
FSU DEPARTMENT OF COMPUTER SCIENCETiming Analysis for Data Caches andSet-Associative CachesbyRandall T. White, Christopher A. Healy,David B. Whalley,Florida State UniversityDepartment of Computer ScienceFrank Mueller,Humboldt-Universit�at zu BerlinInstitut f�ur InformatikandMarion G. HarmonFlorida A&M UniversityDepartment of Computer & Information Systems
Timing Analysis for Data Caches and Set-Associative Caches RTAS '97 1

FSU DEPARTMENT OF COMPUTER SCIENCE

GoalTo obtain tight worst-case execution times(WCETs) for real-time applications on systems thatuse a data cache or a set-associative instructioncache.� Automatic process of WCET prediction� Static analysis only� Work with fully optimized code� Analysis on entire program control ow� Detect and exploit spatial and temporal locality� Tighter prediction of WCETs
Timing Analysis for Data Caches and Set-Associative Caches RTAS '97 2

FSU DEPARTMENT OF COMPUTER SCIENCERelated WorkResearch into predicting WCETs for programs hasintensi�ed, focusing recently on those using direct-mapped instruction caches and pipelines.Data caches;� Min et. al. (Timing Schema)- Cannot deal with optimizations or function calls- No detection of spatial locality- No results with data larger than cache size� Li et. al. (ILP)- Constraints entered by hand- Scalability problems- No results given for data caches- Can incur large overheadSet-associative instruction caches:� Extension of Park's timing schema briey men-tioned but no formalization, implementation, orresults reported.� ILP approach extension- Only estimates cache misses- Higher overheadTiming Analysis for Data Caches and Set-Associative Caches RTAS '97 3

FSU DEPARTMENT OF COMPUTER SCIENCEApproach� An optimizing compiler was modi�ed to emitdata information (bounded range of addresses),control-ow information, and the calling struc-ture of functions in addition to regular object codegeneration.� Virtual address ranges are calculated from the rel-ative address ranges by examining the order of theassembly data declarations and the call graph ofthe entire program.� The control ow of the program is analyzed tostatically categorize the caching behavior of eachdata reference.� These categorizations are used when calculatingthe pipeline performance of sequences of instruc-tions representing paths within the program.� The pipeline path analysis is used to estimate theworst-case execution performance of each loopand function in the program.Timing Analysis for Data Caches and Set-Associative Caches RTAS '97 4

FSU DEPARTMENT OF COMPUTER SCIENCEVirtual Address Space Organization
static data must be

aligned on page boundary

includes:

 argc count

 argv variables

 environment variables

startup code

program code

segment

0x0

0xffffffff

initial stack

program stack

run-time
growth

data

static

Timing Analysis for Data Caches and Set-Associative Caches RTAS '97 6

FSU DEPARTMENT OF COMPUTER SCIENCECalculation of Virtual Addresses� Find Global Starting Address� Find Stack Starting Address� Compute Virtual Addresses of GlobalScalars� Compute Virtual Addresses of LocalScalars� Compute Initial, Minimum, and Maxi-mum Virtual Addresses for Calculateds� Resolve Induction Variable Information toGive Access Pattern for CalculatedsTiming Analysis for Data Caches and Set-Associative Caches RTAS '97 7

FSU DEPARTMENT OF COMPUTER SCIENCEStatic Cache SimulationUsed to statically categorize the cachingbehavior of each data reference in a pro-gram for a speci�ed cache con�guration.Two phases:1. Iterative ow analysis to compute cachestates� Modi�cation of cache state representation� Additional cache state { maybe state (akaCalculated Cache State)2. Categorization phase� Additional category for calculated datareferencesTiming Analysis for Data Caches and Set-Associative Caches RTAS '97 8

FSU DEPARTMENT OF COMPUTER SCIENCEAlgorithm to Calculate Data Cache StatesWHILE any change DOFOR each basic block instance B DOIF B == top THENinput state(B) = calc input state(B) = all invalid linesELSEinput state(B) = calc input state(B) = NULLFOR each immed pred P of B DOinput state(B) += output state(P)calc input state(B) += output state(P)+ calc output state(P)IF P is in another loop THENinput state(B) += calc output state(P)+ data lines(remaining in that loop)output state(B) = input state(B)FOR each data reference D in B DOIF D is scalar reference THENoutput state(B) += data line(D)output state(B) -= data lines(D conflicts with)calc output state(B) += data line(D)calc output state(B) -= data lines(conflicts with)ELSEoutput state(B) -= data lines(D could conflict with)calc output state(B) += data lines(D could access)calc output state(B) -= data lines(D could conflict with)Timing Analysis for Data Caches and Set-Associative Caches RTAS '97 9

FSU DEPARTMENT OF COMPUTER SCIENCEData Reference Categories� Always Miss (m): The reference is notguaranteed to be in cache.� Always Hit (h): The reference is guar-anteed to always be in cache.� First Miss (f): The reference is notguaranteed to be in cache the �rst timeit is accessed each time the loop is en-tered, but is guaranteed thereafter.� First Hit (i): The reference is guaran-teed to be in cache the �rst time it isaccessed each time the loop is entered,but is not guaranteed thereafter.� Calculated (c <num> : : :): Indicatesthe maximum number of data cachemisses that could occur at each loop levelassociated with the data reference.Timing Analysis for Data Caches and Set-Associative Caches RTAS '97 10

FSU DEPARTMENT OF COMPUTER SCIENCETemporal Locality: recently accessed itemsare likely to be accessed in the near future.int i, j, sum, same, a[50], b[50];...sum = 0;for (i = 0; i < 50; i++)sum += a[i]; /* ref 1 */same = 0;for (i = 0; i < 50; i++)for (j = 0; j < 50; j++)if (a[i] == /* ref 2 */b[j]) /* ref 3 */same++;Categorizations:ref 1: c 13 from [m h m h h h ... m h h h]ref 2: h from [h h ... h h]due to temporal locality across loopsref 3: c 13 13 from [m h h m h h h ... m h]on �rst execution of inner loopand [h h h h h h h ... h h]on all successive executions of itdue to temporal locality within loopsTiming Analysis for Data Caches and Set-Associative Caches RTAS '97 13

FSU DEPARTMENT OF COMPUTER SCIENCEWorst-Case Loop Analysis Algorithmtotal cycles = 0.pipeline information = NULL.first misses encountered = NULL.first hits encountered = NULL.curr iter = 0.WHILE curr iter != n - 1 DOFind the longest continue path.first misses encountered += first misses that were misses in this path.first hits encountered += first hits that were hits in this path.IF a first miss or first hit was encountered in this path THENcurr iter += 1.Subtract 1 from the remaining misses of each calculated reference in this path.Concatenate pipeline information with the union of the informationfor all paths.total cycles += additional cycles required by union.ELSE IF a calculated reference was encountered in this path as a miss THENmin misses = the minimum of the number of remaining misses of eachcalculated reference in this path that is nonzero.min misses = min(min misses, n - 1 - curr iter).curr iter += min misses.Subtract min misses from the remaining misses of each calculated referencein this path.Concatenate pipeline information with the union of the informationfor all paths min misses times.total cycles += (additional cycles required by union) * min misses.ELSEbreakConcatenate pipeline information with the union of the pipeline informationfor all paths (n - 1 - curr iter) times.total cycles += (additional cycles required by union) * (n - 1 - curr iter).FOR each set of exit paths that have a transition to a unique exit block DOFind the longest exit path in the set.first misses encountered += first misses that were misses in this path.first hits encountered += first hits that were hits in this path.Concatenate pipeline information with the union of the informationfor all exit paths in the set.total cycles += additional cycles required by exit union.Store this information with the exit block for the loop.Timing Analysis for Data Caches and Set-Associative Caches RTAS '97 14

FSU DEPARTMENT OF COMPUTER SCIENCEC Source for WCLA AlgorithmExampleint k[100];short s[100];char c[100];main(){ int i, sum;sum = 0;for (i=0; i<100; i++)if ((i & 3) != 1)sum += k[i]+c[i];elsesum += s[i];}Timing Analysis for Data Caches and Set-Associative Caches RTAS '97 17

FSU DEPARTMENT OF COMPUTER SCIENCERTLs and SPARC Assembly forWCLA Algorithm Example
r[8]=(B[r[17]]{24)}24; # 16. ldsb [%l1],%o0

r[9]=R[r[16]]; # 17. ld [%l0],%o1

r[9]=r[9]+r[8]; # 18. add %o1,%o0,%o1

PC=L17; # 19. ba L17

r[12]=r[12]+r[9]; # 20. add %o4,%o1,%o4

r[8]=(W[r[7]]{16)}16; # 21. ldsh [%g7],%o0

r[12]=r[12]+r[8]; # 22. add %o4,%o0,%o4

Instructions 1 through 11

Instructions 12 through 15

Block 1

Block 2

Block 3

Block 4

Instructions 23 through 28

Instructions 29 through 30

Block 5

Block 6

L17

c[i]

k[i]

s[i]

Paths in the loop:� Path A: Blocks 2, 3, & 5� Path B: Blocks 2, 4, & 5Timing Analysis for Data Caches and Set-Associative Caches RTAS '97 18

FSU DEPARTMENT OF COMPUTER SCIENCEPipeline Diagrams for Paths A and B
MEM 12 13 15 16 17 18 20 23 24 25 26 28

WB 12 13 15 16 17 18 20 23 24 25 26 28

EX

ID

IF

2 3 4 5

cycle

stage

1

12

12

12

13

13

13

14

14

15

15

15

16

16

16

17

17

17

18

18

18

19 20

20

20

1918

19 23

23

23

24

24

24

25

25

25

26

26

26

27

27

28

28

28

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Pipeline Diagram for Path A: Instructions 12-20 and 23-28 (blocks 2,3,5)

MEM 12 13 15 21 22 23 24 25 26 28

WB 12 13 15 21 22 23 24 25 26 28

EX

ID

IF

2 3 4 5

cycle

stage

1

12

12

12

13

13

13

14

14

15

15

15

6 7 8 9 10 11 12 13 14 15 16 17

21

21

21

22

22 22

22

23 23

23

23

24 25 26 27 28

24 25 26 27 28

24 25 26 28

Pipeline Diagram for Path B: Instructions 12-15 and 21-28 (blocks 2,4,5)

20 cycles

17 cyclesTiming Analysis for Data Caches and Set-Associative Caches RTAS '97 19

FSU DEPARTMENT OF COMPUTER SCIENCEHit Ratio Number of hits divided by number ofmemory accesses (loads and stores). Obtainedfrom execution simulator.Observed Cycles Obtained from execution simu-lation of data cache and pipeline e�ects.Estimated Cycles Obtained from timing analyzer.Estimated Ratio Quotient of Estimated dividedby Observed. Shows how well the timing ana-lyzer performed.Naive Ratio Obtained by running timing analysisassuming all data cache references were missesand dividing those cycles by the observed cycles.Shows advantage of doing data cache analysis.Average prediction improvement of 30% for pro-grams in the test suite.Overhead� Primarily from static cache simulation� Average of 2.89 seconds for the test suite.Max: 10.3 (Matcnta) Min: 0.2 (Matsumb)� Average timing analysis time 1.05 secondsTiming Analysis for Data Caches and Set-Associative Caches RTAS '97 24

FSU DEPARTMENT OF COMPUTER SCIENCEStatic Instruction Cache Simulation� Extended to set-associative caches� Same assumptions as for data caches� Addresses of instruction inferred fromcontrol-ow graph� Call graph) function instance tree� Data-ow analysis) cache states� Categorize cache referencesAssociativity Processors1 most SPARC, MIPS and Alpha chips2 Intel Pentium, AMD K6, Alpha 21264,PowerPC 602/603, MIPS R5000/R100004 AMD K5, Motorolla 68040/68060,PowerPC 604, Cyrix x86, SPARC R1 (HaL)8 PowerPC 601/620Timing Analysis for Data Caches and Set-Associative Caches RTAS '97 25

FSU DEPARTMENT OF COMPUTER SCIENCEData-ow Analysis for Instruction Caches� Abstract cache state (ACS) := instruc-tions that may be cached� Linear cache state:= instructions thatmay be cached without loops� Post dominator set:= instructions thatmust still be executed� Input state(B) := ACS before block B� Output state := input state + instruc-tions in block - conicts� Aging of lines through associativitylevels (LRU)� Worst-case categorization of instructions� Conservative analysis, e�cientTiming Analysis for Data Caches and Set-Associative Caches RTAS '97 26

FSU DEPARTMENT OF COMPUTER SCIENCEAging for Set-Associative Caches� For each associativity level- input(B) [= output(predecessors)� For each instruction in B- add inst to level 0 (youngest age)- shift conicting instruction to nexthigher level� Instruction \may be cached" if in ACS ofany associativity level� Formalized in paper
3

012

Instruction
Line

Cache
Out of

Cache SetsTiming Analysis for Data Caches and Set-Associative Caches RTAS '97 27

FSU DEPARTMENT OF COMPUTER SCIENCEInstruction Categorization� Automatically determined from data-owanalysis� Categories for each loop nesting level:- always-hit: always in cache- always-miss: never in cache- �rst-hit: in cache on 1st reference, notin cache otherwise- �rst-miss: not in cache on 1streference, in cache otherwise� Timing analysis uses categorization
Timing Analysis for Data Caches and Set-Associative Caches RTAS '97 28

FSU DEPARTMENT OF COMPUTER SCIENCEExample: Categorization
Set 1 Set 2

call foo(2)

call foo(1)

call foo(3)

I-Cache

foo

C

B

A

� A foo(1): always-miss� A foo(2): �rst-hit� A foo(3): always-hit� B, C: always-missesTiming Analysis for Data Caches and Set-Associative Caches RTAS '97 29

FSU DEPARTMENT OF COMPUTER SCIENCETiming Analysis� constructs timing tree� determines cycles bottom-up (for each node)- considers instruction categories- simulates pipeline� path traversal for loops (�x-point algorithm)� adjustments of categories between loop levels�) conservative estimationsTiming Tree
main
[max:1]

loop 1
in main
[max:10]

 555 cycles}
 34 misses + 215 hits =
{worst case:

{worst case:

 519 cycles}
 31 misses + 209 hits =

value
(b)

[max:1]
(a)

[max:1]

value {worst case:
 1 miss + 5 hits =
 15 cycles}

{worst case:
 6 hits = 6 cycles}Timing Analysis for Data Caches and Set-Associative Caches RTAS '97 30

FSU DEPARTMENT OF COMPUTER SCIENCE

1

1.2

1.4

1.6

1.8

2

1 2 4 8

R
at

io

Associativity

0

20

40

60

80

100

1 2 4 8

P
er

ce
nt

 o
f I

ns
tr

uc
tio

ns

Associativity

always-hit
always-miss

first-miss
first-hit

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

1 2 3 4 5 6 7 8

t [
se

c]

AssociativityTiming Analysis for Data Caches and Set-Associative Caches RTAS '97 32

FSU DEPARTMENT OF COMPUTER SCIENCEConclusions� Formal method to predict cache behavior� Extended to data caches and set-associative instruction caches� Integrates with timing analysis� Yields tight WCET predictions� Scales well with large data sizes andhigher levels of associativity� Provides verifyable WCETs for schedula-bility analysis� Allows higher utilization of real-time ap-plications� Enables use of cached architectures forhard RTTiming Analysis for Data Caches and Set-Associative Caches RTAS '97 33

FSU DEPARTMENT OF COMPUTER SCIENCEFuture Work
� Extending Set-Associative Analysis toData Caches� Merging Instruction and Data CachingPrediction and Simulation� Wrap-Around Fill for Data Caches� Write Bu�er� Best Case
Timing Analysis for Data Caches and Set-Associative Caches RTAS '97 34

FSU DEPARTMENT OF COMPUTER SCIENCEAnnulled BranchesIf an annulled branch is not taken, then the instruction in thedelay slot will be annulled. This means that although it willoccupy all stages in the pipeline, the results of the instructionwill not be committed. If this instruction is a load or a store,it will be ushed out of the pipeline before a read from orwrite to memory is performed, respectively.Example: ...add %o2,%o0,%o2 # 9cmp %o2,%g1 # 10ble,a L15 # 11ld [%o2],%o0 # 12sethi %hi(a),%o3 # 13...L15: add %o1,%o5,%o1 # 27...If branch taken: 9, 10, 11, 12, and 27 will executeIf branch not taken: 9, 10, 11, and 13 will executeTiming Analysis for Data Caches and Set-Associative Caches RTAS '97 35

FSU DEPARTMENT OF COMPUTER SCIENCECache Con�guration Assumptions� Direct-mapped cache- Each data line maps to only one cache line� Write policy is Write-Through- Results always written to memory� Write miss policy is No-Write Allocate- If cache miss on write, cache is not updatedConsequences:� Cache writes (stores) will always cause a pipelinedelay in the MEM stage� Cache writes do not have any e�ect on the cachestate.
Timing Analysis for Data Caches and Set-Associative Caches RTAS '97 36

