caching, there has been no previous work on
wrap-around-fill caches in the context of WCET prediction, to our knowledge.

Rawat [24] used a graph coloring technique to bound data caching performance.
However, only the live ranges of local scalar variables within a single function were
analyzed, which are fairly uncommon references since most local scalar variables
are allocated to registers by optimizing compilers.

Kim et al. [14] have recently published work about bounding data cache perfor-
mance for calculated references, which are caused by load and store instructions
referencing addressing that can change dynamically. Their technique uses a version
of the pigeonhole principle. For each loop they determine the maximum number
of references from each dynamic load/store instruction. They also determine the
maximum number of distinct locations in memory referenced by these instructions.
The difference between these two values is the number of data cache hits for the
loop given that there are no conflicting references. This technique efficiently de-
tects temporal locality within loops when all of the data references within a loop
fit into cache and the size of each data reference is the same size as a cache line.
Their technique at this time does not detect any spatial locality (i.e. when the line
size is greater than the size of each data reference and the elements are accessed
contiguously) and detects no temporal locality across different loop nests. Fur-
thermore, their approach does not currently deal with compiler optimizations that
alter the correspondence of assembly instructions to source code. Such compiler
optimizations can make calculating ranges of relative addresses significantly more
challenging.

Li et al. [16] have described a framework to integrate data caching into their
integer linear programming (ILP) approach to timing prediction. Their implemen-
tation performs data-flow analysis to find conflicting blocks. However, their linear
constraints describing the range of addresses of each data reference currently have
to be calculated by hand. They also require a separate constraint for every element
of a calculated reference causing scalability problems for large arrays. No WCET
results on data caches are reported. However, their ILP approach does facilitate
integrating additional user-provided constraints into the analysis.

3. Data Caches

Obtaining tight WCETSs in the presence of data caches is quite challenging. Unlike
instruction caching, addresses of data references can change during the execution of
a program. A reference to an item within an activation record could have different
addresses depending on the sequence of calls associated with the invocation of the

function. Some data references, such as indexing into an array, are dynamically
calculated and can vary each time the data reference occurs. Pointer variables in
languages like C may be assigned addresses of different variables or an address that
is dynamically calculated from the heap.

Initially, it may appear that obtaining a reasonable bound on worst-case data
cache performance is simply not feasible. However, this problem is far from hope-
less, since the addresses for many data references can be statically calculated. Static
or global scalar data references do retain the same addresses throughout the exe-
cution of a program. Run-time stack scalar data references can often be statically
determined as a set of addresses depending upon the sequence of calls associated
with an invocation of a function. The pattern of addresses associated with many
calculated references, e.g. array indexing, can often be resolved statically.

The prediction of the WCET for programs with data caches is achieved by au-
tomatically analyzing the range of addresses of data references, deriving relative
and then virtual addresses from these ranges, and categorizing data references ac-
cording to their cache behavior. The data cache behavior is then integrated with
the pipeline analysis to yield worst-case execution time predictions of program seg-
ments.

3.1. Calculation of Relative Addresses

The vpo compiler [4] attempts to calculate relative addresses for each data reference
associated with load and store instructions after compiler optimizations have been
performed (see Figure 1). Compiler optimizations can move instructions between
basic blocks and outside of loops so that expansion of registers used in address
calculations becomes more difficult. The analysis described here is similar to the
data dependence analysis that is performed by vectorizing and parallelizing compil-
ers [5, 6, 7, 21, 28, 29]. However, data dependence analysis is typically performed
on a high-level representation. Our analysis had to be performed on a low-level
representation after code generation and all optimizations had been applied.
The calculation of relative addresses involves the following steps.

1. The compiler determines for each loop the set of its induction variables, their
initial values and strides, and the loop-invariant registers.!

2. Expansion of actual parameter information is performed in order to be able to
resolve any possible address parameters later.

3. Expansion of addresses used in loads and stores is performed. Expansion is
accomplished by examining each preceding instruction represented as a register
transfer list (RTL) and replacing registers used as source values in the address
with the source of the RTL setting that register. Induction variables associated
with a loop are not expanded. Loop invariant values are expanded by proceeding
to the end of the preheader block of that loop. Expansion of the addresses of
scalar references to the run-time stack (e.g. local variables) is trivial. Expansion

of references to static data (e.g. global variables) often requires expanding loop-
invariant registers since these addresses are constructed with instructions that
may be moved out of a loop. Expansion of calculated address references (e.g.
array indexing) requires knowledge of loop induction variables. This approach
to expanding addresses provides the ability to handle non-standard induction
variables. We are not limited to simple induction variables in simple for loops
that are updated only at the head of the loop.

Consider the C source code, RTLs and SPARC assembly instructions in Figure 2
for a simple Initialize function. The code in Initialize goes through elements
1 to 51 in both array A and array B and initializes them to random integers. Note
that although delay slots are actually filled by the compiler, they have not been
filled when compiling the code for most of the figures in this paper, in order to
simplify the examples for the reader.?

#define MAX 50

. r[14] =SV[r[14] +-96] ; # 1. save Y%sp, (-96), ¥%sp
int ALMAX] [MAX] r[20]=H[_B]; # 2. sethi %i(_B),%4
int B[MAX] [MAX] ; r[18]=H[_A]; # 3. sethi Y%i(_A),%2
. r[25] =204; # 4. nov 204, % 1
r[26] =Hi [10200] ; # 5. sethi %i(10200), % 2
o r[26] =r [26] +Ld 10200] ; # 6. add % 2, % o(10200) , % 2
Initialize() r[27]=r[18] +LO _A]; # 7. add %2 %o(A),%3
{ r[28] =r[20] +LO _B] ; # 8. add % 4,%o0(_B), %4
int i, j; r[24] =204+r[28] ; # 9. add % 4, 204, % 0
r[24] =r[24] +200; # 10. add % 0, 200, % O
. . . r[29] =r[28] +200; # 11. add % 4, 200, % 5
for (i=1; i<MAX; i++) r[29] =r[29] +r[26] ; # 12. add %5,%2,%5
for (j=1; j<MAX; j++) i
A L37
Alil[j] = Rand(); r[20] =4+r[25]; # 13. add %1,4,%4
Bli][j] = Rand(); r[20] =r[20] +r[28]; # 14. add %N4,%4, %4
} r[21] =r[25] +r[27]; # 15. add %1,%3,%5
r[22]=r[25]+r[28]; # 16. add %1,%4, %6
} r[21] =r[21]-r[22]; # 17. sub %5,%6, %5
r[22] =r[24]; # 18. nov % 0, % 6
L40 i
ST=HI [_Rand] +L(_Rand], 68, 0; # 19. call _Rand, 0
=NL; # 20. nop
ST=HI [_Rand] +LJ _Rand], 68,0; # 21. call _Rand, 0
storeof A[i][j] -------- = Rr[20]+r[21]]=r[8]; # 22. st %0, [% 4 + % 5]
storeof B[i][j] -------- > Rr[20]]=r[8]; # 23. st %0, [% 4]

r[20] =r [20] +4; # 24. add %4, 4, %4
1Car[20] ?r[22]; # 25. cnp %4, %6
PC=I C<0, L40; # 26. bl L40
NL=NL; # 27. nop

r [24] =r [24] +204;
1 Cr[24] ?2r[29];
PC=1 C<0, L37;
r[25] =r[25] +204;

28. add % 0, 204, % 0
. cnp % 0, % 5

30. bl L37

31. add % 1,204,% 1

H o HH
N
©

PC=RT;
NL=RS[];

32. ret
33. restore

H W

Figure 2. Example C Function, RTLs, and SPARC Assembly for Function Initialize

The first memory address, r[20] + r[21] (instruction 22), is for the store of
A[i][j]. The second memory address, r[20] (instruction 23), is for the store of

B[i] [j]. Register r [20] is the induction register for the inner loop (instructions 19-
27) and thus cannot be expanded. It has an initial value, a stride, and a maximum
and minimum number of iterations associated with it, these having been computed
and stored earlier in the compilation process.® The initial value for r[20] consists
of the first element accessed (base address of B plus 4) plus the offset that comes
from computing the row location, that of the induction variable for the outer loop,
r[25]. The stride is 4 and the minimum and maximum number of iterations are
the same, 50. Once the initial value, stride, and number of iterations are available,
there is enough information to compute the sequence of addresses that will be
accessed by the store of B[i][j]. Knowing that both references have the same
stride, the compiler used index reduction to avoid having to use another induction
register for the address computation for A[i][j], since it shares the same loop
control variables as that for B.

The memory address r[20] + r[21] for A[i][j] includes the address for B
(r[20]) plus the difference between the two arrays (r[21]). This can be seen
from the following sequence of expansions and simplifications. Remember that reg-
ister r[20] cannot be immediately expanded since it is an induction register for the
inner loop, so the expansion continues with register r[21] as follows. Note that
register r[25] will not be expanded either since it is the induction variable for the
outer loop (instructions 13-31).

1. r[20] + r[21] # load at 22
2. r[20]+(r[21]-r[22]) # from 17
3. r[20]+(r[21]-(r[25]1+r[28])) # from 16
4. r[20]+(r[25]1+r[27]-(r[25]1+r[28])) # from 15

5. r[20]+(r[25]+r[27]-(r[25]+r[20]+LO[B])) # from 8

6. r[20]+(r[25]+(r[18]1+LO[A])-(r[25]+r[20]+LO[B]1)) # from 7

7. v[20]+(r[25]+(HI [A]+LO[A])-(r[25]+r[20]+LO[B])) # from 3

8. r[20]+(r[251+(HI[AJ+LO[_A])-(r[25]+HI[BI+LO[BI)) # from 2

The effect of this expansion is simplified in the following steps.

9. r[20]+(r[25]+(A)-(r[25]+B)) # eliminate HI and LO

10. r[20]+(r[25]+A-(r[25]+B)) # remove unnecessary ()’s

11. r[20]+r[25]+A-r[25]-B # remove ()’s and distribute +’s and -’s
12. r[20]+_A-B # remove negating terms

Thus, we are left with the induction register r[20] plus the difference between the
two arrays. The simplified address expression string is then written to a file contain-
ing data declarations and relative address information. When the address calculator
attempts to resolve this string to an actual virtual address, it will use the initial
value of r [20], which is r [25]+ B+4, and the B’s will cancel out (r [25] + B+4+_A- B
= r[25]+4+A). Note this gives the initial address of the row in the A array. The
range of relative addresses for this example can be depicted algorithmically as shown
in Figure 3. For more details on statically determining address information from
fully optimized code see [26].

for (r[25] = 204; r[25] < 10200; r[25] += 204)
for (r[20] = r[25]+4+_A; r[20] < r[25]1+200+_A; r[20] += 4)
address{A, 25,120}

Figure 3. Algorithmic Range of Relative Addresses for the Load in Figure 2

startup code
program code

segment

static
data

run-time
program stack
initial stack

Oxffffffff

Figure 4. Virtual Address Space (SunOS)

3.2. Calculation of Virtual Addresses

Calculating addresses that are relative to the beginning of a global variable or an
activation record is accomplished within the compiler since much of the data flow
information required for this analysis is also used during compiler optimizations.
However, calculating virtual addresses cannot be done in the compiler since the
analysis of the call graph and data declarations across multiple files is required.
Thus, an address calculator (see Figure 1) uses the relative address information in
conjunction with control-flow information to obtain virtual addresses.

Figure 4 shows the general organization of the virtual address space of a process
executing under SunOS. There is some startup code preceding the instructions
associated with the compiled program. Following the program code segment is the
static data, which is aligned on a page boundary. The run-time stack starts at
high addresses and grows toward low addresses. Part of the memory between the
run-time stack and the static data is the heap, which is not depicted in the figure
since addresses in the heap could not be calculated statically by our environment.

Static data consists of global variables, static variables, and non-scalar constants
(e.g. strings and floating-point constants). In general, the Unix linker (Id) places
the static data in the same order that the declarations appeared within the assembly
files. Also, static data within one file will precede static data in another file specified

later in the list of files to be linked. (There are some exceptions to these rules
depending upon how such data is statically initialized.)

In addition, padding between variables sometimes occurs. For instance, variables
declared as int and double on a SPARC are aligned on word and double-word
boundaries, respectively. In addition, the first static or global variable declared
in each of the source files comprising the program is aligned on a double-word
boundary.

Run-time stack data includes temporaries and local variables not allocated to
registers. Some examples of temporaries include parameters beyond the sixth word
passed to a function and memory used to move values between integer and floating-
point registers since such movement cannot be accomplished directly on a SPARC.
The address of the activation record for a function can vary depending upon the
actual sequence of calls associated with its activation. The virtual address of an
activation record containing a local variable is determined as the sum of the sizes
of the activation records associated with the sequence of calls along with the initial
run-time stack address. The address calculator (along with the static simulator and
timing analyzer) distinguishes between different function instances and evaluates
each instance separately. Once the static data names and activation records of
functions are associated with virtual addresses, the relative address ranges can be
converted into virtual address ranges.

Ounly virtual addresses have been calculated so far. There is no guarantee that
a virtual address will be the same as the actual physical address, which is used to
access cache memory on most machines. In this paper we assume that the system
page size is an integer multiple of the data cache size, which is often the case. For
instance, the MicroSPARC I has a 4KB page size and a 2KB data cache. Thus,
both a virtual and corresponding physical address would have the same relative
offset within a page and would map to the same line within the data cache.

3.8. Static Simulation to Produce Data Reference Categorizations

The method of static cache simulation is used to statically categorize the caching
behavior of each data reference in a program for a specified cache configuration (see
Figure 1). A program control-flow graph is constructed that includes the control
flow within each function, and a function instance graph which uniquely identifies
each function instance by the sequence of call sites required for its invocation. This
program control-flow graph is analyzed to determine the possible data lines that can
be in the data cache at the entry and exit of each basic block within the program
[19].

The iterative algorithm used for static instruction cache simulation [2, 19] is
not sufficient for static data cache simulation. The problem is that the calculated
references can access a range of possible addresses. At the point that the data access
occurs, the data lines associated with these addresses may or may not be brought
in cache, depending upon how many iterations of the loop have been performed
at that point. To deal with this problem a new state was created to indicate
whether or not a particular data line could potentially be in the data cache due to

WHILE any change DO
FOR each basic block instance B DO
IF B == top THEN
input_state(B) = calc_input_state(B) = all invalid lines
ELSE
input_state(B) = calc_input_state(B) = NULL
FOR each immed pred P of B DO
input_state(B) += output_state(P)
calc_input_state(B) += output_state(P) + calc_output_state(P)
IF P is in another loop THEN
input_state(B) += calc_output_state(P) + data_lines(remaining in that loop)
output.state(B) = input_state(B)
FOR each data reference D in B DO
IF D is scalar reference THEN
output_state(B) += data_line(D)
output_state(B) -= data_lines(D conflicts with)
calc_output.state(B) += data_line(D)
calc_output_state(B) -= data_lines(conflicts with)
ELSE
output.state(B) -= data_lines(D could conflict with)
calc_output_state(B) += data_lines(D could access)
calc_output.state(B) -= data_lines(D could conflict with)

Figure 5. Algorithm to Calculate Data Cache States

calculated references. When an immediate predecessor block is in a different loop
(the transition from the predecessor block to the current block exits a loop), the
data lines associated with calculated references in that loop that are guaranteed to
still be in cache are unioned into the input cache state of that block. The iterative
algorithm in Figure 5 is used to calculate the input and output cache states for
each basic block in the program control flow.

Once these cache state vectors have been produced, they are used to determine
whether or not each of the memory references within the bounded virtual address
range associated with a data reference will be in cache. The static cache simulator
needs to produce a categorization of each data reference in the program. The four
worst-case categories of caching behavior used in the past for static instruction
cache simulation [2] were as follows. (1) Always Miss (m): The reference is not
guaranteed to be in cache. (2) Always Hit (h): The reference is guaranteed to
always be in cache. (3) First Miss (fin): The reference is not guaranteed to be in
cache the first time it is accessed each time the loop is entered, but is guaranteed
thereafter. (4) First Hit (fh): The reference is guaranteed to be in cache the first
time it is accessed each time the loop is entered, but is not guaranteed thereafter.
These categorizations are still used for scalar data references.

10

int a[100]1[100]; int a[100][100];
main() { /* row order sum */ main() { /* column order sum */
int i, j, sum = O; int i, j, sum = O;
for (i = 0; i < 100; i++) for (j = 0; j < 100; j++)
for (j = 0; j < 100; j++) for (i = 0; i < 100; i++)
sum += al[il[j1; sum += al[il[j1;
} }
row order: ¢ 25 2500 from mh hhmhhhmhhh ... mhh h]
col order: m from mMmmmmmmmmmmm ... mmm m]

(a) Detecting Spatial Locality

int i, j, sum = 0, same = 0, a[50], b[50];

for (1 = 0; i < 50; i++)

sum += a[il; /* a[i] is ref 1 *x/
for (1 = 0; i < 50; i++)

for (j = 0; j < 50; j++)

if (alil == b[j1) /* al[i]l is ref 2 and b[i] is ref 3 */
same++;
ref 1: c 13 from mbhbmhhhmhhhmhhh ... mhh h]
ref 2: h from [h h ... h h] due to temporal locality across loops.
ref 3: ¢ 1313 from[mhhmhhh ... mh] on first execution of inner loop,
and [h h h h ... h] on all successive executions of it.

(b) Detecting Temporal Locality across and within Loops

Figure 6. Examples for Spatial and Temporal Locality

To obtain the most accuracy, a worst-case categorization of a calculated data
reference for each iteration of a loop could be determined. For example, some
categorizations for a data reference in a loop with 20 iterations might be as follows:

mhhhmhhhmhhhmhhhmhhh

With such detailed information the timing analyzer could then accurately deter-
mine the worst-case path on each iteration of the loop. However, consider a loop
with 100,000 iterations. Such an approach would be very inefficient in space (stor-
ing all of the categorizations) and time (analyzing each loop iteration separately).
The authors decided to use a new categorization called Calculated (c) that would
also indicate the maximum number of data cache misses that could occur at each
loop level in which the data reference is nested. The previous data reference cate-
gorization string would be represented as follows (since there is only one loop level
involved): ¢ 5

11

The order of access and the cache state vectors are used to detect cache hits within
calculated references due to spatial locality. Consider the two code segments in
Figure 6(a) that sum the elements of a two dimensional array. The two code
segments are equivalent, except that the left code segment accesses the array in
row order and the right code segment uses column order (i.e., the for statements
are reversed). Assume that the scalar variables (i, j, sum, and same) are allocated
to registers. Also, assume the size of the direct-mapped data cache is 256 bytes
with 16 cache lines containing 16 bytes each. Thus, a single row of the array a
requiring 400 bytes cannot fit into cache. The static cache simulator was able to
detect that the load of the array element in the left code segment had at most one
miss for each of the array elements that are part of the same data line. This was
accomplished by inspecting the order in which the array was accessed and detecting
that no conflicting lines were accessed in these loops. The categorizations for the
load data reference in the two segments are given in the same figure. Note in this
case that the array happens to be aligned on a line boundary. The specification of
a single categorization for a calculated reference is accomplished in two steps for
each loop level after the cache states are calculated. First, the number of references
(iterations) performed in the loop is retrieved. Next, the maximum number of
misses that could occur for this reference in the loop is determined. For instance,
at most 25 misses will occur in the innermost loop for the left code segment. The
static cache simulator determined that all of the loads for the right code segment
would result in cache misses. Its data caching behavior can simply be viewed as an
always miss. Thus, the range of 10,000 different addresses referenced by the load
are collapsed into a single categorization of ¢ 25 2500 (calculated reference with
25 misses at the innermost level and 2500 misses at the outer level) for the left code
segment and an m (always miss) for the right code segment.

Likewise, cache hits from calculated references due to temporal locality both
across and within loops are also detected. Consider the code segment in Figure 6(b).
Assume a cache configuration with 32 16-byte lines (512 byte cache) so that both
arrays a and b requiring 400 bytes total (200 each) fit into cache. Also assume the
scalar variables are allocated to registers. The accesses to the elements of array a
after the first loop were categorized as an h (always hit) by the static simulator
since all of the data lines associated with array a will be in the cache state once
the first loop is exited. This shows the detection of temporal locality across loops.
After the first complete execution of the inner loop, all the elements of b will be
in cache, so then all references to it on the remaining executions of the inner loop
are also categorized as hits. Thus, the categorization of ¢ 13 13 is given. Relative
to the innermost loop, 13 misses are due to bringing b into cache during the first
complete execution of the inner loop. There are also only 13 misses relative to the
outermost loop since b will be completely in cache on each iteration after the first.
Thus, temporal locality is also detected within loops.

The current implementation of the static data cache simulator (and timing an-
alyzer) imposes some restrictions. First, only direct-mapped data caches are
supported. Obtaining categorizations for set-associative data caches can be ac-
complished in a manner similar to that described in other work on instruction

12

caches [27]. Second, recursive calls are not allowed since it would complicate the
generation of unique function instances. Third, indirect calls are not allowed since
an explicit call graph must be generated statically.

3.4. Timing Analysis

The timing analyzer (see Figure 1) utilizes pipeline path analysis to estimate the
WCET of a sequence of instructions representing paths through loops or functions.
Pipeline information about each instruction type is obtained from the machine-
dependent data file. Information about the specific instructions in a path is obtained
from the control-flow information files. As each instruction is added separately to
the pipeline state information, the timing analyzer uses the data caching catego-
rizations to determine whether the MEM (data memory access) stage should be
treated as a cache hit or a miss.

The worst-case loop analysis algorithm was modified to appropriately handle
calculated data reference categorizations. The timing analyzer will conservatively
assume that each of the misses for the current loop level of a calculated reference
has to occur before any of its hits at that level. In addition, the timing analyzer
is unable to assume that the penalty for these misses will overlap with other long
running instructions since the analyzer may not evaluate these misses in the exact
iterations in which they occur. Thus, each calculated reference miss is always
viewed as a hit within the pipeline path analysis and the maximum number of cycles
associated with a data cache miss penalty is added to the total time of the path.
This strategy permits an efficient loop analysis algorithm with some potentially
small overestimations when a data cache miss penalty could be overlapped with
other stalls.

The worst-case loop analysis algorithm is given in Figure 7. The additions to the
previously published algorithm [11] to handle calculated references are shown in
boldface. Let n be the maximum number of iterations associated with a given loop.
The WHILE loop terminates when the number of processed iterations reaches n
- 1 or no more first misses, first hits, or calculated references are encountered as
misses, hits, and misses, respectively. This WHILE loop will iterate no more than
the minimum of (n - 1) or (p + r) times, where p is the number of paths and r is
the number of calculated reference load instructions in the loop.

The algorithm selects the longest path for each loop iteration [11, 10]. In order to
demonstrate the correctness of the algorithm, one must show that no other path for
a given iteration of the loop will produce a longer time than that calculated by the
algorithm. Since the pipeline effects of each of the paths are unioned, it only remains
to be shown that the caching effects are treated properly. All categorizations are
treated identically on repeated references, except for first misses, first hits, and
calculated references. Assuming that the data references have been categorized
correctly for each loop and the pipeline analysis was correct, it remains to be shown
that first misses, first hits, and calculated references are interpreted appropriately
for each loop iteration. A correctness argument about the interpretation of first
hits and first misses is given in [2].

13

total_cycles = curr_iter = 0.
pipeline_info = first_misses_encountered = first_hits_encountered = NULL.
WHILE curr_iter '=n -1 DO
Find the longest continue path.
first_misses_encountered += first misses that were misses in this path.
first_hits_encountered += first hits that were hits in this path.
IF first miss or first hit encountered in this path THEN
curr_iter += 1.
Subtract 1 from the remaining misses of each calculated reference in this path.
Concatenate pipeline_info with the union of the info for all paths.
total_cycles += additional cycles required by union.
ELSE IF a calculated reference was encountered in this path as a miss THEN
min_misses = the minimum of the number of remaining misses of each
calculated reference in this path that is nonzero.
min_misses = min(min_misses, n - 1 - curr_iter).
curr_iter += min_misses.
Subtract min_misses from the remaining misses of each calc ref in this path
Concatenate pipeline_info with the union of info for all paths min_misses times.
total_cycles += min_misses * (additional cycles required by union).
ELSE
break.
Concatenate pipeline_info with the union of pipeline info for all paths (n - 1 - curr_iter) times.
total_cycles += (n - 1 - curr_iter) * (additional cycles required by union).
FOR each set of exit paths that have a transition to a unique exit block DO
Find the longest exit path in the set.
first_misses_encountered += first misses that were misses in this path.
first_hits_encountered += first hits that were hits in this path.
Concatenate pipeline_info with the union of the info for all exit paths in the set.
total_cycles += additional cycles required by exit union.
Store this information with the exit block for the loop.

Figure 7. Worst-Case Loop Analysis Algorithm

The WHILE loop will subtract one from each calculated reference miss count for
the current loop in the longest path chosen on each iteration whenever there are first
misses or first hits encountered as misses or hits, respectively. Once no such first
misses and first hits are encountered in the longest path, the same path will remain
the longest path as long as its set of calculated references that were encountered as
misses continue to be encountered as misses since the caching behavior of all of the
references will be treated the same. Thus, the pipeline effects of this longest path
are efficiently replicated for the number of iterations associated with the minimum
number of remaining misses of the calculated references that are nonzero within
the longest path. After the WHILE loop, all of the first misses, first hits, and
calculated references in the longest path will be encountered as hits, misses, and
hits, respectively. The unioned pipeline effects after the WHILE loop will not

14

change since the caching behavior of the references will be treated the same. Thus,
the pipeline effects of this path are efficiently replicated for all but one of the
remaining iterations. The last iteration of the loop is treated separately since the
longest exit path may be shorter than the longest continue path.

A correctness argument about the interpretation of calculated references needs to
show that the calculated references are treated as misses the appropriate number
of times. The algorithm treats a calculated reference as a miss until its specified
number of calculated misses for the loop is exhausted. The IF-THEN portion of
the WHILE loop subtracts one from each calculated reference miss count since only
a single iteration is analyzed and each calculated reference can only miss once in
a given loop iteration. The ELSE-IF-THEN portion of the WHILE loop subtracts
the minimum of the misses remaining in any calculated reference for that path and
the number of iterations remaining in the loop. The number of iterations analyzed
is again the same as the number of misses subtracted for each calculated reference.
Since the misses for the calculated references are evaluated before the hits, the
interpretation of calculated references will not underestimate the actual number of
calculated misses given that the data references have been categorized correctly.

An example is given in Figure 8 to illustrate the algorithm. The if statement
condition was contrived to force the worst-case paths to be taken when executed.
Assume a data cache line size of 8 bytes and enough lines to hold all three arrays in
cache. The figure also shows the iterations when each element of each of the three
arrays will be referenced and whether or not each of these references will be a hit
or a miss. Two different paths can be taken through the loop on each iteration as
shown in the integer pipeline diagram of Figure 8. Note that the pipeline diagrams
reflect that the loads of the array elements were found in cache. The miss penalty
from calculated reference misses is simply added to the total cycles of the path and
is not directly reflected in the pipeline information since these misses may not occur
in the same exact iterations as assumed by the timing analyzer.

Table 1 shows the steps the timing analyzer uses from the algorithm given in
Figure 7 to estimate the WCET for the loop in the example shown in Figure 8.
The longest path detected in the first step is Path A, which contains references
to k[i] and c[i]. The pipeline time required 20 cycles and the misses for the
two calculated references (k[i] and c[i]) required 18 cycles. Note that each miss
penalty was assumed to require 9 cycles. Since there were no first misses, the timing
analyzer determines that the minimum number of remaining misses from the two
calculated references is 13. Thus, the path is replicated an additional 12 times.
The overlap between iterations is determined to be 4 cycles. Note that 4 is not
subtracted from the first iteration since any overlap for it would be calculated when
determining the worst-case execution time of the path through the main function.
The total time for the first 13 iterations will be 446. The longest path detected in
step 2 is also Path A. But this time all references to c[i] are hits. There are 37
remaining misses to k[i]. The total time for iterations 14 through 50 is 925 cycles.
The longest path detected in step 3 is Path B, which has 25 remaining misses to
s[i]. This results in 550 additional cycles for iterations 51 through 75. After step
3 the worst-case loop analysis has exited the WHILE loop in the algorithm. Step

15

int k[100]; ‘

Instructions 1 through 11 ‘ Block 1
short s[100]; \L
h .
char e[2001 ‘ Instructions 12 through 15
mai n()
{ !}
int i, sum loadof c[i] --f-—=| r[8]=(B[r[17]]{24)}24; # 16. ldsb [%1], %0
load of k[i] -1--=| r[9]=R[r[16]]; #17. 1d [% 0], %1
sum = 0; r[9]=r[9]+r[8]; # 18. add %1, %00, Yol
for (i = 0; i < 100; i++) PC=L17; # 19. ba L17
if ((i &3)1=1) r[12]=r[12]+r[9]; # 20. add 904, %1, %4
sum += k[i]+c[i]; \L
|
ezzm+_ Wil load of s[i] ----- = r[8]=(Wr[711{16)}16; # 21. ldsh [%7], %0
} - ’ r[12] =r[12] +r[8]; # 22. add %4, %0, %04
L17 .
Peths in the loop: ‘ Instructions 23 through 28
Path A: Blocks2,3, & 5 \L
Path B: Blocks2,4,& 5 ‘ Instructions 29 through 30 ‘B|0Ck6
datalines: | dataline 0 | dataline 1 | dataline2 | dataline 3 o | dataline 50 | dataline 51 :... | dataline 76 | dataline 77 :...
array . | - 1]1)1)1{1|1
Ao s k.‘ 0 ‘ 1 ‘ 2 ‘ 3 ‘ 4 ‘ 5 ‘ 6 ‘ 7 ‘ ‘ s|o|1|2|3|4|5|6]|7 ‘ c:|0[2[213(4[516|7|819] ;| 113l 3lalst
iteration | | | | | | | | | g 111 11
acesset 1 1 Pt T8 P2 b ! 345 78S 155 56
result: | miss ! miss hit ! miss ! miss hit ! ! miss ! miss ! 'm hhh hhm hhh hh
k[il: ¢ 50 from [m h m h mh]
s[il: ¢ 25 from [mMmh h hmh h h mh h h]
c[il: c 13 from mhhhhhhhmhhhhhhh mhhhhhhhmhhh]

Pipeline Diagram for Path A: Instructions 12-20 and 23-28 (blocks 2,3,5)

Pipeline Diagram for Path B: Instructions 12-15 and 21-28 (blocks 2,4,5)

cycle cycle
1[2|3|4|5|6[7|8]|9|10]11]12|13|14|15|16/17|18|19|20 1(2|3|4|5|6|7[8]|9]10|11]12]|13|14|15|16|17
stage| IF |12|13|14|15/16|17|18|19|19|20|23|24|25|26|27|28 stage| |IF |12|13|14|15/21|22|23|23|24|25|26|27|28
ID 12|13|14(15|16|17|18|18|19|20|23|24|25|26|27|28 1D 12|13|14|15|21|22|22|23|24|25|26|27|28
EX 12|13 15|16|17 18 20|23|24|25|26 28 EX 12|13 15|21 22|23|24|25|26 28
MEM 12|13 15/16|17 18 20|23|24|25| 26 28 MEM 12|13 15|21 22|23|24|25|26 28
wB 12|13 15/16|17 18 20|23|24|25|26 28 WB 12|13 15|21 22|23|24|25|26 28

Figure 8. Example to Illustrate Worst-Case Loop Analysis Algorithm

4 calculates 384 cycles for the next 24 iterations (76-99). Step 5 calculates the
last iteration to require 16 cycles. The timing analyzer calculates the last iteration
separately since the longest exit path may be shorter than other paths in the loop.
The total number of cycles calculated by the timing analyzer for this example was
identical to the number obtained by execution simulation.

A timing analysis tree is constructed to predict the worst-case performance. Each
node of the tree represents either a loop or a function in the function instance graph,
where each function instance is uniquely identified by the sequence of calls resulting
in its invocation. The nodes representing the outer level of function instances are
treated as loops that will iterate only once. The worst-case time for a node is
not calculated until the time for all of its immediate child nodes are known. For

16

Table 1. Timing Analysis Steps for the loop in Figure 8

start longest total

step iter path cycles min_misses iters additional cycles cycles
1 1 20+18=38 | min(13,50)=13 13 | 20+((20-4)*12)+(18*13)=446 446
2 14 2049=29 min(37)=37 37 ((20-4)*37)+(9*37)=925 1371
3 51 17+9=26 min(25)=25 25 ((17-4)*25)4(9*25)=550 1921
4 76 20+0=20 N/A 24 (20-4)*24=384 2305
5 100 204-0=20 N/A 1 20-4=16 2321

instance, consider the example shown in Figure 8 and Table 1. The timing analyzer
would calculate the worst-case time for the loop and use this information to next
calculate the time for the path in main that contains the loop (block 1, loop, block
6). The construction and processing of the timing analysis tree occurs in a similar
manner as described in [2, 11].

3.5. Results

Measurements were obtained on code generated for the SPARC architecture by
the vpo optimizing compiler [4]. The machine-dependent information contained
the pipeline characteristics of the MicroSPARC I processor [25]. A direct-mapped
data cache containing 16 lines of 32 bytes for a total of 512 bytes was used. The
MicroSPARC I uses write-through/no-allocate data caching [25]. While the static
simulator was able to categorize store data references, these categorizations were
ignored by the timing analyzer since stores always accessed memory and a hit or
miss associated with a store data reference had the same effect on performance.
Instruction fetches were assumed to be all hits in order to isolate the effects of data
caching from instruction caching.

Table 2 shows the test programs used to assess the timing analyzer’s effectiveness
of bounding worst-case data cache performance. Note that these programs were
restricted to specific classes of data references that did not include any dynamic
allocation from the heap. Two versions were used for each of the last five test
programs. The a version had the same size arrays that were used in previous
studies [2, 11]. The b version of each program used smaller arrays that would
totally fit into a 512 byte cache. The number of bytes reported in the table is the
total number of bytes of the variables in the program. Note that some of these
bytes will be in the static data area while others will be in the run-time stack. The
amount of data is not changed for the program Des since its encryption algorithm
is based on using large static arrays with preinitialized values.

Table 3 depicts the dynamic results from executing the test programs. The hit
ratios were obtained from the data cache execution simulation. Only Sort had
very high data cache hit ratios due to many repeated references to the same array
elements. The observed cycles were obtained using an execution simulator, modified
from [8], to simulate data cache and pipeline affects and count the number of
cycles. The estimated cycles were obtained from the timing analyzer discussed in

17

Table 2. Test Programs for Data Caching

Num
Name Bytes Description or Emphasis
Des 1346 | Encrypts and Decrypts 64 bits
Matcnta 40060 | Count and Sum Values in a 100x100 Int Matrix
Matcntb 460 | Count and Sum Values in a 10x10 Int Matrix
Matmula | 30044 | Multiply 2 50x50 Matrices into a 50x50 Int Matrix
Matmulb 344 | Multiply 2 5x5 Matrices into a 5x5 Int Matrix

Matsuma, | 40044 | Sum Values in a 100x100 Int Matrix
Matsumb 444 | Sum Values in a 10x10 Int Matrix

Sorta 2044 | Bubblesort of 500 Int Array

Sortb 444 | Bubblesort of 100 Integer Array

Statsa 16200 | Calc Sum, Mean, Var., (2 arrays[1000 doubles])
Statsb 600 | ..., StdDev., & Corr. Coeff. (2 arrays[25 doubles])

Section 3.4. The estimated ratio is the quotient of these two values. The naive ratio
was calculated by assuming all data cache references to be misses and dividing those
cycles by the observed cycles.

The timing analyzer was able to tightly predict the worst-case number of cycles
required for pipelining and data caching for most of the test programs. In fact, for
five of them, the prediction was exact or over by less that one-tenth of one percent.
The inner loop in the function within Sort that sorted the values had a varying
number of iterations that depends upon a counter of an outer loop. The number
of iterations performed was overrepresented on average by about a factor of two
for this inner loop. The strategy of treating a calculated reference miss as a hit in
the pipeline and adding the maximum number of cycles associated with the miss
penalty to the total time of the path caused overestimations with the Statsa and
Statsb programs, which were the only floating-point intensive programs in the test
set. Often delays due to long-running floating-point operations could have been
overlapped with data cache miss penalty cycles. Matmula had an overestimation

Table 3. Dynamic Results for Data Caching

Hit Observed | Estimated | Est/Obs | Naive

Name Ratio Cycles Cycles Ratio Ratio
Des 75.71% 155,340 191,564 1.23 1.45
Matcnta 71.86% | 1,143,014 1,143,023 1.00 1.15
Matcntb 70.73% 12,189 12,189 1.00 1.15
Matmula | 62.81% | 7,245,830 | 7,952,807 1.10 | 1.24
Matmulb | 89.40% 11,396 11,396 1.00 1.33
Matsuma | 71.86% | 1,122,944 | 1,122,953 1.00 | 1.15
Matsumb | 69.98% 11,919 11,919 1.00 1.15
Sorta 97.06% | 4,768,228 | 9,826,909 2.06 | 2.88
Sortb 99.40% 188,696 371,977 1.97 2.92
Statsa 90.23% | 1,237,698 | 1,447,572 1.17 | 1.29
Statsb 89.21% 32,547 37,246 1.14 1.29
average 80.75% N/A N/A 1.24 1.55

18

of about 10% whereas the smaller data version Matmulb was exact. The Matrnul
program has repeated references to the same elements of three different arrays.
These references would miss the first time they were encountered, but would be in
cache for the smaller Matmulb when they were accessed again since the arrays fit
entirely in cache. When all the arrays fit into cache there is no interference between
them. However, when they do not fit into cache the static simulator conservatively
assumes that any possible interference must result in a cache miss. Therefore, the
categorizations are more conservative and the overestimation is larger. Finally, the
Des program has several references where an element of a statically initialized array
is used as an index into another array. There is no simple method to determine
which value from it will be used as the index. Therefore, we must assume that any
element of the array may be accessed any time the data reference occurs in the
program. This forces all conflicting lines to be deleted from the cache state and
the resulting categorizations to be more conservative. The Des program also has
overestimations due to data dependencies. A longer path deemed feasible by the
timing analyzer could not be taken in a function due to the value of a variable.
Despite the relatively small overestimations detailed above, the results show that
with certain restrictions it is possible to tightly predict much of the data caching
behavior of many programs.

The difference between the naive and estimated ratios shows the benefits for
performing data cache analysis when predicting worst-case execution times. The
benefit of worst-case performance from data caching is not as significant as the ben-
efit obtained from instruction caching [2, 11]. An instruction fetch occurs for each
instruction executed. The performance benefit from a write-through/no-allocate
data cache only occurs when the data reference from a load instruction is deter-
mined by the timing analyzer to be in cache. Load instructions only comprised on
average 14.28% of the total executed instructions for these test programs. However,
the results do show that performing data cache analysis for predicting worst-case
execution time does still result in substantially tighter predictions. In fact, for the
programs in the test set the prediction improvement averages over 30%.

The performance overhead associated with predicting WCETSs for data caching
using this method comes primarily from that of the static cache simulation. The
time required for the static simulation increases linearly with the size of the data.
However, even with large arrays as in the given test programs this time is rather
small. The average time for the static simulation to produce data reference catego-
rizations for the 11 programs given in Table 3 was only 2.89 seconds. The overhead
of the timing analyzer averages to 1.05 seconds.

4. Wrap-Around-Filling for Instruction Cache Misses

Several timing tools exist that address the hit/miss behavior of an instruction cache.
But modern instruction caches often employ various sophisticated approaches to
decrease the miss rate or reduce the miss penalty [12]. One approach to reduce
the miss penalty in an instruction cache is wrap-around fill. A processor employing
this feature will load a cache line one word at a time, starting with the instruction

19

Table 4. Order of Fill When Loading Words of a Cache Line

First Requested Word Miss Delay for Word
within Cache Line 0 1 2 3 4 5 6 7
0 7 8 10 | 11 | 13 | 14 | 16 | 17
1 8 7 10 | 11 | 13 | 14 | 16 | 17
2 16 | 17 7 8 10 | 11 | 13 | 14
3 16 | 17 8 7 10 | 11 | 13 | 14
4 13 | 14 | 16 | 17 7 8 10 | 11
5 13 | 14 | 16 | 17 8 7 10 | 11
6 10 | 11 | 13 | 14 | 16 | 17 7 8
7 10 | 11 | 13 | 14 | 16 | 17 8 7

that caused the cache miss. For each word in the program line that is being loaded
into the cache, the associated instruction cannot be fetched until its word has
been loaded. The motivation for wrap-around fill is to let the CPU proceed with
this instruction and allow the pipelined execution to continue while subsequent
instructions are loaded into cache. Thus, the benefit is that it is not necessary to
wait for the entire cache line to be loaded before proceeding with the execution of
the fetched instruction. However, this feature further complicates timing analysis
since it can introduce dead cycles into the pipeline analysis during those cycles when
no instruction is being loaded into cache [25]. Wrap-around fill is used on several
recent architectures, including the Alpha AXP 21064, the MIPS R10000 and the
IBM 620.

Table 4 shows when words are loaded into cache on the MicroSPARC I processor
[25]. In each instruction cache line there are eight words, hence eight instructions.
The rows of the table are distinguished by which word w within a cache line was
requested when the entire line was not found in cache. The leftmost column shows
that any of the words 0-7 can miss and become the first word in its respective pro-
gram line to be loaded into cache. It takes seven cycles for the requested instruction
to reach the instruction cache. During the eighth cycle, the word with which w is
paired, either w + 1 if wis even or w - 1 if wis odd, gets loaded into cache. After
each pair of words is loaded into cache, there is a dead cycle during which no word
is written. Table 6 indicates that the MicroSPARC I has dead cycles during the
ninth, twelfth and fifteenth cycles after a miss occurs. It takes seventeen cycles for
an entire program line to be requested from memory and completely loaded into
cache. Note that on the MicroSPARC I there is an additional requirement that an
entire program line must be completely loaded into cache before a different program
line can be accessed (whether or not that other program line is already in cache).

For wrap-around-fill analysis, information stored with each path and loop includes
the program line number and the cycles during which the words of the loop’s first
and last program lines are loaded into cache. These cycles are called the available
times, and the timing analyzer calculates beginning and ending available times for
each path in a particular loop. For loop analysis, this set of beginning and ending
information is propagated along with the worst-case path’s pipeline requirements
and data hazard information. Keeping track of when the words of a program line

20

are available in cache is analogous to determining when a particular pipeline stage is
last occupied and to detecting when the value of a register is available via hardware
forwarding. These available times are used to carry out wrap-around-fill analysis of
paths and loops. This analysis detects the delays associated with dead cycles and
cases where these delays can be overlapped with pipeline stalls to produce a more
accurate WCET prediction.

4.1. Wrap-Around-Fill Delays Within a Path

During the analysis of a single path of instructions, it is necessary to know when the
individual words of a cache line will be loaded with the appropriate instructions.
When the timing analyzer processes an instruction that is categorized as a miss, it
can automatically determine when each of the instructions in this program line will
be loaded into cache, according to the order of fill given in the machine-dependent
information. The timing analyzer stores the program line number and the relative
word number in that line for every instruction in the program. During the analysis
of a path, the timing analyzer can update information about which program line
is arriving into cache and when the words of that line are awvailable to be fetched
without any delay. At the point the timing analyzer is finished examining a path, it
will store the information associated with the first and last program lines referenced
in this path, including the cycles during which words in these lines become available
in cache, plus the amount of delay caused by latencies from the filling of cache lines.
Such information will be useful when the path is evaluated in a larger context,
namely when the first iteration of a loop or a path in a function is entered or called
from another part of the program.

Figure 9 shows the algorithm that is used to determine the number of cycles
associated with a instruction fetch while analyzing a path. The cycles when the
words become available in the last line fetched are calculated on each miss. In order
to demonstrate the correctness of the algorithm, one must show that the required
number of cycles are calculated for the wrap-around-fill delay on each instruction
fetch. There are three possible cases. The first case is when the instruction being
fetched is in the last line fetched, which means the instruction fetch must be a hit.
Line 4 in the algorithm uses the arrival time of the associated word containing the
instruction to determine if extra cycles are needed for the IF stage. The second
and third cases are when the reference was not in the last line fetched and the
instruction fetch could be a hit or a miss, respectively. In either case, cycles for
the IF stage of the instruction have to include the delay to complete the loading of
the last line, which is calculated at line 6. Line 8 calculates the additional cycles
for the IF stage required for a miss to load the requested word in the line. Lines
9-10 establish the arrival times of the words in the line when there is a miss. All
three cases are handled. Thus, the algorithm is correct given that arrival times of
the current line preceding the first instruction in the path are accurate. Techniques
to determine the arrival times at the point a path is entered are described in the
following sections.

21

// matriz containing information from Table /
const int waf_delay[WORDS_PER_LINE][WORDS_PER_LINE]

// indicates when each word of the last line fetched become available
int availableflWORDS_PER_LINE]

const int max_delay // delay required to load the last word of a line

curr_word_num = inst_word_num % WORDS_PER_LINE.
first_cycle = first vacancy of IF stage.
IF instruction in last_line_fetched THEN
cycles_in_IF = max(0, available[curr_word_num] - first_cycle).
ELSE
cycles_in_IF = previous_line_delay = max(0,last_word_avail - first_cycle).
IF reference was a miss THEN
cycles_in_IF += waf_delay[curr_word_num][curr_word_num].
FOR i =0 TO WORDS_PER_LINE-1 DO
available[i] = first_cycle + previous_line_delay + waf_delay[curr_word_num][i].
last_word_avail = first_cycle + previous_line_delay + max_delay.
last_line_fetched = line of current instruction.
: cycles_in_IF +=1.

e N =)
P> el

Figure 9. Algorithm to Calculate WAF Delay within a Path

4.2. Delays Upon Entering A Loop or Function

During path analysis, when the timing analyzer encounters a loop or a function call
in that path (child), it determines if the first instruction in the child lies in a different
program line than the instruction executed immediately before entering the loop
or function. If it does, then the first instruction in the child must be delayed from
being fetched if the program line containing the last instruction executed before
the child is still loading into cache. If the two instructions lie in the same program
line, then it is only necessary to ensure that the instructions belonging to the first
program line in the child will be available when fetched. Often, these available
times (and corresponding dead cycle delays) have already been calculated by the
child. Likewise, the available times could have been calculated in some other child
encountered earlier in the current path, i.e. in the situation where the path calls
two functions that share a program line.

Figure 10 shows a small program containing a loop that has ten iterations and
comprises instructions 5-9. The first instruction in the loop is instruction 5, and
in memory this instruction is located in the same program line (0) as instructions
0-4. At the beginning of the program execution, instruction 0 misses in cache and
causes program line 0, containing instructions 0-7, to load into cache. On the first
iteration of the loop, the timing analyzer detects that instruction 5 only needs to

22

spend 1 cycle in the IF stage; there is no dead cycle associated with instruction 5
even though program line 0 is in the process of still being fetched into cache during
the first iteration.

C Source Code SPARC Instructions Word Number Prog. Line Categorizations

mai n() inst 0: save ¥sp,-104, %p 0 0 m
{ inst 1. mov %0, %3 1 0 h
int i, a[10]; inst 2: add %p, . 1_a, %0 2 0 h
inst 3: nov %0, Y04 3 0 h
for (i =0; i < 10; ++i) inst 4 add %0, 40, %5 4 0 h
a[i] =1i; L16: inst 5 st %3, [Y04] 5 0 h
inst 6: add Y04, 4, Yol 6 0 h
return 0; inst 7: cnp %04, Y05 7 0 h

} inst 8 bl L16 0 1 fm->fm
inst 90 add %3, 1, %3 1 1 h
inst 10: ret 2 1 h
inst 11: restore %0, %90, %0 3 1 h

Pipeline Diagram

cycle
1|../8|9(10|11|12|13|14|15|16|17|18|19|20|21|22|23|24|25|26|27|28|29|30|31|32|33|34|35|36|37|38|39|40|41|42|43| ..
stage| IF |0|..|0|1|2|2|3|4|4|5|6|6|7|8|8|8|8|8|8|8|8|9(10(10({11|12(12|13|14|14|15/5|6|7|8|8|9|5]..
ID 0|1 2|3 415 6|7 8|9 5(6(7|7|8|9].
EX 01 2|3 415 6|7 9 5/6|6|7|8].
FEX
MEM 0|1 2|3 4(5(5(6|7 9 5/5|/6|7
WB 0|1 2|3 4 6|7 9
FwWB

Figure 10. Example Program and Pipeline Diagram for First 2 Loop Iterations

4.3. Delays Between Loop Iterations

In the loop analysis algorithm, it is important to detect any delay that may result
from a program line being loaded into cache late in the previous iteration that
causes the subsequent iteration to be delayed. For example, consider again the
program in Figure 10. The instruction cache activity can be inferred by how long
various instructions occupy the IF stage. Before timing analysis begins, the static
cache simulator [19] had determined that instruction 8 is a first miss. The pipeline
behavior of the first two iterations of the loop is given in the pipeline diagram in
Figure 10. The instruction cache activity can often be inferred by how long various
instructions occupy the IF stage. On the first iteration, instruction 6 is delayed
in the IF stage during cycle 16 because of the dead cycle that occurs when its
program line is being loaded into cache. Note that if instruction 6 had not been
delayed, it would have later been the victim of a structural hazard when instruction
5 occupies the MEM stage for cycles 18-19.* Thus, the dead cycle delay overlaps
with the potential pipeline stall. Later during the first iteration, instruction 8 is a
miss, so it must spend a total of 8 cycles in the IF stage. Program line 1 containing
instructions 8-11 (and 12-15 if they existed) takes 18 cycles (from cycle 19 to cycle
36) to be completely loaded from the time instruction 8 is referenced. That is,
the program line finishes loading during cycle 36, so instruction 5 on the second

23

iteration cannot be fetched until cycle 37. This is a situation where a delay due to
jumping to a new program line takes place between loop iterations.

4.4. Results

The results of evaluating the same test programs as in section 3.5 are shown in
Table 5. The fifth column of the table gives the ratio of the estimated cycles to
the observed cycles when the timing analyzer was executed with wrap-around-fill
analysis enabled. The sixth column shows a similar ratio of estimated to observed
cycles, but this time with wrap-around-fill analysis disabled. In this mode, the
timing analyzer assumes a constant penalty of 17 cycles for each instruction cache
miss, which is the maximum miss penalty an instruction fetch would incur. The
fetch delay actually attains this maximum only when there are consecutive misses,
as in the case when there is a call to a function and the instruction located in the
delay slot of the call and the first instruction in the function are both misses. In
this case, this second miss will incur a 17 cycle penalty because the entire program
line containing the delay slot instruction must be completely loaded first. All data
cache accesses are assummed to be hits in both the timing analyzer and the simulator
for these experiments.

Table 5. Results for the Test Programs

Hit Observed Estimated Ratio with Ratio without

Name Ratio Cycles Cycles w-a-f Analysis | w-a-f Analysis
Des 86.16% 154,791 171,929 1.11 1.38
Matcnta | 81.86% | 2,158,038 | 2,161,172 1.00 1.12
Matmula | 98.93% 4,544,944 4,547,299 1.00 1.01
Matsuma | 93.99% | 1,131,964 | 1,132,178 1.00 1.13
Sorta 76.06% | 14,371,854 | 30,714,661 2.14 2.52
Statsa 88.45% | 1,020,769 | 1,020,810 1.00 1.11
average 87.58% N/A N/A 1.21 1.38

The WCET of these programs when wrap-around-fill analysis is enabled is sig-
nificantly tighter than when wrap-around fill is not considered. Des and Sorta has
overestimations for the same reasons as described in Section 3.5. The small over-
estimations in the remaining programs primarily result from the timing analyzer’s
conservative approach to first miss-to-first miss categorization transitions. These
slight overestimations also occurred when the timing analysis assumed a constant
miss penalty [11]. Because this situation occurs infrequently, this approach resulted
in only small overestimations. The overhead of executing the timing analysis was
quite small even with wrap-around-fill analysis. The average time required to pro-
duce the WCET of the programs in Table 5 was only 1.27 seconds.

24

5. Future Work

There are several areas of timing analysis that can be further investigated. More
hardware features, such as write buffers and branch target buffers, could be modeled
in the timing analysis. Best case timing bounds for various types of caches and
other hardware features may also be investigated. An eventual goal of this research
is to integrate the timing analysis of both instruction and data caches to obtain
timing predictions for a complete machine. Actual machine measurements using a
logic analyzer could then be used to gauge the accuracy of our simulator and the
effectiveness of the entire timing analysis environment.

6. Conclusion

There are two general contributions of this paper. First, an approach for bounding
the worst-case data caching performance is presented. It uses data flow analysis
within a compiler to determine a bounded range of relative addresses for each
data reference. An address calculator converts these relative ranges to virtual
address ranges by examining the order of data declarations and the call graph
of the program. Categorizations of the data references are produced by a static
simulator. A timing analyzer uses the categorizations when performing pipeline
path analysis to predict the worst-case performance for each loop and function in
the program. The results so far indicate that the approach is valid and can result
in significantly tighter worst-case performance predictions.

Second, a technique for WCET prediction for wrap-around-fill caches is presented.
When processing a path of instructions, the timing analyzer computes when each
instruction in the entire program line will be loaded into cache based on instruc-
tion categorizations that indicate which instruction fetches could result in cache
misses. The timing analyzer uses this information to determine how much delay,
if any, a fetched instruction will suffer due to wrap-around fill. When analyzing
larger program constructs such as loops or function instances, the wrap-around-fill
information associated with each path is used to detect delays beyond the scope
of a single path. The results indicate that WCET bounds are significantly tighter
than when the timing analyzer conservatively assumes a constant miss penalty.

Overall, this paper contributes a comprehensive report on methods and results of
worst-case timing analysis for data caches and wrap-around caches. The approach
taken is unique and provides a considerable step toward realistic worst-case exe-
cution time prediction of contemporary architectures and its use in schedulability
analysis for hard real-time systems.

Acknowledgments

The authors thank the anonymous referees for their comments that helped improve
the quality of this paper and Robert Arnold for providing the timing analysis plat-
form for this research. The research on which this article is based was supported
in part by the Office of Naval Research under contract number N00014-94-1-006

25

and the National Science Foundation under cooperative agreement number HRD-
9707076.

Notes

1. A basic loop induction variable only has assignments of the form v := v £ ¢, where v is a
variable or register and c is an integer constant. Non-basic induction variables are also only
incremented or decremented by a constant value on each loop iteration, but get their values
either directly or indirectly from basic induction variables. A variety of forms of assignment
for non-basic induction variables are allowed. Loop invariant values do not change during the
execution of a loop. A discussion of how induction variables and loop invariant values are
identified can be found elsewhere [1].

2. Annulled branches on the SPARC do not actually access memory (or update registers) for
instructions in the delay slot when the branch is not taken. This simple feature causes a host
of complications when a load or a store is in the annulled delay slot. However, our approach
does correctly handle any such data reference.

3. This earlier computation and expansion of the initial value string of an induction register
proceeds in basically the same manner as has already been discussed, except that loop invariant
registers are expanded as well.

4. On the MicroSPARC I, a st instruction is required to spend two cycles in the MEM stage.

References

1. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers — Principles, Techniques, and Tools.
Addison-Wesley, 1986.

2. R. Arnold, F. Mueller, D. B. Whalley, and M. Harmon. Bounding worst-case instruction
cache performance. In IEEE Real-Time Systems Symposium, pages 172-181, December
1994.

3. N. Audsley, A. Burns, R. Davis, K. Tindell, and A. J. Wellings. Fixed priority pre-emptive
scheduling: An historical perspective. J. of Real-Time Systems, 8:173-198, 1995.

4. M. E. Benitez and J. W. Davidson. A portable global optimizer and linker. In ACM SIG-
PLAN Conference on Programming Language Design and Implementation, pages 329-338,
June 1988.

5. B. Chapman, P. Mehrotra, and H. Zima. Programming in vienna fortran. contractor report
189623, NASA Langley Research Center, 1992.

6. B. Chapman, P. Mehrotra, and H. Zima. High performance fortran without templates.
contractor report 191451, NASA Langley Research Center, 1993.

7. B. Chapman, P. Mehrotra, and H. Zima. Extending hpf for advanced data parallel applica-
tions. contractor report 194913, NASA Langley Research Center, 1994.

8. J. W. Davidson and D. B. Whalley. A design environment for addressing architecture and
compiler interactions. Microprocessors and Microsystems, 15(9):459-472, November 1991.

9. M. Harmon, T. P. Baker, and D. B. Whalley. A retargetable technique for predicting execu-
tion time. In IFEFE Real-Time Systems Symposium, pages 68—77, December 1992.

10. C. A. Healy, R. D. Arnold, R. Mueller, D. Whalley, and M. G. Harmon. Bounding pipeline
and instruction cache performance. IEEE Transactions on Computers, 48(1):53-70, January
1999.

11. C. A. Healy, D. B. Whalley, and M. G. Harmon. Integrating the timing analysis of pipelining
and instruction caching. In IFEE Real-Time Systems Symposium, pages 288-297, December
1995.

12. J. Hennessy and D. Patterson. Computer Architecture: A Quantitative Approach. Morgan
Kaufmann, 2nd edition, 1996.

13. Y. Hur, Y. H. Bae, S.-S. Lim, B.-D. Rhee, S. L. Min, C. Y. Park, M. Lee, H. Shin, and C. S.
Kim. Worst case timing analysis of RISC processors: R3000/R3010 case study. In IEEE
Real-Time Systems Symposium, pages 308-319, December 1995.

26

14.

15.

16.

17.

18.

19.

20.

21.
22.

23.

24.

25.
26.

27.

28.

29.
30.

S. Kim, S. Min, and R. Ha. Efficient worst case timing analysis of data caching. In IFEE
Real-Time Technology and Applications Symposium, June 1996.

Y.-T. S. Li, S. Malik, and A. Wolfe. Efficient microarchitecture modeling and path analysis
for real-time software. In IEEE Real-Time Systems Symposium, pages 298-397, December
1995.

Y.-T. S. Li, S. Malik, and A. Wolfe. Cache modeling for real-time software: Beyond di-
rect mapped instruction caches. In IEEE Real-Time Systems Symposium, pages 254-263,
December 1996.

S.-S. Lim, Y. H. Bae, G. T. Jang, B.-D. Rhee, S. L. Min, C. Y. Park, H. Shin, and C. S. Kim.
An accurate worst case timing analysis for RISC processors. In IEEE Real-Time Systems
Symposium, pages 97-108, December 1994.

C.L. Liu and James W. Layland. Scheduling algorithms for multiprogramming in a hard-
real-time environment. Journal of the Association for Computing Machinery, 20(1):46-61,
January 1973.

F. Mueller. Static Cache Simulation and its Applications. PhD thesis, Dept. of CS, Florida
State University, July 1994.

C. Y. Park. Predicting program execution times by analyzing static and dynamic program
paths. Real-Time Systems, 5(1):31-61, March 1993.

C. D. Polychronopoulos. Parallel Programming and Compilers. Kluwer, 1988.

P. Puschner. Zeitanalyse von Echtzeitprogrammen. PhD thesis, Dept. of CS, Technical
University Vienna, December 1993.

P. Puschner and C. Koza. Calculating the maximum execution time of real-time programs.
Real-Time Systems, 1(2):159-176, September 1989.

J. Rawat. Static analysis of cache analysis for real-time programming. Master’s thesis, Iowa
State University, 1995.

Texas Instruments. TMS390S10 Integrated SPARC Processor, February 1993.

R. White. Bounding Worst-Case Data Cache Performance. PhD thesis, Dept. of Computer
Science, Florida State University, April 1997.

R. White, F. Mueller, C. Healy, D. Whalley, and M. Harmon. Timing analysis for data caches
and set-associative caches. In IEEE Real-Time Technology and Applications Symposium,
pages 192-202, June 1997.

M. Wolfe. Optimizing Supercompilers for Supercomputers. MIT Press, 1989.

M. Wolfe. High Performance Compilers for Parallel Computing. Addison-Wesley, 1996.

N. Zhang, A. Burns, and M. Nicholson. Pipelined processors and worst case execution times.
Real-Time Systems, 5(4):319-343, October 1993.

