Bounding Loop Iterations for Timing Analysis

Christopher A. Healy
Mikael Sjödin
Viresh Rustagi
David Whalley
Motivation: The Problem

• Accurate timing analysis requires knowing minimum and maximum bounds on loop iterations.

• Current timing analysis techniques require user to enter this information.
 — tedious, error prone
 — code generation strategies
Motivation: Our Goals

• Less Work for the User
• More Reliable Bounds on Loop Iterations
• Tighter Bounds on BCET / WCET
• Continue to Give Fast Response to User
Steps to Bound Number of Iterations

- Identify Iteration Branches
- Calculate When Each Iteration Branch Changes Direction
- Determine Range of Iterations When These Branches Can Be Reached
- Calculate Maximum and Minimum Number of Iterations
Identifying Iteration Branches

These are branches that:

• have a transition to a basic block outside the loop, \textit{or}

• have a transition to the header, or to a block that is always followed by the header, \textit{or}

• can conditionally reach blocks containing different iteration branches
SPARC Instructions for Example Loop

```
r[10]=0;
r[9]=1;
r[11]=HI[_somecond];
PC=L18;
```

L19

```
IC=r[9]?75;
PC=IC<=0,L21;
```

L17

```
PC=RT;
```

L21

```
IC=r[9]?300;
PC=IC>0,L17;
```

L18

```
IC=r[10]?100;
PC=IC>=0,L17;
```

```
1
r[11]=HI[_somecond];
PC=L18;
```

```
2
IC=r[9]?75;
PC=IC<=0,L21;
```

```
3
IC=r[8]?0;
PC=IC==0,L21;
```

```
4
PC=RT;
```

```
5
IC=r[9]?300;
PC=IC>0,L17;
```

```
6
r[10]=r[10]+1;
r[9]=r[9]+3;
```

```
7
IC=r[10]?100;
PC=IC>=0,L17;
```

```
8
PC=L19;
```
Precedence Relationship Between Iteration Branches

The diagram shows the precedence relationship between iteration branches. Node 7 has a break branch leading to node 2, which in turn has break branches leading to nodes 3 and 5. Node 3 has a break branch, and node 5 has branches for continue and break.
Determining Iterations When Iteration Branches Can Be Reached

• Associate a range of iterations to each node and edge in the DAG.

• Nodes
 — head of DAG: range $[1..\infty]$
 — other nodes: range is union of ranges of incoming edges

• Edges from an arbitrary node i
 — If branch i is known, edges correspond to $[1..N_i - 1]$ and $[N_i..\infty]$. Intersect each edge range with node i’s range.
 — If branch i is unknown, both outgoing edges are assigned same range as i.
DAG of Branches with Ranges of Iterations

- Node 7: \([1..\infty]\) -> [1..100] -> [101..\infty]
- Node 2: \([1..100]\)
- Node 3: \([26..100]\) -> [1..25]
- Node 5: \([1..100]\) -> continue
- Node 1: \([1..\infty]\)
- Node 0: \([1..100]\) -> break
DAG of Iteration Branches with Maximum and Minimum Iteration Values
Example Loop

```c
int sumarray(a, m)
int a[], m;
{
    int i, sum;
    extern int n;

    sum = 0;
    valuebnd m[10:100] n[20:80]
    for (i = 1; i < m+n; i++)
        sum += a[i];
    return sum;
}
```

\[
N = \left\lfloor \frac{\text{limit} - (\text{initial} + \text{before})}{\text{before} + \text{after}} \right\rfloor + \text{adjust} + 1
\]

\[
= \left\lfloor \frac{m + n - (1 + 1)}{1 + 0} \right\rfloor + 0 + 1
\]

\[
= m + n - 1
\]
Example of Nested Loop

(a) Source Code

\[
\begin{align*}
&\text{for } (i = 1; i < 99; i++) \\
&\quad \text{for } (j = i+1; j < 100; j++) \\
&\quad \quad \text{...}
\end{align*}
\]

(b) Corresponding SPARC Instructions

\[
\begin{align*}
\text{L17} & \quad r[10]=r[11]+1; \quad 2 \\
\text{L21} & \quad \ldots \quad 3 \\
& \quad r[10]=r[10]+1; \\
& \quad IC=r[10]?100; \\
& \quad PC=IC<0,L21;
\end{align*}
\]

\[
\begin{align*}
&\quad IC=r[11]?99; \\
&\quad PC=IC<0,L17;
\end{align*}
\]

\[
\begin{align*}
\text{...} & \quad 5
\end{align*}
\]
Number of Iterations

— f is the number of iterations of the inner loop on the first iteration of the outer loop,

— d is the difference in the number of inner loop iterations for each successive iteration of the outer loop (note that d may be negative), and

— n is the number of times that the outer loop iterates

\[N_{avg}(f, d, n) = \frac{f + f + (n - 1)d}{2} \]

In our example, we obtain the average number of iterations to be:

\[N_{avg}(f, d, n) = \frac{98 + 98 + (98 - 1)(-1)}{2} = 49.5 \]
Incorporating Number of Iterations

• Best Case
 — Absolute minimum number of iterations (1) is used to compute BCET of the inner loop.
 — Average number of iterations (49.5 ---> 49) is used for computing BCET in context of ancestor nodes in the timing tree.

• Worst Case
 — Absolute maximum number of iterations (99) is used to compute WCET of the inner loop.
 — Average number of iterations (49.5 ---> 50) is used for computing WCET in context of ancestor nodes in the timing tree.
Future Work

• Nonconstant Increment or Decrement of Counter Variable

• Multiple Nested Loops Depending on Outer Counter Variables

• Detect Infeasible Paths
Conclusion

• Bounding Number of Loop Iterations
 — Loops with Multiple Exits
 — Nonconstant, Loop-Invariant Number of Iterations
 — Dependence on Outer Loop Counter Variable

• Benefits
 — Less Work for the User
 — More Reliable Predictions
 — Tighter Bounds on WCET and BCET