FSU DEPARTMENT OF COMPUTER SCIENCE

4 N

Timing Analysis for Data Caches and
Set-Associative Caches

by

Randall T. White, Christopher A. Healy,
David B. Whalley,
Florida State University
Department of Computer Science

Frank Mueller,
Humboldt-Universitat zu Berlin
Institut fur Informatik

and

Marion G. Harmon
Florida A&M University
Department of Computer & Information Systems

N /

Timing Analysis for Data Caches and Set-Associative Caches RTAS "97 1

FSU DEPARTMENT OF COMPUTER SCIENCE

~

Goal

To obtain tight worst-case execution times
(WCETSs) for real-time applications on systems that
use a data cache or a set-associative instruction
cache.

e Automatic process of WCET prediction

e Static analysis only

e \Work with fully optimized code

e Analysis on entire program control flow

e Detect and exploit spatial and temporal locality

e Tighter prediction of WCETs

Timing Analysis for Data Caches and Set-Associative Caches RTAS "97 2

FSU DEPARTMENT OF COMPUTER SCIENCE

Related Work

Research into predicting WCETs for programs has
intensified, focusing recently on those using direct-
mapped instruction caches and pipelines.

Data caches;

e Min et. al. (Timing Schema)

- Cannot deal with optimizations or function calls
- No detection of spatial locality
- No results with data larger than cache size

o Liet. al. (ILP)

Constraints entered by hand
Scalability problems

No results given for data caches
Can incur large overhead

Set-associative instruction caches:

e Extension of Park’s timing schema briefly men-
tioned but no formalization, implementation, or
results reported.

o ILP approach extension
- Only estimates cache misses

- Higher overhead

~

Timing Analysis for Data Caches and Set-Associative Caches RTAS "97 3

FSU DEPARTMENT OF COMPUTER SCIENCE

~

Approach

e An optimizing compiler was modified to emit
data information (bounded range of addresses),
control-flow information, and the calling struc-
ture of functions in addition to regular object code
generation.

e Virtual address ranges are calculated from the rel-
ative address ranges by examining the order of the
assembly data declarations and the call graph of
the entire program.

e The control flow of the program is analyzed to
statically categorize the caching behavior of each
data reference.

e T hese categorizations are used when calculating
the pipeline performance of sequences of instruc-
tions representing paths within the program.

e T he pipeline path analysis is used to estimate the
worst-case execution performance of each loop
and function in the program.

Timing Analysis for Data Caches and Set-Associative Caches RTAS "97 4

FSU DEPARTMENT OF COMPUTER SCIENCE

/ Virtual Address Space Organization \

0x0
startup code
program code
segment
} static data must be
static aligned on page boundary
data
run-time
program stack growth
initial stack includes:
argc count
OXFfffffff argv variables

environment variables

N /

Timing Analysis for Data Caches and Set-Associative Caches RTAS "97 6

FSU DEPARTMENT OF COMPUTER SCIENCE

Calculation of Virtual Addresses

e Find Global Starting Address

e Find Stack Starting Address

e Compute Virtual Addresses of Global
Scalars

e Compute Virtual Addresses of Local
Scalars

e Compute Initial, Minimum, and Maxi-
mum Virtual Addresses for Calculateds

e Resolve Induction Variable Information to
Give Access Pattern for Calculateds

Timing Analysis for Data Caches and Set-Associative Caches RTAS "97 7

FSU DEPARTMENT OF COMPUTER SCIENCE

4 N

Static Cache Simulation

Used to statically categorize the caching
behavior of each data reference in a pro-
gram for a specified cache configuration.

Two phases:

1. Iterative flow analysis to compute cache
states

e Modification of cache state representation

e Additional cache state — maybe state (aka
Calculated Cache State)

2. Categorization phase

e Additional category for calculated data
references

N /

Timing Analysis for Data Caches and Set-Associative Caches RTAS "97 8

FSU DEPARTMENT OF COMPUTER SCIENCE

Algorithm to Calculate Data Cache States

WHILE any change DO
FOR each basic block instance B DO

IF B == top THEN

input _state(B)
ELSE

input _state(B) = calc input state(B)
FOR each immed pred P of B DO

input _state(B) += output_state(P)

calc_input state(B) += output_state(P)
+ calc output _state(P)

IF P is in another loop THEN

input_state(B) += calc output state(P)
+ data_lines(remaining in that loop)

all invalid lines

calc_input state(B)

NULL

output _state(B) = input state(B)
FOR each data reference D in B DO
IF D is scalar reference THEN
output _state(B) += data line(D)
output state(B) -= data lines(D conflicts with)
calc output_state(B) += data line(D)
calc output_state(B) -= data lines(conflicts with)
ELSE
output _state(B) -= data lines(D could conflict with)
calc output_state(B) += data lines(D could access)

\\\\¥ calc output _state(B) -= data lines(D could conflict Wiﬁi}

Timing Analysis for Data Caches and Set-Associative Caches RTAS "97 9

FSU DEPARTMENT OF COMPUTER SCIENCE

-

Data Reference Categories

e Always Miss (m): The reference is not
guaranteed to be in cache.

e Always Hit (h): The reference is guar-
anteed to always be in cache.

e First Miss (f): The reference is not
guaranteed to be in cache the first time
it iIs accessed each time the loop is en-
tered, but is guaranteed thereafter.

e First Hit (i): The reference is guaran-
teed to be in cache the first time it is
accessed each time the loop is entered,
but is not guaranteed thereafter.

e Calculated (¢ <num> ...): Indicates
the maximum number of data cache
misses that could occur at each loop level
associated with the data reference.

~

Timing Analysis for Data Caches and Set-Associative Caches RTAS "97 10

FSU DEPARTMENT OF COMPUTER SCIENCE

Temporal Locality: recently accessed items
are likely to be accessed in the near future.

int i, j, sum, same, a[50], b[50];

sum = O;
for (1 = 0; 1 < 50; i++)
sum += ali]; /* ref 1 *x/

same = 0;
for (1 = 0; 1 < 50; i++)
for (j = 0; j < 50; j++)

if (a[i] == /* ref 2 x/
b[j]1) /* ref 3 x/
same++;

Categorizations:

ref 1: ¢ 13 frommhmhhh ... mhh h]
ref 2: h from [h h ... h h]

due to temporal locality across loops
ref 3: ¢ 13 13 from[mhhmhhh ... m h]

on first execution of inner loop

and [h hhhhhh ... hh]

on all successive executions of it

\ due to temporal locality within Ioory

Timing Analysis for Data Caches and Set-Associative Caches RTAS "97 13

FSU DEPARTMENT OF COMPUTER SCIENCE

4 N

Worst-Case Loop Analysis Algorithim

total cycles = 0.
pipeline_information = NULL.
first misses_encountered = NULL.
first_ hits_encountered = NULL.
curr_iter = 0.
WHILE curr_iter '= n - 1 DO
Find the longest continue path.
first misses_encountered += first misses that were misses in this path.
first hits_encountered += first hits that were hits in this path.
IF a first miss or first hit was encountered in this path THEN
curr_iter += 1.
Subtract 1 from the remaining misses of each calculated reference in this path.
Concatenate pipeline_information with the union of the information
for all paths.
total cycles += additional cycles required by union.
ELSE IF a calculated reference was encountered in this path as a miss THEN
min_misses = the minimum of the number of remaining misses of each
calculated reference in this path that is nonzero.
min_misses = min(min_misses, N - 1 - curr_iter).
curr_iter += min_misses.
Subtract min_misses from the remaining misses of each calculated reference
in this path.
Concatenate pipeline_information with the union of the information
for all paths min_misses times.

total_cycles += (additional cycles required by union) * min_misses.
ELSE
break
Concatenate pipeline_information with the union of the pipeline information
for all paths (N - 1 - curr_iter) times.
total cycles += (additional cycles required by union) * (n - 1 - curr_iter).
FOR each set of exit paths that have a transition to a unique exit block DO
Find the longest exit path in the set.
first misses_encountered += first misses that were misses in this path.
first hits_encountered += first hits that were hits in this path.

Concatenate pipeline_information with the union of the information
for all exit paths in the set.

total cycles += additional cycles required by exit union.
Store this information with the exit block for the loop.

N /

Timing Analysis for Data Caches and Set-Associative Caches RTAS "97 14

FSU

DEPARTMENT OF COMPUTER SCIENCE

-

-

C Source for WCLA Algorithm

Example

int k[100];
short s[100];
char c[100];

main ()

{

int 1, sum;

sum = O;
for (i=0; i<100; i++)
if ((1 & 3) '= 1)
sum += k[i]+c[i];
else

sum += s[i];

~

Timing Analysis for Data Caches and Set-Associative Caches RTAS "97

17

FSU

DEPARTMENT OF COMPUTER SCIENCE

-

cli] -f-=
k[i] -F-=

s[i] ---=

L17

-

RTLs and SPARC Assembly for

WCLA Algorithm Example

Instructions 1 through 11

¢

Instructions 12 through 15

¢

r(8]=(B[r[17]]1{24)}24; # 16. ldsb [% 1], %0
r{91=Rr[16]]; # 17. 1d [% 0] , %01
r[9]=r[9]+r[8]; # 18. add %1, %00, %01
PC=L17; # 19. ba L17

r{12] =r[12] +r[9]; # 20. add %04, %01, Y04

!

r[8]=(Wr[7]]1{26)}16; # 21. ldsh [%7], %0
r{12] =r[12] +r[8] ; # 22. add Y04, %00, Y04

¢

Block 1

Block 2

Block 3

Block 4

Instructions 23 through 28

¢

Instructions 29 through 30

Paths in the loop:

e Path A: Blocks 2, 3, & 5
e Path B: Blocks 2, 4, & 5

Block 5

Block 6

~

Timing Analysis for Data Caches and Set-Associative Caches RTAS "97

18

FSU

DEPARTMENT OF COMPUTER SCIENCE

-

Pipeline Diagram for Path A:

Instructions 12-20 and 23-28 (blocks 2,3,5)

Pipeline Diagrams for Paths A and B

Pipeline Diagram for Path B:

Instructions 12-15 and 21-28 (blocks 2,4,5)

cycle
112[3|4|5/6|7[8]9(10(11/12|13|14|15/16|17|18{19|20
stage| IF |12|13|14|15|16|17|18|19|19|20(23|24|25|26|27|28
ID 12|13|14|15|16|17|18|18|19|20| 23| 24| 25| 26| 27| 28
EX 12|13| |15|16|17| |18| [20|23|24|25(26| |28
MEM 12|13 15|16|17 18 20123|24|25| 26 28
WB 12|13| |15/16|17| |18| |20|23|24(25|26| |28
20 cycles

~

cycle
112(3|4(5/6|7(8]9|10/11{12|13|14(15|16|17
stage| IF [12|13]|14|15|21|22|23|23|24|25|26|27|28
ID 12|13]14|15|21(22|22|23|24|25|26|27 |28
EX 12|13 1521 22|23|24|25|26 28
MEM 12|13 1521 22123|24|25|26 28
wB 12|13 15|21 22123|24|25|26 28
17 cycles
Timing Analysis for Data Caches and Set-Associative Caches RTAS "97 19

FSU DEPARTMENT OF COMPUTER SCIENCE

Hit Ratio Number of hits divided by number of
memory accesses (loads and stores). Obtained
from execution simulator.

Observed Cycles Obtained from execution simu-
lation of data cache and pipeline effects.

Estimated Cycles Obtained from timing analyzer.

Estimated Ratio Quotient of Estimated divided
by Observed. Shows how well the timing ana-
lyzer performed.

Naive Ratio Obtained by running timing analysis
assuming all data cache references were misses
and dividing those cycles by the observed cycles.
Shows advantage of doing data cache analysis.

Average prediction improvement of 30% for pro-
grams in the test suite.

Overhead

e Primarily from static cache simulation

e Average of 2.89 seconds for the test suite.
Max: 10.3 (Matcnta) Min: 0.2 (Matsumb)

e Average timing analysis time 1.05 seconds

~

Timing Analysis for Data Caches and Set-Associative Caches RTAS "97 24

FSU DEPARTMENT OF COMPUTER SCIENCE

4 N

Static Instruction Cache Simulation

e Extended to set-associative caches
e Same assumptions as for data caches

e Addresses of instruction inferred from
control-flow graph

e Call graph = function instance tree
e Data-flow analysis = cache states

e Categorize cache references

Associativity | Processors
1 most SPARC, MIPS and Alpha chips
2 Intel Pentium, AMD K6, Alpha 21264,
PowerPC 602/603, MIPS R5000/R10000
4 AMD K5, Motorolla 68040/68060,
PowerPC 604, Cyrix x86, SPARC R1 (HalL)
8 PowerPC 601/620

\ /

Timing Analysis for Data Caches and Set-Associative Caches RTAS "97 25

FSU DEPARTMENT OF COMPUTER SCIENCE

4 N

Data-flow Analysis for Instruction Caches

e Abstract cache state (ACS) := instruc-
tions that may be cached

e Linear cache state:= instructions that
may be cached without loops

e Post dominator set:= instructions that
must still be executed

e Input state(B) := ACS before block B

e Output state := input state 4+ instruc-
tions in block - conflicts

e Aging of lines through associativity
levels (LRU)

e \Worst-case categorization of instructions

e Conservative analysis, efficient

Timing Analysis for Data Caches and Set-Associative Caches RTAS "97 26

FSU DEPARTMENT OF COMPUTER SCIENCE

-

-

Aging for Set-Associative Caches

For each associativity level

- input(B) U = output(predecessors)

For each instruction in B
- add inst to level 0 (youngest age)

- shift conflicting instruction to next
higher level

Instruction “may be cached” if in ACS of
any associativity level

Formalized in paper

Qutof [3
C%cﬂﬁﬁzﬁlﬁo

- Instruction
l Line

Cache Sets

~

Timing Analysis for Data Caches and Set-Associative Caches RTAS "97 27

FSU DEPARTMENT OF COMPUTER SCIENCE

4 N

Instruction Categorization

e Automatically determined from data-flow
analysis

e Categories for each loop nesting level:

always-hit: always in cache

always-miss: never in cache

first-hit: in cache on 1st reference, not
in cache otherwise

first-miss: not in cache on 1st
reference, in cache otherwise

e [iming analysis uses categorization

N /

Timing Analysis for Data Caches and Set-Associative Caches RTAS "97 28

FSU DEPARTMENT OF COMPUTER SCIENCE

4 N

Example: Categorization

%t 2
foo(2) I
foo(3)

|-Cache

foo A

call foo(1)

<—w<—

cal
cal

[—

-—0

e A foo(1): always-miss
o A foo(2): first-hit
e A fo0(3): always-hit

e B, C: always-misses

- /

Timing Analysis for Data Caches and Set-Associative Caches RTAS "97 29

FSU DEPARTMENT OF COMPUTER SCIENCE

Timing Analysis

e constructs timing tree
e determines cycles bottom-up (for each node)
- considers instruction categories

- simulates pipeline

path traversal for loops (fix-point algorithm)

adjustments of categories between loop levels

e — conservative estimations

Timing Tree

{worst case:
34 misses + 215 hits =
555 cycles}

oop 1\ {worst case:
inmain| 31 misses + 209 hits=
519 cycles}

{worst case: {worst case:
1 miss+5hits= hits = ' |
15 cycles) 6 hits = 6 cycles}

" : Y

Timing Analysis for Data Caches and Set-Associative Caches RTAS "97 30

FSU DEPARTMENT OF COMPUTER SCIENCE

4 N

18 ¢
o 16 ¢
g
1.4 ¢
12—
1 L 1
1 2 4 8
Associativity
100
& 80 | always-miss -+]
2 first-miss =
o first-hit
= 60
[%2)
£
5 40 +
5
o 20
O]
o e
0 L «
1 2 4 8
Associativity
2
=)
O
A,

1 2 3 4 5 6 7 8
\ Associativity /

Timing Analysis for Data Caches and Set-Associative Caches RTAS "97 32

FSU DEPARTMENT OF COMPUTER SCIENCE

Conclusions

e Formal method to predict cache behavior

e Extended to data caches and set-
associative instruction caches

e Integrates with timing analysis
e Yields tight WCET predictions

e Scales well with large data sizes and
higher levels of associativity

e Provides verifyable WCETs for schedula-
bility analysis

e Allows higher utilization of real-time ap-
plications

e Enables use of cached architectures for
hard RT

~

/

Timing Analysis for Data Caches and Set-Associative Caches RTAS "97 33

FSU DEPARTMENT OF COMPUTER SCIENCE

~

Future Work

e Extending Set-Associative Analysis to
Data Caches

e Merging Instruction and Data Caching
Prediction and Simulation

e Wrap-Around Fill for Data Caches
o Write Buffer

e Best Case

Timing Analysis for Data Caches and Set-Associative Caches RTAS "97 34

FSU DEPARTMENT OF COMPUTER SCIENCE

4 N

Annulled Branches

If an annulled branch is not taken, then the instruction in the
delay slot will be annulled. This means that although it will
occupy all stages in the pipeline, the results of the instruction
will not be committed. If this instruction is a load or a store,
it will be flushed out of the pipeline before a read from or
write to memory is performed, respectively.

Example:
adci %02 ,%00,%02 # 9
cmp %02, %gl # 10
ble,a L15 # 11
1d [%02] , %00 # 12
sethi %thi(_a),%o3 # 13
L15: add %o1l,%05,%01 # 27

If branch taken: 9, 10, 11, 12, and 27 will execute

If branch not taken: 9, 10, 11, and 13 will execute

N /

Timing Analysis for Data Caches and Set-Associative Caches RTAS "97 35

FSU DEPARTMENT OF COMPUTER SCIENCE

4 N

Cache Configuration Assumptions

e Direct-mapped cache

- Each data line maps to only one cache line

e Write policy is Write-Through

- Results always written to memory

e \Write miss policy is No-Write Allocate

- If cache miss on write, cache is not updated

Conseqguences:

e Cache writes (stores) will always cause a pipeline
delay in the MEM stage

e Cache writes do not have any effect on the cache
state.

N /

Timing Analysis for Data Caches and Set-Associative Caches RTAS "97 36

