Timing Analysis for Data Caches and Set-Associative Caches *

Randall T. Whitef, Frank Mueller*, Christopher A. HealyT,
David B. Whalley', and Marion G. Harmon *

Abstract

The contributions of this paper are twofold. First,
an automatic tool-based approach is described to bound
worst-case data cache performance. The given ap-
proach works on fully optimized code, performs the
analysis over the entire control flow of a program, de-
tects and exploits both spatial and temporal locality
within data references, produces results typically within
a few seconds, and estimates, on average, 30% tighter
WCET bounds than can be predicted without analyzing
data cache behavior. Results obtained by running the
system on representative programs are presented and
indicate that timing analysis of data cache behavior can
result i significantly tighter worst-case performance
predictions. Second, a framework to bound worst-case
nstruction cache performance for set-associative
caches s formally introduced and operationally de-
seribed. Results of incorporating instruction cache pre-
dictions within pipeline stmulation show that timing
predictions for set-associative caches remain just as
tight as predictions for direct-mapped caches. The
cache simulation overhead scales linearly with increas-
mg associativity.

1. Introduction

Real-time systems rely on the assumption that the
worst-case execution time (WCET) of hard real-time
tasks be known to ensure that deadlines of tasks can
be met — otherwise the safety of the controlled system is
jeopardized. Static analysis of program segments cor-
responding to tasks provides an analytical approach
to determine the WCET for contemporary architec-
tures. The complexity of modern processors requires a
tool-based approach since ad hoc testing methods may
not exhibit the worst-case behavior of the architecture.
This paper presents a system of tools that perform tim-
ing prediction by statically analyzing optimized code
without requiring interaction from the user.

The work presented here addresses the bounding
of WCET for data caches and set-associative caches.
Thus, it presents an approach to include common fea-
tures of contemporary architectures within static pre-

*This work was supported in part by the Office of Naval Re-
search under contract number N00014-94-1-0006.

tFlorida State University, Computer Science Department,
Tallahassee, FL 32306-4019, phone: (904) 644-3506, fax:-0058,
e-mail: [rwhite,healy,whalley]@cs.fsu.edu

{Humboldt-Universitat zu Berlin, Institut fir Informatik,
10099 Berlin (Germany), phone: (+49) (30) 20181-276, fax:-280,
e-mail: mueller@informatik.hu-berlin.de

§Florida A&M University, Computer & Information Systems
Department, Tallahassee, FL 32307-3101, phone: (904) 599-
3042, fax: -3221, e-mail: harmon@cis.famu.edu

diction of WCET. Overall, this work fills another gap
between realistic WCET prediction of contemporary
architectures and its use in schedulability analysis for
hard real-time systems.

The framework of WCET prediction uses a set of
tools as depicted in Figure 1. An optimizing compiler
has been modified to emit control-flow information,
data information, and the calling structure of functions
in addition to regular object code generation. A static
cache simulator uses the control-flow information and
calling structure in conjunction with the cache configu-
ration to produce instruction and data categorizations,
which describe the caching behavior of each instruction
and data reference, respectively. The timing analyzer
uses these categorizations and the control-flow infor-
mation to perform path analysis of the program. The
timing analyzer produces WCET predictions for por-
tions of the program or the entire program, depending
on user requests.

2. Related Work

In the past few years, research in the area of predict-
ing the WCET of programs has intensified. Conven-
tional methods for static analysis have been extended
from unoptimized programs on simple CISC processors
to optimized programs on pipelined RISC processors
[12, 6], and from uncached architectures to instruction
caches [2, 10, 8] and data caches [9, 11].

Kim et al. [9] have recently published work about
bounding data cache performance for calculated refer-
ences, which they refer to as occurring from dynamic
load and store instructions. Their approach uses a ver-
sion of the pigeonhole principle. For each loop they de-
termine the maximum number of references from each
dynamic load/store instruction. They also determine
the maximum number of distinct locations in memory
referenced by these instructions. The difference be-
tween these two values is the number of data cache
hits for the loop given that there are no conflicting
references. This technique efficiently detects temporal
locality within loops when all of the data references
within a loop fit into cache and the size of each data
reference is the same size as a cache line. Their tech-
nique at this time does not detect any spatial locality
(i.e., when the line size is greater than the size of each
data reference and the elements are accessed contigu-
ously) and detects no temporal locality across different
loop nests. Furthermore, they cannot currently deal
with compiler optimizations that alter the correspon-
dence of assembly instructions to source code. Such
compiler optimizations can make calculating ranges of
relative addresses significantly more challenging.

Timing | User

Timing

c |
Source Control Flow Analyzer ! Interface Predictions
Files Information I/D-Cache Machine !
Configurations Dependent
Information
DataDecls Virtual I/D-Caching Vst
) Address Timin
and Relative Information Categorizations ming
Addr Info Requests

Figure 1: Framework for Timing Predictions

Li et al. [11] have described a framework to inte-
grate data caching into their integer linear program-
ming (ILP) approach to timing prediction. Their im-
plementation performs data-flow analysis to find con-
flicting blocks. However, their linear constraints de-
scribing the range of addresses of each data reference
currently have to be calculated by hand. They also
require a separate constraint for every element of a
calculated reference causing scalability problems for
large arrays. No WCET results on data caches are
reported. The ILP approach facilitates integrating ad-
ditional user-provided constraints into the analysis.

The possibility of an extension of Park’s timing
schema for set-associative caches is briefly mentioned
in [12] However, it has not been formalized nor has
an 1implementation been described or any results been
reported. The integer linear programming (ILP) ap-
proach [11] has been extended to support timing pre-
dictions for set-associative instruction caches. An au-
tomaton describes transitions between cache states for
each set of conflicting blocks and additional cache con-
straints describe the problem on the ILP level. The re-
sults only estimate the number of cache misses, which
makes a comparison with our results difficult since we
predicted both cache hits and misses. Their results in-
dicate a much higher overhead of the ILP approach (up
to hours) compared to our methods (up to seconds). Tt
is not clear how their approach scales in general with
changing associativity.

3. Data Caches

Obtaining tight WCETs in the presence of data
caches is quite challenging. Unlike instruction caching,
many of the addresses of data references can change
during the execution of a program. A reference to an
item within an activation record could have different
addresses depending on the sequence of calls associated
with the invocation of the function. Many data refer-
ences, such as indexing into an array, are dynamically
calculated and can vary each time the data reference
occurs. Pointer variables in languages like C may be
assigned addresses of different variables or an address
that is dynamically calculated from the heap.

Initially, it may appear that obtaining a reasonable
bound on worst-case data cache performance is just
not feasible. However, this problem 1s far from hope-
less since the addresses for many data references can be
statically calculated. Static or global scalar data ref-
erences do retain the same addresses throughout the
execution of a program. Run-time stack scalar data
references can often be statically determined as a set

of addresses depending upon the sequence of calls asso-
ciated with an invocation of a function. The pattern of
addresses associated with many calculated references,
e.g. array indexing, can also often be resolved statically.

The prediction of the WCET for programs with data
caches is achieved by automatically analyzing the range
of addresses of data references, deriving relative and
then virtual addresses from these ranges, and catego-
rizing data references according to their cache behav-
ior. The data cache behavior is then included in the
pipeline analysis to yield worst-case execution time pre-
dictions of program segments.

3.1. Calculation of Relative Addresses

The wpo compiler [3] attempts to calculate rela-
tive addresses for each data reference associated with
load and store instructions after compiler optimizations
have been performed (see Figure 1), which may not be
trivial, especially for non-scalar data references. Com-
piler optimizations can move instructions between ba-
sic blocks and outside of loops so that expansion of
registers used in the address calculation becomes more
difficult. Our approach calculates relative data address
information automatically after all compiler optimiza-
tions have been performed.

First, the compiler determines for each loop the
set of its induction variables, their initial values and
strides, and the loop-invariant registers. Next, expan-
sion of actual parameter information is performed in
order to be able to resolve any possible address param-
eters later. Then, expansion of addresses used in loads
and stores is performed. Expansion is accomplished by
examining each preceding instruction represented as an
RTL (register transfer list) and replacing registers used
as source values in the address with the source of the
RTL setting that register. Induction variables associ-
ated with a loop are not expanded. Loop invariant
values are expanded by proceeding to the end of the
preheader block of that loop. Expansion of the ad-
dresses of scalar references to the run-time stack (e.g.
local variables) is trivial. Expansion of references to
static data (e.g. global variables) often requires ex-
panding loop invariant registers since these addresses
are constructed with instructions that may be moved
out of a loop. Although, there is not room in this pa-
per to give examples of calculating relative addresses
of data memory references, we did find many instances
where traditional techniques for calculating ranges of
relative addresses were not adequate due to interfer-
ence from various compiler optimizations. For more
details on statically determining address information

ox0 WHILE any change DO

startup code
program code
segment

static

run-time
program stack
initial stack
ELSE

Oxffffffff

FOR each basic block instance B DO
IF B == top THEN
input_state(B) = calc_input_state(B) = all invalid lines
LSE

input_state(B) = calc_input_state(B) = NULL
FOR each immed pred P of B DO
input_state(B) += output_state(P)
calc_input_state(B) += output_state(P) + calc_output_state(P)
data IF P is in another loop THEN
input_state(B) += calc_output_state(P) + data_lines(remaining in that loop)
output_state(B) = input_state(B)
FOR each data reference D in B DO
IF D is scalar reference THEN
output_state(B) += data_line(D)
output_state(B) -= data_lines(D conflicts with)
calc_output_state(B) += data_line(D)
calc_output_state(B) -= data_lines(conflicts with)

output_state(B) -= data_lines(D could conflict with)

calc_output_state(B) += data_lines(D could access)

Figure 2: Virtual Address
Space (Sun0OS)

from fully optimized code see [16].

3.2. Calculation of Virtual Addresses

Calculating addresses that are relative to the be-
ginning of a global variable or an activation record is
accomplished within the compiler since much of the
data flow information required for this analysis is read-
ily available due to its use in compiler optimizations.
However, calculating virtual addresses cannot be done
in the compiler since the analysis of the call graph
and data declarations across multiple files is required.
Thus, an address calculator (see Figure 1) uses the rel-
ative address information in conjunction with control-
flow information to obtain virtual addresses.

Figure 2 shows the general organization of the vir-
tual address space of a process executing under SunOS.
There 1s some startup code preceding the instructions
associated with the compiled program. Following the
program code segment is the static data, which is
aligned on a page boundary. The run-time stack starts
at high addresses and grows toward low addresses. Part
of the memory between the run-time stack and the
static data is the heap, which is not depicted in the
figure since addresses in the heap could not be calcu-
lated statically by our environment.

Static data consists of global variables, static vari-
ables, and non-scalar constants (e.g. strings). In gen-
eral, the Unix linker (/d) places the static data in the
same order that the declarations appeared within an
assembly file. Also, static data within one file will pre-
cede static data in another file specified later in the
list of files to be linked. (There are some exceptions to
these rules depending upon how such data is statically
initialized.) In addition, padding between variables
sometimes occurs. For instance, variables declared as
int and double on the SPARC are aligned on word
and double-word boundaries, respectively. In addition,
the first static or global variable declared in each of
the source files comprising the program is aligned on a
double-word boundary.

Run-time stack data includes temporaries and lo-

calc_output_state(B) -= data_lines(D could conflict with)
Figure 3: Algorithm to Calculate Data Cache States

cal variables not allocated to registers. The address of
the activation record for a function can vary depend-
ing upon the actual sequence of calls associated with its
activation. The virtual address of an activation record
containing a local variable is determined as the sum
of the sizes of the activation records associated with
the sequence of calls along with the initial run-time
stack address. The address calculator (along with the
static simulator and timing analyzer) distinguishes be-
tween different function instances and evaluates each
instance separately. Once the static data names and
activation records of functions are associated with vir-
tual addresses, the relative address ranges can be con-
verted into virtual address ranges.

Only virtual addresses have been calculated so far.
There is no guarantee that a virtual address will be the
same as the actual physical address, which is used to
access cache memory on most machines. In this paper
we assume that the system page size is an integer mul-
tiple of the data cache size, which is often the case. For
instance, the MicroSPARC I has a 4KB page size and a
2KB data cache. Thus, both a virtual and correspond-
ing physical address would have the same relative offset
within a page and would map to the same line within
the data cache.

Static Simulation to Produce Data
Reference Categorizations

3.3.

The method of static cache simulation is used to
statically categorize the caching behavior of each data
reference in a program for a specified cache configura-
tion (see Figure 1). A program control-flow graph is
constructed that includes the control flow within each
function and a function instance graph, which uniquely
identifies each function instance by the sequence of call
sites required for its invocation. This program control-
flow graph is analyzed to determine the possible data
lines that can be in the data cache at the entry and
exit of each basic block within the program [13].

The iterative algorithm used for static instruction
cache simulation [2, 13] is not sufficient for static data

int a[100]1[100];

main() { /* row order sum */

int i, j, sum = 0;

for (1 = 0; 1 < 100; i++)
for (j = 0; j < 100; j++)
sum += ali][j];

(a) Detecting
Spacial Locality

row order:
col order: m

int a[100]1[100];
main() { /* column order sum */
int i, j, sum = 0;
for (j = 0; j < 100; j++)
for (1 = 0; 1 < 100; i++)
sum += ali][j];

¥
c252500 from mhhhmhhhmnhhh ... mhhhl
frommmmmmummmmmmm ... mmm m]

int i, j, sum = 0, same = 0, a[50], b[50];

for (1 = 0; 1 < 50; i++)

sum += al[i];

/* a[i] is ref 1 */

for (1 = 0; 1 < 50; i++)

(b) Detect-
ing Temporal Lo-
cality across and
within Loops

same++;

for (j = 0; j < 50;
if (alil == v[jD

from mhmhhhmhhhmhhh ...

j++)

/% al[i] is ref 2 and b[i] is ref 3 */

m h h h]

ref 2: h from [h h ... h h] due to temporal locality across loops.
ref 3: ¢ 13 13 from [m h hm hhh ... mh] on first execution of inner loop,
and [h h h h ... h] on all successive executions of it.

Figure 4: Examples for Spacial and Temporal Locality

cache simulation. The problem is that the calculated
references can access a range of possible addresses. At
the point that the data access occurs, the data lines
associated with these addresses may or may not be
brought in cache, depending upon how many iterations
of the loop has been performed at that point. To deal
with this problem a new state was created to indicate
whether or not a particular data line could potentially
be in the data cache due to calculated references. When
an immediate predecessor block is in a different loop
(the transition from the predecessor block to the cur-
rent block exits a loop), the data lines associated with
calculated references in that loop that are guaranteed
to still be in cache are unioned into the input cache
state of that block. The iterative algorithm in Fig-
ure 3 1s used to calculate the input and output cache
states for each basic block in the program control flow.

Once these cache state vectors have been produced,
they are used to determine whether or not each of the
memory references within the bounded virtual address
range associated with a data reference will be in cache.
The static cache simulator needs to produce a catego-
rization of each data reference in the program. The
four worst-case categories of caching behavior used in
the past for static instruction cache simulation were as
follows. (1) Always Miss (m): The reference is not
guaranteed to be in cache. (2) Always Hit (h): The
reference is guaranteed to always be in cache. (3) First
Miss (fm): The reference is not guaranteed to be in
cache the first time 1t 1s accessed each time the loop
is entered, but is guaranteed thereafter. (4) First Hit
(th): The reference is guaranteed to be in cache the
first time it is accessed each time the loop 1s entered,
but is not guaranteed thereafter. These categorizations
are still used for scalar data references.

To obtain the most accuracy, a worst-case catego-
rization of a calculated data reference for each itera-
tion of a loop could be determined. For example, some

categorizations for a data reference in a loop with 20
iterations might be as follows:
mhhhmhhhmhhhmhhhmhhhnh

With such detailed information the timing analyzer
could then accurately determine the worst-case path
on each iteration of the loop. However, consider a loop
with 100,000 iterations. Such an approach would be
very inefficient in space (storing all of the categoriza-
tions) and time (analyzing each loop iteration sepa-
rately). The authors decided to use a new categoriza-
tion called Calculated (c) that would also indicate
the maximum number of data cache misses that could
occur at each loop level in which the data reference
is nested. The previous data reference categorization
string would be represented as follows (since there is
only one loop level involved): ¢ 5

The order of access and the cache state vectors are
used to detect cache hits within calculated references
due to spatial locality. Consider the two code seg-
ments in Figure 4(a) that sum the elements of a two
dimensional array. The two code segments are equiv-
alent, except that the left code segment accesses the
array in row order and the right code segment uses
column order (i.e., the for statements are reversed).
Assume that the scalar variables (i, j, sum, and same)
are allocated to registers. Also, assume the size of the
direct-mapped data cache is 256 bytes with 16 cache
lines containing 16 bytes each. Thus, a single row of
the array a requiring 400 bytes cannot fit into cache.
The static cache simulator was able to detect that the
load of the array element in the left code segment had
at most one miss for each of the array elements that
are part of the same data line. This was accomplished
by inspecting the order in which the array was accessed
and detecting that no conflicting lines were accessed in
these loops. The categorizations for the load data ref-
erence in the two segments are given in the same figure.
Note in this case that the array happens to be aligned

on a line boundary. The specification of a single cat-
egorization for a calculated reference is accomplished
in two steps for each loop level after the cache states
are calculated. First, the number of references (iter-
ations) performed in the loop is retrieved. Next, the
maximum number of misses that could occur for this
reference in the loop 1s determined. For instance, at
most 25 misses will occur in the innermost loop for the
left code segment. The static cache simulator deter-
mined that all of the loads for the right code segment
would result in cache misses. Its data caching behav-
ior can simply be viewed as an always miss. Thus, the
range of 10,000 different addresses referenced by the
load are collapsed into a single categorization of ¢ 25
2500 (calculated reference with 25 misses at the inner-
most level and 2500 misses at the outer level) for the
left code segment and an m (always miss) for the right
code segment.

Likewise, cache hits from calculated references due
to temporal locality both across and within loops
are also detected. Consider the code segment in Fig-
ure 4(b). Assume a cache configuration with 32 16-byte
lines (512 byte cache) so that both arrays a and b re-
quiring 400 bytes total (200 each) fit into cache. Also
assume the scalar variables are allocated to registers.
The accesses to the elements of array a after the first
loop were categorized as an h (always hit) by the static
simulator since all of the data lines associated with ar-
ray a will be in the cache state once the first loop is
exited. This shows the detection of temporal locality
across loops. After the first complete execution of the
inner loop, all the elements of b will be in cache, so
then all references to it on the remaining executions
of the inner loop are also categorized as hits. Thus,
the categorization of ¢ 13 13 is given. Relative to the
innermost loop, 13 misses are due to bringing b into
cache during the first complete execution of the inner
loop. There are also only 13 misses relative to the out-
ermost loop since b will be completely in cache on each
iteration after the first. Thus, temporal locality i1s also
detected within loops.

The current implementation of the static data cache
simulator (and timing analyzer) imposes some restric-
tions. First, only direct-mapped data caches are sup-
ported. Obtaining categorizations for set-associative
data caches can be accomplished in a manner simi-
lar to that for instruction caches described in the next
section. Second, recursive calls are not allowed since
it would complicate the generation of unique function
instances. Third, indirect calls are not allowed since
an explicit call graph must be generated statically.

3.4. Timing Analysis

The timing analyzer (see Figure 1) utilizes pipeline
path analysis to estimate the WCET of a sequence
of instructions representing paths through loops or
functions. Pipeline information about each instruc-
tion type is obtained from the machine-dependent data
file. Information about the specific instructions in
a path is obtained from the control-flow information
files. As each instruction is added separately to the
pipeline state information, the timing analyzer uses the
data caching categorizations to determine whether the
MEM (data memory access) stage should be treated as

total_cycles = curr_iter = 0.
pipeline_info = first_misses_encountered
= first_hits_encountered = NULL.
WHILE curr_iter '= n -1 DO
Find the longest continue path.
first_misses_encountered += first misses that
were misses in this path.
first_hits_encountered += first hits that
were hits in this path.
IF first miss or first hit encountered in this path THEN
curr_iter +=1.
Subtract 1 from the remaining misses of each
calculated reference in this path.
Concatenate pipeline_info with the union of the
info for all paths.
total_cycles += additional cycles required by union.
ELSE IF a calculated reference was encountered
in this path as a miss THEN
min_misses = the minimum of the number
of remaining misses of each calculated
reference in this path that is nonzero.
min_misses = min(min_misses, n - 1 - curr_iter).
curr_iter += min_misses.
Subtract min_misses from the remaining
misses of each calc ref in this path
Concatenate pipeline_info with the union of the
info for all paths min_misses times.
total_cycles += min_misses
* (additional cycles required by union).
ELSE
break.
Concatenate pipeline_info with the union of the pipeline info
for all paths (n - 1 - curr_iter) times.
total_cycles += (n - 1 - curr_iter)
* (additional cycles required by union).
FOR each set of exit paths that have a transition to a
unique exit block DO
Find the longest exit path in the set.
first_misses_encountered +=
first misses that were misses in this path.
first_hits_encountered +=
first hits that were hits in this path.
Concatenate pipeline_info with the union of the info
for all exit paths in the set.
total_cycles += additional cycles required by exit union.
Store this information with the exit block for the loop.

Figure 5: Worst-Case Loop Analysis Algorithm

a cache hit or a miss.

The worst-case loop analysis algorithm was modified
to appropriately handle calculated data reference cat-
egorizations. The timing analyzer will conservatively
assume that each of the misses for the current loop
level of a calculated reference has to occur before any
of its hits at that level. In addition, the timing an-
alyzer is unable to assume that the penalty for these
misses will overlap with other long running instructions
since the analyzer may not evaluate these misses in the
exact iterations in which they occur. Thus, each calcu-
lated reference miss is always viewed as a hit within the
pipeline path analysis and the maximum number of cy-
cles associated with a data cache miss penalty 1s added
to the total time of the path. This strategy permits an
efficient loop analysis algorithm with some potentially
small overestimations when a data cache miss penalty
could be overlapped with other stalls.

The worst-case loop analysis algorithm is given in
Figure 5. The additions to the previously published

int k[100]; ‘

Instructions 1 through 11 ‘ Block 1

short s[100]; ¢
chgr e[1005 ‘ Instructions 12 through 15
mai n()
{ }
int i, sum loadof c[i] -7/--=>| r[8]=(B[r[17]]{24)}24; # 16. ldsb [%1], %0
loadof k[i] -F--=| r[9]=R[r[16]]; #17. Id [% 0], %01
sum = O; r[9]=r[9]+r[8]; # 18. add %1, %0, %1
for (i =0; i < 100; i++) PC=L17; # 19. ba L17
if ((i &3) !'=1) r[12]=r[12] +r[9]; # 20. add %4, %1, %4
sum += K[i]+c[i]; \L
el :m - sl loadof s[i] ----=>| r[8]=(Wr[7]1{16)}16; # 21. Idsh [%7], %0
} - ' r[12]=r[12] +r[8]; # 22. add %4, %0, %4
. L7 ‘ Instructions 23 through 28
Paths in the loop:
Path A: Blocks2,3, & 5 ¢
Path B: Blocks2,4,& 5 ‘ Instructions 29 through 30 ‘Block6
T T T T T T T T T T T
data lines: | dataline0 ' datalinel ' dataline2 ! daaline3 ! ' dataline50 ' dataline51 ... ' dataline76 ' dataline77 ...
|
ary | o 1 2 3 1 4 5 6 7 s|o|1]2|3|4a|5|6]|7].. c: |o[1|2|3|4/5|6|7[s|9| 1| L[1|1\L]]
elements: 0/1/2|34l5
I A A A A I A A I A A
iteration ' ' ' ' ' ' ' ' ' ' 111 11
. 1 3 4 5 7 8 2 6 1 345 789
accessed: | | | | | | | | | " 123 56
I I I I I I I I I I I
result: ! miss | miss hit | miss | miss hit | miss | miss ! m hhh hhm hhh hh
k[i]l: ¢ 50 from [m h m h . mh]
glil: ¢ 25 from[mhhhmhhh ... mhh h]
c[il: c 13 frommhhhhhhhmhhhhhhh ... mhhhhhhhmhh h]

Pipeline Diagram for Path A: Instructions 12-20 and 23-28 (blocks 2,3,5)

Pipeline Diagram for Path B: Instructions 12-15 and 21-28 (blocks 2,4,5)

cycle

cycle

1/2|3|4|5|6|7|8|9]10|11|12/13|14|15/16|17|18|19|20

1/2|3|4|5|6|7|8]|9]10|11|12/13|14|15|16|17

stage| IF |12]|13|14|15|16|17|18|19|19|20|23|24|25|26|27|28

stage| IF |12|13|14|15|21|22|23|23|24|25|26|27|28

1D 12]13|14|15|16|17|18|18|19|20|23|24|25| 26|27 |28 1D 12]13|14|15|21|22|22|23|24|25|26|27|28

EX 12|13 15/16|17 18 20|23|24|25|26 28 EX 12|13 15|21 22|23|24|25|26 28
MEM 12|13 15/16|17 18 20|23|24|25|26 28 MEM 12|13 15|21 22|23|24|25|26 28
wB 12|13 15/16|17 18 20|23|24|25|26 28 wWB 12|13 15|21 22|23|24|25|26 28

Figure 6: Example to lllustrate Worst-Case Loop Analysis Algorithm

algorithm [6] to handle calculated references are shown
in boldface. Let n be the maximum number of itera-
tions associated with a loop. The WHILE loop termi-
nates when the number of processed iterations reaches
n - 1 or no more first misses, first hits, or calculated
references are encountered as misses, hits, and misses,
respectively. This WHILE loop will iterate no more
than the minimum of (n - 1) or (p + r) times, where
p is the number of paths and ris the number of calcu-
lated reference load instructions in the loop.

The algorithm attempts to select the longest path
for each loop iteration. In order to demonstrate the
correctness of the algorithm, one must show that no
other path for a given iteration of the loop will pro-
duce a longer time than that calculated by the algo-
rithm. Since the pipeline effects of each of the paths are
unioned, it only remains to be shown that the caching
effects are treated properly. All categorizations are
treated identically on repeated references, except for
first misses, first hits, and calculated references. As-
suming that the data references have been categorized
correctly for each loop and the pipeline analysis was
correct, it remains to be shown that first misses, first
hits, and calculated references are interpreted appro-
priately for each loop iteration. A correctness argu-

ment about the interpretation of first hits and first
misses is given in [2].

The WHILE loop will subtract one from each calcu-
lated reference miss count for the current loop in the
longest path chosen on each iteration whenever there
are first misses or first hits encountered as misses or
hits, respectively. Once no such first misses and first
hits are encountered in the longest path, the same path
will remain the longest path as long as its set of calcu-
lated references that were encountered as misses con-
tinue to be encountered as misses since the caching be-
havior of all of the references will be treated the same.
Thus, the pipeline effects of this longest path are effi-
ciently replicated for the number of iterations associ-
ated with the minimum number of remaining misses
of the calculated references that are nonzero within
the longest path. After the WHILE loop, all of the
first misses, first hits, and calculated references in the
longest path will be encountered as hits, misses, and
hits, respectively. The unioned pipeline effects after
the WHILE loop will not change since the caching be-
havior of the references will be treated the same. Thus,
the pipeline effects of this path are efficiently repli-
cated for all but one of the remaining iterations. The
last 1teration of the loop is treated separately since the

starting Tongest iterations total

step | iteration | path cycles min_misses handled additional cycles cycles
T T [20418=38 | min(13,50)=13 13 | 20+((20-4)¥12)+(18¥13)=446 | 446
2 14 | 2049=29 | min(37)=37 37 ((20-4)*37)4(9%37)=925 | 1371
3 51| 1749=26 | min(25)=25 25 ((17-4)*25)4(9%25)=550 | 1921
4 76 2040=20 N/A 24 (20-4)*24=384 2305
5 100 2040=20 N/A 1 20-4=16 2321

Table 1: Timing Analysis Steps for the loop in Figure 6

longest exit path may be shorter than the longest con-
tinue path.

An example is given in Figure 6 to illustrate the
algorithm. The if statement condition was contrived
to force the worst-case paths to be taken when exe-
cuted. Assume a data cache line size of 8 bytes and
enough lines to hold all three arrays in cache. The fig-
ure also shows the iterations when each element of each
of the three arrays will be referenced and whether or
not each of these references will be a hit or a miss. Two
different paths can be taken through the loop on each
iteration as shown in the integer pipeline diagram of
Figure 6. Note that the pipeline diagrams reflect that
the loads of the array elements were found in cache.
The miss penalty from calculated reference misses is
simply added to the total cycles of the path and is not
directly reflected in the pipeline information since these
misses may not occur in the same exact iterations as
assumed by the timing analyzer.

Table 1 shows the steps the timing analyzer uses
from the algorithm given in Figure 5 to estimate the
WCET for the loop in the example shown in Figure 6.
The longest path detected in the first step is Path
A, which contains references to k[i] and c[i]. The
pipeline time required 20 cycles and the misses for the
two calculated references (k[i] and c[i]) required 18
cycles. Note that each miss penalty was assumed to re-
quire 9 cycles. Since there were no first misses, the tim-
ing analyzer determines that the minimum number of
remaining misses from the two calculated references is
13. Thus, the path is replicated an additional 12 times.
The overlap between iterations is determined to be 4
cycles. Note that 4 is not subtracted from the first iter-
ation since any overlap for 1t would be calculated when
determining the worst-case execution time of the path
through the main function. The total time for the first
13 iterations will be 446. The longest path detected in
step 2 is also Path A. But this time all references to
c[i] are hits. There are 37 remaining misses to k[1i].
The total time for iterations 14 through 50 is 925 cy-
cles. The longest path detected in step 3 is Path B,
which has 25 remaining misses to s [1]. This results in
550 additional cycles for iterations 51 through 75. Af-
ter step 3 the worst-case loop analysis has exited the
WHILE loop in the algorithm. Step 4 calculates 384
cycles for the next 24 iterations (76-99). Step 5 calcu-
lates the last iteration to require 16 cycles. The timing
analyzer calculates the last iteration separately since
the longest exit path may be shorter than other paths
in the loop. The total number of cycles calculated by
the timing analyzer for this example was identical to
the number obtained by execution simulation.

A timing analysis tree is constructed to predict the
worst-case performance. Each node of the tree repre-
sents either a loop or a function in the function instance

graph. The nodes representing the outer level of func-
tion instances are treated as loops that will iterate only
once. The worst-case time for a node is not calculated
until the time for all of its immediate child nodes are
known. For instance, consider the example shown in
Figure 6 and Table 1. The timing analyzer would cal-
culate the worst-case time for the loop and use this
information to next calculate the time for the path in
main that contains the loop (block 1, loop, block 6).
The construction and processing of the timing analysis
tree occurs in a similar manner as described in [2, 6].

3.5. Results

Measurements were obtained on code generated for
the SPARC architecture by the wpo optimizing com-
piler [3]. The machine-dependent information con-
tained the pipeline characteristics of the MicroSPARC
I processor [15]. A direct-mapped data cache con-
taining 16 lines of 32 bytes for a total of 512 bytes
was used. The MicroSPARC T uses write-through/no-
allocate data caching [15]. While the static simulator
was able to categorize store data references, these cat-
egorizations were ignored by the timing analyzer since
stores always accessed memory and a hit or miss asso-
ciated with a store data reference had the same effect
on performance. Instruction fetches were assumed to
be all hits in order to isolate the effects of data caching
from instruction caching.

Table 2 shows the test programs used to assess the
timing analyzer’s effectiveness of bounding worst-case
data cache performance. Note that these programs
were restricted to specific classes of data references that
did not include any dynamic allocation from the heap.
Two versions were used for each of the first five test
programs. The a version had the same size arrays that
were used in previous studies [2, 6]. The b version of
each program used smaller arrays that would totally fit
into a 512 byte cache. The number of bytes reported in
the table is the total number of bytes of the variables
in the program. Note that some of these bytes will be
in the static data area while others will be in the run-
time stack. The amount of data is not changed for the
program Des since its encryption algorithm is based on
using large static arrays with preinitialized values.

Table 2 also depicts the dynamic results from exe-
cuting the test programs. The hit ratios were obtained
from the data cache execution simulation. Only Sort
had very high data cache hit ratios due to many re-
peated references to the same array elements. The ob-
served cycles were obtained using an execution simu-
lator, modified from [5], to simulate data cache and
pipeline affects and count the number of cycles. The
estimated cycles were obtained from the timing ana-
lyzer discussed in Section 3.4. The estimated ratio is
the quotient of these two values. The naive ratio was

Num Hit Observed | Estimated | Est/Obs | Naive

Name Bytes Description or Emphasis Ratio Cycles Cycles Ratio | Ratio
Des 1346 | Encrypts and Decrypts 64 bits 75.71% 155,340 191,564 1.23 | 1.45
Matcnta | 40060 | Count and Sum Values in a 100x100 Int Matrix 71.86% | 1,143,014 | 1,143,023 1.00 | 1.15
Matcntb 460 | Count and Sum Values in a 10x10 Int Matrix 70.73% 12,189 12,189 1.00 | 1.15
Matmula | 30044 | Multiply 2 50x50 Matrices into a 50x50 Int Matrix | 62.81% | 7,245,830 | 7,952,807 1.10 | 1.24
Matmulb 344 | Multiply 2 5x5 Matrices into a 5x5 Int Matrix 89.40% 11,396 11,396 1.00 | 1.33
Matsuma | 40044 | Sum Values in a 100x100 Int Matrix 71.86% | 1,122,944 | 1,122,953 1.00 | 1.15
Matsumb 444 | Sum Values in a 10x10 Int Matrix 69.98% 11,919 11,919 1.00 | 1.15
Sorta 2044 | Bubblesort of 500 Int Array 97.06% | 4,768,228 | 9,826,909 2.06 | 2.88
Sortb 444 | Bubblesort of 100 Integer Array 99.40% 188,696 371,977 1.97 | 2.92
Statsa 16200 | Calc Sum, Mean, Var., (2 arrays[1000 doubles]) 90.23% | 1,237,698 | 1,447,572 1.17| 1.29
Statsb 600 | ..., StdDev., & Corr. Coefl. (2 arrays[25 doubles]) | 89.21% 32,547 37,246 1.14| 1.29

Table 2: Dynamic Results for Data Caching

calculated by assuming all data cache references to be
misses and dividing those cycles by the observed cycles.

The timing analyzer was able to tightly predict the
worst-case number of cycles required for pipelining and
data caching for most of the test programs. In fact, for
five of them, the prediction was exact or over by less
that one-tenth of one percent. The inner loop in the
function within Sort that sorted the values had a vary-
ing number of iterations that depends upon a counter of
an outer loop. The number of iterations performed was
overrepresented on average by about a factor of two for
this inner loop. The strategy of treating a calculated
reference miss as a hit in the pipeline and adding the
maximum number of cycles associated with the miss
penalty to the total time of the path caused overestima-
tions with the Statsa and Statsb programs, which were
the only floating-point intensive programs in the test
set. Often delays due to long-running floating-point op-
erations could have been overlapped with data cache
miss penalty cycles. Matmula had an overestimation
of about 10% whereas the smaller data version Mai-
mulb was exact. The Matmul program has repeated
references to the same elements of three different ar-
rays. These references would miss the first time they
were encountered, but would be in cache for the smaller
Matmulb when they were accessed again since the ar-
rays fit entirely in cache. When all the arrays fit into
cache there is no interference between them. However,
when they do not fit into cache the static simulator
conservatively assumes that any possible interference
must result in a cache miss. Therefore, the catego-
rizations are more conservative and the overestimation
is larger. Finally, the Des program has several refer-
ences where an element of a statically initialized array
is used as an index into another array. There is no
simple method to determine which value from 1t will
be used as the index. Therefore, we must assume that
any element of the array may be accessed any time the
data reference occurs in the program. This forces all
conflicting lines to be deleted from the cache state and
the resulting categorizations to be more conservative.
The Des program also has overestimations due to data
dependencies. A longer path deemed feasible by the
timing analyzer could not be taken in a function due
to the value of a variable. Despite the relatively small
overestimations detailed above, the results show that
with certain restrictions it is possible to tightly predict
much of the data caching behavior of many programs.

The difference between the naive and estimated ra-

tios shows the benefits for performing data cache anal-
ysis when predicting worst-case execution times. The
benefit of worst-case performance from data caching is
not as significant as the benefit obtained from instruc-
tion caching [2, 6]. An instruction fetch occurs for each
instruction executed. The performance benefit from a
write-through/no-allocate data cache only occurs when
the data reference from a load instruction is determined
by the timing analyzer to be in cache. Load instruc-
tions only comprised on average 14.28% of the total
executed instructions for these test programs. How-
ever, the results do show that performing data cache
analysis for predicting worst-case execution time does
still result in substantially tighter predictions. In fact,
for the programs in the test set the prediction improve-
ment averages over 30%.

The performance overhead associated with predict-
ing WCETs for data caching using this method comes
primarily from that of the static cache simulation. The
time required for the static simulation increases lin-
early with the size of the data. However, even with
large arrays as in the given test programs this time is
rather small. The average time for the static simula-
tion to produce data reference categorizations for the
11 programs given in Table 2 was only 2.89 seconds.
The overhead of the timing analyzer averages to only
1.05 seconds.

4. Set-Associative Instruction Caches

Modern processors generally use instruction and
data caches to bridge the increasing gap between ever-
faster processors and only moderately faster memory.
Most caches are split caches, i.e., instruction cache and
data cache are separate. The level of associativity for
such caches typically ranges between 1 and 8 [4].

The method of static cache simulation provides the

means to predict the caching behavior of instruction
and data references. This section formalizes the han-
dling of set-associative instruction caches. An instruc-
tion is assigned a category for each loop level (i.e.,
always-hit, always-miss, first-hit or first-miss, as dis-
cussed previously in the context of data caches). The
analysis for set-associative instruction caches 1s based
on the following formal framework:
Definition 1 (Potentially Cached) A program line
[can potentially be cached if there exists a sequence
of transitions in the combined control-flow graphs and
function-instance graph such thatl is cached when it is
reached in the current block.

The traversal of every possible sequence of blocks

leads to an exponential explosion. To avoid this over-
head, we restrict the analysis to abstract cache states:
Definition 2 (Abstract Cache State (ACS))
The abstract cache state of a program line | within a
block and a function instance is the set of program lines
(for each level of associativity) that can potentially be
cached prior to the execution of | within the block and
the function instance.

For direct-mapped caches, the ACS is a singleton
set used to determine the category of an instruction
describing the cache behavior. For an n-way set-
associative cache, the ACS is an n-tuple of sets.

Given the control-flow information of a program and
a cache configuration, the ACSs for each block have to
be calculated. Using data-flow analysis (DFA), each
block has an input state and an output state, corre-
sponding to the ACS before and after the execution
of the block, respectively. An iterative algorithm for
the calculation of ACS’ via DFA is given in [14]. Our
DFA requires a time overhead comparable to that of
inter-procedural DFA performed in optimizing compil-
ers. The space overhead is O(pl * bb * fi * n), where
pl, bb, fi,n denote the number of program lines, basic
blocks, function instances, and cache associativity, re-
spectively. Notice that set-associative caches impose a
factor of n, which is typically very small (1 < n < 8) for
instruction caches in contemporary architectures (for
direct-mapped caches n = 1). The correctness of itera-
tive DFA has been discussed elsewhere [1]. Additional
DFA is required to determine the linear cache state and
the post-dominator set for each block before a defini-
tion for instruction categories can be given.
Definition 3 (Linear Cache State (LCS)) The
linear cache state of a program line | within a block and
a function instance is the set of program lines (for each
level of associativity) that can potentially be cached in
the forward control-flow graph prior to the execution of
[within the block and the function instance.

The forward control-flow graph 1s the acyclic graph
resulting from the removal of back edges (backwards
edges forming loops [1]) in the regular control-flow
graph. Informally, the LCS represents the hypothet-
ical cache state in the absence of loops. It will be used
to determine whether a program line may be cached
due to loops or due to the sequential control flow.
Definition 4 (Post-dominator Set) The
post-dominator set of a program line | within a block
and a function instance is the self-reflexive transitive
closure of post-dominating program lines.

Informally, the post-dominator set describes the
program lines certain to be reached from the current
block, regardless of the taken paths in the control flow
(see [1] for more details).

The instruction categories can now be formally de-
fined (see Definition 5, at the top of the next page)
and implemented rather efficiently once DFA has been
performed. First, simple set operations on bit vectors
suffice to test the conditions. Second, if one conjunct
in a condition fails, the remaining ones are not tested.
Third, the implementation orders the conjuncts such
that the least likely ones are tested first. To motivate
this definition, an informal description of the condi-
tions shall be given (see [14] for algorithmic details).

Always-hit: (on spatial locality within the program
line) or E(the instruction 1s in cache in the ab-
sence of loops) and ((there are no conflicting in-
structions in the cache state) or (all conflicts fit
into the remaining associativity levels))).

First-hit: (the instruction was a first-hit for inner
loops) or (it is potentially cached, even without
loops and even for all loop preheaders, it is always
executed 1n the loop, not all conflicts fit into the
remaining associativity levels but conflicts within
the loop fit into the remaining associativity lev-
els for the loop headers, even when disregarding
loops).

First-miss: the instruction was a first-miss for inner
loops, 1t 1s potentially cached, conflicts do not
fit into the remaining associativity levels but the
conflicts within the loop do.

Always-miss: This is the conservative assumption for
the prediction of worst-case execution time when
none of the above conditions apply.

4.1. Example

Consider the example in Figure 7. Program lines A,
B, and C map into the same cache line within a 2-way
set-associative cache. B and C are executed within
a loop. A is executed before the loop (instance 1 of
foo) and twice within the loop (instances 2 and 3 of
foo). For foo(1), A is an always miss since A is not in
the ACS of foo(1). For foo(2), A is a first-hit since it
was brought into cache by foo(1), there are 3 conflicts
within the loop (and only 2 cache lines within the set)
but B is the only conflict in the output ACS and the
LCS within the loop. For foo(3), A is an always-hit
due to temporal locality since it was brought into the
ACS by foo(2) and there are no conflicts in this ACS.
Notice that B and C are always-misses since they are
not in the ACS of their blocks. However, if there were
no calls to foo() within the loop, B and C would be
first-misses since they would remain in the sets once
they are referenced and brought into cache and there
are only 2 conflicting lines within the loop.

4.2. Measurements

Static cache simulation and timing analysis were
performed for instruction caches for 1/2/4/8-way set-
associative caches with 16/8/4/2 lines, respectively,
and a line size of 16 bytes. Thus, each cache con-
figuration has the equivalent storage capacity of 256
bytes, which was chosen to model a realistic ratio of

foo

|-Cache

Figure 7: Example of Instruction Categories

Definition 5 (Worst-Case Instruction Categorization) :
e Let ¢ be an instruction within a path, a loop A, and a function instance.

Let n be the degree of associativity of the cache.

Let [map into cache line ¢, denoted by [— c.
Let u be the set of program lines in loop A.

such a child loop exists.

Let | = 4y..4,—1 be the program line containing ¢; and let ¢z;.;; be the first instruction of [within the path.
Let s; be the j-th component of the ACS (n-tuple) for [within the path and let s = U s;.

1<j<n

Let child(A) be the child loop (inner-next loop within nesting) of A for this path and function instance, if

o Let header(A) be the set of header paths and preheader() be the set of preheader paths of loop A, respec-

tively.

o Let s(p) be the abstract output cache state of path p.

o Let linear; be the j-th component of the LCS (n-tuple) for { within the path and let linear = U linear;.
o Let postdom(p) be the set of self-reflexive post-dominating programming lines of path p. 1<j<n
Then,
always-hit ifk # first V(I € linear N[l€s; A(Z |mes;j|=0V T |mées|<n)])
1<5j<n m—c,m#l m—c,m#l
first-hit if category(iy, child(X)) =first-hitvk = first Al € s Al € linearA
Y les(p)N ¥V l€postdom(p) A X |m € (sNu)|>nA
pEpreheaders(X) pEheaders(X) m—c,m#l
category (ig, A)= m_»gjm l Im € (s(p) Nu)| <n /;_Em |lm € (linear Nu)| <n
pEpreheaders(X)
first-miss if worst(iy, child(X)) =first-missAk = first Al € sA
Y |mes|>nA ¥ |me(snu)|<n
m—c,m#l m—c,m#l
always-miss otherwise

program size and cache size (from 2:1 to 9:1). The es-
timated number of cycles for a program execution was
derived from static cache simulation and timing anal-
ysis without program execution. This number is com-
pared to the number of observed cycles obtained by a
trace-driven cache simulation. In the latter case, the
program was executed with its worst-case input data.
The miss penalty was assumed to be 9 cycles [7]. (For
the numbers reported here, pipeline simulation of the
timing analyzer was intentionally disabled to isolate
the effects of caching.)

Table 3 shows the results of WCET prediction for a
4-way associative cache with 8 lines. The other cache
configurations mentioned before yield similar results in
terms of the ratios and are therefore omitted. The pro-
grams are described in Table 2. The observed cycles
during program execution (column 2) are slightly less
than the number of cycles estimated by our tools (col-
umn 3). The ratio between estimated and observed
cycles (column 4) shows that our method yields tight
estimations, sometimes even exact ones. The naive ra-
tio (column 5) simulates a disabled cache and was cal-
culated by assuming that all data cache references were
misses and dividing those cycles by the observed cycles.
It shows that an overestimation of the WCET of 9.25
times on average for the naive cache is reduced to only
a slight overestimation of 1.32 with our approach, z.e.,
when caches are enabled and included in the WCET
prediction. The results for some programs require fur-
ther explanation.

The timing analysis overestimates program Sorta
due to a loop with a varying number of iterations as de-
scribed in Section 3.5. Likewise, Des causes an overes-
timation due to a data dependency that was also previ-

Observed | Estimated | Est./Obs. | Naive

Program Cycles Cycles Ratio Ratio
Des 95,877 109,069 1.14 5.58
Matcnta 443,754 443,790 1.00 9.99
Matmulta | 1,430,538 | 1,430,538 | 1.00 | 10.00
Matsuma 343,628 343,646 1.00 9.99
Sorta | 3,130,692 | 6,249,474 | 2.00 | 10.00
Statsa 183,491 192,518 1.05 9.94

Table 3: Worst-Case Execution Times

ously described. For the programs Matenta, Matsuma
and Statsa, the number of cycles was slightly overesti-
mated. The programs Matcnta and Matsuma contain
conditional control flow and would require exhaustive
analysis of all permutations of execution paths to yield
more accurate results. Such an approach would result
in exponential complexity. Instead, the timing analyzer
approximates the execution times conservatively using
a fix-point algorithm (see [14]). This trade-off between
accuracy and feasible time complexity still results in
relatively tight but not always precise estimations. The
program Statsa suffers from an overly conservative cat-
egorization due to a program line crossing a function
boundary. Nonetheless, the conservative category re-
sults in safe estimates that remain very tight.

We also measured the average ratio between esti-
mated and observed cycles for cache associativities be-
tween 1 and 8 and observed that this ratio i1s inde-
pendent of the level of associativity. Furthermore, the
distribution of the instruction categories, averaged over
the test set, varied only insignificantly for different lev-
els of associativity. Thus, the presented method for
WCET predictions yields tight results regardless of the
associativity of caches. Finally, we observed that the

overhead of performing static cache analysis increases
linearly with the level of cache associativity. The in-
crease can be attributed to the overhead of bit-vector
operations implementing the DFA. The performance
overhead for direct-mapped caches is extremely low
(about 200 ms) and is still respectable (about 1.7 sec)
for n = 8, the largest associativity found in today’s
processors [14]. Thus, static cache simulation is an ad-
equate method to model caches for WCET predictions
for contemporary architectures efficiently.

5. Future Work

There are several areas of timing analysis that can
be further investigated. The effect of wrap-around fill
data caches can be analyzed. We currently assume
that each load requires a constant miss penalty for ac-
cessing memory. However, cache lines are filled from
memory one word at a time, and analyzing the wrap-
around fill behavior can tighten the predicted WCET.
Timing predictions for set-associative data caches can
be produced in a manner similar to that for instruc-
tion caches described in this paper. Best case timing
bounds for both data and set-associative caches may
also be investigated. An eventual goal of this research
is to integrate the timing analysis of both instruction
and data caches to obtain timing predictions for a com-
plete machine. Actual machine measurements using a
logic analyzer could then be used to gauge the effec-
tiveness of the entire timing analysis environment.

6. Conclusion

There are two general contributions of this paper.
First, an approach for bounding the worst-case data
caching performance is introduced. It uses data flow
analysis within a compiler to determine a bounded
range of relative addresses for each data reference. An
address calculator converts these relative ranges to vir-
tual address ranges by examining the order of data dec-
larations and the call graph of the program. Catego-
rizations of the data references are produced by a static
simulator. A timing analyzer uses the categorizations
when performing pipeline path analysis to predict the
worst-case performance for each loop and function in
the program. The results so far indicate that the ap-
proach is valid and can result in significantly tighter
worst-case performance predictions.

Second, a report on an implementation of timing
predictions for set-associative caches is given. A formal
method and the corresponding operational framework
for simulating set-associative caches is described. This
method of static cache simulation for set-associative
caches is shown to yield adequate results to enable tight
predictions of the WCET by the timing analyzer, re-
gardless of the degree of cache associativity. The cache
simulation overhead scales linearly with increasing as-
sociativity.

Overall, this paper contributes a comprehensive re-
port on methods and results of worst-case timing anal-
ysis for data caches and set-associative caches. The
analysis occurred on code generated with all compiler
optimizations enabled and requires no user-specified in-
formation. The approach taken is unique and provides
a considerable step toward realistic worst-case execu-

tion time prediction of contemporary architectures and
its use in schedulability analysis for real-time systems.

7. Acknowledgements

The authors thank Robert Arnold for providing the
timing analysis platform for this research. The anony-
mous referees also provided helpful suggestions that
improved the quality of this paper.

References

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers
— Principles, Techniques, and Tools. Addison-Wesley,
1986.

[2] R. Arnold, F. Mueller, D. B. Whalley, and M. Harmon.
Bounding worst-case instruction cache performance. In
IFEE Real-Time Systems Symposium, pages 172-181,
December 1994.

[3] M. E. Benitez and J. W. Davidson. A portable global
optimizer and linker. In ACM SIGPLAN Conference
on Programming Language Design and Implementa-
tion, pages 329-338, June 1988.

[4] UC Berkeley CS. CPU info center. http://infopad.eecs.
berkeley.edu/CIC/summary/local, March 1997.

[5] J. W. Davidson and D. B. Whalley. A design environ-
ment for addressing architecture and compiler interac-
tions. Microprocessors and Microsystems, 15(9):459—
472, November 1991.

[6] C. A. Healy, D. B. Whalley, and M. G. Harmon. Inte-
grating the timing analysis of pipelining and instruc-
tion caching. In IKEFE Real-Time Systems Symposium,
pages 288-297, December 1995.

[7] J. Hennessy and D. Patterson. Computer Architec-
ture: A Quantitative Approach. Morgan Kaufmann,
2nd edition, 1996.

[8] Y. Hur, Y. H. Bea, S.-S. Lim, B.-D. Rhee, S. L. Min,
Y. C. Park, M. Lee, H. Shin, and C. S. Kim. Worst case
timing analysis of RISC processors: R3000/R30050
case study. In IFEF Real-Time Systems Symposium,
pages 308-319, December 1995.

[9] S. Kim, S. Min, and R. Ha. Efficient worst case timing
analysis of data caching. In IFEF Real-Time Technol-
ogy and Applications Symposium, June 1996.

[10] Y.-T. S. Li, S. Malik, and A. Wolfe. Efficient mi-
croarchitecture modeling and path analysis for real-
time software. In IFEF Real-Time Systems Sympo-
stum, pages 298-397, December 1995.

[11] Y.-T. S. Li, S. Malik, and A. Wolfe. Cache modeling
for real-time software: Beyond direct mapped instruc-
tion caches. In IFEE Real-Time Systems Symposium,
December 1996.

[12] S.-S. Lim, Y. H. Bea, G. T. Jang, B.-D. Rhee, S. L.
Min, Y. C. Park, H. Shin, and C. S. Kim. An accurate
worst case timing analysis for RISC processors. In
IFEE Real-Time Systems Symposium, pages 97-108,
December 1994.

[13] F. Mueller. Static Cache Simulation and its Applica-
tizons. PhD dissertation, Dept. of Computer Science,
Florida State University, July 1994.

[14] F. Mueller. Generalizing timing predictions to set-
associative caches. In FuroMicro Real-Time Work-
shop, June 1997.

[15] Texas Instruments. TMS390510 Integrated SPARC
Processor, February 1993.

[16] R. White. Bounding Worst-Case Data Cache Perfor-
mance. PhD dissertation, Dept. of Computer Science,
Florida State University, April 1997.

