
A Retargetable Technique for Predicting Execution Timeof Code Segments�Marion G. HarmonDepartment of Computer And Information SystemsFlorida A & M UniversityTallahassee, FL 32307, U. S. A.T. P. BakerDavid B. WhalleyDepartment of Computer ScienceFlorida State UniversityTallahassee, Fl 32306, U. S. A.Abstract. Predicting the execution times of straight-line code sequences is a fundamental problemin the design and evaluation of hard-real-time systems. The reliability of system-level timings andschedulability analysis rests on the accuracy of execution time predictions for the basic schedulable unitsof work. Obtaining such predictions for contemporary microprocessors is di�cult. This paper presentsa new technique called micro-analysis for predicting point-to-point execution times on contemporarymicroprocessors. It uses machine-description rules, similar to those that have proven useful for codegeneration and peephole optimization, to translate compiled object code into a sequence of very low-level instructions. The stream of micro-instructions is then analyzed for timing, via a three-levelpattern matching scheme. At this low level, the e�ect of advanced features such as caching andinstruction overlap can be taken into account. This technique is compiler and language-independent,and retargetable. This paper also describes a prototype system in which the micro-analysis technique isintegrated with an existing C compiler. This system predicts the bounded execution time of statementranges or simple (non-nested) C functions at compile time.1 IntroductionA computer program that interacts with and reponds to real world processes in a timely fashion, andmust complete execution prior to it's scheduled deadline, is called a \hard" real-time program. It isnot su�cient for the implemented algorithm to be correct. The real-time program must provide thecorrect response (computation) on time. A late computation is usually no better, possibly even worse,�This work was supported in part by grants N00014-87-J-1166 and N00014-92-J-1248, from the U.S. O�ce of NavalResearch. 1

than one that is on time but imprecise. The timing behavior of each real-time program component(task) must be predictable if one is to build reliable deterministic real-time systems.Much of the research in hard-real-time scheduling theory assumes that the execution time of each taskis constant, and available a priori (e.g., Liu and Layland [12], Mok [15]). Stoyenko's work [22] onthe schedulability analyzer for Real-Time Euclid addressed the problem of worst case timing analysisof a task, by assuming the execution time of each instruction is constant. However, the hardwarebuilders [17] concede that the exact execution time of a given instruction may vary, depending uponthe surrounding instructions and the current state of the machine.Recently some researchers have challenged this basic assumption made by much of the hard-real-timescheduling theory as being unrealistic and have begun to develop tools to assist in determining moreprecise bounds on the execution time of programs. Mok and his students [16] have implemented atiming tool that analyzes a stream of assembly language instructions generated from the compilationof C programs. They used a graph method to �nd the worst case path and computed the execution timeby simulating the hardware. Park and Shaw [19] implemented a timing tool for a subset of C, basedon the notion of timing schema presented in [21]. A method very similar to that of Shaw is presentedby Puschner and Koza [20]. These approaches are similar in that they all assume that the executiontime of each machine instruction is constant and that the behavior of the underlying hardware is bothdeterministic and known. Shaw acknowledges that although his approach seems to work well whenapplied to simple deterministic hardware (e.g., Motorola 68010), more research is needed to determinetiming predictability on more complex contemporary machines (e.g., Motorola 68020, Motorola 68030,Intel 80386, etc.).The rest of this paper is organized as follows. First, we brie
y examine several traditional methodsof measuring and/or predicting execution time. Second, we present a new technique for predictingbest and worst case bounds for point-to-point execution times, based on a pattern matching schemethat uses a machine description and a set of timing rules similar to those that have proven usefulfor code generation and peephole optimization. This new technique, which we call micro-analysis, is2

capable of taking into account the architectural characteristics of the target processor and their e�ecton instruction execution time. We also present results of experiments that compare the performanceof micro-analysis and traditional timing methods. Finally we, describe a prototype system whichintegrates the micro-analysis technique with a C compiler. This early version predicts execution timesfor statement ranges or entire functions (non-nested).2 Traditional Timing MethodsSeveral methods for predicting the execution time of time-critical code segments have evolved overthe years. In this section a discussion of some more commonly used methods for predicting and/ormeasuring execution time of code segments is presented along with an examination of their strengthsand weaknesses when applied to contemporary processors.2.1 Table Lookup MethodThe table lookup method analyzes the target code segment at the assembly language instruction level.The execution time of each individual instruction is computed by adding the time to prepare theoperands to the time to perform the operation. The sum of the execution times of the instructionsis considered the total execution time of the target code segment. This method will be referred tolater as the table lookup method. Timing information relative to each instruction and addressingmode is usually determined by the processor's manufacturer and is printed in the user's manual orprogrammer's reference manual.This approach has several disadvantages. First, some compilers do not generate assembly code (e.g.,the Verdix Ada compiler version 5.5). This problem can be overcome by disassembling the object code,although it does add an extra step to the analysis process. Second, using the code disassembly approach,it may be di�cult to match the assembly code which requires timing analysis with the correspondinghigh-level language code. A possible solution to this problem is to insert markers (i.e., identi�ablelabels) around the target source code segment, that will remain in place and be compiled through3

to the object code level. The main di�culty here is to insure that the markers are not repositionedor eliminated during optimization. Third, the accuracy of the timing predictions made using thisapproach is dependent on the accuracy of the timing information provided by the vendor. Fourth,the table lookup method performs poorly when applied to processors that implement a high degreeof concurrency (e.g., instruction prefetching, pipelining, etc). For example, Intel suggests increasingperformance estimates that are computed using cycle counts provided in their user's manual by 5% inorder to account for occasional degradation in performance due to re�lling the pipeline after a successfulbranch [11]. Also, operand sizes and addressing modes can in
uence program performance, but bothare generally overlooked in discussions on execution time.2.2 Instruction CountingInstruction counting, like table lookup, analyzes the target code segment at the machine languagelevel. The instruction counting method predicts execution time by multiplying the number of machineinstructions in the target code segment by a pair of numeric constants which represent the average bestand worst case instruction execution times for the target processor. The best and worst case numericconstants are determined by measuring the execution time of a large sample of machine instructions onthe target processor. In addition to sharing many of the same de�cencies of the table lookup method,instruction counting does not take into account the actual timings of the individual instructions thatare executed.2.3 Software MonitorsSoftware monitors are among the oldest of the traditional timing techniques. This technique usesinstructions (e.g. calls to read the system clock) which are added to the target process to gathertiming data. This technique can be used to make scheduling decisions to meet timing constraintsduring the execution of the process. Although this technique is simple to implement, there are twomajor disadvantages of this technique. The overhead involved with reading the system clock will a�ect4

the accuracy of the time measurement. In addition, software monitors can only provide rough timingmeasurements, depending upon the precision of the system clock [13].2.4 Dual Loop BenchmarkThe dual loop benchmark paradigm is a commonly used method of measuring code execution time usinga standard system clock [1]. The resolution of the system clock may vary from one implementationto another. However, the dual loop benchmark approach deals with imprecise clocks by extending theduration of the test to a length that the clock can measure. This is accomplished by inserting the testcode in a loop that is sandwiched between calls to the system clock. The execution time of the testcode is determined by executing the loop many times, (e.g., 100K times) and computing the averagetime for the benchmark loop. The overhead introduced by the loop construct distorts the measurementand must be subtracted away. This is done by measuring the execution time of a second loop that isidentical to the benchmark loop without the test code (a null body).Figure 1 shows an example of the dual loop benchmark approach being used to measure the executiontime of an Ada program 1. Dual loop benchmarking requires adding new code to the code segment tobe timed (i.e., the loop, increment, test, and bound). Removing this code after the measurements aretaken can change instruction alignment and execution time. The misalignment of word and long-wordoperands can cause contemporary processors to perform multiple bus cycles for the operand transfer.In fact, this dual loop paradigm can be found in three commonly used Ada benchmark suites, namelythe Ada Compiler Evaluation Capability (ACEC) test suite [10], the Performance Issues WorkingGroup (PIWG) test suite developed by a working group of the Association for Computing Machinery'sSpecial Interest Group for Ada (SIGADA), and the University of Michigan test suite [5].A major weakness of the dual loop benchmark method is that it assumes that textually equivalent codeconstructs require the same amount of time to execute. In particular, the time required to execute the1The Ada program shown here requires that the user initialize the constant LOOP-COUNT and replace the commentTEST-CODE-SEGMENT with the actual sequence of instructions to be timed.5

with TEXT_IO;package DUR_IO is new TEXT_IO.FIXED_IO(DURATION)with TEXT_IO; use TEXT_IO;with DUR_IO; use DUR_IO;with CALENDAR; use CALENDAR;procedure DL_EXAMPLE isLOOP_COUNT : constant INTEGER := VALUE;AVG_EXECUTION_TIME: DURATION;T1, T2, T3, T4: TIME;beginT2 := CLOCK; -- BENCHMARK LOOPfor I in 1..LOOP_COUNT loop-- TEST-CODE-SEGMENT; -- TESTend loop;T1 := CLOCK;T4 := CLOCK;for I in 1..LOOP_COUNT loop -- CONTROL LOOPnull;end loop;T3 := CLOCK;AVG_EXECUTION_TIME := (((T1 - T2) - (T3 - T4))/LOOP_COUNT);end DL_EXAMPLE; Figure 1: Dual loop timing exampleloop constructs of the control loop and the benchmark loop may not be same. Altman and Weidermanin [1] showed that identical loops exhibited substantial variations in execution time (as much as 12percent) on speci�c test systems. For example, if the control loop �ts into cache but the benchmarkloop does not, then the control loop will execute faster than the benchmark loop. This variation in theexecution time of the control loop and benchmark loop will cause the time calculation to be erroneous.Another problem with the dual loop approach is that the application copy of the timed routine and thetest copy may yield di�erent executions times, due to di�erences in cache and alignment (instructionsand data). Timing a code segment in isolation requires a specially constructed test harness in whichto make the measurement. The constructed dual loop test with its supporting code will be di�erentfrom the actual application environment. Also data dependences and optimizations issues apply hereas well. For instance, a compiler may remove instructions from the control loop through optimizationmaking it necessary to write additional code to suppress the e�ects of optimization. It is unlikely that6

the same context would exist in the actual application.2.5 SimulationUsing software to simulate the target processor is another common approach to determining the timingbehavior of a code segment [2]. For instance, the General Code Analyzer component which is partof the SARTOR (Software Automation for Real-Time OpeRations) environment implements a generalhardware simulator [14]. Simulators are complex and require much e�ort to construct and they arealso very slow. Simulators su�er from the same problem as the direct measurement approach discussedin the next section, both are only capable of measuring the execution time of a single test case, othertest cases may produce di�erent execution times. The accuracy of the measurement depends on twoimportant factors: how well the simulator models the execution algorithm of the target processor, andthe accuracy of the timing data used by the simulator.The implementation of an accurate simulator requires very detailed and precise information aboutthe internal functions of the target processor; information that is usually proprietary. This is still acommon method of predicting processor performance. Software developers who need accurate timingcan purchase simulators from the processor manufacturer if necessary.2.6 Direct MeasurementA logic analyzer, also called an oscilloscope, may be used to measure the execution time of a codesegment. A logic analyzer is a hardware device that uses electrical probes to monitor processor activity.A logic analyzer is particularly useful when looking at time relationships of data on a bus (e.g., amicroprocessor address, data, or control bus). Most logic analyzers are two analyzers in one. The �rstpart is the timing analyzer and the second is a state analyzer. The state analyzer captures all stateinformation between trigger points, while the timing analyzer computes the elapsed time between statesand trigger points. Hardware timing tools are usually more accurate than the other timing methodsdiscussed here, however they also tend to be expensive in several respects.7

There are several disadvantages to using hardware instruments to measure software timing. First, thetiming instrument itself is expensive. Second, it requires a skilled individual to perform the measure-ments. One must have a working knowledge of the instrument as well as the software to be timed.Third, this method requires that the target processor be available, because the timing data is measureddirectly on the processor. It is not uncommon to develop software systems to run on hardware thathas not yet been built, in order to shorten the total system development cycle. Fourth, this methodproduces a single execution time measurement for the code segment in question; that measurement isaccurate only for the data and processor state present when the measurement is taken. Variables thatin
uence timing, like data size, cache contents, operand and instruction alignment, wait states, inter-rupts and virtual memory will cause the execution time of a code segment to vary from one execution toanother when it is executed within the context of a complete application. Some of these variables (e.g.,cache contents) will become stable, once the code segment starts up and runs for a while, and so arenot a major problem for the direct measurement approach. To acquire accurate timings using a logicanalyzer the timing technician must take several measurements under various processing conditions.Still, there is a possibility of missing the test case that would cause the code segment to execute longerthan the maximum measurement or less than the minimum measurement observed.3 The Micro-analysis TechniqueThe micro-analysis approach was in
uenced by results produced in the area of compiler design, mostnotably work by Davidson and Fraser [6] involving retargetable peephole optimizers. It is based on theconcept of using a machine description, in the form of a set of translation rules, to translate compilerobject code into a sequence of very low level instructions. The stream of micro-instructions is thenanalyzed for timing, via a multi-level pattern matching scheme. At this level, the e�ects of advancedfeatures such as caching and instruction overlap can be taken into account. Micro-analysis is a threestep process. The three steps are: 8

1. Compile the program and disassemble the object module. The tool suite includes a retargetabledisassembler generator [18] that was used to build disassemblers for the Motorola MC68020 andIntel 80386.2. Transform machine instructions into a sequence of primitive operations which express the func-tionality of each machine instruction in �ne-grain detail. The transformations are performedby a parser that uses the machine description of the target processor to produce a sequence ofprimitive operations. This process is called micro-translation.3. Scan the stream of primitive operations, identifying patterns and applying rules which eitherspecify a replacement pattern or an execution time. The execution times are speci�ed as integerswhich represent the number of clock cycles required for a pattern of primitive operations toexecute. When the analysis is complete, the execution time of the target code segment is displayedas a bounded integer time interval (i.e., [best case, worst case]).The parser (i.e., micro-translator) is constructed using a parser generator developed by Baker [3]. Thisparser generator was modi�ed so that it would produce a parser capable of emitting primitive operationsas it parsed the assembly language instructions of a code segment. The disassembler generator, parsergenerator and execution time analyzer were used to construct a timing tool for the MVME133A-20single-board computer (MC68020 processor) and a Mitsuba personal computer (Intel 80386 processor).The tool has been used to predict the execution time of programs written in Ada, C, and assemblylanguage.3.1 Machine Description LanguageThe machine description language (MDL) is set of syntactic patterns. Each pattern denotes a speci�cmicro-level operation. Combination of these patterns denote speci�c processing events that occurduring the execution of associated machine instructions. Figure 2 lists a subset of the patterns whichmake up the micro-language. The letters s and d denote internal source and destination registers notaccessible by the user. Our model assumes that all computations take place in these registers.9

ftch : instruction fetch=%p : move program counter toMemory Address Register (MAR)=%s : move source address to MAR=%d : move destination address to MAR-$: decrement stack pointer+p : increment program counter=sM : memory read operation=Ms : memory write operation+sd : add source to destination-sd : subtract source from destination*sd : multiply source by destination/sd : divide source by destination#sd : logical shift operation!sd : arithmetic shift operationscc : set condition codesFigure 2: A subset of the machine description language4 The Timing ToolThe timing tool predicts a best case and worst case execution time of code segments (i.e, point-to-pointexecution time). The tool is composed of three independent retargetable components that correspondto the three steps in the micro-analysis process:� Disassembler: a program that disassembles object code and produces assembly level instructions.� Parser: a program that transforms machine instructions into a sequence of primitive operationswhich express the functionality of each instruction in �ne grain detail. The parser is driven by amachine description speci�ed in the form of an attributed grammar.� Timer: a rule-driven pattern matching program that evaluates sequences of primitive operationsto determine execution time.The tool also includes an interactive user interface which prompts the user to input information thatis generally undecidable, such as the minimum and maximum number of loop iterations, and thebeginning and ending point of the code segment to be analyzed. The timer component is designed to10

����Input: object module?Disassembler?assembler codeParser MachineDescription��?primitive codeTimer TimingRules��?����Output: execution time
Timing Tool

Figure 3: Overview of tool componentstake into account the speci�c architectural features of the target processor through its parameterizedinterface. For instance, the current version of the tool predicts timing for code segments executed onthe 68020 and 80386 processors. They both handle the processor features that in
uence instructiontiming, such as memory speed, cache memory size (68020 version), memory refresh, pipelining, etc.Figure 3 shows the organization of the tool.4.1 Timing RulesThe timing analysis is guided by a set of pattern-driven timing rules. A timing rule consists of aleft-hand side (LHS) and a right-hand side (RHS). The LHS is always a pattern composed of one or asequence of primitive operations. The RHS is either a macro-level pattern or a time interval. Macro-level patterns blend the execution time of two or more adjacent or near adjacent primitives (operations).These macro-level patterns perform a type of \time folding" on operations whose execution may overlap.11

The example processor that will be used to illustrate the micro-analysis technique is the MotorolaMC68020. Figure 4 shows the pipeline structure of the MC68020 [17]. The processor contains a threestage pipeline that allows up to three operations to be performed simultaneously.
Execution

Unit

Control

Unit

Sequencer

D

Stage

C

Stage

B

Stage

Instruction

Flow from

Cache and

Memory

Instruction Fetch and Decode

Figure 4: Motorola MC68020 pipeline structureeFor example, the MC68020 processor always reads a long word (32 bits), thus providing an opportunityfor overlap during the instruction fetch cycle. Several of the instructions in the MC68020 instructionset require only one word (16 bits) of memory, making it possible to fetch two adjacent single wordinstructions at the same time. The second instruction is e�ectively loaded in zero clock cycles. Thepossibility of fetching multiple instructions concurrently is handled by the timing rules for fetchinginstructions.Five of the more than 125 timing analysis rules for the MC68020 are listed below. Note that PGRdenotes a half word read operation and FPR denotes a long word read operation.1. ftch ! PGR2. =%p =sM ! PGR 12

3. =%p =dM ! PGR4. PGR PGR ! FPR5. FPR ! [bc; wc]Rule 4 instructs the timer to replace two consecutive occurrences of the pattern PGR with the patternFPR, which denotes a long word read operation. This replacement indicates that two words from theinstruction stream were loaded during one fetch cycle, so the second word is loaded for free. Rule1 replaces each occurrence of ftch with PGR in the stream of macro-level patterns. Rules 2 and 3support the loading of extension words during an instruction fetch cycle. The number of extensionwords fetched may increase the number of bus cycles required to load the entire instruction and thereforemust be considered in the analysis. Rule 5 is one of several rules that replace patterns with boundedexecution times. The purpose of this rule is to replace the pattern FPR with the predicted boundedexecution required to complete the fetch operation. These bounded execution times accumulate duringthe Micro-analysis process to compute a bounded execution time for the target code segment.5 A Simple Timing Analysis ExampleThe Ada procedure in Figure 5 is used to illustrate the use of our tool. This sample Ada procedurewas compiled using the VERDIX 5.7 cross compiler. Figure 6 shows the disassembled object codeand Figure 5 shows the output that the user sees after the disassembly stage. The source level codeis annotated with line numbers that are used by the user to specify which code segments to time. Theassembly code corresponding to the source level statements speci�ed by the user are passed on to theparser, which transforms each assembly language instruction into a sequence of primitive operations(Figure 7) that express the functionality of the corresponding machine instruction(s) in �ne graindetail.The timer component uses a set of timing rules which incorporate the architectural features andexecution paridigm of the target processor. A timing rule consists of a left-hand side (LHS) and a13

--A simple Ada procedure1 procedure EXAMPLE is2 X, Y: integer:= 5; -- X and Y are integersbegin -- initialized to 53 for i in 1..100 loop -- i iterates from 1 to 1004 X := X + Y; -- add Y to X5 Y := i + X; -- add i and X, store in Y6 end loop;7 end EXAMPLE;Figure 5: Line numbered Ada procedure30: move.l a6@(-08), d0 # move value at [a6 - 8] to d034: add.l a6@(-0c), d0 # add value at [a6 - 12] to d038: trapv # check for overflow3a: move.l d0, a6@(-08) # store d0 at [a6 - 8]3e: move.l a6@(-010), a6@(-0c) # move value at [a6 - 16] to [a6 - 12]44: add.l d0, a6@(-0c) # check for overflow48: trapv Figure 6: Disassembled object coderight-hand side (RHS). The LHS is always a pattern consisting of one or more primitives. The RHSmay be another (higher level) pattern, or a time. For example, the MC68020 always reads a longword (32 bits), thus providing an opportunity for overlap during the instruction prefetch cycle. Therule to handle prefetching is as follows: ftch & ftch ! pgr. This rule will replace a pattern of fetchprimitives with the higher level pattern pgr which denotes a program read operation. After applyingthe rules to the stream of primitives in a systematic manner until it converges, the timer predicts abounded execution time for the code segment.To illustrate this technique we will compute the execution time of the two instructions located ataddresses 30 and 34 shown in Figure 7. The instructions at addresses 30 and 34 correspond toinstruction number 4 in the annotated source listing. Imagine that the stream of primitives for thesetwo instructions were aligned in a linear format. Figure 8 illustrates how the micro-analysis techniquepredicts a bounded execution time for these two instructions. Figure 9 depicts graphicly the worstcase execution of the two instructions used in our example.14

30: ftch =%p =sM =+sa<6> =%s =sM +p =<d0>s NZVC34: ftch =%p =sM =+sa<6> =%s =sM +p =dd<0> +sd NZVCX =<d0>s38: ftch trappv3a: ftch =sd<0> =%p =dM +da<6> =%d =Ms NZVC3e: ftch =%p =sM =+sa<6> =%s =sM +p =%p =dM +da<6> =%d =Ms NZVC44: ftch =sd<0> =%p =dM +da<6> =dM +sd NZVCX =%d =Ms48: ftch trappv Figure 7: Fine-grain primitives for lines 4-5 in Figure 3The pattern matcher identi�es a sequence of micro-patterns and replaces it with another pattern, atoken which denotes the operation initiated by the sequence of micro-patterns. These higher-levelreplacement patterns also form a linear sequence which undergo further analysis by other timing ruleswhich detect instances of execution overlap. For example, the �rst pattern found in this example is aprogram read operation and it is replaced by the token PGR. The instruction generating this programread operation has one extension word as indicated by the =sM micro-pattern. Recall that the MC68020always reads a long word (32-bits) and PGR denotes a long word instruction fetch. Next an addresstranslation pattern is found, and it is replaced by the ADT token. The next pattern is found by thepattern matchers lookahead feature. Note that the pattern matcher must skip forward to locate thenext program read operation. This is necessary because the target processor supports instructionprefetching. Notice also that the third pattern was generated by the instruction at address 34.The timing rules are applied to the higher-level patterns, to identify instances of overlap and to computethe execution time of the code segment. For instance, the �rst high-level pattern in Figure 8 doesnot execute in parallel with any other micro-pattern, since the pipeline is considered empty at startuptime. The second and third macro-patterns could execute in parallel since the address translationand the bus operation needed to prefetch the next instruction can be performed currently. ColumnB speci�es the replacement pattern for a given sequence of low-level primitive patterns. Column Cindicates the patterns that execute in parallel, for example the pattern in row 4 column B, whichdenotes a data read operation (DAR) executes in parallel with patterns 5, 6 and 7, which denote aregister assignment REG, set condition code SCC, and address translation ADT respectively. Patterns 815

A B C D E FMicro Macro Overlapped Min Max Over-Patterns Pattern Patterns Cycles Cycles lap1) ftch =%p =sM +p PGR 1 2 5 02) =+sa<6> =%s ADT 2,3 4 10 23) ftch =%p =sM +p PGR4) =sM DAR 4-7 9 16 35) =<d0>s REG6) NZVC SCC7) +sa<6> =%s ADT8) ftch PGR 8,9 11 21 59) ftch10) =sM DAR 10,11 16 26 111) =dd<0> REG12) +sd ADD 12 18 28 113) =<d0>s REG 1314) NZVC SCC 14Figure 8: An example of Micro-analysisand 9 are identi�ed as a program read operation, but more signi�cantly this program read occurs beforethe data read, this is because the instruction look ahead (prefetch) operation has higher priority thandata read and data write operations. Note also that the prefetch instructions are not part of the targetcode segment being timed, however the time consumed by this program read must be computed intothe time required to execute the two instructions being timed. Columns D and E show the boundedexecution time computed at each step in the analysis and column F shows the predicted overlap foroperations that execute in parallel.In this illustration of the micro-analysis technique, the timing rules performed the analysis under theassumption that cache is enabled and that all data operands are on even word boundaries. The rulescan be altered to re
ect the characteristics of the target processor, through a parameterized interface.Table 10 compares the execution times computed for source statements 4 thru 5 in Figure 5. For thisexample our tool predicted a best case time of 39 clock cycles and a worst case time of 62 clock cycles.16

1

2

3

5

6

7

9

10

11

12

13

14

8

4

Cycles

Micro

Insts

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Clock

Figure 9: Graphical illustration of worst case execution timeThis time bound is very close to that measured under the same assumptions on our logic analyzer. Inparticular, the logic analyzer predicted a best case time of 37 clock cycles and a worst case of 59 clockcycles. There is a 5% di�erence in the measurements predicted by these two techniques. However itshould be noted that the logic analyzer provides a measurement for a one particular execution of thecode segment. This is a fundamental disadvantage of the logic analyzer approach, since there is nowhy of knowing whether or not the measured time is the true worst case execution time of the codesegment.The table lookup and instruction counting methods overestimate the actual execution time computed bythe logic analyzer by over 18 and 30 percent respectively. Both of these approaches also underestimatethe best case timing, due to the overly optimistic calculations of overlap and the inability to considercontext when measuring overlap. The micro-analysis technique overestimates the worst case time by3 clock cycles or 5 percent and overestimates the best case execution time by 2 clock cycles or 5percent. For purposes of scheduling real-time tasks a large over estimate task execution time reducesthe potential for greater processor utilization. On the otherhand underestimating task execution timedecreases system reliability. 17

Micro-analysis 39 62Timing TechniqueTable Lookup 29 77Instruction Counting 21 70Logic Analyzer 37 59Worst caseBest caseExecution Cycles
Figure 10: Timing Result of Ada Example6 Experimental EvaluationEvaluation of the micro-analysis method was accomplished by comparing its performance to that offour traditional timing methods, on �ve programs. Since micro-analysis predicts the execution timeof code segments, rather than whole programs, each program in our test suite represents many testsat the code segment level. For example, the sort program in our test suite contained more than 10code segments and over 56 execution paths. Each program had to be subdivided into code segments(basic blocks) and each code segment measured separately. Some special
ow-analysis programs werewritten to automate the process of �nding all the code segments that make up an execution path andpreparing them for timing. The best and worst case execution time for the program were determinedby comparing the timing results of each execution path. The execution time of each program wascomputed by table lookup, averaging, dual loop, logic analyzer and micro-analysis. The results aredisplayed, using bar and line charts, in Figures 11- 14.Our test suite consisted of �ve programs varying in size, instructions used and structure. All of theprograms were tested on the primary development processor, the MC68020. One program uses theMC68881 coprocessor for
oating point operations. One of these programs was also run on the Intel80386 machine to demonstrate the retargetability of micro-analysis. Programs tested on the MC6802018

were compiled by the Verdix Ada cross compiler and the one tested on the 80386 processor was compiledby the Janus Ada compiler.The programs compiled for the MC68020 processor were executed on a 32-bit monoboard computer(MVME133A-20) and the program designed for the 80386 was executed on a Mitsuba computer. Logicanalyzer measurements for these programs were made with a Hewlett Packard 1650A logic analyzer.The clock resolution of the HP 1650A is 10 nanoseconds. Dual loop measurements were performedon the same computer and the timing results printed to a console connected through an I/O port onthe MVME133A-20 monoboard computer. Predictions made using the table lookup, averaging, andmicro-analysis methods were performed with software tools written in the course of this research andtiming data found in users manuals.6.1 Results of Timing ExperimentsThe D Tree program tests an operation that might be performed frequently during the insertion ofa task identi�cation number into a priority queue data structure based on a decision tree. A staticinteger array is used to implement the decision tree. In this example we only measure the executiontime of the insert procedure. The body of the insert procedure consists of a single bounded loop withone entry point and multiple exit points. The D Tree program has the shortest execution time of ourtest programs. The bar chart in Figure 11 compares each method's best and worst case performanceon the D Tree program. It is important to note that the logic analyzer and dual loop measurementsare the observed best and worst case execution times across all data sets used in the experiments.Micro-analysis is designed to predict the absolute best case and worst case execution time over allpossible data sets.Micro-analysis predicts a best case time that is 35% below the time measured by the logic analyzerand a worst case prediction that is 12% above the logic analyzer's worst case measurement. Tablelookup predicts a best case time that is 77% below the logic analyzer's best case time, and its worstcase time is 23% greater than the logic analyzer's worst case time. Averaging performs poorly in the19

Figure 11: D Tree program
Figure 12: Vector Add program (80386 version)
Figure 13: Best case performance comparison20

worst case, but does much better in its best case prediction. For instance, its worst case is 95% overthe logic analyzer's measurements and its best case prediction is only 28% below that measured bythe logic analyzer. Dual loop performance is within 6% of the logic analyzer performance for bothmeasurements. In the �nal analysis, dual loop provides the tightest upper bound for this example,however micro-analysis predicted a very realistic upper bound, and possibly a more comfortable boundfor scheduling real-time programs.The bar charts in Figures 13 and 14 compare the best and worst case times of each timing methodon four di�erent programs. The Vector Add program simply adds corresponding elements of two1000 element integer arrays; unlike the other programs it was also tested on the 80386 processor todemonstrate the retargetability of the approach. Figure 12 compares the results measured on the80386. Matrix Multiply computes the product of two 10 by 10 integer arrays. The implementationincludes a triple level nested loop. Quick Sort is a recursive program that sorts a 100 element integerarray. FFT is a discrete Fast Fourier Transform program that uses a large number of
oating pointoperations, and it contains several nested loops. All
oating point operations are performed by theMC68881 coprocessor.The graphs in Figure 15 and Figure 16 are the line graph versions of the bar graphs in Figures 13and 14. These graphs provide a better view of how well each method performs as program executiontime increases. If the logic analyzer is considered to be the most accurate of the timing methods,then the data suggests that the dual loop method performed quite well on all tests. In fact, forall tests the measurements computed by dual loop are within 6% of those computed by the logicanalyzer. The performance of table lookup is unpredictable. It is worth noting the poor performanceof the table lookup approach when applied to the Matrix Multiply program. This result illustratesthe inability of the table lookup approach to accurately account for the e�ects of execution overlapin its predictions. The Matrix Multiply program consists of 3 nested loops that remain in cache untilthe program terminates after the initial iteration. This characteristic allows the processor to achievemaximum execution overlap, resulting in an actual best case execution time that is signi�cantly less21

Figure 14: Worst case performance comparison
Figure 15: Best case graph comparison
Figure 16: Worst case graph comparison22

than that predicted by the table lookup approach, or by the averaging approach. We were not sosurprised by the results of averaging, since each instruction is assigned the same (constant) executiontime regardless of its type, length, addressing mode, or execution context. The graph showing the bestcase analysis indicates that micro-analysis predicts a time that is consistently less than that measuredby the logic analyzer. The performance of these two methods begins to converge as the execution timeincreases. This is the result of small errors compounding over time, causing the predictions to drifthigher. The worst case analysis shows that micro-analysis predicts execution times that are slightlygreater than those measured by the logic analyzer, but well below averaging and table lookup. Theseresults indicate that micro-analysis out-performs table lookup and averaging by a small margin forshort programs, but this margin increases as the execution time of the programs increases.7 Predicting timing at Compile timeThe retargetable timing analysis tool described in section 4 has been adapted to interface with ease(Environment for Architecture Study and Experimentation) [9]. The ease environment is designed tomeasure code produced by the back end of a C compiler known as vpo (Very Portable Optimizer) [4].In this section we will describe revisions made to ease to support the timing analysis tool. The tool iscapable of providing best and worst case execution time bounds for a user speci�ed range of contiguousC statements or it can predict the bounded execution time for complete non-nested C functions. Toinvoke the tool the user need only specify the appropriate option along with the command to compilea C program. This integration of the timing tool with a compiler makes the tool easier to use andretarget, improves its e�ciency since parsing of the assembly instructions is not required, and resultsin more accurate predictions.7.1 The Compiler InterfaceModi�cations to the ease environment to support the timing tool were minor. When compiling a Csource �le with the option to collect static or dynamic frequency measurements, a �le is produced23

that contains information about the characteristics of the instructions generated by the compiler. easewas modi�ed to emit additional information to this information �le about instructions, basic blocks,loops, and the control
ow. The timing tool reads the information from the information �le to predictexecution times associated with the source code.16: void summ(data1, data2, data3)17: int data1[], data2[], data3[];18: {19: int i;20: for (i = 0; i < 10; i++)21: data3[i] = data1[i] + data2[i];22: } Figure 17: A simple C functionData about each compiled function in the information �le is structured in the following manner. First,the name of the function is emitted. Next a record is generated for each loop within the function. Theinformation represented for each loop includes the loop nesting level, the number of iterations if it isknown, the set of basic blocks that comprise the loop, and the exit blocks (the set of blocks within theloop that have a successor that is not in the loop). Information about each basic block is producedafter the loop information. First a record containing information about the entire block is emitted.The block record contains the block number, the range of source lines associated with the block, alist of basic block predecessors, and a list of basic block successors. Source lines are associated withbasic blocks instead of individual instructions due to the optimizations performed by the vpo back end.Thus, a request for the bounded execution times of a range of C statements in the prototype mustinclude entire basic blocks. Following the basic block record is a description of each instruction withinthe basic block. Each instruction record consists of the instruction type, data type processed by theinstruction operation, and indication of whether the condition codes are set and used by a subsequentinstruction. In addition, the instruction record contains information about the data type, addressingmode, and register usage for each operand within the instruction.A sample information �le for the C function displayed in Figure 17 is illustrated in a readable format24

function name: summloop: <nesting level 1> <num iters 10> <blocks 2 3><exit blocks 3>block: <block 1> <lines 20-20> <succs 2><link> <areg long (a6)> <immed anyint ()> link a6,#-4<mov long> <indirect|mem long (a7)> <areg long (a5)> movl a5,a7@<clr long> <dreg long (d1)> <immed anyint ()> clrl d1<mov long> <areg long (a0)> <disp|mem long (a6)> movl a6@(data1.),a0<mov long> <areg long (a1)> <disp|mem long (a6)> movl a6@(data2.),a1<mov long> <areg long (a5)> <disp|mem long (a6)> movl a6@(data3.),a5block: <block 2> <lines 21-21> <preds 3 1> <succs 3><mov long> <dreg long (d0)> <autoinc|mem long (a0)> L41: movl a0@+,d0<add long> <dreg long (d0)> <autoinc|mem long (a1)> addl a1@+,d0<dreg long (d0)><mov long> <autoinc long (a5)> <dreg long (d0)> movl d0,a5@+block: <block 3> <lines 20-20> <preds 2> <succs 4 2><addq long> <dreg long (d1)> <immed anyint ()> addql #1,d1<dreg long (d1)><cmp long ccset> <dreg long (d1)> <immed anyint ()> cmpl #10,d1<jlt long> <label long ()> jlt L41block: <block 4> <lines 22-22> <preds 3><mov long> <areg long (a5)> <disp|mem long (a6)> movl a6@(-4),a5<unlk> <areg long (a6)> unlk a6<ret> rtsFigure 18: Loop, basic block, and instruction information
25

in Figure 18. The corresponding assembly instructions produced by the compiler are also listed to theright of each instruction record. The for loop in the C function spans source lines 20-22.To interface the timing tool with the information �le required only minor modi�cations to the tim-ing tool implementation. First, the disassembler component was removed completely and the parsercomponent was reduced to a simple translator since the characteristics of each instruction is containedin the information �le. The timing component was modi�ed to compute the bounded execution timeof basic blocks rather than individual instructions. Thus, even if a basic block is used in more thanone path, its bounded execution time is only calculated once. The basic blocks execution times, loopiteration data, and
ow-control information are used to calculate a bounded execution time for allexecution paths.Recently we have developed another tool which accepts; assembly code from another compiler, trans-lates the assembly to VPO's intermediate form, and passes the intermediate code into VPO to generatean information �le. With this enhancement we can easily retarget the timing tool to any high-levellanguage as long as the compiler generates assembly code or there is a disassembler available. Thismodi�cation also eliminates the parsing step that was necessary in the initial version of the tool de-scribed in Section 4. We have used this new tool assembly listing for Ada programs compiled by theVerdix Ada Cross Comipler Verison 6.0.5 (Vadscross to MC6800 family). The table in Figure 19compares timings predicted with the micro-analysis technique using information provided by ease tothose measured by the dual loop and instruction counting approaches for a simple Ada procedure thatperform the same task as the C function in Figure 19. The worst case time predicted by the micro-analysis technique bounds the worst case time measured by the logic analyzer tighter than the timespredicted by averaging and table lookup.Preliminary results indicate that this approach holds some promise. It is easy to use, retargetable, andreasonably accurate. Since ease can be used to emulate features of proposed architectures, it couldalso be used to predict the performance of software on a proposed machine.26

8 Future WorkMicro-analysis performs very well on short code segments, however as the size of the code segmentincreases so does the timing error. It has been our experience that for code segments that contain500 or more machine instructions the predicted worst case execution time may be overestimated byas much as 20%. Therefore, one obvious area for future research is to improve the execution timeprediction of larger code segments. There are a couple of challenges to this problem. First, larger codesegments will typically contain function calls. A tool must be able to determine the instructions thatcould be executed when these functions are invoked. This analysis requires the construction of a callgraph. Another problem is dealing with the cache. If function calls are allowed in the code segments tobe timed, then there is a much greater likelihood that cache con
icts will occur since there would be agreater number of instructions that can be reached and the functions accessed may not be contiguousin memory. The authors have current work in progress that uses an iterative
ow analysis techniqueto determine which instruction references will always be cache hits or always cache misses. A morechallenging problem is predicting hits and misses in the data cache since the addresses associated withdata references are not always known statically. Other issues that need to be addressed associatedwith Reduced Instruction Set Computers (RISC) include correctly predicting the stalls due to pipelinehazards and handling
oating-point operations that take multiple cycles.9 ConclusionThis paper describes a retargetable tool for predicting a bounded best case and worst case executiontime of code segments. In addition to being retargetable, micro-analysis has the added advantage ofbeing language and compiler independent. The timing tool is currently predicting execution time ofcode segments targeted for the 68020 and 80386 processor. The timing tool has been integrated witha version of the vpo C compiler and the ease environment. A prototype has been built and preliminarytests are very promising. 27

References[1] Altman, N. and Weiderman, N. 1987. Timing Variation in Dual Loop Benchmarks. Technical Re-port CMU/SEI-87-TR-22, Software Engineering Institute, Carnegie Mellon University, Pittsburgh,PA 15213.[2] Arnold, C. N. 1987. Using the ETA System Multiprocessing Simulator To Prepare for The ETA10.I/O. 4(1): pp. 9-12.[3] Baker, T. B. 1982. A Single-Pass Syntax-Directed Front End for Ada. Proceeding of the SIG-PLAN'82 Symposium on Compiler Construction. Boston, Massachusetts, pp. 318-326.[4] Benitez, M. E. and Davidson, J. W. 1988. A Portable Global Optimizer and Linker. Proceedingsof the SIGPLAN Notices '88 Symposium on Programming Language Design and Implementation.Atlanta, GA, pp. 329-338.[5] Clapp, R. M. et al. 1986. Toward Real-Time Performance Benchmarks for Ada. Communicationsof the ACM. 29(8): pp. 760-778.[6] Davidson, J. W. and Fraser, C.W. 1984. Automatic Generation of Peephole Optimization. Proceed-ings of the SIGPLAN'84 Symposium on Compiler Construction. Montreal, Canada, pp. 111-116.[7] Davidson, J. W. and Fraser, C. W. 1984. Code Selection through Object Code Optimization,Transactions on Programming Languages and Systems. 6(4): pp. 7-32.[8] Davidson, J. W. 1986. A Retargetable Instruction Reorganizer. Proceedings of the SIGPLANNOTICES '86 Symposium on Compiler Construction. Palo Altp, CA, pp. 234-241.[9] Davidson, J. W. and Whalley, D. B. 1990. Ease: An Environment for Architecture Study andExperimentation. Proceedings SIGMETRICS '90 Conference on Measurement and Modeling ofComputer Systems. Boulder, CO. pp. 259-260.[10] Hook, A., Riccardi, G. A. and Vilot, M. 1988. Rational For The Prototype Ada Compiler Eval-uation Capability (ACEC) Version 1 and Recommendations for Research and Development ofSuccessive Versions. IDA paper p.1915. IDA Log. No. HQ85-30607.[11] Intel Corporation. 1988. 80386 Programmer's Reference Manual. Intel Corporation, Santa Clara,CA.[12] Liu, C. L. and Layland, J. W. 1973. Scheduling Algorithms for Multiprogramming in a Hard-Real-Time Environment. Journal of the Association for Computing Machinery. 20(1): pp. 46-61.[13] McKerrow, P. 1988. Performance Measurement of Computer Systems. Sydney, Australia :Addison-Wesley.[14] Mok, A. K. 1985. SARTOR-A Design Environment for Real-Time Systems. Proceeding of the 9thIEEE COMPSAC. pp. 174-181.[15] Mok, A. K. 1984. The Design of Real-Time Programming Systems Based on Process Models.Proceedings of the 1984 IEEE Real-Time Systems Symposium. Austin, Texas pp. 5-17.28

[16] Mok, A. K. 1989. Evaluating Tight Execution Time Bounds of Programs by Annotations. SixthIEEE Workshop on Real-Time Operating Systems and Software. Pittsburgh, PA. pp. 74-80.[17] Motorola. 1985.MC68020 32-Bit Microprocessor User's Manual second edition. Englewood Cli�s,N.J.: Prentice-Hall.[18] Oh, D.I., 1989. A Table Driven Retargetable Disassembler Generator, Master's Project, Depart-ment of Computer Science, Florida State University.[19] Park, C. Y. and Shaw, A. C. 1989. A Source-Level Tool for Predicting Deterministic ExecutionTimes of Programs. Technical Report 89-09-12, Department of Computer Science and Engineering,University of Washington, Seattle, Washington.[20] Puschner P. and Koza, C. H. 1989. Calculating the Maximum Execution Time of Real-TimePrograms. The International Journal of Time-Critical Computer Systems. 1(2): pp 159-176.[21] Shaw, A. C. 1987. Reasoning About Time in High-Level Language Software. Research Report,Laboratoire MASI. University of Paris 6.[22] Stoyenko, A. D. 1987. A Real-Time Language With A Schedulability Analyzer, Ph. D. Thesis,Department of Computer Science, University of Toronto, Toronto, Canada.

29

Micro-analysis 67078 106795Timing TechniqueTable Lookup 46074 124129Instruction Counting 210133 231143Logic Analyzer 103120 103254Worst caseBest caseExecution Cycles
Figure 19: Micro-analysis Using (ease) vs. Traditional Methods

30

