Tighter Timing Predictions by Automatic Detection
and Exploitation of Value-Dependent Constraints

_ Christopher Healy and David Whalley
Computer Science Department, Florida Statev&¥sity, Tallahassee, FL 32306-4530
e-mail: {healy,whalley}@cs.fsu.edu, phone: (850) 644-3506

Abstract which uses intger linear programming (ILP) to s&\wwon-
straints about the program to obtain timing predictions.
Their technique automatically calculatpgogram gruc-
tural constaintsfrom the program control fl® graph and
used value-dependent constraints, whicly ttedled pro-

Predicting the worst-case execution time (WCET) of a
real-time piogram is a dallenging task. Though miuc
progress has been made in obtaining tighter timingdbc-

tions by using techniques that model thehaectural fea- i . :
tures of a magine, significant werestimations of WCET ~ 9ram functionality conséints The work of Ottosson and

can still occur Even with perfect ahitectural modeling ~ Siodin [2] &tended the IPE technique by using finite

dependencies on data values can constrain the outcome cgomain constraints to model the architectural features of

conditional banches and the corresponding set of paths the hardvare. chgver, in both approaches thesalue-
that can be taén in a pogram. Whilevalue-dependent dependent constraints were entered manually by the user

constaint information has been used in the past by some"Nich is both a tedious and error-prone task.

timing analyzers, it has typically been specified manually = Recent work by Ermedahl and Gustafsson [3] and by
which is both tedious and error pne This paper Lundqvist and Stenstrom [4] use abstract interpretation
describes efficient techniques for automatically detectingand symbolic eecution to automatically deré many
value-dependent constraints by a compiler and automati-value-dependent constraints. These approaches are quite
cally exploiting these constints within a timing analyzer powerful, but efectively requires simulating all paths of a
The esult is tighter timing analysis predictions without loop for every loop iteration. Thus, these approaches
requiring additional interaction with a user. require significant analysisverhead, which would be
undesirable when analyzing long running programs.

1. Introduction Another type of slue-dependent constraint is the num-
ber of loop iterationsWe haveimplemented techniques to
automatically determine the minimum and maximum-iter
ations for map loops with multiple exit conditions and
qgops whose number of iterations depend on loepriant
variables or counter ariables of outer loops [5].The
abstract interpretation and symboliceeution approaches

Obtaining accurate worst-caseeeution time (WCET)
predictions of programs is a challenging ta%farious fea-
tures of the architecture, such as caches and pipelines, c
affect the eecution time of an instruction and these fea-
tures need to be modeled while analyzing the contr flo
of a p_rogra_m.l_—|_owe/er, even W'.th perfect archnectura_ll [3, 4] also provide a more powerful and les$icaint
modeling, significant werestimations of WCET can still : . .

. : . ..method to calculate bounds on loop iterations. In this
occur since dependencies on data values can constrain the . »

. : paper we aldress detecting and xm@oiting value-
outcome of conditional branches and restrict the set of ; . .
. . dependent constraints that constraiecation paths rather

paths that can be tak. Whilevalue-dependent constraint . .
; . . e than the number of iterations that a loop ceecete.
information has been used in the past by some timing ana-

lyzers, it has typically been specified manualfich is : : ;
both tedious and error prondhis paper describes Wwo 3. Automatic Detection of Constraints

value-dependent constraints can be automatically detected 5 value-dependent constraint causes the outcome of a

by a compiler and exploited by a timing analyzer. conditional branch to be kmam under certain conditions.
We implemented techniques to detect these constraints,
2. RelatedWork which we classified asffect-basednditeration-based

Some constraint-based timing analyzers ustiet = 54 - petectingEffect-Based Constraints
dependent constraints to obtain more accurate estimations)) o
of execution time. Li et al performed timing analysis The compiler performs analysis to determine if the out-
using an Implicit Path Enumeration (IPE) technique [1], come of a conditional branch is known ay @iven point

in the control fl. FHrst, the compiler calculates the set of true, then control will dll (F) into the next sequential
registers and ariables upon which a branch (and its asso- block. Thecontrol flov dso shows the effect-based con-
ciated comparison) depends. This set is calculated bystraints, which are enclosed in curly braces and associated
expanding the effects of the comparison instruction associ-with basic blocks or control-fie transitions. Figure2(c)

ated with the branchFor instance, consider the SRC describes thexplicit value-dependent constraints that are
instructions represented as RTLs @igter Transfer Lists) automatically detected by the compiler and passed to a
and the associated expanded comparison in Figurd 1. timing analyzer The initialization ofi in block 1 { =0;)
comparison is xpanded by searching backwards for puts the branch in block 2a[i]!=0) in an unknown
assignments to registers in the comparison until gisre state 2U) and the branch in block 9 €1000) in ajump

ters are replaced or the beginning of a block with multiple state 9J). In addition, the assignmentsdald in blocks 1
predecessors is encountereldoop-invariant registers in and 5 6dd=0;) and in block 6 6dd=1;) cause the

the expression arexpanded from the preheader of the branch in block 4ddd==0) to jump (4J) and fall through

loop in which thg are assigned alues. Ng&t, the com- (4F), respectiely. Likewise, the assignment fui t in

piler determines the set offets associated with assign- blocks 1 qui t =0;) and 3 Qui t =1;) cause the branch
ments to registers and variables for each basic blockin block 8 qui t ! =0) to fall through(8F) and jump (8J),

Each branch is examined to see if it could be affected byrespectiely. Finally, the increment ofi in block 7

the block. Thus, the compiler can determine that a basiqi ++;) sets the states of the branches in blocks 2
block updating the globalaviableg could affect the result (a[i]!=0) and 9 §{ <1000) to unknown(2U,9U) since

of the branch in Figure 1. Updates to thgiseersr [1] they depend on the value of

(Yg1) orr [8] (%©0) would hare o efect.

sunmbdd = suneven = 0;

Instructions in a Basic Block odd = CIEi t ' :| 0; surmddzg; ' 1
ri1]=H1[_gl; /* sethi %i(_g), %l *] for (: Z?bo&f‘”! L;&& zgggg?n{—g}
S g Lo o Y N
PC=I C<0, L20; /*bl 120 % o st (‘oéa) . i=0; {2u9%

Expanded Comparison sumodd += afi];
I CG=RIHI[_g] +L] _g]] ?5; odd = 0; a[i]!=0 2
. . . } {23} {2F}
Figure 1: Example of Expanding a Comparison el se { quit=1: {83} 3
A state is associated with each conditional branch, sureven += alil;

which can hae me of three alues: unknown fall- } odd==0 4

through or jump. The authors determine if a branch (@) Source Code 43} {4F}
4 i sunodd+=a[i]; 5

begomes knovyn by substltut!ng the value assigned fo_r the (1) blk 1 nulfies bik 2 odd=0; {4}

variable or register andvaluating the gpanded compari- (2) blk 1 makes blk 4 jump

i i i i i i (3) blk 1 makes blk 8 fall thru -
son in the compilerThe compiler issues a @rezm o the (# blk 1 makes bik 9 jmp sumeven+=a[i]:6
timing analyzer for each branch placed in @arknown (5) blk 3 makes blk 8 jump odd=1; {4F}

fall-through or jumpstate by an effect in the blocRhus,
this analysis require®(B*C) complexity whereB is the
number of basic blocks art@lis the number of conditional
branches. Amore complete explanation for detecting

(6) blk 5 makes blk 4 jump
(7) blk 6 makes blk 4 fall thruy
(8) blk 7 nullifies blks 2,9

(c) Explicit Constraints

i++ {2U9U} 7

8J 8F
branch states has been described in previous work [6]. gg g 5 f i}<1000 L I
Consider the source code in Figure 2(@he corre- e e o et {9F}
sponding control fler that is generated by the compiler is (5)8-9-2-4-6-7 10

shawn in Figure 2(b). While the control foin the figure
is represented at the source codellehe analysis is per
formed by the compiler at the machine instructiovelle

(d) Paths in Loop

(b) Control Flow

Figure 2: Effects of Assignments on Branches

after compiler optimizations are applied to yicte more Figure 2(b) also shlws implicit value-dependent con-
accurate timing predictionsNote that some branches in straints. Whera branch has a gen outcome, then it will
Figure 2(b) hee onditions that are wersed from the have the same outcome aig unless the variables omjis-
code in Figure 2(a) to depict the branch conditions that areters being compared arefedted. Thusa fall-through §)
evduated at the machine instructiorvée Only when the or jump) transition from a branch will implicitly cause
condition associated with a branch in a blockviduated that same branch to be infall-through or jump state,
to be true will the jumpJ) occur. If the condition is not respectiely. These implicit constraints are natpdicitly

passed to a timing analyzer since a timing analyzer cariterations for each of the twoutgoing edges of the block
create them when it is performing analysis on paths. containing the branchThe manner in which this informa-

The source code in Figure 3(a) and corresponding conlion is derved is described elsewhere [5].

trol flow in Figure 3(b) depict a situation where one condi- Consider the source code and corresponding control
tional branch may be logically correlated with another flow shown in Figures 4(a) and 4(b\While i can range
branch. Inother words, the direction taken by one condi- from 0..999 as each path in the loop is entered, the number
tional branch may indicate the direction taken by anotherof corresponding iterations in the loop will range from
conditional branch. If block 2a(i] >=0) falls into block 1..1000. Thusthe compiler associates ranges of iterations
3, then the value ofa[i] is negaive aad block 5 with transitions from blocks that compare basic induction
(a[i] <=0) must jump to block 78J). Thisis described variables to constantsFor instance, block 3i (&=249)

by value-dependent constraint 3 in Figure 3(c). Note thatwill only fall through to block 4 when the loop is perform-

if block 2 @[i] >=0) jumps to block 4, there is no guar ing the last 750 iteration§261..1000]. Constraintss-8
antee that block Sa(i] <=0) will fall through to block 6 in Figure 4(c) depict the range of iterations whanious
since the value odi[i] could hae keen zero. The com- transitions in the loop can be &ak Animplicit iteration-

piler evaluates each pair of branches in a function to deter based constraint is that the header of the loop (block 2 in
mine if there is a logical correlation between one branchFigure 4(b)) can be xecuted in ®&ery loop iteration

and another Thus, this analysis requiréB(Cz) complex- ([1..1000] for Figure 4). Sometimes a basic induction
ity, whereC is the number of conditional branchdsote variable is compared to nonconstant loopaitant values,

that a branch is afys logically correlated with itself and as shown in block 2 €=m) of Figure 4(b). The value of
these self correlations are implicit constrainthe eact mis not known, bt it is invariant with respect to the loop.
conditions when one branch is logically correlated with When the comparison of such a branch is an equality test
another hee been described in previous work [6]. (== or I=), then the transition that occurs when the tw
values are equal can takdace at most once for each

surmeg = sumal | = 0; surmeg=0; 1 execution of the loop since the basic inducticarigble
fsgfp?ls = 85 < 1000: sumal | =0; changes by a constant value on each iteratidonstraint
i+ { ’ iS:gPO{SZ:&J} 3 in Hgure 4(c) shwis that the compiler determines that
if (ali] <+0) " block 2 will jump to block 6 at most onc2)oncg. The
sume =all];
sumal | - alil; ali]>=0 2 analysis to detect iteration-based constraints reqQi(€}
if (ali] >+0) (] 23 {2F,53} complexity where C is the number of conditional
sunpos += ajl |, " . .
y o branches, since each branch must be inspected once.
(a) Source Code
sumal | +=a[i]; 4 summid = sumall = 0;
(1) blk 1 nullifies blk 2 for (i =0; i < 1000; sunmi d=0; 1
(2) blk 1 makes blk 7 jump ali]<=0 5 i) | sumal | =0;
(3) blk 2 fall thru makes blk 5 jump if (i I=mé&& i=0: {31,4F.7J}
(4) blk 5 fall thru makes blk 2 jump {53} {5F.23} 249<i && i <750) LI S
(5) block 7 nulifies blocks 2,5,7 sumid += a[i]; -
(c) Explicit Constraints sumal | += ali]; l i ==m 2 ‘
i ++ {2U,5U,7U} 7 (a) Source Code {2J once}
(1) 2-4-5.7 i <1000
(2)2-3-4-5-7 {7F} {73} (1) blk 1 makes blks 3,7 jump
(3)2-4-5-6-7 _ (2) blk 1 makes blk 4 fall thru
(4)2-3-4-5-.6-7 (3) blk 2 will jump at most once
(d) Paths in Loop (b) Control Flow (4) blk 3 jump makes blk 4 fall th {4F} [1..750]
(5) blk 3 fallthru in iters [251..1000]
; . ; ; (6) blk 3 jump in iters [1..250] -
Figure 3: Logical Correlation between Branches (7 blk 4 fallthru in fters [1,.750]

(8) blk 4 jump in iters [751..1000] sunal | +=afi]; 6
(9) blk 4 jump makes blk 3 fall thiu

3.2. Detectinglteration-Based Constraints (10) blk 7 nulfies blks 2.3,4.7

A basic induction variable is aaxiable or register that (c) Explicit Constraints ::'OOSUAUJU”
is incremented or decremented by a constant value on each (1) 2->6-7) 73
iteration of a loop.Some branches compare a basic induc- gg ORI
tion variable to a constanin these situations, the com- (4) 2->3.4-5.6-7
piler can determine the ranges of iterations in which such (d) Paths in Loop (®) Control Flow
a tranch will fall through or jump.The compiler produces Figure 4: Ranges of Iterations and Branch Outcomes

directives for a timing analyzer that indicate ranges of

4. UsingConstraints in a Timing Analyzer dependent information (e.g. pipeline characteristics) as
input to malke timing predictions [9, 7].Finally, a gaphi-
The analysis techniques described in theviptes sec- cal user interface is woked that allows the user to request
tion to identify value-dependent constraints could be usedpredictions for portions of the program [10].
by a \ariety of timing analyzers, which include those that
use an integer linear programming (ILP) szlvWhile an 4.1. GeneratingPath Constraints
ILP approach can be simple, géat, and quite paerful, The timing analyzer uses the value-dependent con-

there are a fe disadwntages. & instance, an ILP : L .
: straints to calculate a minimum and maximum number of
approach works best when each basic block can be associ-_ X)
; . . . o iterations associated with each path during tkecwgion
ated with a single time, which allows this time to be

. . ; of a loop. Table 1 depicts information associated with

expressed as a constraint associated with that block. ; A

; o . . each loop path described in Figures 2(d), 3(d), and 4(d).
Caching and pipelining change the context in which a ! . ;)

: . The total number of loop iterations is automatically calcu-

block could be xecuted and can often affect its associated : . : : ;

) : . | lated using techniques described in previoaskw5]. A
execution time. While approaches teen suggested ath is a sequence of blocks in a loop connected by con
for addressing caching bahar [1], it is still unclear hw P q P y

S . trol-flow transitions. Eachpath starts with the loop
pipelining can be accurately modeled across multiple .) . .

: .) header.Exit paths are terminated by a block with a transi-
blocks. Moreimportantly the time required for the analy-

sis with an ILP approach hasst-case exponential com- tion out of the loop.Continuepaths are terminated by a

. . block with a transition to the loop headerhe next tvo
plexity. A program that required only awieseconds of - ; . .
o ; . D columns indicate the range of possible and unique itera-
timing analysis using a more traditional approach [7]

required minutes using an ILP approach [1]. In fact, ILP tions associated with each path. The finab walumns

methods can be used to soivarny compiler optimization shaw the minimum ar)d maximum number of times the
problems, but are infrequently used in production compil- path could bexecuted in the loop.

ers due to potentiallyxeessve mmpilation time. Thus, Figure 6 gves a hgh-level description of the algorithm
the authors decided it would beosthwhile to irvestigate used to calculate the informationven in the last four
how value-dependent constraints could b@leited by a columns of Table 1.The remainder of this section pro-

non-ILP based timing analyzer. vides examples to illustrate Wwahis information is calcu-
lated. Excepffor the construction of the REFM_ SELF
User table, the complexity of the aIgorithm(B{PZ), whereP is
c RT'm'”g the number of paths in the loop. In practice, the construc-
Source equests . . :
Files tion of the REACH_SELF table was not time consuming
since we found that most paths in a loop could either
Cache Timing ! User immediately follav themseles or could only xt the
Configuratior| Control Flow !
andConstraint nalyzer | Interfac loop.
| Information . . .
- Effect-based constraints are associated with a block or
atic s H
cache Instruction Machine Timing alltr.ansmon between blockskor egch path in a loop 'the
. Caching Dependent - timing analyzer treerses the basic blocks and transitions
Simulato Categorizations | Information| | Predictions

between blocks in the order in which the path would be
Figure 5: Overviw of Timing Analysis Process executed. Wheran efect-based constraint is encountered,

it is added to a list of constraints for that pathanother
effect-based constraint is later encountered for that same
branch, then the current constraint is nullified.

Figure 5 depicts theverall organization of the non-ILP
timing analysis environment thatas modified to xploit

value-dependent constraint informatiorAn optimizing]] .
compiler [8] was used to produce controlfland \alue- Effect-based constraints can be used to detect infeasible

dependent constraint information as a sidectfof the ~ Paths. Figure7 depicts the constraints being propsgyl
compilation of a file [9, 5].A static cache simulator uses through path 4 in Figure 3(d). The transition from block 2
the control flv information to construct a control-flo {0 block 3 causes the branch in block 5 to be placed in a

graph of the program that consists of the call graph andUMP State §J). The branch in block 5 is encountered
the control flv of each function. The program control- with this constraint §J) till in effect and the transition
flow graph is then analyzed and a caching gatieation ~ from block 5 to block 6 in path 4 is deemedgtie When

for each instruction in the program is produced [SExt, such an infeasible path is encountered, the timing analyzer
a tming analyzer uses the control loand constraint ~ "@moves he path to pneent ary additional analysis time to

information, caching categorizations, and machine P& Spentoniit.

Loop Total | Path | Exit | Continue Possible Unique Minimum | Maximum

Iters ID Pah Path Iterations Iterations Iterations| Iterations
Loop 1 Y N [1001..1001] O 0 1
in 2 Y N [1001..1001] O 0 1
Figure | 1,001 3 N Y [1000..1000] 0 0 1
2 4 N Y [2..1000] a 0 500
5 N Y [1..1000] O 0 500
Loop 1 Y Y [1..1000] a 0 1,000
in 1000 2 Y Y [1..1000] | 0 1,000
Figure ' 3 Y Y [1..1000] 0 0 1,000

3 4 N/A N/A N/A N/A N/A

Loop 1 Y Y [1..1000] 0 0 1
in 1000 2 N Y [1..250]-1 249 250
Figure ’ 3 Y Y [751..1000] [751..1000]-1 249 250
4 4 N Y [251..750] [251..750]-1 499 500

Table 1: Information for Each Path in Figures 2(d), 3(d), and 4(d)

[* remove infeasible paths*/
FOR each path P in the | oop DO
Propagate effect-based constraints in P.
IF any transition in P is not feasible THEN
Renove P fromthe | oop.

/ * calculate CAN_FOLL®@ table using effect-based constrairits
FOR each path P in the | oop DO
IF Pis a continue path THEN
FOR each path Qin the | oop DO
Propagate effect-based constraints
at end of P through Q
IF any infeasible transition in Q THEN
CAN_FOLLON P][Q = FALSE.
E

CAN_FOLLOWP][Q = TRUE.
ELSE

FOR each path Qin the | oop DO
CAN_FOLLON P] [= FALSE.

/ * calculate REACH_SELF table using CAN_FOLWQable */
FOR each path P in the | oop DO
| F CANFOLLON P][P] THEN
REACH SELF[P] = 1.
ELSIF P is not a continue path THEN
REACH SELF[P] = 0.
ELSE
Recursively inspect the CAN FOLLOWt abl e
to deternmine the shortest nunmber of paths
to be traversed before P can be reached.
Zero represents P cannot reach itself.

| * procesnceconstraints*/
FOR each path P in the | oop DO
I F a once constraint was found on
a transition in P THEN
P->once = TRUE.
ELSE
P- >once = FALSE.
P->nonuni giters = 0.
FOR each block B in P DO
IF B's other outgoing transition has a
once constraint THEN
P->nonunigiters += 1.

/ * initialize possible iteration path information, whéte
represents the total loop iteratiorig
FOR each path P in the | oop DO
P->range = [.
IF Pis a continue path THEN
P->range = P->ranged [1..N-1].
IF Pis an exit path THEN
P->range = P->ranged [N..N].

ELS

/ * constrain possible iterations using iteration-based constraihts
FOR each path P in the | oop DO
Propagate iterati on-based constraints in P.
P->range = P->rangen
iteration range at end of P.
| F P->range = O THEN
Rermove P fromthe | oop.

/ * constrain iterations of each path that cannot reach itself
Construct a DAG D representing the execution
order of paths P where REACH SELF[P] ==
FOR each nonleaf path P in D, where P is not
processed until all paths it can reach

are processed DO
S = first inmmedi ate successor of P.
P->range. |l ow = S->range.low - 1.
P- >range. hi gh = S->range. high - 1.
FOR each renmining path S that is an
i medi at e successor of P in D DO
IF S->range.low - 1 < P->range. | ow THEN
P->range.l ow = S->range.|low - 1.
I F S->range. high - 1 > P->range. hi gh THEN
P- >range. high = S->range. high - 1.
/ * calculate unique iterations for each path
FOR each path P in the | oop DO
P- >uni grange = P->range
FOR each path Q where @ P DO
P- >uni grange = P->uni grange- Q >r ange.
/* assign minimum number of iterations for each path
FOR each path P in the | oop DO

P->miniter =
nunber of iterations in P->uniqrange.
P->mniter -= P->nonuniqgiters.

/ * assign maximum number of iterations for each path
FOR each path P in the | oop DO
| F REACH_SELF[P] = 0 OR P->once THEN
P->maxiter = 1.
ELSE
P->maxiter =
nunber of iterations in P->range.
| F REACH_SELF[P] > 1 THEN
P->maxiter =
cei |l (P->maxiter/ REACH SELF[P]).

/ * assign each path to a set of paths
s = 0.
FOR each path P in the | oop DO
IF P->range n with existing set i THEN
P->set = i;
ELSE
P->set = ++s;

Figure 6: Algorithm for Calculating Path Iteration Information in Table 1

{2F,5J} {2F,5J} {2F,53} Current || Riths That Can Immediately Follow
{2F,53} {2F,53} {2F,53} invalid Pah in
Loop 1 2 3 4 5
Figure 7: Path 4 in Figure 3(d) Is Not Feasible 1 N N N N N
The maximum number of iterations for a path can g :\(‘ H “ H H
sometimes be constrained by effect-based constraints. 4 N Y N N Y
Consider paths 1 and 2 in Figure 2(d), whicheafepaths 5 N]Y] Y]Y [N
because theend with a transition to block 10 that is out- Table 2: Can Folle Matrix for Figure 2

side the loop.Value dependent constraint 5 in Figure 2(c)
indicates that when block 8ji t =1;) in Figure 2(b) is
executed, block 8 qui t!=0) will jump to block 10.
When the timing analyzer detects that an effect-based con
straint can reach the end of the path without nullification,
the timing analyzer propages the constraint through all
the paths of the loop to see if it can reach the branch iden
tified in the constraint. Figure 8 illustrates that the con-
straint causing the branch in block 8jaumnp (8J) reaches
the end of path 3 and that paths 2, 3, 4, and 5 cannot fol
low path 3 since therequire a &ll through from block 8 X : .
to block 9. Figure 9 shwes that the constraint for branch 4 executing. Ifa path cann(_)t d|rectly. folle itself, it can
eventually be reached a@n, then it cannot xecute on

reaching the end of paths 4 and 5 from Figure 2 contains . .) -
the opposite outcome of branch 4 in the same pakiis evay iteration of the loop.If the algorithm indicates that

causes these paths not to be taken on thieloep itera- the K iterations required to bexecuted before @ontinue

tion. Finally data flv analysis vas used to determine path can reach itself is greater than one, then it is assigned

which effect-based constraints outside the loop are guaranf:’l meximum number of iterations froweil(R/K), whereR

teed to reach the entry of the loopirst instance, path 4 IS ghg p]?'szglble nzu(rjnber of |t|erat|cins for_ the ptﬂﬁahs 4 d
of Figure 2 cannot bexecuted on the first iteration due to and 5 of Figure 2(d) can onlixeeute again on the secon

. : iteration after it last xeecuted. Thuspaths 4 and 5 are
constraint §J} reaching block 4 from block 1. assignecteil(999/2) ancteil(1,000/2), respeatély, or 500

{8F} {8F,9J} {2F,8J,93} {83} ; ; ;
8F) (8F9) [2F8F.90) (2F83.90) maximum iterations.

path 3: [8}— o] (2] (3] ~7] The maximum number of iterations can sometimes be
EA) S constrained by analyzing iteration-based constraiftse
T paths 2,3,4,5: header block is assigned a range that spans all iterations of
Figure 8: Paths 2-5 Cannot Fail®ath 3 in Figure 2(d) e loop. This range is propagated through each path.
When a transition is encountered that has an iteration-

path 4: {8F {8F,9J} {2J,8F,9J} {2J,43,8F,93} {4J,8F} : : Sy
{8F§ }{SFm} 2I8FS)) [IAFSFO) | 123.41,8F.9)) based constraint, the range in the constraint is intersected

After the matrix is completed, it is examined to see if
restrictions on the number of iterations associated with
each path can be applieth general, the timing analyzer
examines the matrix for each path to determine the$¢
number of other paths required to bevieraed before the
current path can bexecuted agin. If the algorithm indi-
cates that a path cannot reach itself, then the path will be
assigned a maximum of one iteratiddahs 1, 2, and 3 of
Figure 2(d) are all assigned a maximum number of one
iteration because thiecannot reach themselves after

4] 5 with the range in the current block in the paffigure 10

. illustrates hav iteration-based constraints are progiagl
T N AT e R e I through path 4 in Figure 4(d). The transition from block 3
[6] (i <=249) to block 4 results in the range [1..1000] being

intersected with [251..1000], which is the range specified

in constraint 5 of Figure 4(c). The transition from block 4

(i >=750) to block 5 results in the current range of
A Can Pllow matrix is constructed by the timing ana- [251..1000] being intersected with [1..750Thus, path 4

lyzer that indicates for each path the set of paths that ca§an only possiblyxecute in iterations [251..750].

legdly follow it on the next iteration. If a constraint from

one path can rea_c_h its associated branch in other path [1..1000] . [251.1000] - [251.750] . [251.750] . [25L.750

without being nullified, then such paths thatvédansi- 6]

tions that do not satisfy the constraint are marked aslille Figure 10: Iteration-Based Constraints

in the matrix. No paths are allowed to folloa path that Propagated Through Path 4 in Figure 4

only eits. Table 2 depicts the matrix of paths that can

legdly follow each path in Figure 2(d).

Figure 9: Paths 4 and 5 Cannot Immediately
Follow the Same Path in Figure 2(d)

o1-1000] [1..1000] [251..1000] [251.750] [251.750] [251..750]

If a path can only bexecuted in a gien range of itera- iterations in the set’'range. &ble 3 depicts anxample
tions, then the maximum iterations in which that path canwith 4 paths and 2 set&ach set of paths can onlyeeute
execute cannot be greater than the number of iterations ira maximum of 50 iterations. If only the maximum itera-
the range.A path with no possible iterations is infeasible tions of each path was used, them faths from a single
and is remweed from the list of paths by the timing ana- set could be selected and a significardr@stimation may
lyzer. Note that the range of a path that only exits is occur when the paths in one set require yrmaare g/cles
always the last iteration of the loop, which is the case for than the paths in the other set. Our approach has limita-
paths 1 and 2 of Figure 2(dLikewise, if path A cannot tions. Considenf a fifth path «isted in this gample
reach itself and can only be immediately followed by a which could &ecute in am iteration of the loop. All of
different path B, which has a range [Bmin..Bmax], then the loop paths would be assigned to a single set, which
path As range cannot span more than [Bmin-1..Bmax-1]. could result in an conseative iming prediction. Fortu-

For instance, Table 2 shows that path 3 of Figure 2(d)nately inequality tests (<, <=, >=, >) on loop induction
always leads to path 1, which has an iteration range ofvariables do not occur frequently.
[1001..1001]. Thuspath 35 possible range of iterations is

[1001-1..1001-1] or [1000..1000] for WCET analysis. pan | POSSDIe | Min | Max | Set

The minimum number of iterations of a path is calcu- 1 [1..50] 0 50 1
lated by simply subtracting the possible range of iterations 2 [1..50] 0 50 1
of all other paths in the loop from the possible range of j Ei::igg} 8 ‘28 g

iterations for the current path. The result is the unique set
of iterations for the current path, which is the minimum Table 3: Example lllustrating Use of Path Sets
number of times that the path has xeaeite. Therds one
exception to this rule. Consider path 1 in Figure 4(i3.
maximum number of iterations is one due to constraint 3
(2J oncg in Figure 4(c). We d not reduce the range of
unique iterations of the other pathat o indicate that
one iteration in these paths may not be unique.

Figure 11 shows he the WCET loop analysis algo-
rithm uses this informationLet N be the maximum num-
ber of iterations and be the number of paths in a loop.
The DO-WHILE will process at most the minimum Igf
or 2P total iterations since the first misses and first hits in
each path can miss or hit at most once, resma)cili

4.2. Usingthe Constraints in Loop Analysis The algorithm selects the longest path on each iteration

The authors decided to use the minimum and maximumOf the loop from the set of paths that can still possibly
execute. Inorder to demonstrate the correctness of the

iterations associated with each loop path to obtain tighter laorith t shothat th th f .
WCET loop predictions without restricting the order in aigorithm, oné must s at no other path for awgn

which these paths areatuated. Therawere sgeral rea- iteration of the loop will produce a longer worst-case time
sons wly this approach was used. First, our approach Sup_than that path selected by the algorithm. Descriptions of
’ how the caching categorizations and pipeline information

ports paths that carxecute at most once, but inyaitera- . :

tion. Considempath 1 of the loop in Figure 4. This situa- are used in 'the loop analysis and c.orrectnegemfents

tion may occur frequently in numerical applicatiorf=or a}bout seleptmg thg longest path using the;segana-

instance, special conditions are often checked for the diagElons and qurmaﬂqn he teen gven in previous work

onal elements of a matrix (diagonal systentgcond, our .[9’ 7l Thus,. 't. remains to be slo that each time a path .

approach deals with paths thateakependencies on other IS se!ected, Itis rgally chosen fro.”? the paths that'can still

paths, such as paths 4 and 5 in Figuré-ially, our tim- possibly ae.acute'gven that the minimum and maximum

ing analyzer often calculates avesage WCET for a loop number of iterations for each path qnd sgt were ac'cu.rately
estimated. Apaths rumber of required iterations is its

using an @erage number of iterations when the number of =~ . : :
minimum iterations to be performedThe nonrequired

iterations can vary depending on the value of a outer Ioopt i ¢ th is the diff bet i ;
counter variable [5]Using our approach allows the calcu- ' atons ot a path is the difference between [is maximum

lation of a safewrage WCET since the longest paths are and minimum number of iterationsh path is 'f"“"?‘”y
selected first in our loop analysis algorithm. chosen in the IF-THEN-ELSE construct at theibaing

of the DO-WHILE loop in Figure 11.f the iterations

In addition, we calculate sets of paths, where the rang&emaining is greater than the required iterations left to be
of iterations of the paths in one set do neérlap with

other sets. Each path is assigned to a single set of paths, ! If the number of paths within a loop exceeds a reasonable limit,
We e the maximum number of iterations that can bethen the loop control fie is partitioned to reduce the timing analysis
exeuted by a set of paths, which is the number of comPlexity [11]

[* calculate required and nonrequired path informatidn

req_iters = 0.

FOR P = each path in the | oop DO
P->req_iters = P->min_iters.
P->nonreq_iters =

P->max_iters - P->min_iters.
req_iters += P->nmin_iters.

nonreq_iters =N - r eqg_iters.

| * process all iterations of the loop/
iters_handled = 0.

pi peline_info = NULL.

WHI LE iters_handl ed <N DO

| * process iters while longest path has a first miss or first hit
DO

IF req_iters <N - i ters_handl ed THEN

Find | ongest path P where

P->req_iters+P->nonreq_iters > 0 &&

P->set.maxiters > 0.
ELSE
Find | ongest path P where
P->req_iters > 0 &&
P->set.naxiters > 0.

Concatenate pipeline_info with the current
wor st - case uni on of executabl e paths.

iters_handl ed += 1.
IF P->req_iters > 0 THEN

P->req_iters -= 1.
regq_iters -= 1.
ELSE
P->nonreq_iters -= 1.
nonreqg_iters -= 1.
P->set.maxiters -= 1.

WHI LE encountered a first mss or first hit

AND iters_handled <N

[* Efficiently process iterations for the current longest path

IF iters_handl ed <N THEN
nonreq_iters_to_do =
m n(nonreq_iters, P->nonreq_iters,

P->set.nmexiters - P->req_iters).

iters_to_do =

P->req_iters + nonreqg_iters_to_do.
reg_iters -= P->req_iters.
nonreq_iters -= nonreq_iters_to_do.
P->set.naxiters -= iters_to_do.
P->req_iters = 0.

P->nonreqg_iters -= nonreq_iters_to_do.
Concatenate pipeline_info iters_to_do
times with current worst-case union.

of nonrequired iterations to be processed for a path is
never alowed to exceed the number of nonrequired itera-
tions remaining in the loop.

5. Results

Table 4 depicts programs where the worst-case paths
were constrained by dependencies on data valueslto e
ate the dectiveness of detecting and exploitinglue-
dependent constraintd’he Sumoddeversumnegpqsand
Summidall programs correspond to the examples illus-
trated in Figures 2, 3, and 4, respedti. The Expintpro-
gram performs more computation when a loapiable is
equal to a loop-weriant value on a single loop iteration.
The Frenel program takes different paths on the odd and
even geps in the ealuation of the seriesThe Gaujacpro-
grams &ecutes different paths depending upon the speci-
fied iteration of a loop.The Sprsinprogram does not per
form a computation for a single column (the diagonal ele-
ment) of each v of a matrix. TheSumminmaxyrogram
determines the minimum and maximum of each corre-
sponding pair of elements in &wectors and these tw
tests are logically correlatedThe first four programs in
Table 4 can be found in the second edition ofNhueneri-
cal Recipes in @ext [12].

The results of wauating these programs are shown in
Table 5. For each program a direct-mapped instruction
cache configuration containing 8 lines of 16 bytessw
used. Itwas assumed that a cache hit required opgle; a
cache miss required terydes, and all data cache refer
ences were assumed to be hits. This is the same cache
configuration that ws used in previous timing analysis
studies [9, 7, 5]. The Observed Cyclesepresent the
cycles required for anxecution with worst-case input

iters_handled += iters_to_do. 2 .
] . . data” The number of cycles @& measured by enhancing a

Figure 11: WCET Loop Analysis Algorithm traditional cache simulator [13] to perform pipeline simu-
processed (sum of each pathinimum iterations not yet lation. TheValue IndependerandVelue Dependent Esti-
processed), then the path selected is chosen frgrpaain mated Cyclesndicate the number of cycles estimated by
that has apiterations that can be performe@therwise, the timing analyzer without and with usingalve-
the iterations remaining must be equal to the required loogfependent constraints, respeelyy. An Estimated Ratids
iterations remaining and the path must be selected onlyheEstimated Cycledivided by theObserved Cycles
from paths that hee remaining required iterations left. The results she that exploiting value-dependent con-
The code after the DO-WHILE in the algorithnfigéntly straint information in a timing analyzer can significantly
uses repeated instances of a path that has no first misses @ghten WCET predictions. The progranienel and
first hits and thus will remain the longest path since its Sumoddeveaxecute alternating paths in a loop depending
worst-case behavior cannot changkhis code processes upon a flag ariable. Oneof the alternating paths has a
the remaining required iterations of the path and the mini-glightly longer WCET than the other path in both of these
mum of the remaining nonrequired iterations of the path,
the set of paths to which the path belongs, or the entire 2 We rrodified the desired relat eror of the Expintand Gaujac
loop. Thereforethe paths that can still possiblyeeute is programs so the_/vould not comerge arly, which allowed us to obtain
accurate since agi path's required iterations are\aéys an accurate maximum iterations for a loop and worst-case input data for

. . . . the Observed Cycleis Table 5.
processed before its nonrequired iterations and the number

Name Descriptiomr Emphasis
Expint Computesin exponential integral.
Frenel Computesoncomple Fresnel integrals.
Gaujac Computethe abscissas and weights of a 10 point Gauss-Jacobi quadrature formula.
Sprsin Comerts a 20x20 integer matrix into row-inxksl parse storage mode.
Summidall Sumshe middle half and all elements of a 1,000 integer vector.
Summinmax | Sumthe minimum and maximum of the corresponding elements@Li®d0 integer vectors.
Sumngpos Sumshe ngaive, positive, and all elements of a 1,000 integer vector.
Sumoddeen | Sums the odd andven dements of a 1,000 integer vector.
Table 4: Test Programs That Are Constrained by Dependencies on Data Values
WCET Timing Prediction Results Seconds Required for Analysis
Name Obsenred Value Independent | Value Dependent|| Preious Current | Time
Cveles Estimated| Estim.| Estim. Estim.|| Analysis | Analysis Ratio
y Cycles Ratio | Cycles Ratio Time Time
Expint 58,397 | 1,292,086| 22.126 58,471 | 1.001| 0.382 0.300 | 0.785
Frenel 47,749 48,887 1.029 47,783 1.001 0.322 0.272 0.845
Gaujac 786,386| 797,116 1.014| 794,334| 1.010| 2.737 1.845 | 0.674
Sprsin 28,339 28,608 1.009 28,404 1.002 0.107 0.113 1.056
Summidall 15,340 18,090 1.179 15,341 1.000 0.060 0.052 0.867
Summinmax 16,080 17,080 1.062 16,080 1.000 0.067 0.050 1.034
Sumnegpos 11,067 13,068 1.181 11,068 1.000 0.050 0.037 0.746
Sumoddeen 15,093 16,102| 1.067 15,099 1.000 0.038 0.038 1.000
Average 122,306 278,880 3.708| 123,323 | 1.002|| 0.470 0.338 | 0.876

Table 5: WCET Prediction and Analysis Overhead Results of the Test Programs

programs. Théiming analyzer was able to determine that dimensions. Hwever, the opposite situation occurs in
longer path of each program could only becaited for Expint which has a higher WCET associated with the path
one half of the iterations, which reduced therestima- where the loop variable is equal to the looyaiant
tions. The Summinmaxand Sumnegpogprograms hee vaue. Thus,exploiting this value-dependent constraint
logically correlated branches and the timing analyzas w significantly reduces the WCETverestimation ofExpint
able to detect for each program that the longest path w
?nfeagible due to this cprrelation. T_he compiler d,eteCtedprograms in the current version of the timing analyzer
iteration-based constraints for ti&aujac and Summidall were due to tw reasons. Firstpccasionally consea

programs indicating that certain paths could only be ey categorized instructions hit in cache due to the order

executed in specific iterations. There was littee®sti- 14ins were xecuted because of dependencies on daka v
mation in the previousersion of the timing analyzer for o5 |naccuraciealso resulted from instruction caching
Gaujacsince these iteration-based constraints were assOCixatgyorizations that change between loopele and their

ated with paths that were not in the most deeply neSteqnteraction with the pipeline analysis [7].
loop of the program.However, Summidals iteration-
based constraints were for the most frequentigcated
portion of that program and a significanerestimation of
WCET was #oided. Finally the compiler detected an
iteration-based constraint i8prsin and Expint that was

The slight remaining werestimations for seeral of the

Table 5 also showsxecution time in seconds required
to male predictions for the test programs for the \poeis
(value-independent) and currentaliwe-dependent) er-
sions of the timing analyzefThe times were obtained by

associated with an equality test between a loapable ~ calculating for each program theeeage of the elapsed
and a value that wasvariant for that loop. This means {imes of ten recutions of the timing analyzer on a Ultra-
that the loop could onlyxecute a path associated with the SFARC. Thedecrease in elapsed time for the analysis w
equality transition from the block containing the test for a due to tvo reasons. Firstve modified the timing analyzer

single iteration of the loopFor Sprsinthis path required a {0 &oid redundant analysis of a path when its caching
smaller WCET than when the loopniable was not equal Peha&ior has not changedSecond, the e approach does

to the loop-ivariant \alue. Thusthe aerestimation by ~ Not analyze a path in avgh iteration when the pathas
the praious version of the analyzer was quite small and infeasible, its maximum iterations had beehausted, or
would decrease when applied to arrays withgéar only required iterations of other paths weveailable.

6. Future Work

There are additional aspects of usirgjue-dependent [1]
constraints in timing analysis that can beestigated.
First, we intend to enhance the timing analyzer to use
value-dependent constraints when estimating best-cas?z]
execution times (BCETSs).In fact, we beligee tat \alue
dependeng analysis will significantly tighten BCET pre-
dictions since these predictions often suffer frormgdar
underestimations due to dependencies on dsdtees. br 3]
instance, the BCET prediction for a programel&prsin
that only performs calculations for the off-diagonal ele-
ments of a matrix (when nested locgriables hee dffer-
ent values) suffers from a significant underestimation [4]
since there is only one diagonal element for eaah ro
Second, man value-dependent constraints were not
detected due to function calls separating effects and the
branches d#écted. Thesevalue-dependent constraints
could be detected using interprocedural analysis.

7. Conclusions

This paper has described vinovalue-dependent con- [6]
straints were automatically detected by a compiler and
exploited by a timing analyzerwWe described techniques
to efficiently detect constraints from effects causing the [7]
outcome of a branch to become known and ranges of itera-
tions associated with branch outcomeEhis constraint
information could be used by a variety of timing analyz-
ers, including those that use an ILP salW\e presented [8]
algorithms that she how vdue-dependent constraints
were used in a non-ILP based timing analyzer to constrain
the minimum and maximum iterations associated with
each path in a loop and \mahese path constraints were [9]
used in WCET loop analysigrinally, we siowed results
from a number of test programs whosersi-case paths
were constrained by dependencies on dataes. These
results indicate that detection anpkitation of \alue-
dependent constraints can significantly tighten WCET tim-
ing predictions. Furthermore, the approaches used for
detection and exploitation of value-dependent constraints
were shown to be quite efficient and are fully automated,[11]
requiring no interaction from the user.

[10]

8. Acknowledgements [12]
The authors thank Jack Davidson for ailog vpoto be

used for this researchJohn MellorCrummey, Andreas

Ermedahl, Mikael Sjodin, and the anonymousiewers [13]

provided se&eral helpful suggestions that immenl the
quality of the paperThis work was supported in part by
NSF grant EIA-9806525.

-10-

9. Refelences

Y. S. L, S. Malik, and A. Wolfe, “Efficient Microarchi-
tecture Modeling and Path Analysis for Real-Time Soft-
ware,” Proceedings of the Sixteenth IEEE Reiatd Sys-
tems Symposiunpp. 298-307 (December 1995).

G. Ottosson and M. Sjodin, “Worst Casedgxtion Tme
Analysis for Modern Hardware ArchitecturesACM
SIGPLAN Workshop on Langys, @mpiler and Tools
for Real-Time Systemgp. 47-55 (June 1997).

A. Ermedahl and J. Gustafsson, “Deriving Annotations
for Tight Calculation of Egcution Tme,” Proceedings of
European Confemce on PBrallel Processing pp.
1298-1307 (August 1997).

T. Lundqvist and PStenstrom, “Integrating &h and
Timing Analysis using Instruction-kel Simulation
Techniques,”ACM SIGPLAN Workshop on Langges,
Compiles, and Tools for Embedded Systerpp. 1-15
(June 1998).

C. A. Healy M. Sodin, V. Rustagi, and D. B. Whalje
“Bounding Loop lIterations for ifming Analysis, Pro-
ceedings of the IEEE Real-Timechnolgy and Applica-
tions Symposiumpp. 12-21 (June 1998).

F. Mueller and D. B. Whalle “Avoiding Conditional
Branches by Code ReplicatibrRroceedings of the SIG-
PLAN '95 Conference on Bgramming Languge
Design and Implementatiorpp. 56-66 (June 1995).

C. A. Healy D. B. Whalley, and M. G. Harmon, “Inte-
grating the Timing Analysis of Pipelining and Instruction
Caching,” Proceedings of the Sixteenth IEEE Reahd
Systems Symposiump. 288-297 (December 1995).

M. E. Benitez and J. WDavidson, ‘A Portable Global
Optimizer and Linkr,” Proceedings of the SIGPLAN ’'88
Symposium on Bgramming Languge Design and
Implementation pp. 329-338 (June 1988).

R. Arnold, FE Mueller, D. Whalley, and M. Harmon,
“Bounding Worst-Case Instruction Cache Performdnce,
Proceedings of the ifieenth IEEE Real-Time Systems
Symposiumpp. 172-181 (December 1994).

L. Ko, C. Healy, E. Ratliff, R. Arnold, D. Whallg, and

M. Harmon, “Supporting the Specification and Analysis
of Timing Constraint$, Proceedings of the IEEE Real-
Time Echnolgy and Applications Symposiumpp.
170-178 (June 1996).

NaghamM. Al-Y aqoubi,Reducing Timing Analysis Com-
plexity by Partitioning Control FlowMasters Project,
Florida State Uniersity, Tallahassee, FL (1997).

W. H. Press, S. A. &ukolsk, W. T. Vetterling, and B. P
Flannery,Numerical Recipes in C: The Art of Scientific
Computing Second EditionCambridge Uniersity Press,
New York, NY (1996).

J. W. Davidson and D. B. Whallg “A Design Eniron-
ment for Addressing Architecture and Compiler Interac-
tions,” Microprocessos and Microsystems 15(9) pp.
459-472 (Neember 1991).

