
Tighter Timing Predictions by Automatic Detection
and Exploitation of Value-Dependent Constraints

Christopher Healy and David Whalley
Computer Science Department, Florida State University, Tallahassee, FL 32306-4530

e-mail: {healy,whalley}@cs.fsu.edu, phone: (850) 644-3506

Abstract

Predicting the worst-case execution time (WCET) of a
real-time program is a challenging task. Though much
progress has been made in obtaining tighter timing predic-
tions by using techniques that model the architectural fea-
tures of a machine, significant overestimations of WCET
can still occur. Even with perfect architectural modeling,
dependencies on data values can constrain the outcome of
conditional branches and the corresponding set of paths
that can be taken in a program. Whilevalue-dependent
constraint information has been used in the past by some
timing analyzers, it has typically been specified manually,
which is both tedious and error prone. This paper
describes efficient techniques for automatically detecting
value-dependent constraints by a compiler and automati-
cally exploiting these constraints within a timing analyzer.
The result is tighter timing analysis predictions without
requiring additional interaction with a user.

1. Intr oduction

Obtaining accurate worst-case execution time (WCET)
predictions of programs is a challenging task.Various fea-
tures of the architecture, such as caches and pipelines, can
affect the execution time of an instruction and these fea-
tures need to be modeled while analyzing the control flow
of a program. However, even with perfect architectural
modeling, significant overestimations of WCET can still
occur since dependencies on data values can constrain the
outcome of conditional branches and restrict the set of
paths that can be taken. Whilevalue-dependent constraint
information has been used in the past by some timing ana-
lyzers, it has typically been specified manually, which is
both tedious and error prone.This paper describes how
value-dependent constraints can be automatically detected
by a compiler and exploited by a timing analyzer.

2. RelatedWork

Some constraint-based timing analyzers use value-
dependent constraints to obtain more accurate estimations
of execution time. Li et al. performed timing analysis
using an Implicit Path Enumeration (IPE) technique [1],

which uses integer linear programming (ILP) to solve con-
straints about the program to obtain timing predictions.
Their technique automatically calculatesprogram struc-
tural constraints from the program control flow graph and
used value-dependent constraints, which they called pro-
gram functionality constraints. The work of Ottosson and
Sjödin [2] extended the IPE technique by using finite
domain constraints to model the architectural features of
the hardware. However, in both approaches these value-
dependent constraints were entered manually by the user,
which is both a tedious and error-prone task.

Recent work by Ermedahl and Gustafsson [3] and by
Lundqvist and Stenström [4] use abstract interpretation
and symbolic execution to automatically derive many
value-dependent constraints. These approaches are quite
powerful, but effectively requires simulating all paths of a
loop for every loop iteration. Thus, these approaches
require significant analysis overhead, which would be
undesirable when analyzing long running programs.

Another type of value-dependent constraint is the num-
ber of loop iterations.We hav eimplemented techniques to
automatically determine the minimum and maximum iter-
ations for many loops with multiple exit conditions and
loops whose number of iterations depend on loop-invariant
variables or counter variables of outer loops [5].The
abstract interpretation and symbolic execution approaches
[3, 4] also provide a more powerful and less efficient
method to calculate bounds on loop iterations. In this
paper, we address detecting and exploiting value-
dependent constraints that constrain execution paths rather
than the number of iterations that a loop can execute.

3. Automatic Detection of Constraints

A value-dependent constraint causes the outcome of a
conditional branch to be known under certain conditions.
We implemented techniques to detect these constraints,
which we classified aseffect-basedanditeration-based.

3.1. DetectingEffect-Based Constraints

The compiler performs analysis to determine if the out-
come of a conditional branch is known at any giv en point

-1-

in the control flow. First, the compiler calculates the set of
registers and variables upon which a branch (and its asso-
ciated comparison) depends. This set is calculated by
expanding the effects of the comparison instruction associ-
ated with the branch.For instance, consider the SPARC
instructions represented as RTLs (Register Transfer Lists)
and the associated expanded comparison in Figure 1.A
comparison is expanded by searching backwards for
assignments to registers in the comparison until all regis-
ters are replaced or the beginning of a block with multiple
predecessors is encountered.Loop-invariant registers in
the expression are expanded from the preheader of the
loop in which they are assigned values. Next, the com-
piler determines the set of effects associated with assign-
ments to registers and variables for each basic block.
Each branch is examined to see if it could be affected by
the block. Thus, the compiler can determine that a basic
block updating the global variableg could affect the result
of the branch in Figure 1. Updates to the registersr[1]
(%g1) or r[8] (%o0) would have no effect.

r[8]=R[r[1]+LO[_g]]; /*ld [%g1+%lo(_g)],%o0 */
IC=r[8]?5; /* cmp %o0,5 */
PC=IC<0,L20; /* bl L20 */

r[1]=HI[_g]; /* sethi %hi(_g),%g1 */

IC=R[HI[_g]+LO[_g]]?5;

Expanded Comparison

Instructions in a Basic Block

Figure 1: Example of Expanding a Comparison

A state is associated with each conditional branch,
which can have one of three values: unknown, fall-
through, or jump. The authors determine if a branch
becomes known by substituting the value assigned for the
variable or register and evaluating the expanded compari-
son in the compiler. The compiler issues a directive to the
timing analyzer for each branch placed in anunknown,
fall-through, or jumpstate by an effect in the block.Thus,
this analysis requiresO(B*C) complexity, whereB is the
number of basic blocks andC is the number of conditional
branches. Amore complete explanation for detecting
branch states has been described in previous work [6].

Consider the source code in Figure 2(a).The corre-
sponding control flow that is generated by the compiler is
shown in Figure 2(b). While the control flow in the figure
is represented at the source code level, the analysis is per-
formed by the compiler at the machine instruction level
after compiler optimizations are applied to provide more
accurate timing predictions.Note that some branches in
Figure 2(b) have conditions that are reversed from the
code in Figure 2(a) to depict the branch conditions that are
evaluated at the machine instruction level. Only when the
condition associated with a branch in a block is evaluated
to be true will the jump (J) occur. If the condition is not

true, then control will fall (F) into the next sequential
block. Thecontrol flow also shows the effect-based con-
straints, which are enclosed in curly braces and associated
with basic blocks or control-flow transitions. Figure2(c)
describes the explicit value-dependent constraints that are
automatically detected by the compiler and passed to a
timing analyzer. The initialization ofi in block 1 (i=0;)
puts the branch in block 2 (a[i]!=0) in an unknown
state (2U) and the branch in block 9 (i<1000) in a jump
state (9J). In addition, the assignments toodd in blocks 1
and 5 (odd=0;) and in block 6 (odd=1;) cause the
branch in block 4 (odd==0) to jump (4J) and fall through
(4F), respectively. Likewise, the assignment toquit in
blocks 1 (quit=0;) and 3 (quit=1;) cause the branch
in block 8 (quit!=0) to fall through(8F) and jump (8J),
respectively. Finally, the increment ofi in block 7
(i++;) sets the states of the branches in blocks 2
(a[i]!=0) and 9 (i<1000) to unknown(2U,9U) since
they depend on the value ofi.

(1) 8
(2) 8→9
(3) 8→9→2→3→7
(4) 8→9→2→4→5→7
(5) 8→9→2→4→6→7

(d) Paths in Loop

(a) Source Code

for (i = 0; !quit &&

if (a[i] == 0)
quit = 1;

else if (odd) {
sumodd += a[i];
odd = 0;
}

else {
sumeven += a[i];
odd = 1;
}

sumodd = sumeven = 0;
odd = quit = 0;

i < 1000; i++)

sumodd=0; 1
sumeven=0;
odd=0; {4J}
quit=0; {8F}
i=0; {2U,9J}

{4F}{4J}

sumodd+=a[i];

odd==0

a[i]!=0 2

quit=1; {8J} 3

4

5

{2F}{2J}

odd=0; {4J}

sumeven+=a[i];6
odd=1; {4F}

i++; {2U,9U} 7

quit!=0 8

i<1000 9

(b) Control Flow

10

{8F}{8J}

{9F}
{9J}

(2) blk 1 makes blk 4 jump
(3) blk 1 makes blk 8 fall thru
(4) blk 1 makes blk 9 jump
(5) blk 3 makes blk 8 jump
(6) blk 5 makes blk 4 jump
(7) blk 6 makes blk 4 fall thru
(8) blk 7 nullifies blks 2,9

(c) Explicit Constraints

(1) blk 1 nullifies blk 2

Figure 2: Effects of Assignments on Branches

Figure 2(b) also shows implicit value-dependent con-
straints. Whena branch has a given outcome, then it will
have the same outcome again unless the variables or regis-
ters being compared are affected. Thus,a fall-through (F)
or jump (J) transition from a branch will implicitly cause
that same branch to be in afall-through or jump state,
respectively. These implicit constraints are not explicitly

-2-

passed to a timing analyzer since a timing analyzer can
create them when it is performing analysis on paths.

The source code in Figure 3(a) and corresponding con-
trol flow in Figure 3(b) depict a situation where one condi-
tional branch may be logically correlated with another
branch. Inother words, the direction taken by one condi-
tional branch may indicate the direction taken by another
conditional branch. If block 2 (a[i]>=0) falls into block
3, then the value ofa[i] is negative and block 5
(a[i]<=0) must jump to block 7 (5J). This is described
by value-dependent constraint 3 in Figure 3(c). Note that
if block 2 (a[i]>=0) jumps to block 4, there is no guar-
antee that block 5 (a[i]<=0) will fall through to block 6
since the value ofa[i] could have been zero. The com-
piler evaluates each pair of branches in a function to deter-
mine if there is a logical correlation between one branch
and another. Thus, this analysis requiresO(C2) complex-
ity, whereC is the number of conditional branches.Note
that a branch is always logically correlated with itself and
these self correlations are implicit constraints.The exact
conditions when one branch is logically correlated with
another have been described in previous work [6].

1sumneg=0;

(a) Source Code

sumall=0;
sumpos=0;
i=0; {2U,7J}

if (a[i] < 0)
sumneg += a[i];

sumall += a[i];
if (a[i] > 0)

sumpos += a[i];
}

i++) {
for (i = 0; i < 1000;
sumpos = 0;
sumneg = sumall = 0;

2

3

4

5

6

7

{2F,5J}

{5F,2J}

{2J}

{5J}

a[i]>=0

sumneg+=a[i];

sumall+=a[i];

a[i]<=0

sumpos+=a[i];

i++; {2U,5U,7U}
i<1000

8

{7F}

(b) Control Flow

(1) 2→4→5→7
(2) 2→3→4→5→7
(3) 2→4→5→6→7
(4) 2→3→4→5→6→7

(d) Paths in Loop

{7J}

(3) blk 2 fall thru makes blk 5 jump
(4) blk 5 fall thru makes blk 2 jump
(5) block 7 nullifies blocks 2,5,7

(c) Explicit Constraints

(2) blk 1 makes blk 7 jump
(1) blk 1 nullifies blk 2

Figure 3: Logical Correlation between Branches

3.2. DetectingIteration-Based Constraints

A basic induction variable is a variable or register that
is incremented or decremented by a constant value on each
iteration of a loop.Some branches compare a basic induc-
tion variable to a constant.In these situations, the com-
piler can determine the ranges of iterations in which such
a branch will fall through or jump.The compiler produces
directives for a timing analyzer that indicate ranges of

iterations for each of the two outgoing edges of the block
containing the branch.The manner in which this informa-
tion is derived is described elsewhere [5].

Consider the source code and corresponding control
flow shown in Figures 4(a) and 4(b).While i can range
from 0..999 as each path in the loop is entered, the number
of corresponding iterations in the loop will range from
1..1000. Thus,the compiler associates ranges of iterations
with transitions from blocks that compare basic induction
variables to constants.For instance, block 3 (i<=249)
will only fall through to block 4 when the loop is perform-
ing the last 750 iterations ([251..1000]). Constraints5-8
in Figure 4(c) depict the range of iterations when various
transitions in the loop can be taken. Animplicit iteration-
based constraint is that the header of the loop (block 2 in
Figure 4(b)) can be executed in every loop iteration
([1..1000] for Figure 4). Sometimes a basic induction
variable is compared to nonconstant loop invariant values,
as shown in block 2 (i==m) of Figure 4(b). The value of
m is not known, but it is invariant with respect to the loop.
When the comparison of such a branch is an equality test
(== or !=), then the transition that occurs when the two
values are equal can take place at most once for each
execution of the loop since the basic induction variable
changes by a constant value on each iteration.Constraint
3 in Figure 4(c) shows that the compiler determines that
block 2 will jump to block 6 at most once (2J once). The
analysis to detect iteration-based constraints requiresO(C)
complexity, where C is the number of conditional
branches, since each branch must be inspected once.

1

2

3

4

5

6

7

8

(b) Control Flow

{2F}

{4F} [1..750]

{7F}

summid=0;

i==m

i<=249

i>=750

summid+=a[i];

sumall+=a[i];

i++; {3U,4U,7U}

{7J}

{3F,4J}

{3F} [251..1000]

{2J once}

[751..1000]

i=0; {3J,4F,7J}

sumall=0;

i<1000

{3J,4F}[1..250]

(c) Explicit Constraints

(1) 2−>6→7
(2) 2−>3→6→7
(3) 2−>3→4→6→7
(4) 2−>3→4→5→6→7

(d) Paths in Loop

(10) blk 7 nullifies blks 2,3,4,7

summid = sumall = 0;

i++) {
for (i = 0; i < 1000;

if (i != m &&

summid += a[i];
sumall += a[i];
}

(a) Source Code

(2) blk 1 makes blk 4 fall thru
(3) blk 2 will jump at most once

(1) blk 1 makes blks 3,7 jump

(4) blk 3 jump makes blk 4 fall thru

(6) blk 3 jump in iters [1..250]
(5) blk 3 fallthru in iters [251..1000]

(7) blk 4 fallthru in iters [1..750]
(8) blk 4 jump in iters [751..1000]
(9) blk 4 jump makes blk 3 fall thru

249<i && i<750)

Figure 4: Ranges of Iterations and Branch Outcomes

-3-

4. UsingConstraints in a Timing Analyzer

The analysis techniques described in the previous sec-
tion to identify value-dependent constraints could be used
by a variety of timing analyzers, which include those that
use an integer linear programming (ILP) solver. While an
ILP approach can be simple, elegant, and quite powerful,
there are a few disadvantages. For instance, an ILP
approach works best when each basic block can be associ-
ated with a single time, which allows this time to be
expressed as a constraint associated with that block.
Caching and pipelining change the context in which a
block could be executed and can often affect its associated
execution time. While approaches have been suggested
for addressing caching behavior [1], it is still unclear how
pipelining can be accurately modeled across multiple
blocks. Moreimportantly, the time required for the analy-
sis with an ILP approach has worst-case exponential com-
plexity. A program that required only a few seconds of
timing analysis using a more traditional approach [7]
required minutes using an ILP approach [1]. In fact, ILP
methods can be used to solve many compiler optimization
problems, but are infrequently used in production compil-
ers due to potentially excessive compilation time. Thus,
the authors decided it would be worthwhile to investigate
how value-dependent constraints could be exploited by a
non-ILP based timing analyzer.

Timing
User

Requests

Caching
Categorizations

Instruction
Dependent
Machine

Information

Interface
UserTiming

Analyzer

Predictions

Configuration
Cache

Simulator
Cache
Static

Source
Files

C

Information

Control Flow
andConstraint

Timing

Compiler

Figure 5: Overview of Timing Analysis Process

Figure 5 depicts the overall organization of the non-ILP
timing analysis environment that was modified to exploit
value-dependent constraint information.An optimizing
compiler [8] was used to produce control flow and value-
dependent constraint information as a side effect of the
compilation of a file [9, 5].A static cache simulator uses
the control flow information to construct a control-flow
graph of the program that consists of the call graph and
the control flow of each function. The program control-
flow graph is then analyzed and a caching categorization
for each instruction in the program is produced [9].Next,
a timing analyzer uses the control flow and constraint
information, caching categorizations, and machine

dependent information (e.g. pipeline characteristics) as
input to make timing predictions [9, 7].Finally, a graphi-
cal user interface is invoked that allows the user to request
predictions for portions of the program [10].

4.1. GeneratingPath Constraints

The timing analyzer uses the value-dependent con-
straints to calculate a minimum and maximum number of
iterations associated with each path during the execution
of a loop. Table 1 depicts information associated with
each loop path described in Figures 2(d), 3(d), and 4(d).
The total number of loop iterations is automatically calcu-
lated using techniques described in previous work [5]. A
path is a sequence of blocks in a loop connected by con-
trol-flow transitions. Eachpath starts with the loop
header.Exit paths are terminated by a block with a transi-
tion out of the loop.Continuepaths are terminated by a
block with a transition to the loop header. The next two
columns indicate the range of possible and unique itera-
tions associated with each path. The final two columns
show the minimum and maximum number of times the
path could be executed in the loop.

Figure 6 gives a high-level description of the algorithm
used to calculate the information given in the last four
columns of Table 1.The remainder of this section pro-
vides examples to illustrate how this information is calcu-
lated. Exceptfor the construction of the REACH_SELF
table, the complexity of the algorithm isO(P2), whereP is
the number of paths in the loop. In practice, the construc-
tion of the REACH_SELF table was not time consuming
since we found that most paths in a loop could either
immediately follow themselves or could only exit the
loop.

Effect-based constraints are associated with a block or
a transition between blocks.For each path in a loop the
timing analyzer traverses the basic blocks and transitions
between blocks in the order in which the path would be
executed. Whenan effect-based constraint is encountered,
it is added to a list of constraints for that path.If another
effect-based constraint is later encountered for that same
branch, then the current constraint is nullified.

Effect-based constraints can be used to detect infeasible
paths. Figure7 depicts the constraints being propagated
through path 4 in Figure 3(d). The transition from block 2
to block 3 causes the branch in block 5 to be placed in a
jump state (5J). The branch in block 5 is encountered
with this constraint (5J) still in effect and the transition
from block 5 to block 6 in path 4 is deemed illegal. When
such an infeasible path is encountered, the timing analyzer
removes the path to prevent any additional analysis time to
be spent on it.

-4-

Total Path Exit Continue Possible Unique Minimum Maximum
Iters ID Path Path Iterations Iterations Iterations IterationsLoop

Loop 1 Y N [1001..1001] ∅ 0 1
in 2 Y N [1001..1001] ∅ 0 1

Figure 3 N Y [1000..1000] ∅ 0 1
2 4 N Y [2..1000] ∅ 0 500

5 N Y [1..1000] ∅ 0 500

1,001

Loop 1 Y Y [1..1000] ∅ 0 1,000
in 2 Y Y [1..1000] ∅ 0 1,000

Figure 3 Y Y [1..1000] ∅ 0 1,000
3 4 N/A N/A N/A N/A N/A N/A

1,000

Loop 1 Y Y [1..1000] ∅ 0 1
in 2 N Y [1..250] [1..250]-1 249 250

Figure 3 Y Y [751..1000] [751..1000]-1 249 250
4 4 N Y [251..750] [251..750]-1 499 500

1,000

Table 1: Information for Each Path in Figures 2(d), 3(d), and 4(d)

/* remove infeasible paths*/
FOR each path P in the loop DO

Propagate effect-based constraints in P.
IF any transition in P is not feasible THEN

Remove P from the loop.

/* calculate CAN_FOLLOW table using effect-based constraints*/
FOR each path P in the loop DO

IF P is a continue path THEN
FOR each path Q in the loop DO

Propagate effect-based constraints
at end of P through Q.

IF any infeasible transition in Q THEN
CAN_FOLLOW[P][Q] = FALSE.

ELSE
CAN_FOLLOW[P][Q] = TRUE.

ELSE
FOR each path Q in the loop DO

CAN_FOLLOW[P][Q] = FALSE.

/* calculate REACH_SELF table using CAN_FOLLOW table */
FOR each path P in the loop DO

IF CANFOLLOW[P][P] THEN
REACH_SELF[P] = 1.

ELSIF P is not a continue path THEN
REACH_SELF[P] = 0.

ELSE
Recursively inspect the CAN_FOLLOW table
to determine the shortest number of paths
to be traversed before P can be reached.
Zero represents P cannot reach itself.

/* processonceconstraints*/
FOR each path P in the loop DO

IF a once constraint was found on
a transition in P THEN
P->once = TRUE.

ELSE
P->once = FALSE.

P->nonuniqiters = 0.
FOR each block B in P DO

IF B’s other outgoing transition has a
once constraint THEN
P->nonuniqiters += 1.

/* initialize possible iteration path information, whereN
represents the total loop iterations*/

FOR each path P in the loop DO
P->range = ∅ .
IF P is a continue path THEN

P->range = P->range ∪ [1..N-1].
IF P is an exit path THEN

P->range = P->range ∪ [N..N].

/* constrain possible iterations using iteration-based constraints*/
FOR each path P in the loop DO

Propagate iteration-based constraints in P.
P->range = P->range∩

iteration range at end of P.
IF P->range = ∅ THEN

Remove P from the loop.

/* constrain iterations of each path that cannot reach itself*/
Construct a DAG D representing the execution

order of paths P where REACH_SELF[P] == 0.
FOR each nonleaf path P in D, where P is not

processed until all paths it can reach
are processed DO
S = first immediate successor of P.
P->range.low = S->range.low - 1.
P->range.high = S->range.high - 1.
FOR each remaining path S that is an

immediate successor of P in D DO
IF S->range.low - 1 < P->range.low THEN

P->range.low = S->range.low - 1.
IF S->range.high - 1 > P->range.high THEN

P->range.high = S->range.high - 1.

/* calculate unique iterations for each path*/
FOR each path P in the loop DO

P->uniqrange = P->range
FOR each path Q, where Q≠ P D O

P->uniqrange = P->uniqrange− Q->range.

/* assign minimum number of iterations for each path*/
FOR each path P in the loop DO

P->miniter =
number of iterations in P->uniqrange.

P->miniter -= P->nonuniqiters.

/* assign maximum number of iterations for each path*/
FOR each path P in the loop DO

IF REACH_SELF[P] = 0 O R P->once THEN
P->maxiter = 1.

ELSE
P->maxiter =

number of iterations in P->range.
IF REACH_SELF[P] > 1 THEN

P->maxiter =
ceil(P->maxiter/REACH_SELF[P]).

/* assign each path to a set of paths*/
s = 0.
FOR each path P in the loop DO

IF P->range ∩ with existing set i THEN
P->set = i;

ELSE
P->set = ++s;

Figure 6: Algorithm for Calculating Path Iteration Information in Table 1

-5-

2 3 4 5 6 7

{2F,5J} {2F,5J}
{2F,5J} {2F,5J} {2F,5J}

{2F,5J}
invalid

Figure 7: Path 4 in Figure 3(d) Is Not Feasible

The maximum number of iterations for a path can
sometimes be constrained by effect-based constraints.
Consider paths 1 and 2 in Figure 2(d), which areexit paths
because they end with a transition to block 10 that is out-
side the loop.Value dependent constraint 5 in Figure 2(c)
indicates that when block 3 (quit=1;) in Figure 2(b) is
executed, block 8 (quit!=0) will jump to block 10.
When the timing analyzer detects that an effect-based con-
straint can reach the end of the path without nullification,
the timing analyzer propagates the constraint through all
the paths of the loop to see if it can reach the branch iden-
tified in the constraint. Figure 8 illustrates that the con-
straint causing the branch in block 8 tojump (8J) reaches
the end of path 3 and that paths 2, 3, 4, and 5 cannot fol-
low path 3 since they require a fall through from block 8
to block 9. Figure 9 shows that the constraint for branch 4
reaching the end of paths 4 and 5 from Figure 2 contains
the opposite outcome of branch 4 in the same path.This
causes these paths not to be taken on the next loop itera-
tion. Finally, data flow analysis was used to determine
which effect-based constraints outside the loop are guaran-
teed to reach the entry of the loop.First instance, path 4
of Figure 2 cannot be executed on the first iteration due to
constraint {4J} r eaching block 4 from block 1.

9 2 3 7
{8F} {8F,9J} {2F,8F,9J}

{8F} {8F,9J}
{2F,8J,9J}

{8J}{2F,8J,9J}

path 3: 8

paths 2,3,4,5: 8 9
invalid

•••

{8J}

Figure 8: Paths 2-5 Cannot Follow Path 3 in Figure 2(d)

{8F}
{8F} {8F,9J}

{8F,9J}
{2J,8F,9J}

{2J,8F,9J}
{2J,4F,8F,9J}

{2J,4J,8F,9J}
{2J,4J,8F,9J}

{4J,8F}path 4:

8 9 2 4 6 7

{8F}
{8F}

{8F,9J}
{8F,9J}

{2J,8F,9J}
{2J,8F,9J}

{2J,4J,8F,9J}
{2J,4F,8F,9J}

{2J,4F,8F,9J}
{4F,8F}path 5:

8 9 2 4 5 7

Figure 9: Paths 4 and 5 Cannot Immediately
Follow the Same Path in Figure 2(d)

A Can Follow matrix is constructed by the timing ana-
lyzer that indicates for each path the set of paths that can
legally follow it on the next iteration. If a constraint from
one path can reach its associated branch in other paths
without being nullified, then such paths that have transi-
tions that do not satisfy the constraint are marked as illegal
in the matrix. No paths are allowed to follow a path that
only exits. Table 2 depicts the matrix of paths that can
legally follow each path in Figure 2(d).

Current Paths That Can Immediately Follow
Path in
Loop 1 2 3 4 5

1 N N N N N
2 N N N N N
3 Y N N N N
4 N Y Y N Y
5 N Y Y Y N

Table 2: Can Follow Matrix for Figure 2

After the matrix is completed, it is examined to see if
restrictions on the number of iterations associated with
each path can be applied.In general, the timing analyzer
examines the matrix for each path to determine the fewest
number of other paths required to be traversed before the
current path can be executed again. If the algorithm indi-
cates that a path cannot reach itself, then the path will be
assigned a maximum of one iteration.Paths 1, 2, and 3 of
Figure 2(d) are all assigned a maximum number of one
iteration because they cannot reach themselves after
executing. If a path cannot directly follow itself, but can
ev entually be reached again, then it cannot execute on
ev ery iteration of the loop.If the algorithm indicates that
the K iterations required to be executed before acontinue
path can reach itself is greater than one, then it is assigned
a maximum number of iterations fromceil(R/K), whereR
is the possible number of iterations for the path.Paths 4
and 5 of Figure 2(d) can only execute again on the second
iteration after it last executed. Thus,paths 4 and 5 are
assignedceil(999/2) andceil(1,000/2), respectively, or 500
maximum iterations.

The maximum number of iterations can sometimes be
constrained by analyzing iteration-based constraints.The
header block is assigned a range that spans all iterations of
the loop. This range is propagated through each path.
When a transition is encountered that has an iteration-
based constraint, the range in the constraint is intersected
with the range in the current block in the path.Figure 10
illustrates how iteration-based constraints are propagated
through path 4 in Figure 4(d). The transition from block 3
(i<=249) to block 4 results in the range [1..1000] being
intersected with [251..1000], which is the range specified
in constraint 5 of Figure 4(c). The transition from block 4
(i>=750) to block 5 results in the current range of
[251..1000] being intersected with [1..750].Thus, path 4
can only possibly execute in iterations [251..750].

2 3 4 5 6 7
[251..1000][1..1000] [251..750] [251..750] [251..750]

[1..1000] [1..1000] [251..1000] [251..750] [251..750] [251..750]

Figure 10: Iteration-Based Constraints
Propagated Through Path 4 in Figure 4

-6-

If a path can only be executed in a given range of itera-
tions, then the maximum iterations in which that path can
execute cannot be greater than the number of iterations in
the range.A path with no possible iterations is infeasible
and is removed from the list of paths by the timing ana-
lyzer. Note that the range of a path that only exits is
always the last iteration of the loop, which is the case for
paths 1 and 2 of Figure 2(d).Likewise, if path A cannot
reach itself and can only be immediately followed by a
different path B, which has a range [Bmin..Bmax], then
path A’s range cannot span more than [Bmin-1..Bmax-1].
For instance, Table 2 shows that path 3 of Figure 2(d)
always leads to path 1, which has an iteration range of
[1001..1001]. Thus,path 3’s possible range of iterations is
[1001-1..1001-1] or [1000..1000] for WCET analysis.

The minimum number of iterations of a path is calcu-
lated by simply subtracting the possible range of iterations
of all other paths in the loop from the possible range of
iterations for the current path. The result is the unique set
of iterations for the current path, which is the minimum
number of times that the path has to execute. Thereis one
exception to this rule. Consider path 1 in Figure 4(d).Its
maximum number of iterations is one due to constraint 3
(2J once) in Figure 4(c). We do not reduce the range of
unique iterations of the other paths, but do indicate that
one iteration in these paths may not be unique.

4.2. Usingthe Constraints in Loop Analysis

The authors decided to use the minimum and maximum
iterations associated with each loop path to obtain tighter
WCET loop predictions without restricting the order in
which these paths are evaluated. Therewere several rea-
sons why this approach was used. First, our approach sup-
ports paths that can execute at most once, but in any itera-
tion. Considerpath 1 of the loop in Figure 4. This situa-
tion may occur frequently in numerical applications.For
instance, special conditions are often checked for the diag-
onal elements of a matrix (diagonal systems).Second, our
approach deals with paths that have dependencies on other
paths, such as paths 4 and 5 in Figure 2.Finally, our tim-
ing analyzer often calculates an average WCET for a loop
using an average number of iterations when the number of
iterations can vary depending on the value of a outer loop
counter variable [5].Using our approach allows the calcu-
lation of a safe average WCET since the longest paths are
selected first in our loop analysis algorithm.

In addition, we calculate sets of paths, where the range
of iterations of the paths in one set do not overlap with
other sets. Each path is assigned to a single set of paths,
We use the maximum number of iterations that can be
executed by a set of paths, which is the number of

iterations in the set’s range. Table 3 depicts an example
with 4 paths and 2 sets.Each set of paths can only execute
a maximum of 50 iterations. If only the maximum itera-
tions of each path was used, then two paths from a single
set could be selected and a significant overestimation may
occur when the paths in one set require many more cycles
than the paths in the other set. Our approach has limita-
tions. Considerif a fifth path existed in this example
which could execute in any iteration of the loop. All of
the loop paths would be assigned to a single set, which
could result in an conservative timing prediction. Fortu-
nately, inequality tests (<, <=, >=, >) on loop induction
variables do not occur frequently.

Possible Min Max Set
Iterations Iters Iters

Path

1 [1..50] 0 50 1
2 [1..50] 0 50 1
3 [51..100] 0 50 2
4 [51..100] 0 50 2

Table 3: Example Illustrating Use of Path Sets

Figure 11 shows how the WCET loop analysis algo-
rithm uses this information.Let N be the maximum num-
ber of iterations andP be the number of paths in a loop.
The DO-WHILE will process at most the minimum ofN
or 2P total iterations since the first misses and first hits in
each path can miss or hit at most once, respectively.1

The algorithm selects the longest path on each iteration
of the loop from the set of paths that can still possibly
execute. In order to demonstrate the correctness of the
algorithm, one must show that no other path for a given
iteration of the loop will produce a longer worst-case time
than that path selected by the algorithm. Descriptions of
how the caching categorizations and pipeline information
are used in the loop analysis and correctness arguments
about selecting the longest path using these categoriza-
tions and information have been given in previous work
[9, 7]. Thus, it remains to be shown that each time a path
is selected, it is really chosen from the paths that can still
possibly execute given that the minimum and maximum
number of iterations for each path and set were accurately
estimated. Apath’s number of required iterations is its
minimum iterations to be performed.The nonrequired
iterations of a path is the difference between its maximum
and minimum number of iterations.A path is initially
chosen in the IF-THEN-ELSE construct at the beginning
of the DO-WHILE loop in Figure 11.If the iterations
remaining is greater than the required iterations left to be

1 If the number of paths within a loop exceeds a reasonable limit,
then the loop control flow is partitioned to reduce the timing analysis
complexity [11].

-7-

/* calculate required and nonrequired path information*/
req_iters = 0.
FOR P = each path in the loop DO

P->req_iters = P->min_iters.
P->nonreq_iters =

P->max_iters - P->min_iters.
req_iters += P->min_iters.

nonreq_iters = N - r eq_iters.

/* process all iterations of the loop*/
iters_handled = 0.
pipeline_info = NULL.
WHILE iters_handled <N DO

/* process iters while longest path has a first miss or first hit*/
DO

IF req_iters < N - i ters_handled THEN
Find longest path P where

P->req_iters+P->nonreq_iters > 0 &&
P->set.maxiters > 0.

ELSE
Find longest path P where

P->req_iters > 0 &&
P->set.maxiters > 0.

Concatenate pipeline_info with the current
worst-case union of executable paths.

iters_handled += 1.
IF P->req_iters > 0 THEN

P->req_iters -= 1.
req_iters -= 1.

ELSE
P->nonreq_iters -= 1.
nonreq_iters -= 1.

P->set.maxiters -= 1.
WHILE encountered a first miss or first hit

AND iters_handled <N

/* Efficiently process iterations for the current longest path*/
IF iters_handled <N THEN

nonreq_iters_to_do =
min(nonreq_iters, P->nonreq_iters,

P->set.maxiters - P->req_iters).
iters_to_do =

P->req_iters + nonreq_iters_to_do.
req_iters -= P->req_iters.
nonreq_iters -= nonreq_iters_to_do.
P->set.maxiters -= iters_to_do.
P->req_iters = 0.
P->nonreq_iters -= nonreq_iters_to_do.
Concatenate pipeline_info iters_to_do

times with current worst-case union.
iters_handled += iters_to_do.

Figure 11: WCET Loop Analysis Algorithm

processed (sum of each path’s minimum iterations not yet
processed), then the path selected is chosen from any path
that has any iterations that can be performed.Otherwise,
the iterations remaining must be equal to the required loop
iterations remaining and the path must be selected only
from paths that have remaining required iterations left.
The code after the DO-WHILE in the algorithm efficiently
uses repeated instances of a path that has no first misses or
first hits and thus will remain the longest path since its
worst-case behavior cannot change.This code processes
the remaining required iterations of the path and the mini-
mum of the remaining nonrequired iterations of the path,
the set of paths to which the path belongs, or the entire
loop. Therefore,the paths that can still possibly execute is
accurate since a given path’s required iterations are always
processed before its nonrequired iterations and the number

of nonrequired iterations to be processed for a path is
never allowed to exceed the number of nonrequired itera-
tions remaining in the loop.

5. Results

Table 4 depicts programs where the worst-case paths
were constrained by dependencies on data values to evalu-
ate the effectiveness of detecting and exploiting value-
dependent constraints.The Sumoddeven, Sumnegpos, and
Summidall programs correspond to the examples illus-
trated in Figures 2, 3, and 4, respectively. TheExpintpro-
gram performs more computation when a loop variable is
equal to a loop-invariant value on a single loop iteration.
The Fr enel program takes different paths on the odd and
ev en steps in the evaluation of the series.TheGaujacpro-
grams executes different paths depending upon the speci-
fied iteration of a loop.TheSprsinprogram does not per-
form a computation for a single column (the diagonal ele-
ment) of each row of a matrix. TheSumminmaxprogram
determines the minimum and maximum of each corre-
sponding pair of elements in two vectors and these two
tests are logically correlated.The first four programs in
Table 4 can be found in the second edition of theNumeri-
cal Recipes in Ctext [12].

The results of evaluating these programs are shown in
Table 5. For each program a direct-mapped instruction
cache configuration containing 8 lines of 16 bytes was
used. Itwas assumed that a cache hit required one cycle, a
cache miss required ten cycles, and all data cache refer-
ences were assumed to be hits. This is the same cache
configuration that was used in previous timing analysis
studies [9, 7, 5]. The Observed Cyclesrepresent the
cycles required for an execution with worst-case input
data.2 The number of cycles was measured by enhancing a
traditional cache simulator [13] to perform pipeline simu-
lation. TheValue IndependentandValue Dependent Esti-
mated Cyclesindicate the number of cycles estimated by
the timing analyzer without and with using value-
dependent constraints, respectively. An Estimated Ratiois
theEstimated Cyclesdivided by theObserved Cycles.

The results show that exploiting value-dependent con-
straint information in a timing analyzer can significantly
tighten WCET predictions. The programsFr enel and
Sumoddevenexecute alternating paths in a loop depending
upon a flag variable. Oneof the alternating paths has a
slightly longer WCET than the other path in both of these

2 We modified the desired relative error of theExpint andGaujac
programs so they would not converge early, which allowed us to obtain
an accurate maximum iterations for a loop and worst-case input data for
theObserved Cyclesin Table 5.

-8-

Name Descriptionor Emphasis

Expint Computesan exponential integral.
Frenel Computesnoncomplex Fresnel integrals.
Gaujac Computesthe abscissas and weights of a 10 point Gauss-Jacobi quadrature formula.
Sprsin Converts a 20x20 integer matrix into row-indexed sparse storage mode.
Summidall Sumsthe middle half and all elements of a 1,000 integer vector.
Summinmax Sumsthe minimum and maximum of the corresponding elements of two 1,000 integer vectors.
Sumnegpos Sumsthe negative, positive, and all elements of a 1,000 integer vector.
Sumoddeven Sums the odd and even elements of a 1,000 integer vector.

Table 4: Test Programs That Are Constrained by Dependencies on Data Values

WCET Timing Prediction Results Seconds Required for Analysis
Value Independent Value DependentObserved Previous Current Time

Estimated Estim. Estim. Estim. Analysis Analysis
Cycles Ratio Cycles Ratio Time TimeCycles Ratio

Name

Expint 58,397 1,292,086 22.126 58,471 1.001 0.382 0.300 0.785
Frenel 47,749 48,887 1.029 47,783 1.001 0.322 0.272 0.845
Gaujac 786,386 797,116 1.014 794,334 1.010 2.737 1.845 0.674
Sprsin 28,339 28,608 1.009 28,404 1.002 0.107 0.113 1.056
Summidall 15,340 18,090 1.179 15,341 1.000 0.060 0.052 0.867
Summinmax 16,080 17,080 1.062 16,080 1.000 0.067 0.050 1.034
Sumnegpos 11,067 13,068 1.181 11,068 1.000 0.050 0.037 0.746
Sumoddeven 15,093 16,102 1.067 15,099 1.000 0.038 0.038 1.000

Av erage 122,306 278,880 3.708 123,323 1.002 0.470 0.338 0.876

Table 5: WCET Prediction and Analysis Overhead Results of the Test Programs

programs. Thetiming analyzer was able to determine that
longer path of each program could only be executed for
one half of the iterations, which reduced the overestima-
tions. TheSumminmaxand Sumnegposprograms have
logically correlated branches and the timing analyzer was
able to detect for each program that the longest path was
infeasible due to this correlation. The compiler detected
iteration-based constraints for theGaujac and Summidall
programs indicating that certain paths could only be
executed in specific iterations. There was little overesti-
mation in the previous version of the timing analyzer for
Gaujacsince these iteration-based constraints were associ-
ated with paths that were not in the most deeply nested
loop of the program.However, Summidall’s iteration-
based constraints were for the most frequently executed
portion of that program and a significant overestimation of
WCET was avoided. Finally, the compiler detected an
iteration-based constraint inSprsin and Expint that was
associated with an equality test between a loop variable
and a value that was invariant for that loop. This means
that the loop could only execute a path associated with the
equality transition from the block containing the test for a
single iteration of the loop.For Sprsinthis path required a
smaller WCET than when the loop variable was not equal
to the loop-invariant value. Thus,the overestimation by
the previous version of the analyzer was quite small and
would decrease when applied to arrays with larger

dimensions. However, the opposite situation occurs in
Expint, which has a higher WCET associated with the path
where the loop variable is equal to the loop-invariant
value. Thus,exploiting this value-dependent constraint
significantly reduces the WCET overestimation ofExpint.

The slight remaining overestimations for several of the
programs in the current version of the timing analyzer
were due to two reasons. First,occasionally conserva-
tively categorized instructions hit in cache due to the order
paths were executed because of dependencies on data val-
ues. Inaccuraciesalso resulted from instruction caching
categorizations that change between loop levels and their
interaction with the pipeline analysis [7].

Table 5 also shows execution time in seconds required
to make predictions for the test programs for the previous
(value-independent) and current (value-dependent) ver-
sions of the timing analyzer. The times were obtained by
calculating for each program the average of the elapsed
times of ten executions of the timing analyzer on a Ultra-
SPARC. Thedecrease in elapsed time for the analysis was
due to two reasons. First,we modified the timing analyzer
to avoid redundant analysis of a path when its caching
behavior has not changed.Second, the new approach does
not analyze a path in a given iteration when the path was
infeasible, its maximum iterations had been exhausted, or
only required iterations of other paths were available.

-9-

6. Future Work

There are additional aspects of using value-dependent
constraints in timing analysis that can be investigated.
First, we intend to enhance the timing analyzer to use
value-dependent constraints when estimating best-case
execution times (BCETs).In fact, we believe that value
dependency analysis will significantly tighten BCET pre-
dictions since these predictions often suffer from large
underestimations due to dependencies on data values. For
instance, the BCET prediction for a program like Sprsin
that only performs calculations for the off-diagonal ele-
ments of a matrix (when nested loop variables have differ-
ent values) suffers from a significant underestimation
since there is only one diagonal element for each row.
Second, many value-dependent constraints were not
detected due to function calls separating effects and the
branches affected. Thesevalue-dependent constraints
could be detected using interprocedural analysis.

7. Conclusions

This paper has described how value-dependent con-
straints were automatically detected by a compiler and
exploited by a timing analyzer. We described techniques
to efficiently detect constraints from effects causing the
outcome of a branch to become known and ranges of itera-
tions associated with branch outcomes.This constraint
information could be used by a variety of timing analyz-
ers, including those that use an ILP solver. We presented
algorithms that show how value-dependent constraints
were used in a non-ILP based timing analyzer to constrain
the minimum and maximum iterations associated with
each path in a loop and how these path constraints were
used in WCET loop analysis.Finally, we showed results
from a number of test programs whose worst-case paths
were constrained by dependencies on data values. These
results indicate that detection and exploitation of value-
dependent constraints can significantly tighten WCET tim-
ing predictions. Furthermore, the approaches used for
detection and exploitation of value-dependent constraints
were shown to be quite efficient and are fully automated,
requiring no interaction from the user.

8. Acknowledgements

The authors thank Jack Davidson for allowing vpoto be
used for this research.John Mellor-Crummey, Andreas
Ermedahl, Mikael Sjödin, and the anonymous reviewers
provided several helpful suggestions that improved the
quality of the paper. This work was supported in part by
NSF grant EIA-9806525.

9. References

[1] Y. S. Li, S. Malik, and A. Wolfe, “Efficient Microarchi-
tecture Modeling and Path Analysis for Real-Time Soft-
ware,” Proceedings of the Sixteenth IEEE Real-Time Sys-
tems Symposium, pp. 298-307 (December 1995).

[2] G. Ottosson and M. Sjödin, “Worst Case Execution Time
Analysis for Modern Hardware Architectures,” ACM
SIGPLAN Workshop on Language, Compiler, and Tools
for Real-Time Systems, pp. 47-55 (June 1997).

[3] A. Ermedahl and J. Gustafsson, “Deriving Annotations
for Tight Calculation of Execution Time,” Proceedings of
European Conference on Parallel Processing, pp.
1298-1307 (August 1997).

[4] T. Lundqvist and P. Stenström, “Integrating Path and
Timing Analysis using Instruction-Level Simulation
Techniques,”ACM SIGPLAN Workshop on Languages,
Compilers, and Tools for Embedded Systems, pp. 1-15
(June 1998).

[5] C. A. Healy, M. Sjodin, V. Rustagi, and D. B. Whalley,
“Bounding Loop Iterations for Timing Analysis,” Pro-
ceedings of the IEEE Real-Time Technology and Applica-
tions Symposium, pp. 12-21 (June 1998).

[6] F. Mueller and D. B. Whalley, “Av oiding Conditional
Branches by Code Replication,” Proceedings of the SIG-
PLAN ’95 Conference on Programming Language
Design and Implementation, pp. 56-66 (June 1995).

[7] C. A. Healy, D. B. Whalley, and M. G. Harmon, “Inte-
grating the Timing Analysis of Pipelining and Instruction
Caching,”Proceedings of the Sixteenth IEEE Real-Time
Systems Symposium, pp. 288-297 (December 1995).

[8] M. E. Benitez and J. W. Davidson, “A Portable Global
Optimizer and Linker,” Proceedings of the SIGPLAN ’88
Symposium on Programming Language Design and
Implementation, pp. 329-338 (June 1988).

[9] R. Arnold, F. Mueller, D. Whalley, and M. Harmon,
“Bounding Worst-Case Instruction Cache Performance,”
Proceedings of the Fifteenth IEEE Real-Time Systems
Symposium, pp. 172-181 (December 1994).

[10] L. Ko, C. Healy, E. Ratliff, R. Arnold, D. Whalley, and
M. Harmon, “Supporting the Specification and Analysis
of Timing Constraints,” Proceedings of the IEEE Real-
Time Technology and Applications Symposium, pp.
170-178 (June 1996).

[11] NaghamM. Al-Yaqoubi,Reducing Timing Analysis Com-
plexity by Partitioning Control Flow, Masters Project,
Florida State University, Tallahassee, FL (1997).

[12] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.
Flannery,Numerical Recipes in C: The Art of Scientific
Computing, Second Edition,Cambridge University Press,
New York, NY (1996).

[13] J. W. Davidson and D. B. Whalley, “A Design Environ-
ment for Addressing Architecture and Compiler Interac-
tions,” Microprocessors and Microsystems 15(9) pp.
459-472 (November 1991).

-10-

