A General Approach for Tight Timing Predictions
of Non-Rectangular L oops

Christopher HealyRobert van Engelen, David Whalley
Computer Science Department, Florida Statev&¥ity, Tallahassee, FL 32306-4530
e-mail: {healy,engelen,whalley}@cs.fsu.edu, phone: (850) 644-3506

Abstract The remainder of this paper has the failog organiza-
tion. First,we introduce related work on calculating the
number of iterations xecuted by a loop. Second, we
describe the general method for formulating the number of
loop iterations as summationsThird, we present our
approach for intgrating this method into an existing tim-
ing analyzer Finally, we gve the conclusions for the
paper and discuss an extension of the implementation.

Static timing analyzerreed to know the number of ier
tions associated with eadoop in a real-time pygram
accumate timing predictions can be obtainedhe number
of iterations of nonectangular loops vary due to depen-
dencies on counter variables of outer loog$hese loops
have long presented a problem for timing analgzarce
the resulting timing predictions artypically quite loose
This paper presents aegeml and efficient method for
obtaining tight timing predictions of sadoops. Theotal
number of iterations executed by an inner loop inside a
loop nest can bexpressed in terms of summatiorisqua-
tions epresenting sut loops can be efficiently solved
given that certain restrictions arnmet. W autline an
approad for formulating the summationgpresenting the
total number of iterations of a loop, a method for solving
the equation containing the summations, and artepe
for integrating this method into an existing timing ana-

2. Related Work

Recent wrk has used abstract interpretation [2] and
symbolic eecution [3, 4] to automatically des the num-
ber of loop iterations. These approaches are quitepo
ful, but efectively requires simulating all paths of a loop
for every loop iteration. Thus, thg require significant
analysis gerhead, which would be undesirable when ana-
lyzing long running programs.

lyzer. Static techniques ka dso been desloped to bound
the number of iterations of loop©ne method was dd-
1. Introduction oped for dealing with a non-rectangular loop by calculat-

ing the aerage number of iterationsxecuted each time

Calculating accurate timing predictions requireswkno the loop is entered [1]. This method only dealt with the
ing the number of iterations that will be performed by the special case when the number of loop iteratiores w
loops in a program. Under certain conditions some timing dependent on a single counter variable of an immediately
analyzers can automatically determine the exact number ofnclosing loop. A much more general approach to deal
loop iterations [1].Unfortunately the number of iterations ~ with non-rectangular loops is presented in this paper.
of a non-rectangular loopavies since it depends on the
values of counter ariables from outer loops. Theovst-
case gecution time (WCET) and best-caseseution time

Our research was inspired by the work of @kltiou
[5, 6]. He calculated the total nhumber of iterations for
oo . loops which are dependent on counter variables of outer
(BCET) predictions for a non-rectangular 10op are typi- |56ps in order to obtain better load balance by assigning
cally quite loose.In fact, these_pre_dlc_nons may _|nd|cate approximately the same number of loop iterations to each
fchat a program does not meet its timing constraints, Whe’brocessor The approach usedas to formulate summa-
it actually does. tions representing the number of loop iterations by hand
This paper describes a general and efficient method foland to interface to a mathematical packadknefto sole
obtaining tight timing predictions for non-rectangular the equations.n this paperwe describe an approach to
loops usually encountered in programs. This is accom-automatically calculate theseage number of times that a
plished by formulating the number of loop iterations in loop will iterate during the timing analysis of a program
terms of summations, where each summation representand to use this information to obtain tighter timing predic-
the number of iterations to beeeuted by a loop. Such an tions.
equation can be efficiently seldt gven that certain
restrictions are met.

3. Formulating the Number of Iterations

The Bernoulli formula shown in Equation 2, whegre 1

&n=1and Bk is a Bernoulli numberan be used toval-
The number of iterations of a single loop, where the yate terms in a summation.

loop variable is incremented by one (unit stride), can be

represented by summations when the upper bobhnék (z iP= 1 z p+1 L(n+1)Pket)
greater than or equal to the lower bouall s $iown in i=1 P+l k
Equation 1.
|:§1:[b_a+1 if aSt.) (1) for (?:1; i <99; for (j:1.;_1:.<:l10(_); j_++.)
i= otherwise P+ for (i=f; 1<=100; i++)
for (j=i+1; for (k=1; k<j; k++)
The constraint on the bounds results from the fact that the }j;)o; 100100 j-1
value of the sum must equal O if the lower boumds 1=2221
greater than the upper boubd This constraint is neces- | = % % 1 J=1i=] k=t
sary to accurately count the number of iterations of so- i=1 j=itl 100100
calledzero-triploops, which do notxecute the loop body 98 99 : = Elgj(l -
when the laver bound exceeds the upper boundbgithat =5 1- Z 1) _
the stride is posite. i=1 j=1 j=1 _ 100100
=2(2(-1)- Z(J -1))
In general, eery loop iteration count cast as a summa- _ 2(99‘ i j=1i=1
tion should egauate to zero if the lower bound is greater 5 100100 100 j-1
than the upper boundHowever, it is not aways possible = Zl(zl - Zl 1- Zl j+ Zl 1)
j i i i i

to evaluate the test when the bounds are symbadhor
example, consider the loop nest in Figure The inner
loop is a zero-trip loop for values bfgreater than 2We
define apartially zeo-trip loop to be a loop that is zero-
trip depending on values of indevariables of outer
loop(s). Byapplying Equation 1, the iteration count of the
partially zero-trip loop can be defined as shown in Figure
1. Clearly the result id = 3. Howevae, a raive evaluation
without the test results ih = =7. It is known that the
detection of zero-trip loops in the general case is NP-
complete, because it amounts to solving an LP problem
In principle, partially zero-trip loops can be normalized by
changing the lower and upper boundsis adjustment of
the bounds is similarly NP-complet&.he normalization
process can be performed with theuRerMotzkin (FM)
elimination method [7].However, one can argue that real-
world algorithms rarely exhibit (partially) zero-trip loops,
because algorithms with partially zero-trip loops are
deemed to be inefficient.

98 98
=5 99-5i
i=1 i=1

=4,851

100
=5 (102j - j2-101)
j=1

100 100 100
=1025 j- 5 j? —2101
=1 j=1
= 166, 650

(b) Loop Nest from LU
Decomposition Program

(a) Loop Nest from
Sort Program

Figure 2: Deriving the Total Number
of Iterations for Wo Loop Nests

We @n represent summations with nonunit strides,

where the strides is specified along with the lower bound
a and upper bount. Equation 3 shows o a ronunit
stride can be used in a e@ntional summation, whereis
an expression angli — si+ a] denotes the substitution of

all free occurrences ofby si + a. This way, summations

for (i=1; i<8; i++)
for (j=i; j<3; j++)
7B-i ifi<2
=5 :
= %) otherwise

Figure 1: A Partially Zero-Trip Loop

Figure 2 shars haw two dfferent loop nests can be for
mulated in terms of summation¥he total number of iter
ations to beecuted by the innermost loop in each loop
nest are calculated by solving the corresponding equation:

with strides can be represented by uniform summations.

b,s

fb-a)/sg

>

i=0

®)

e=
=a

efi « si+a]

Summations with nonunit strides are mordidiflt to

evduate since one has to deal with summations of floors.

Equation 4 shows ko a floor can be corerted to an

expression imolving a modulo operationA modulo oper
ation can often be simplified using EquationExqjuations

1-5 can be used to correctly determine that the total itera-

tions for the loop nest in Figure 3 is 1,717.

N o " —n%m

i 4
o0 ,ifm>0&n>0 (4)
D n
) B YiPifn<d
oD =0
EO(' %d)” = %I/dmd—l_ ed ®)
> >iP+ Y iPlifn>d
Uj=0 i=o i=0
a
for (i=0; i<100; i++)

for (j=i; j<100; j+=3)

Figure 3: A Loop Nest Containing a Nonunit Stride

4. Implementation

The implementation for wvaluating the summations
described in the previous sectiorasvaccomplished by
using the General-Purpose Algebraic Simplifier ASP
portion of the Ctadel system [8, 9T he authors’ timing
analyzer [10] and Ctadel were compiled separataly
Ctadel is directly intgrated into the timing analyzer by
linking the object files. Thisweids unnecessarywerhead
that would result from passing«gressions between the
timing analyzer and GPAS through a softwates.b The
summations are formulated in the timing analyzer and
GPAS is irvoked as a C dinction with the summation
parameters as arguments.

The timing analyzer attempts to verify that there are no
zero-trip loops for an inner loop by expanding its initial
value and limit. Likewise, the timing analyzer determines
if there are no partially zero-trip loops in the loop nest.
However, if the verification is inconclugg, the loop nest
may or may not contain (partial) zero-trip loopEor
instance, consider the loop nest in Figure 4. Tkmae-
sion of the innermost loop initial valué 3) yields the
range [3..6]. Expandinghe limit expression j(+8) gives
[8..18]. Thetiming analyzer is able to guarantee that the
inner loop is not zero-trip since the initial value isvare
greater than the limit.

for (i=0; i<10; i++)
for (j=i; j<11; j++)
for (k=i-3; k<j+8; k++)

Figure 4: Innermost Loop Detected Zero-Trip Free
by the Timing Analyzer

Now consider the loop in Figure Expanding the ini-
tial value gves [0..8], while the limit is [0..9]. Since these
ranges werlap, the test is inconclus. Howeve, the loop
nest is not zero-trip due to tliEe condition in the middle

loop. Sincehe range analysis can be used to safehfyw

if a loop is partially zero-trip, it is possible to use the
results in deciding which summation solver to user
example, the loop in Figure 4 can be safely cast into a
summation without a bounds tests, while the summations
for the loop in Figure 5 requires a bounds test.

for (i=1; i<10; i++)
for (j=0; j<i; j++)
for (k=j; k<i; k++)

Figure 5: Innermost Loop Nest Detected
Zero-Trip Free by GPAS

The timing analyzer decides among three possible solu-
tion methods to wluate the summation representing a
loop nest:

(1) GRS evduates the summation while testing the
bounds of the indevariables.

(2) GRS evaluates the summation without testing for
bounds.

(3) Thetiming analyzer devies mwnservatie lower and

upper bounds on the sum, based on constant bounds
given in outer level loops.

The algorithm for selecting the appropriate method is
described in Figure 6The exact solutions are computed
using safe assumptions in the possible presence of par
tially zero-trip loops, using either method (1) or (dhis
algorithm will resort to method (3) only in the presence of
multiple loops with nonunit strides.

The timing analyzer verifies that the loop nest is not
(partially) zero-trip.

| F the check is successfulHEN
The loop nest is formulated into summation with
bounds tests and presented to GPAS.

Dut

ELSE
The check is inconcluge and the loop nest is cast
into a summation with bounds tests.
The rewritten summation is presented to GPAS.

| F GPAS is able to sobs/the summationTHEN
RETURN the integer count.
ELSE
GPAS could not sokrthe summation in the presence
of two or more loops with nonunit strides.
RETURN conservatie ounds on the sum.

Figure 6: Algorithm for Selecting a Summation Method

The following approach is used in the timing analyzer on a more efficient implementation in which the number

to obtain tight predictions of non-rectangular loogshe
timing analyzer calculates WCET and BCET predictions

of sums is proportional to the LCM of the stride values.

based on the maximum and minimum number of iterations6. Acknowledgements

for a non-rectangular loop, respeety. These predictions

are made in case a user requests the WCET or BCET pre- The platform for calculating the symbolic number of
dictions for the loop. In addition to these absolute predic- iterations of a loop @s established in part with assistance

tions, the timing analyzer also calculateserage WCET
and BCET predictions for each loopuring the course of
analyzing a program, the timing analyzerakes GPAS to
find the number of iterations of each loop in the ndst.

of Viresh Rustagi and Mikael Sjodin. The eersations
with Rizos Sakellariou about hisonk on calculating the
total number of iterations for a loop nest waginable.

calculate the \&erage number of iterations for a loop, we 7. References

divide the total iterations by the total number of times the
loop is entered.The timing analyzer remains quitefief
cient oserall, since in nearly all realistic cases A& can
sum loop iterations in well under one secdnd.

(1]

As an gample, consider the innermost loop from the [2]
sort program in Figure 2 which has 4,851 total iterations.
We dso calculate the number of times the current loop is
entered by calculating the total number of iterations for
the loop that encloses the current lodp. this ekample,
the loop is entered 98 times. Thus, tirerage number of
iterations for the loop is 49.5 (4,851/98The aerage
number of iterations is used to calculate therage
WCET and BCET predictionsWhen a non-integer is cal- [4]
culated, we round up for the WCET prediction and trun-
cate for the BCET prediction since our loop analysis algo-
rithm requires an integral number of iterations.

(5]
5. Conclusions and Ongoing Work

In this paper we heae aitlined a general approach to
accurately bound the number of iterations of a non-
rectangular loop nest. The timing analyzer formulates al6]
summation expressionyauates this sum, and then com-
putes the werage number of iterations of the innermost
loop to tightly bound the WCET and BCET.

One etension currently under study is handling the g
general case of a nested loop having arbitrary nonunitg;
strides. Ourcurrent implementation only addresses the
more common cases of nonunit stridést example, loop
nests containing an unlimited number of nonunit strides,
provided that all loop lever and upper bounds are con-
stant. In[6] a "splintering" technique is suggested to com- [9]
pute exact summation result$lowever, the process of
splintering results in a lge number of subterms contain-
ing similar summations. The number of sums is prepor
tional to the product of the stridalues. Vé ae working [10]

! The authors ha aeated a Web page demonstrating the func-
tionality of the GRS. It can provide the number of loop iterations for a
predefined example loop nest or one entered by the Tber URL is
http://www.cs.fsu.edu/"engelen/iternum.cgi

C. A. Healy, M. Sodin, V. Rustagi, and D. B. Whalje
“Bounding Loop lterations for iming Analysis, Pro-
ceedings of the IEEE Real-Timechnolgy and Applica-
tions Symposiumpp. 12-21 (June 1998).

A. Ermedahl and J. Gustafsson, “Deriving Annotations
for Tight Calculation of E&cution Tme,” Proceedings of
European Conference on aRllel Processing pp.
1298-1307 (August 1997).

T. Lundqvist and PStenstrom, “Integrating Path and
Timing Analysis using Instruction-kel Simulation
Techniques,”ACM SIGPLAN VWrkshop on Languges,
Compiless, and ols for Embedded Systempgp. 1-15
(June 1998).

Y. Liu and G. Gomez,Automatic Accurate ime-Bound
Analysis for High-Leel Languages,’”ACM SIGPLAN
Wakshop on Languges, Compiles, and Tools for
Embedded Systempp. 31-40 (June 1998).

R. Sakellariou,Symbolic Evaluation of Sums foargl-
lelising Compiles, Wissenschaft & &chnik Verlag, Pro-
ceedings of the 15th IMBS World Congress on Scien-
tific Computation, Modelling and Applied Mathematics
(1997).

R. Sakellariou,0n the Quest for Perfect Load Balance in
Loop-Based &allel Computations,PhD Dissertation,
Department of Computer Science, Wasity of Manch-
ester, ManchestgEngland (October 1996).

M. J. Wblfe, High Performance Compilsrfor Parallel
ComputersAddison-Weslg, Redwood CityCA (1996).

R.van Engelen, L. Wolters, and G. Cats, “Ctadel: A Gen-
erator of Multi-Platform High Performance Codes for
PDE-based Scientific ApplicatiohsProceedings of the
10th ACM International Confence on Supeomputing
pp. 86-93 (May 1996).

R. van Engelen, L. Walters, and G. Cats, imorrow’s
Weather Precast: Automatic Code Generation for Atmo-
spheric Modeling, IEEE Dburnal of Computational Sci-
ence and Engineering(3) pp. 22-31 (September 1997).
C.Healy R. Arnold, FE Mueller, D. Whalley, and M. Har
mon, “Bounding Pipeline and Instruction Cache Perfor
mance,” IEEE Tansactions on Computer48(1) pp.
53-70 (January 1999).

