Bounding Loop Iterationsfor Timing Analysis

Christopher Hea@ Mikael Sj('jdinJr Viresh Rustaéi David WhaIIe)F

Abstract a program, the bounds fowery loop in the program must

Static timing analyzer reed to know the minimum and b€ specified, which is error prone and tedious for the user
maximum number of iterations associated withhelaop Alternatively, one could specify this information as asser

in a real-time pogram so &curate timing pedictions can ~ tions in the source cgde to peat repeated specificatic_)ns

be obtained. This paper describes three complementary Of the same information [7, 8, 9However, there are still
methods to support timing analysis by bounding the num-S&éral disadantages. Firstthe user is still required to
ber of loop iteations. Frst, an algorithm is msented Write the assertions. Second, there is no guarantee that

that determines the minimum and maximum number ofthe user will specify the correct minimum and maximum

iterations of loops with multiplexits. Secondthe loop- iterations. Thisproblem may easily occur when a user
invariant variables on whitthe number of loop itations ~ changes the loop, but forgets to update the corresponding
depends @ identified for whib the user can mvide min- assertion. Also,code generation strategies, such as

imum and maximum valueginally, a method is given to whether to place instructions for the loop exit condition
tightly predict the execution time of loops whose numbercode at the beginning or end of the loop, may cause the
of iterations is dependent on counter variables of outer 'umber of loop iterations to vary by one iteration.
level loops. These methods have been successfully intefinally, compiler optimizations, such as loop unrolling,
grated in an gisting timing analyzer that predicts the per May affect the number of times a loop iteratg#ibiting
formance for optimized code on a machine thatlats different code generation strategies or compiler optimiza-
cadhing and pipelining The tesult is tighter timing analy- tions to more easily estimate loop bounds would sacrifice

sis predictions and less work for the user. performance, which is quite undesirable.
) It would be more desirable toVethe compiler auto-
1. Introduction matically and dfciently determine the bounds for each

.)] loop in a program when possibl&ome work has been
To be @le to predict the best-caseeeution times recently accomplished to determine the number of loop
(BCETSs) and wrst-case xecution times (WCETS) of a jierations automatically using abstract interpretation [10].

program, one must kmothe number of iterations that can hile this technique is quite powerful, it often results in
be performed by the loops in the progralinder certain gjgnificant analysiswerhead.

conditions, such as a loop with a single exit, yneom- Thi d ibes th hes th .
pilers statically determine the exact number of loop itera-. Is paper describes three approaches that support tim-

tions [1]. Applications for determining this number Ing analysis b_y boynding the number of Ic_)op iterations.
include more dicient implementations of loop unrolling First, an algorithm is presented that determines a bounded

[2], software pipelining [3], and exploiting parallelism number of iterations for loops with multiplits. Sec-

across loop iterations [4]. When the number of iterationson‘,j’ the user can prile information fqr Ioo_p—marlant
cannot be xactly determined, it would be desirable in a variables on which the number of loop iterations depends.

real-time system to kmo the lower and upper iteration Finally, a rretho_d IS gren to accurately predict thev&r-.
bounds. Thesbounds can be used by a timing analysis age number of iterations for loops whose number of itera-

tool to more accurately predict BCETs and WCETSs. tions can ary dependmg upon the values of countai-v
ables of enclosing outer loops. All three of these

Mary existing timing analyzers require that a user approaches are efficiently implemented and result in less
specify the number of iterations of each loop in the pro-\york for a user The last approach also results in tighter
gram. Thisspecification may be requested intena¥i {iming analysis predictions. These approaches were
[5, 6]. Thus, each time the timing analyzer igoked for jmplemented by modifying thepo compiler [1] to ana-
lyze loops and this loop analysis information is passed to
a iming analyzer [11, 12, 13] to predict performance.

OComputer Science Department, Florida Statevéisity, Talla-
hassee, FL 32306-4530, phone: (850) 644-3506, e-mail: {hehll-
ley}@cs.fsu.edu

+ Department of Computer Systems, Uppsalavetsity, Swe- 2. Iterationsfor Loopswith Multiple Exits
den, phone: +46-18-4717605, e-mail: mic@docs.uu.se

* Cbjectime, Inc., 226 Airport &tkway #480, San Jose, CA In this section we present a method to determine a

95110, phone: (408) 441-1124, e-mail: vrustagi@objectime.com - . .
P (408) 9i@obj bounded number of iterations for natural loops with

multiple its. (1) First, the conditional branches within

iteration bounds for loops with multipleies. Figure2(b)

the loop that can affect the number of loop iterations aredepicts the RTLs, representing AFC assembly instruc-

identified. (2)Next, we calculate when each of the identi-

tions, that thevpo compiler has generated for this func-

fied branches can change its result based on the number ¢&ibn. (Nodelay slots hee been filled in order to simplify

loop iterations performed. (3) Afteards, the range of

the xample.) Figure(c) explains the RTL notation used.

loop iterations when each of these branches can béhe loop consists of basic blocks 2, 3, 5, 6, 7, andi&

reached is determined(4) Finally, the minimum and
maximum number of iterations for the loop is calculated.

2.1. ldentifyingthe Iteration Branches

Some terms are modefined to &cilitate the presenta-
tion of the methods in this papeA more complete
description can be found elgkere [14]. A basic blo& is
a £quence of instructions with a single entry point at the
begginning and a single exit point at the endl. natural
loop is a loop with a single entry poinfThe headerof a
natural loop is the single basic block where the loop is
entered. Tansitions from within the loop to the header
are calledbadk edges Block A dominatesblock B if
evay path from the initial node of the controlilaggraph
to B has to first go through AFor instance, the header
block of a natural loop dominates all other blocks in the
loop. Likewise, block Bpostdominatesblock A if all
control paths from block Aventually lead to block BA
block alvays dominates and postdominates itselfle
define the number of loop iterations as the number of
times the header isxecuted once the loop is entered [11].

An iteration branchin a loop is a conditional transfer
of control where the choice between theotautgoing
transitions can directly or indirectly affect the number of

loop iterations. The iteration branches in the loop that can

directly affect this number are branches thatehd) a
transition to a basic block outside the loop or (2) a transi-
tion to the header block of the loop or to a block that is
postdominated by the headdteration branches that can
indirectly afect the number of loop iterations are those
branches that can conditionally reach blocks containing
different iteration branchedrigure 1 shows an algorithm
to calculate the set of iteration branches I for a loop.

I={}
DO
FOR each block B in the loop LDO
I F (Bhastw succs S1 and §2 AND (B 1) THEN
IF (S10L) OR (S20L) OR
(S10PostDom(Header(L)) OR
(S20PostDom(Header(L)) OR
(there exists J,KI1 AND J# K AND
S10PostDom(J)AND
S2 OPostDom(K) THEN
I=10B
WHI LE (ary change to)

Figure 1: Finding the Set of Iteration Branches for a Loop

Figure 2(a) contains the code for g 10 function that
will be used to illustrate the algorithm for calculating loop

header of the loop is block 7. The algorithm shown in
Figure 1 identifies block 5 as containing an iteration
branch since it has a transition to block 6, which is post-
dominated by the loop headeBlocks 3, 5, and 7 are
identified as hang iteration branches since thbave a
transition to block 4, which is not in the loop. Block 2 is
added to the set of blocks containing iteration branches
since it can transfer to either block 3 or block 5, which
have keen identified as containing iteration branches.

mai n()
int i, j;
extern int somecond;

for (i =0, j =1; i <100; i++ j += 3)
if (j >75 && sonecond || j > 300)
break;

(a) Source Code

r[10] =0; 1
r[9]=1,

r[11] =HI [_sonecond] ;

PC=L18;

L19 |1 C=r[9] ?75; 2

PC=I C<=0, L21;

r[8]1 =R r[11] +Lq _sonmecond]]; 3

| C=r[8] 20;
PC=l C==0, L21;

(17 [PC=RT; 4]
| C=r [9] 2300;

L21 | pcel o0, L17; 5
r[10] =r[10] +1; 6
r[9]=r[9] +3;

L1g |l C=r[10] 2100; 7
PC=l C>=0, L17;

| PC=L19; 8

(b) Corresponding SPARC Instructions
(o]

: dlocated for variable j

r[10]

HI [<addr ess>]

LJ <addr ess>]

R[<addr ess>]

| C=<itenp?<itenp,;

PC=I C<r el 0p>0, <I abel >;
PC=RT;

PC=<I abel >;

: dlocated for variable i

: high portion of address

: low portion of address

: integer memory reference
: comparison

: conditional branch

s return

: unconditional jump

(c) Explanation of RTL Notation in Figure 2(b)

Figure 2: Example Loop with Multiple Exits

Once the blocks containing iteration branches for the Oimit; — (initial; + before) + adjust J
= o+

loop hare been identified, a precedence is established that ~ Ni = O before + after 1@
represents the order that these blocks carxbeuted on 0 ' 0
ary given iteration of the loop. This precedence relation- | 4 4dition. \arious checks & © be made in case the

ship can be represented as a Directedcht Graph jiaration branch will abays or neer be stisfied. These
(DAG). Thenodes in the BG represent the blocks con- cpacks depend on whether firait is greater or less than
taining the iteration branches andotedditional nodes, qjnjtial value, whether the sum of theeforeand after
continueand break The construction of the A5 can 465 are greater or less than zero, and the relational
conceptuglly be accomphshe_d by starting with thg graphOperator used in the comparisofigure 4 shows to
representing the loop, replacing all back edges with tranyq,5¢ that require special check@ur implementation
sitions _to contmug_replacmg each transm_on out of the detects that the loop in Figure 4(a) exits after a single iter
loop with a transition tdoreak and collapsing all nodes 4ijon Recaltthat the number of iterations is the number
that do not represent iteration branches. The actual impley times that the loop header block (i.e. testing: 100
mentation of the BG construction started with only j, the example) issecuted once the loop is enteretihe
nodes representingpntinue break and blocks containing loop in Figure 4(b) is classified amboundedsince the

iteration branches and used domination and postdominaroop may neer exit depending on he overflow of neg
tion information to establish the edges between the nodes,;; o integer values is handled.

Figure 3 shows the BG depicting the precedence rela-
tionship between the blocks containing exit conditions
from Figure 2. (a) A Loop That Exitsmmediately (b) A Loop That May Never Exit

Figure 4: Tvo Loops Requiring Special Checks

for (i =0; i > 100; i++) for (i =0; i <100; i--)
A A

2.3. Determining the Iterations When Each
Iteration Branch Can Be Reached

The next step is to determine the iterations on which it
is possible to xecute each node of theAG. We record
continue break this information as a range of iterations and attach a range
to each node and edgdo calculate these ranges the
DAG is processed in a preorder manner (i.e. all predeces-
sors of a node are processed before the node is pro-
o . cessed). Théhead of the BG is assigned the range
2.2. Determining When Each Iteration Branch [1..0]. All other nodes are assigned a range that is the

Changes Direction union of the ranges of all incoming edges.

Figure 3: Precedence Relationship
between Iteration Branches in Figure 2

In this subsection a technique is presented that calcu- 1he outgoing edges of a nodeare assigned ranges
lates when each iteration branch can change its result'Sing one of the following ta/rules:
based on the number of loop iterations performéHdis (1) If iteration branch is known thenrelopi and the direction
technique is similar to those used by other compilers that of the increment (i.e. the sign before+aften) is used to
can calculate the number of iterations of a loop with a sin- ~ determine which edge is taken the fitgt1 iterations.
gle exit [1]. For each iteration branch we dee the infor That edge is assigned the range that is the inFersection of
mation shown in Table 1When all of the requirements [1..Ni-1] and the range of node The other outgoing edge
listed in Table 1 are satisfied, the iteration branch is classi- 'S SSigned the range that is the intersectiomNok{] and

. the range of nodé If a range assigned to an outgoing
fied asknown Otherwise, the iteration branch is classi edge is emphythen this edge corresponds to an infeasible

fied asunknown transition and is deleted from the\B.
Using the devied values, We.apply Equation 1 10 (2) |f iteration branchi is unknown then both outgoing edges
straightforvardly calculate on which iteratiofi, that a are assigned the same range as node

knowniteration branch will change direction.Table 2
shaws the values dergd for the example in Figure ZThe
iteration branch in block 3 is classified @sknownsince
the variable somecond is not a basic inductionaviable.

Figure 5 shows the AG of iteration branches in Fig-
ure 3 with the range of possible iterations for each node
and edge also depictedNodes with known iteration
branches are marked with K and unknowniteration
branches are marked with & Iteration branch 7 will

De

9]

Term Explanation Requirement
variable The control ariable on which the branch depends, The control variable must be a basic inducticariable,
which is the variable being compared in the block which is a ariablev whose only assignments within the loog
containing the iteration branch. are of the fornv : = v % c wherec is a constant [14].
limit The value being compared to thariable in the The limit must be a constantVe will describe hev this re-
block containing the branch. quirement can be relaxed in Section 3.
relop The relational operator used to compare \the- Our initial description requires that the relational operator
ableand thdimit. an inequality operator (i.e. <, 2, and >). We will describe
howv we relaxed this requirement in Subsection 2.5 to mo
accurately handle the equality operators (i.e. == and !=).
initial The value of thevariable when the loop is The initial value must be a constantVe will describe hav
entered- this requirement can be relaxed in Section 3.
before The amount by which theariable is changed be- The amount by which the controhnable is incremented or
fore reaching the iteration branch in each itera- decremented must be a constant and these constant changes
tion. must occur on each complete iteration of the I%)op.
after The amount by which theariable is changed af- The amount by which the controhsable is incremented or
ter reaching the iteration branch in each iteration. decremented must be a constant and these constant changes
must occur on each complete iteration of the loop.
adjust An adjustment value of 0 or 1, which compensates
for the diference between relational operators
(e.g. < andk).

Table 1: Information Calculated for Each Iteration Branch

branch ariable rgister | limit | relop | initial | before| afte adjust class N
block 2 || j r[9] 75 <= 1 0 3 1 known 26
block 3 || somecond r[8] 0 = N/A 0 0 N/A || unknavn | N/A
block 5 || j r[9] 300 > 1 0 3 1 known 101
block 7 || i r[10] 100 >= 0 0 1 0 known 101

Table 2: Derved Information for Each Iteration Branch in Figure 2

take the transition to branch 2 on the first 100 iterations. 2.4. Determining the Minimum and Maximum
Note this iteration range of [1..100] corresponds to the
variablei 's value range of [0..99]. At this point, alal

ues of ariables hee been abstracted as ranges of loop
iterations. Node3'’s iteration branch izinknown Thus,

its two outgoing edges hva ranges that match the range in and maximum number of iterations for the lodn deter-
node 3. Node 5'transition to ebreakis deleted since the
range associated with that transition is empty (i.e. theiteration branch, the AG is pocessed in a postorder
transition is not possible).

[26..100

break

7 K]
1..
i..100 -2 101 6
2 K break
[1..100]
[26..100
3 Ui
1..25
[26..100] [1..25]
26..100]
5 K]
1..100
[1..100] []
continue

Figure 5: DAG of Branches with Ranges of Iterations

Loop lterations

The ranges of iterations associated with each node and
edge of the BG can be used to calculate the minimum

mine the minimum and maximum iteration value for each

manner (i.e. all successors of the node are processed
before the node can be processed). The minimum and
maximum iteration alues for the root node of theAG

will be the minimum and maximum iteration values for
the entire loop. Figure 6 defines the notation used in this
subsection. Notéhat the range has been calculated using
the rules defined in Subsection 2.3.

The following rules are used to assign minimum and
maximum iteration values to edges.

! This value is found by searching backwards in the contret flo
for assignments twariable The search starts with the preheaddrich
is the block that has a transition to the loop header and is not in the loop.

2 In other vords, the basic blocks containing these changes must
dominate gery predecessor block of the header that is in the loop.

o o The following rules are used to assign minimum and
[edge_range min..edge range max] maximum iteration values to nodes.
<edge_exit_min, edge_exit_max>
(1) Thenode_exit_mirfor a node is set to the smallest of the
<node_exit_min, node_exit_max> bounded edg exit_minvaues on the outgoing edges of
the node or is denoted amboundedif both outgoing
edge range min: lowest loop iteration when this edge can be reache edges hae unbounded edyg exit_minvalues. (Thesmall-
edge range max: highest loop iteration when this edge can be reached est value represents the first possibility to exit the loop.)
;‘:ge—e’f“—mi”: grSt lteration "":e” t:?s egge may 'Taddm a bb’ea"k (2) If the iteration branch associated with a node is classified as
ge_exit_max: first iteration when this edge must lead to a brea - .

(on subsequent iterations it must also lead to a break) l;nmoa\lll\:gstthsptft‘lhd:e)gltj)gsggxgc_kg]ni:iir rtr:]:wr;ﬁjjees I(SJnStel’:etchlj?e
node_exit_min: first iteration when this node may lead to a break going edges or is denoted asbo_undedf both outgoing
node_exit_max: first iteration when this node must lead to a break .

(on subsequent iterations it must also lead to a break) ﬁdges h\ae urr]IbOL.md(.i;ld edg_exn_maxll/)alues. (Theloop

as to exit when it will encountertsea

Figure 6'. thatlon Uged in Rules (3) If the iteration branch associated with a node is classified as
for Assigning Iteration Values unknown then thenode_exit_masor the node is set to the
largest of theedge_exit_maxalues on the outgoing edges
of the node or is denoted asboundedf either outgoing
edge has amunbounded edy exit_ maxvalue. (Usethe
largest \alue when it is not guaranteed that the node will

(1) If an edge is to &reak then both theedge exit_mirand
edge_exit_maare assigned the value eflge_range_min
This is the only point where lroundedvalue can be intro-

duced since these are the only points where the loop can . ; .
it actually reach the exit associated with a lower value.)

(2) If an edge is to aontinue then theedge_exit_mirand 'F.igure 7 shows the sameAG &S in Agure 5, F’Ut with
edge_exit_ maxvaues for that edge are marked as Minimum and maximum iterationalues assigned to
unboundedwhich we will represent with . (Thesetran- edges and nodes. Node 5 and its incoming edges are
sitions do not supply grinformation about when the loop assignedinboundedalues since there is no transition to a
exits.) break for the range of loop iterations in which there

(3) Otherwise, the incoming edge is to a node representing arEXecuted. Nodes is assigned a minimum iteratioralue
iteration branch and thedge_exit_mirandedge_exit max Of 26 since that is the first possible iteration at which the
values assigned to the edge depend upon one of three possRode can tak a tansition to eébreak Node 35 maximum
ble relations between the range of the edge and the iteratioriteration value isunboundedsince node 3 iteration
values of the node. These relations and the correspondingbranch is classified asiknownand there is no guarantee
edge assignments are depicted in Tablé@.example, the that the transition to thbreak from node 3 will &er be
edge assignment wherode_exit_mirsatisfies case 1 and taken. Theminimum and maximum iterations for the
node_exit_masatisfies case 2 would bedge_range_min gniire Joop is 26 and 101, respeely, snce these are the

nOde—eX't—ma’(. .Casel .de.p'CtS th.at thEdg.e—ex'is setto iteration values in node 7, which is the root exit condition.
edge_range_misince this is the first iteration the edge can

be traversed when the edge may lead tbraak Case 2

shavs that theedge_exits set to thenode_exitwhen it is 7 ¢

within the range of iterations that the edge iecated. <26,101>)
) " <26, 3 <101,101>

Case 3 illustrates that thedge_exitis set tounbounded -

. K
when there is no iteration on which the edge will be tra- 2 break
versed after the edge can lead toreak o6 = <26,_>
3 U
. Edge Exit <26, > <, >
Case Condition Test Assignment <26 26> [< s
1 o node_exit < edge_range_min | edge_range_mi break 5 \K
° edge_range_min <= node_exit &§& - <_,_>
2 node_exit <= edge_range_max node_exit <, >
3 [} edge_range_max < node_exit — continue
[edge_range_min..edge_range_max] Figure 7: DAG of Iteration Branches
° node_exit (i.e. node_exit_min or node_exit_max) with Minimum and Maximum Iteration Values

Table 3: Rules for Assigning
Iteration Values to an Incoming Edge

2.5. Supporting Iteration Branches Using
Equality Operators

As stated in Table 1, an iteration branch using an
equality operator (i.e. == or !=)a® initially described as
always being treated as amknownbranch. Oneeason

interactvely [5, 6] or as an assertion in the source code [7,
8]. Unfortunatelythere is no guarantee that the user will
specify the correct number of iteration€ompilers may
employ different code generation strategies or compiler
optimizations that can f&fct the number of loop itera-
tions. Thus.even an a&tute user may incorrectly specify

for not addressing iteration branches that use the equalitthe number of loop iterations.

operators is that tlyemay cause loop iteration ranges to
become noncontiguous and would complicate the algo
rithms for bounding the number of iterationklowever,

in mary cases iteration branches with equality operators
can be handled using only contiguous ranges of iterations
For instance, Figure 8(a) contains a loop with an equality
operator that our implementatioras/able to successfully
bound. Ourimplementation classifies iteration branches
with equality operators agknown when the follaving
three additional requirements to those specifiecaipler 1

are satisfied. (1) Firstyery path ending in a back edge in
the loop must include the iteration branchigure 8(b)
shavs an @ample of a loop that may nokeeute the test

for equality on the iteration in which the loop coukdte

(2) Next, one of the outgoing transitions of the iteration
branch with an equality operator must be tor@ak (3)
Finally, the following expression, which is part of Equa-
tion 1, must result in an integral value.

limit; — (initial; + before)
before + after;

In other words, thevariable must equal thdimit of the
iteration branch on some iteration. Figure 8(c) depicts
situation where th&ariablei will be assigned alues (0O,
3, ..., 99, 102, ...) that will skipver thelimit (100).

Q

for (i =0; ; i++) {
if (i <100 && sonecond)
conti nue;
if (i == 50)
br eak;
}

(b) Potentially Unbounded L oop

for (i =0; i != 100; i++)
A

(a) Bounded L oop

for (i =0; i !'=100; i += 3)
A
(c) Unbounded L oop
Figure 8: Examples of Loops with Iteration
Branches Using Equality Operators

3. Supporting a Nonconstant L oop-Invariant
Number of Iterations

Sometimes a bounded number of iterations for a loo
cannot be determined since the looyit econditions
involve the values of ariables. Taditionally, timing ana-
lyzers hae resohed this problem by requiring a user to
specify the maximum number of iterations for a loop

All of the variables on which the number of loop itera-
tions depend are frequently loopvéniant. Inthis case, a
loop-invariant expression is calculated to represent the
number of loop iterationsEssentially we will still use
Equation 1 defined in Subsection 2.2jt trelax the
requirement that théimit and initial values hae © be
constants. Figur® shows an &le function and corre-
sponding SPARC R.s. (Someother compiler optimiza-
tions, such as loop strength reductionyehaot yet been
performed to simplify thexample.) Inthis example, the
control variable for the loop is[13] and the limit is
r[12], which is loop iwariant. Theblock preceding the
loop is examined to determine thalwe associated with
the limit, which is expanded in the following steps:

1. r[12] # from instruction 12
2. r[9] +r[10] # from instruction 5
3. r[9]+Rr[10] +Lg _n]] # from instruction 4
4. r[9]+R{H [_n]+LQ _n]] # from instruction 3
5. mn
int sumarray(a, m
int a[], m
{ int i, sum r[8] :address of array a
extern int n; r[9] :argumentm
sum = 0O r[11] :variable sum
val uebnd n{ 10: 100] n[20:80] | r[13] :variablei
for (i =1; i < mn; i++)
sum += a[i];
return sum
} (c) Register to Variable
(a) Source Code Mapping in Figure 9(b)

r[11] =0; #instruction1 1
r[13] =1; # instruction 2
r[10]=HI[_n]; # instruction 3

instruction 4
instruction 5

r[10] =Rr[10] +LQ[_n]];
r[12] =r[9] +r[10];

1C=0?r[12]; # instruction 6
PC=I C=0, L25; # instruction 7

L18 |r[10] =r[13] <<2; #instruction 8 2
r[10]=R[r[8] +r[10]]; # instruction 9
r[11] =r[11] +r[10]; # instruction 10
r[13] =r[13] +1; # instruction 11
1 C=r[13] ?2r[12]; # instruction 12
PC=I C<0, L18; # instruction 13

L25 | PC=RT; #instruction 14 3 ‘

(b) Corresponding SPARC Instructions

Figure 9: Loop with a Nonconstant
Loop-Invariant Number of Iterations

The ragisterr [9] has been allocated to thegament loop-invariant number of iterations can be typically calcu-
m whose value was also passed to the function in thelated for most loops in the numerical benchmarks and
same rgister The compiler remembers the register and applications we hae examined.
the blocks where eachvé range of a local variable or
argument is allocated to agister Thus, the compiler 4, Supporting Variant Number of Iterations
was ale to associate thegisterr [9] with the agument
mand that the memory reference is to the glolsaiable The previous sections described approaches to-deter
n. We wse Equation 1 to generate a symbokpression mine the minimum and maximum number of iterations for
(containing the localariablemand global ariablen) to a loop gien that the number of iterations depends only
represent the number of iterations. upon either constant or loopviariant \alues. Unfortu-
nately sometimes the number of iterations depends upon
values that can ary. For instance, the number of itera-

N = Himit - (initial + beforg + adjust%)r 1

0 before+ after U tions of an inner loop often depends on the loop control
m+n-(1+1)0 variable of an outer loop.Consider the follwing f or
= 5 1vo g" 0+1 loops extracted from a sort program:
for (i =1; i < 99; i++)

=m+n-1 for (j = i+1; j < 100; j+4+)

When the compiler can determine that the number of T
iterations is nonconstant and loopvanant, the loop- While the number of iterations of the inner loop is loop
invariant expression is passed to the timing analyZée invariant with respect to the inner loop, the number of
user is prompted by the timing analyzer for the minimum iterations varies depending on the value of the outer loop
and maximum alues for each variable in thiggession. control \ariable. Thenumber of iterations for the inner
To dmplify identification of these ariables, the timing loop will range from 98..1.A naive asumption that the
analyzer also informs the user of the function and lineworst-case number of iterations for the inner loop is
number associated with the loop. After receiving the min- always 98 will result a significantverestimation when
imum and maximumalues for these variables, the timing estimating the wrst-case performance of the outer loop.
analyzer automatically calculates the minimum and maxi-Likewise, a significant underestimation of the best-case
mum number of loop iteratiors. performance of the outer loopowld result if the number

The authors also modified the compiler to wlithe of iterations of the inner loop is assumed twagk be 1.

user to specify assertions about the minimum and maxi- The aerage number of iterations of a inner loop with a
mum values of variables associated with loopke bold- single exit can be calculated when the difference between
face line in Figure 9(a) contains assertions for the mini- the number of loop iterations is incremented by a constant
mum and maximum values of thaniablesmandn. The value each time the inner loop is entered for each iteration
compiler uses the looparariant expression and replaces of the outer loop. Assume that:

the variables with the minimum and maximum specified (1) fis the number of iterations of the inner loop on the first

vaues. Theminimum number of iterations of 29 and the iteration of the outer loop,

maximum numt.)ell’ of iterations of 179, IS gutomatlcally (2) dis the diference in the number of inner loop iterations for
passed to the timing analyzer and no irgetion by the each success iteration of the outer loop (note théimay
user is required. Note that the form ofaue assertion is be neyaive),

analogous to the form of timing constraint loop assertion

e - . 3) nis the number of times that the outer loop iterates
that can be specified in the same environment [15]. (3) ni ! ' ! Pt

The following equation represents thesage ofn terms,
where each term is the number of iterations of the inner
loop on succeeding iterations of the outer lobdjmte that
f + (n — 1)d is the number of iterations of the inner loop
on the last iteration of the outer loofhe d difference

% Note that the timing analyzer will not permit the number of iter between the number of |00p |te_rat_|ons can _b_e guaranteed
ations to be fewer than 1. In the abaample, a user may indicate that 10 D& @ constant when (1) only it or theinitial value
the minimum values ofmandn are both 0.Simply substituting these of the inner loop depends on an outer la@piable and
yalues in tht_e expressi(_)n would result ir_l the number of loop itera'tions be-(z) theincrement(before+ after) of the outer |00p is an
ing -1. But if the loop is entered, then it has xeaeite at least one itera- é'ntegral multiple of thaéncrementof the inner Ioop.Note

tion since the number of iterations is defined as the number of times th .) . .
loop header block isxecuted. that the merage number of iterations may still vary in best

When a loop-idariant expression cannot be calculated,
the timing analyzer will prompt the user for the minimum
and maximum number of iterations instead of values of
variables. Havever, we have found that a constant or

and worst case since different valuen ofiay be used.
f+f+(n-1)d

Nay(f,d,n) = >

We cetermine if ag of the variables upon which the

worst-case time for the inner loop. The other set is the
aveaage best and worst-case times using tleeage num-

ber of iterations.Note that when thevarage number of
iterations is not an integer (49.5 in the example), the best-
case ®erage time for the loop will be calculated with the

number of loop iterations depends is a basic inductionnext lower integer (49 in the example) and therst-case

variable for an outer leel 1oop that encloses the current
loop. Thisdependence could be from thmtial value or
the limit value of the current loop.Consider the source
code and corresponding RTLs in Figure 11. In thene
ple theinitial value of the inner loop counteraxiable
r[10] is found to be [11] +1. The ragisterr[11] is
a hasic induction ariable for the outer loop. The com-
piler passes information abougisterr [11] to the tim-

aveaage time will be calculated with the next higher inte-
ger (50 in the xample). Thereason for the slightly con-
servatve gproach is that the loop analysis algorithm used
by the timing analyzer is designed to work on angrak
number of iterations [11, 12, 13[These best and awst-
case cowentional and waerage times are passed up
through the timing tree, which contains a node for each
instance of a loop and function in the prograimcluded

ing analyzer concerning the number of iterations of thewith the aerage times is an identification of the outer

inner loop. This information includes thiaitial value (1),
limit (99), andincrement(1) of r [11] . In addition, the
identification of the outer loop for which[11] is an
induction \ariable is also included. The timing analyzer

loop on which thesevarage times depend. At the point
the outer loop is encountered, the wanional times are
abandoned and only theesage times are used.

We enforced a couple of restrictions to ensure that an

determines that the number of iterations of the inner l00p,ygage number of iterations could be safely used in the
can vary from 98..1 since the initial value of the inner timing analysis. First, we only use avesage number of

loop (¢ [11] +1) can vary from 2..99. Note the lastlue

of r[11] at block 2 is 98 since after the increment in
block 4 the outer loop isxged. Thusthe arerage num-
ber of iterations for the inner loop will be:

f+f+(n-1)*d _ 98+98+(98-1)*(-1)

=49.5
2 2
r{i11]=1, 1
for (i =1; i <99 i++) | -
for (j =i+l j < 100; |L17|r[10]=r[11]+1; 2
j++) -
L21 ... 3
r[10] =r[10] +1;
(@) Source Code |1 C=r [10] ?100;
PC=I C<0, L21;

r[11] =r[11] +1; 4

r[10] : allocated for variable j | C=r[11] ?99;
r[11] : allocated for variable i PC=I C<0v' L17;

[... 5]

(c) Register to
Variable Mapping
for Figure 11(b)

(b) Corresponding
SPARC Instructions

Figure 11: Number of Inner Loop Iterations
Depends on the Outer Loop Counter Variable

When the timing analyzer performs loop analysis on a

loop whose number of iterations caary depending upon
an outer loop inductionariable, the analyzer will calcu-
late two sets of times. One set is the ventional best

iterations when an inner loop igeeuted on eery path of

an outer loop. Figure 12 shows an outer loop with tw
conditionally eecuted inner loops.The number of itera-
tions for the first inner loop aries from99. . 1. The
number of iterations for the second loop varies from
1..99. If the wariablesomecond is true for the first
half of the outer loop iterations and false for the remain-
ing half, then an underestimation will occur in therst-
case timing prediction if thevarage number of iterations
were used for either inner loop. Second, we do not use
the arerage times for an inner loop if it is nested within
another loop for which we would calculate average
number of iterationsWe havefuture plans to relax both

of these restrictions so the number of iterations for more
loops can be accurately bounded [16].

for (i =0; i < 100; i++) {
if (sonmecond)
for (j =i+1; j < 100; j++)
A
el se
for (j =0; j <i; j++)
A

}
Figure 12: Example of

Conditionally Executed Inner Loops

Given these restrictions, theverage number of itera-
tions can safely be used for the loop analysis in our timing
analyzer We dways choose the worst possibbeeeution
time for a gven iteration for our wrst-case loop analysis.
Due to the manner in which our timing analyzer handles
cache misses, the predicted time for egiiteration can

and worst-case times. These times are calculated in CaSSa/er be exceeded by the predicted time for the faling

there is a timing constraint or request for the best or

-8

iteration of the loop (i.epredicted_tim@terationj) > pre- 5. Future Work

dicted_timéterationj+1)) [11, 12, 13]. Thus, the avst-

case loop analysis using theesage number of iterations We gan to bound loop iterations for additional loops
will be safe since thexecution times of the firdilavgiter- that our approach currently does not addreSscasion-
ations will be at least as long as theation times of ap =~ ally, some loops hee cunter variables that are incre-
remaining iterations. An analogousgament can be mented by nonconstantst the sequence of values used
made for best case. for theincrementcan be determined, then we may still be
able to calculate a bounded number of iteratiohi&e-

Tables 4 and 5 shwo example programs that benefit .)
L I wise, we will attempt to address multiple nested loops that
from obtaining a more accurate estimation of loops whose

number of iterations carawy. Note that theSort program are all dependent on the counter variables of outer loops.
has been used in the past as one of the test programs to Calculating the range of iterations when each block in
evduate our timing analyzer [11, 12, 13]These pro- @ loop may be xecuted has other useful applications.
grams shev the best and worst-casgctes required for ~ This information may be used to modify our loop timing
executing with instruction caching and pipelining for the analysis to obtain tighter timing predictions since the tim-
MicroSRARC | [17]. When using thevarage inner loop ~ ing analyzer would knwe in which iterations each path
predictions, the predictedxecution times were signifi- through a loop may be trersed. Thefraction of time
cantly tighter The SortandSymprograms did not hee a that a path within a loop may beeeuted can also be
significant underestimation (i.@revious mtio) in best ~ sometimes determined byamining the range ofalues
case. Inthe best case foBort the values were initially ~ for outer level loop counter variables when branches
sorted and the sort function exited once the array has beewithin that path depend on suclariables. Thusthe
detected to be in ascending ordeikewise, theSympro- ~ approach of calculating arvexage time for a loop or a
gram terminates when it finds the first pair of values thatfunction may also be used to obtain tighter timing predic-
are not equal. In worst case the number of iterations fortions &en when the number of loop iterations do natyw
each inner loop dependent on an outer loop variabe w Finally, the range of iterations information for each block
previously overestimated by about a factor ofdw The =~ may be used by an optimizing compiler to eliminate
Integ program had a higher best-cgsevious ratio and a nodes or transitions on infeasible paths and to restructure
lower worst-caseprevious mtio since there were other 100ps to produce more efficient code.

loops in this program that conttited more significantly

to the total ®ecution time. 6. Conclusions

Name Descriptioor Emphasis In this paper we hee presented three dérent methods

Integ | Evaluates a Double Integraer a Trapezoidal Regio for bounding the number of iterations of a loop. First, a

Interp | Polynomialnterpolation of 500 Points method vas described that determines the minimum and

Sort Bubblesorbf 500 Integers

Sym | Tests If a 500x500 Matrix Is Symmetric maximum number of.lterau_ons of Ioo_ps with multiple

exits and also detects infeasible path®r instance, loops

Table 4: Test Programs of the form in Figure 13(a) that can exit prematurely when

some condition becomes true are quite common and the

Best-Case Results bounded number of iterations of such loops can be

Name Obsered Ezm‘:t’z | Pre. E‘S*trlrn?l;e J Curr detected by the general algorithm presented in the paper.
Cycles Ratio Ratio . .
y Cycles Cycles Second, a nonconstant loopsriant number of itera-
Integ | 12,050,092| 8,049,618 0.668 | 12,033,618 0.999 tions is calculated when thanables on which the num-
perp | 6ASSST8 113008| 0022 0ATOEes 099 ber of iterations depends cannot change values inside of
Sym 171 171 | 1.000 171 1.000 the loop. Figure 13(b) depicts amaenple of this com-

mon type of loop. The user can specify the minimum and
maximum values of theseaniables by placing assertions

Worst-Case Results

Obsened Preious Pre. Current Curr

Name Estimated _ Estimated i in the source code or by interadly responding to
Cycles Ratio Ratio - .

Cycles Cycles prompts from the timing analyzefThese assertions are

Integ | 15,427,332| 20,542,118 1.332 15437618 1.001 more reliable than specifying the minimum and maximum
Interp | 25,468,904 50,702,358 1.991 25,478,906 1/000 i ; i i

Sort 7,672,281| 15,251,603| 1.98§ 7,672,292 1.0p0 number of loop iterations directly since the user does n_ot
Sym 2,013,116 4,001,133| 1.988 2,013,117 1.000 have © be avare of the code generatlon Strategles or Optl-

mizations performed by the compiler.

=g

Table 5: Timing Analysis Results

(4]

for (i =0; i < 100; i++) {
for (i =0; i <n; i++) { [5]
if (somecond) T
break; }

o (b) Loop with a Nonconstant
} L oop-Invariant Number [6]
(a) Loop with Multiple Exits of Iterations

for (i =0; i < 99; i++)

j < 100; j++) {

for (j = i+1;

) (7]

(c) Inner Loop Whose Number of Iterations
Depends on an Outer Loop Counter Variable

Figure 13: Common Forms of Loops

Finally, timing analysis support is\gn to tightly pre- (8]
dict the &ecution time of loops whose number of itera-
tions is dependent on counteariables of outer iel
loops. Thesdoops, such as the one shown in Figure [°]
13(c), appear frequently in programs and can result in sig-
nificant underestimations in best-case predictions and
overestimations in worst-case predictions. Our approach
more tightly predicts loops when the initiadlue or limit
of the control variable in an inner loop depends on a con-
trol variable of an enclosing outer loop.

(10]

These methods kia been successfully ingeated in an
existing compiler and an associated timing analyzer that
predicts the performance for optimized code on a machine
that exploits caching and pipelining. The result is tighter
and more reliable timing analysis predictions and less[12]
work for the user.

(11]

7. Acknowledgements (13
The authors thank Jack Davidson for aflog vpo

to be used for this researcManuel Benitez implemented

the original algorithm invpoto calculate the number of

iterations of a loop with a single exit conditiofrrank

Mueller provided seeral helpful suggestions on an earlier

draft of this paper.

(14]

8. References 13l

[1] M. E. Benitez and J. WDavidson, ‘A Portable Global
Optimizer and Linkr,” Proceedings of the SIGPLAN '88
Symposium on Bgramming Languge Design and
Implementation pp. 329-338 (June 1988).

[2] J. Hennessy and D.atersonComputer Achitecture: A
Quantitative Apppad, Second EditionMorgan Kauf-
mann, San Francisco, CA (1996).

[3] M. Lam, “Software Pipelining: An Eéctive Sheduling
Technique for VLIW Machines, Proceedings of the
SIGPLAN ’'88 Symposium on dgramming Languge
Design and Implementatiorpp. 318-328 (June 1988).

(16]

(17]

-10-

H. S. Stone High-Performance Computer Ahitecture,
Second EditionAddison Wesley, Reading, MA (1990).

C.Y. Park and A. C. Sha, “Experiments with a Program
Timing Tool Based on a Sourcea Timing Schemd,
Computer24(5) pp. 48-57 (May 1991).

Y. S. L, S. Malik, and A. Wolfe, “Efficient Microarchi-
tecture Modeling and Path Analysis for Real-Time Soft-
ware,” Proceedings of the Sixteenth IEEE Reatd Sys-
tems SymposiunDecember 1995).

R. Chapman, A. Wellings, and A. Burns, “lgtated
Program Proof and Wst Case Timing Analysis of
SFARK Ada; Proceedings of the@M SIGPLAN \afrk-
shop on Languge, @mpiler and Tool Support for Real-
Time Systemg$June 1994).

P. Puschner and C. ¢za, “Calculating the Maximum
Execution Time of Realiime Program$,Real-Tme Sys-
temsl1(2) pp. 159-176 (September 1989).

E. Kligerman and A. Stgenlko, “Real-Time Euclid: A
Language for Reliable Realdfie Systems,IEEE Trans-
actions on Softwar Engineering 12(9) pp. 941-949
(September 1986).

A. Ermedahl and J. Gustafsson, “Deriving Annotations
for Tight Calculation of Executionifhe,” Proceedings of
European Confance on PBrallel Processing pp.
1298-1307 (August 1997).

R. Arnold, FE Mueller, D. Whalley, and M. Harmon,
“Bounding Worst-Case Instruction Cache Performance,
Proceedings of the iffeenth IEEE Real-Time Systems
Symposiumpp. 172-181 (December 1994).

C. A. Healy D. B. Whalley, and M. G. Harmon, “Inte-
grating the Timing Analysis of Pipelining and Instruction
Caching,”Proceedings of the Sixteenth |IEEE Reahd
Systems Symposiumpp. 288-297 (December 1995).

R.T. White, E Mueller, C. A. Healy, D. B. Whalley, and

M. G. Harmon, “Timing Analysis for Data Caches and
Set-Associatie Caches,"Proceedings of the IEEE Real-
Time Bchnolgy and Applications Symposiumpp.
192-202 (June 1997).

A. V. Aho, R. Sethi, and J. D. Ullmag@ompiles Princi-
ples, Bdniques, and dols, Addison-Weslg, Reading,
MA (1986).

L. Ko, C. Healy, E. Ratliff, R. Arnold, D. Whallg, and
M. Harmon, “Supporting the Specification and Analysis
of Timing Constraint§, Proceedings of the IEEE Real-
Time Bchnolgy and Applications Symposiumpp.
170-178 (June 1996).

C. A. Healy Addressing Data Dependencies faming
Analysis, PhD Prospectus, Florida State UBmbity
(April 1998).

Texas Instruments, Inc.,Product Peview of the
TMS390S10 Integrated SPARC Proces$993.

