Example Loop from LU Decomposition

for (j = 1; j <= 100; j++)
for (i = j; i <= 100; j++)
for (k = 1; k < j; k++)

$$I = \sum_{j=1}^{100} \sum_{i=j}^{100} \sum_{k=1}^{j-1} 1$$

$$= \sum_{j=1}^{100} \sum_{i=j}^{100} (j-1)$$

$$= \sum_{j=1}^{100} (\sum_{i=1}^{100} (j-1) - \sum_{i=1}^{j-1} (j-1))$$

$$= \sum_{j=1}^{100} (\sum_{i=1}^{100} j - \sum_{i=1}^{100} 1 - \sum_{i=1}^{j-1} j + \sum_{i=1}^{j-1} 1)$$

$$= \sum_{j=1}^{100} (102j - j^2 - 101)$$

$$= 102 \sum_{j=1}^{100} j - \sum_{j=1}^{100} j^2 - \sum_{j=1}^{100} 101$$

$$= 166,650$$

Implementation

• The timing analyzer is linked with a symbolic solver called Ctadel to compute summations.

• Input to Ctadel:

- Summation expression
- If timing analyzer determines that loop nest may be partially zero trip, notify Ctadel that it needs to perform bounds tests.

Output from Ctadel:

- In most cases, an integer representing the sum is returned.
- If Ctadel could not solve the summation due to multiple nonunit strides, timing analyzer computes conservative bounds.