
A General Approach for Tight Timing Predictions
of Non-Rectangular Loops

Christopher Healy, Robert van Engelen, David Whalley
Computer Science Department, Florida State University, Tallahassee, FL 32306-4530

e-mail: {healy,engelen,whalley}@cs.fsu.edu, phone: (850) 644-3506

Abstract

Static timing analyzers need to know the number of itera-
tions associated with each loop in a real-time program so
accurate timing predictions can be obtained.The number
of iterations of non-rectangular loops vary due to depen-
dencies on counter variables of outer loops.These loops
have long presented a problem for timing analyzers since
the resulting timing predictions are typically quite loose.
This paper presents a general and efficient method for
obtaining tight timing predictions of such loops. Thetotal
number of iterations executed by an inner loop inside a
loop nest can be expressed in terms of summations.Equa-
tions representing such loops can be efficiently solved
given that certain restrictions are met. We outline an
approach for formulating the summations representing the
total number of iterations of a loop, a method for solving
the equation containing the summations, and a technique
for integrating this method into an existing timing ana-
lyzer.

1. Introduction

Calculating accurate timing predictions requires know-
ing the number of iterations that will be performed by the
loops in a program. Under certain conditions some timing
analyzers can automatically determine the exact number of
loop iterations [1].Unfortunately, the number of iterations
of a non-rectangular loop varies since it depends on the
values of counter variables from outer loops. The worst-
case execution time (WCET) and best-case execution time
(BCET) predictions for a non-rectangular loop are typi-
cally quite loose.In fact, these predictions may indicate
that a program does not meet its timing constraints, when
it actually does.

This paper describes a general and efficient method for
obtaining tight timing predictions for non-rectangular
loops usually encountered in programs. This is accom-
plished by formulating the number of loop iterations in
terms of summations, where each summation represents
the number of iterations to be executed by a loop. Such an
equation can be efficiently solved given that certain
restrictions are met.

The remainder of this paper has the following organiza-
tion. First, we introduce related work on calculating the
number of iterations executed by a loop. Second, we
describe the general method for formulating the number of
loop iterations as summations.Third, we present our
approach for integrating this method into an existing tim-
ing analyzer. Finally, we giv e the conclusions for the
paper and discuss an extension of the implementation.

2. Related Work

Recent work has used abstract interpretation [2] and
symbolic execution [3, 4] to automatically derive the num-
ber of loop iterations. These approaches are quite power-
ful, but effectively requires simulating all paths of a loop
for every loop iteration. Thus, they require significant
analysis overhead, which would be undesirable when ana-
lyzing long running programs.

Static techniques have also been developed to bound
the number of iterations of loops.One method was devel-
oped for dealing with a non-rectangular loop by calculat-
ing the average number of iterations executed each time
the loop is entered [1]. This method only dealt with the
special case when the number of loop iterations was
dependent on a single counter variable of an immediately
enclosing loop.A much more general approach to deal
with non-rectangular loops is presented in this paper.

Our research was inspired by the work of Sakellariou
[5, 6]. He calculated the total number of iterations for
loops which are dependent on counter variables of outer
loops in order to obtain better load balance by assigning
approximately the same number of loop iterations to each
processor. The approach used was to formulate summa-
tions representing the number of loop iterations by hand
and to interface to a mathematical package offline to solve
the equations.In this paper, we describe an approach to
automatically calculate the average number of times that a
loop will iterate during the timing analysis of a program
and to use this information to obtain tighter timing predic-
tions.

-1-

3. Formulating the Number of Iterations

The number of iterations of a single loop, where the
loop variable is incremented by one (unit stride), can be
represented by summations when the upper bound (b) is
greater than or equal to the lower bound (a) as shown in
Equation 1.

(1)I =
b

i=a
Σ 1 =





b − a + 1

0

if a ≤ b

otherwise

The constraint on the bounds results from the fact that the
value of the sum must equal 0 if the lower bounda is
greater than the upper boundb. This constraint is neces-
sary to accurately count the number of iterations of so-
calledzero-trip loops, which do not execute the loop body
when the lower bound exceeds the upper bound given that
the stride is positive.

In general, every loop iteration count cast as a summa-
tion should evaluate to zero if the lower bound is greater
than the upper bound.However, it is not always possible
to evaluate the test when the bounds are symbolic.For
example, consider the loop nest in Figure 1.The inner
loop is a zero-trip loop for values ofi greater than 2.We
define apartially zero-trip loop to be a loop that is zero-
trip depending on values of index variables of outer
loop(s). Byapplying Equation 1, the iteration count of the
partially zero-trip loop can be defined as shown in Figure
1. Clearly, the result isI = 3. Howev er, a naive evaluation
without the test results inI = −7. It is known that the
detection of zero-trip loops in the general case is NP-
complete, because it amounts to solving an LP problem.
In principle, partially zero-trip loops can be normalized by
changing the lower and upper bounds.This adjustment of
the bounds is similarly NP-complete.The normalization
process can be performed with the Fourier-Motzkin (FM)
elimination method [7].However, one can argue that real-
world algorithms rarely exhibit (partially) zero-trip loops,
because algorithms with partially zero-trip loops are
deemed to be inefficient.

for (i=1; i<8; i++)
for (j=i; j<3; j++)

I =
7

i=1
Σ





3 − i

0

if i ≤ 2

otherwise

Figure 1: A Partially Zero-Trip Loop

Figure 2 shows how two different loop nests can be for-
mulated in terms of summations.The total number of iter-
ations to be executed by the innermost loop in each loop
nest are calculated by solving the corresponding equation.

The Bernoulli formula shown in Equation 2, wherep ≥ 1
& n ≥ 1 and B

k
is a Bernoulli number, can be used to eval-

uate terms in a summation.

(2)
n

i=1
Σ i p =

1

p + 1

p

k=0
Σ 


p + 1

k


Bk(n + 1)p−k+1

for (i=1; i<99;
i++)

for (j=i+1;
j<100;
j++)

I =
98

i=1
Σ

99

j=i+1
Σ 1

=
98

i=1
Σ(

99

j=1
Σ 1 −

i

j=1
Σ 1)

=
98

i=1
Σ(99− i)

=
98

i=1
Σ99−

98

i=1
Σ i

= 4, 851

(a) Loop Nest from
Sort Program

for (j=1; j<=100; j++)
for (i=j; i<=100; i++)

for (k=1; k<j; k++)

I =
100

j=1
Σ

100

i= j
Σ

j−1

k=1
Σ 1

=
100

j=1
Σ

100

i= j
Σ(j − 1)

=
100

j=1
Σ(

100

i=1
Σ(j − 1) −

j−1

i=1
Σ(j − 1))

=
100

j=1
Σ(

100

i=1
Σ j −

100

i=1
Σ 1 −

j−1

i=1
Σ j +

j−1

i=1
Σ 1)

=
100

j=1
Σ(102j − j2 − 101)

= 102
100

j=1
Σ j −

100

j=1
Σ j2 −

100

j=1
Σ 101

= 166, 650

(b) Loop Nest from LU
Decomposition Program

Figure 2: Deriving the Total Number
of Iterations for Two Loop Nests

We can represent summations with nonunit strides,
where the strides is specified along with the lower bound
a and upper boundb. Equation 3 shows how a nonunit
stride can be used in a conventional summation, wheree is
an expression ande[i ← si + a] denotes the substitution of
all free occurrences ofi by si + a. This way, summations
with strides can be represented by uniform summations.

(3)I =
b,s

i=a
Σ e =

 (b−a)/s

i=0
Σ e [i ← si + a]

Summations with nonunit strides are more difficult to
evaluate since one has to deal with summations of floors.
Equation 4 shows how a floor can be converted to an
expression involving a modulo operation.A modulo oper-
ation can often be simplified using Equation 5.Equations
1-5 can be used to correctly determine that the total itera-
tions for the loop nest in Figure 3 is 1,717.

-2-

(4)


n

m



=
n − n%m

m
, if m > 0 & n > 0

(5)
n

i=0
Σ(i%d)p =









n

i=0
Σ i p, if n < d

 n/d

j=0
Σ

d−1

i=0
Σ i p +

n%d

i=0
Σ i p, if n ≥ d

for (i=0; i<100; i++)
for (j=i; j<100; j+=3)

Figure 3: A Loop Nest Containing a Nonunit Stride

4. Implementation

The implementation for evaluating the summations
described in the previous section was accomplished by
using the General-Purpose Algebraic Simplifier (GPAS)
portion of the Ctadel system [8, 9].The authors’ timing
analyzer [10] and Ctadel were compiled separately, but
Ctadel is directly integrated into the timing analyzer by
linking the object files. This avoids unnecessary overhead
that would result from passing expressions between the
timing analyzer and GPAS through a software bus. The
summations are formulated in the timing analyzer and
GPAS is invoked as a C function with the summation
parameters as arguments.

The timing analyzer attempts to verify that there are no
zero-trip loops for an inner loop by expanding its initial
value and limit. Likewise, the timing analyzer determines
if there are no partially zero-trip loops in the loop nest.
However, if the verification is inconclusive, the loop nest
may or may not contain (partial) zero-trip loops.For
instance, consider the loop nest in Figure 4. The expan-
sion of the innermost loop initial value (i −3) yields the
range [−3..6]. Expandingthe limit expression (j +8) gives
[8..18]. Thetiming analyzer is able to guarantee that the
inner loop is not zero-trip since the initial value is never
greater than the limit.

for (i=0; i<10; i++)
for (j=i; j<11; j++)

for (k=i-3; k<j+8; k++)

Figure 4: Innermost Loop Detected Zero-Trip Free
by the Timing Analyzer

Now consider the loop in Figure 5.Expanding the ini-
tial value gives [0..8], while the limit is [0..9]. Since these
ranges overlap, the test is inconclusive. Howev er, the loop
nest is not zero-trip due to thej<i condition in the middle

loop. Sincethe range analysis can be used to safely verify
if a loop is partially zero-trip, it is possible to use the
results in deciding which summation solver to use.For
example, the loop in Figure 4 can be safely cast into a
summation without a bounds tests, while the summations
for the loop in Figure 5 requires a bounds test.

for (i=1; i<10; i++)
for (j=0; j<i; j++)

for (k=j; k<i; k++)

Figure 5: Innermost Loop Nest Detected
Zero-Trip Free by GPAS

The timing analyzer decides among three possible solu-
tion methods to evaluate the summation representing a
loop nest:

(1) GPAS evaluates the summation while testing the
bounds of the index variables.

(2) GPAS evaluates the summation without testing for
bounds.

(3) Thetiming analyzer derives conservative lower and
upper bounds on the sum, based on constant bounds
given in outer level loops.

The algorithm for selecting the appropriate method is
described in Figure 6.The exact solutions are computed
using safe assumptions in the possible presence of par-
tially zero-trip loops, using either method (1) or (2).This
algorithm will resort to method (3) only in the presence of
multiple loops with nonunit strides.

The timing analyzer verifies that the loop nest is not
(partially) zero-trip.

IF the check is successfulTHEN
The loop nest is formulated into summation without

bounds tests and presented to GPAS.
ELSE

The check is inconclusive and the loop nest is cast
into a summation with bounds tests.

The rewritten summation is presented to GPAS.

IF GPAS is able to solve the summationTHEN
RETURN the integer count.

ELSE
GPAS could not solve the summation in the presence

of two or more loops with nonunit strides.
RETURN conservative bounds on the sum.

Figure 6: Algorithm for Selecting a Summation Method

-3-

The following approach is used in the timing analyzer
to obtain tight predictions of non-rectangular loops.The
timing analyzer calculates WCET and BCET predictions
based on the maximum and minimum number of iterations
for a non-rectangular loop, respectively. These predictions
are made in case a user requests the WCET or BCET pre-
dictions for the loop. In addition to these absolute predic-
tions, the timing analyzer also calculatesaverage WCET
and BCET predictions for each loop.During the course of
analyzing a program, the timing analyzer invokes GPAS to
find the number of iterations of each loop in the nest.To
calculate the average number of iterations for a loop, we
divide the total iterations by the total number of times the
loop is entered.The timing analyzer remains quite effi-
cient overall, since in nearly all realistic cases GPAS can
sum loop iterations in well under one second.1

As an example, consider the innermost loop from the
sort program in Figure 2 which has 4,851 total iterations.
We also calculate the number of times the current loop is
entered by calculating the total number of iterations for
the loop that encloses the current loop.In this example,
the loop is entered 98 times. Thus, the average number of
iterations for the loop is 49.5 (4,851/98).The average
number of iterations is used to calculate the average
WCET and BCET predictions.When a non-integer is cal-
culated, we round up for the WCET prediction and trun-
cate for the BCET prediction since our loop analysis algo-
rithm requires an integral number of iterations.

5. Conclusions and Ongoing Work

In this paper we have outlined a general approach to
accurately bound the number of iterations of a non-
rectangular loop nest. The timing analyzer formulates a
summation expression, evaluates this sum, and then com-
putes the average number of iterations of the innermost
loop to tightly bound the WCET and BCET.

One extension currently under study is handling the
general case of a nested loop having arbitrary nonunit
strides. Ourcurrent implementation only addresses the
more common cases of nonunit strides:for example, loop
nests containing an unlimited number of nonunit strides,
provided that all loop lower and upper bounds are con-
stant. In[6] a "splintering" technique is suggested to com-
pute exact summation results.However, the process of
splintering results in a large number of subterms contain-
ing similar summations. The number of sums is propor-
tional to the product of the stride values. We are working

1 The authors have created a Web page demonstrating the func-
tionality of the GPAS. It can provide the number of loop iterations for a
predefined example loop nest or one entered by the user. The URL is
http://www.cs.fsu.edu/˜engelen/iternum.cgi .

on a more efficient implementation in which the number
of sums is proportional to the LCM of the stride values.

6. Acknowledgements

The platform for calculating the symbolic number of
iterations of a loop was established in part with assistance
of Viresh Rustagi and Mikael Sjödin. The conversations
with Rizos Sakellariou about his work on calculating the
total number of iterations for a loop nest was invaluable.

7. References

[1] C. A. Healy, M. Sjodin, V. Rustagi, and D. B. Whalley,
“Bounding Loop Iterations for Timing Analysis,” Pro-
ceedings of the IEEE Real-Time Technology and Applica-
tions Symposium, pp. 12-21 (June 1998).

[2] A. Ermedahl and J. Gustafsson, “Deriving Annotations
for Tight Calculation of Execution Time,” Proceedings of
European Conference on Parallel Processing, pp.
1298-1307 (August 1997).

[3] T. Lundqvist and P. Stenström, “Integrating Path and
Timing Analysis using Instruction-Level Simulation
Techniques,”ACM SIGPLAN Workshop on Languages,
Compilers, and Tools for Embedded Systems, pp. 1-15
(June 1998).

[4] Y. Liu and G. Gomez, “Automatic Accurate Time-Bound
Analysis for High-Level Languages,”ACM SIGPLAN
Workshop on Languages, Compilers, and Tools for
Embedded Systems, pp. 31-40 (June 1998).

[5] R. Sakellariou,Symbolic Evaluation of Sums for Paral-
lelising Compilers, Wissenschaft & Technik Verlag, Pro-
ceedings of the 15th IMACS World Congress on Scien-
tific Computation, Modelling and Applied Mathematics
(1997).

[6] R. Sakellariou,On the Quest for Perfect Load Balance in
Loop-Based Parallel Computations,PhD Dissertation,
Department of Computer Science, University of Manch-
ester, Manchester, England (October 1996).

[7] M. J. Wolfe, High Performance Compilers for Parallel
Computers,Addison-Wesley, Redwood City, CA (1996).

[8] R. van Engelen, L. Wolters, and G. Cats, “Ctadel: A Gen-
erator of Multi-Platform High Performance Codes for
PDE-based Scientific Applications,” Proceedings of the
10th ACM International Conference on Supercomputing,
pp. 86-93 (May 1996).

[9] R. van Engelen, L. Wolters, and G. Cats, “Tomorrow’s
Weather Forecast: Automatic Code Generation for Atmo-
spheric Modeling,” IEEE Journal of Computational Sci-
ence and Engineering4(3) pp. 22-31 (September 1997).

[10] C. Healy, R. Arnold, F. Mueller, D. Whalley, and M. Har-
mon, “Bounding Pipeline and Instruction Cache Perfor-
mance,” IEEE Transactions on Computers 48(1) pp.
53-70 (January 1999).

-4-

