
Timing Analysis for Data Caches and Set-Associative Caches �Randall T. Whitey, Frank Muellerz, Christopher A. Healyy,David B. Whalleyy, and Marion G. Harmon xAbstractThe contributions of this paper are twofold. First,an automatic tool-based approach is described to boundworst-case data cache performance. The given ap-proach works on fully optimized code, performs theanalysis over the entire control ow of a program, de-tects and exploits both spatial and temporal localitywithin data references, produces results typically withina few seconds, and estimates, on average, 30% tighterWCET bounds than can be predicted without analyzingdata cache behavior. Results obtained by running thesystem on representative programs are presented andindicate that timing analysis of data cache behavior canresult in signi�cantly tighter worst-case performancepredictions. Second, a framework to bound worst-caseinstruction cache performance for set-associativecaches is formally introduced and operationally de-scribed. Results of incorporating instruction cache pre-dictions within pipeline simulation show that timingpredictions for set-associative caches remain just astight as predictions for direct-mapped caches. Thecache simulation overhead scales linearly with increas-ing associativity.1. IntroductionReal-time systems rely on the assumption that theworst-case execution time (WCET) of hard real-timetasks be known to ensure that deadlines of tasks canbe met { otherwise the safety of the controlled system isjeopardized. Static analysis of program segments cor-responding to tasks provides an analytical approachto determine the WCET for contemporary architec-tures. The complexity of modern processors requires atool-based approach since ad hoc testing methods maynot exhibit the worst-case behavior of the architecture.This paper presents a system of tools that perform tim-ing prediction by statically analyzing optimized codewithout requiring interaction from the user.The work presented here addresses the boundingof WCET for data caches and set-associative caches.Thus, it presents an approach to include common fea-tures of contemporary architectures within static pre-�This work was supported in part by the O�ce of Naval Re-search under contract number N00014-94-1-0006.yFlorida State University, Computer Science Department,Tallahassee, FL 32306-4019, phone: (904) 644-3506, fax:-0058,e-mail: [rwhite,healy,whalley]@cs.fsu.eduzHumboldt-Universit�at zu Berlin, Institut f�ur Informatik,10099 Berlin (Germany), phone: (+49) (30) 20181-276, fax:-280,e-mail: mueller@informatik.hu-berlin.dexFlorida A&M University, Computer & Information SystemsDepartment, Tallahassee, FL 32307-3101, phone: (904) 599-3042, fax: -3221, e-mail: harmon@cis.famu.edu

diction of WCET. Overall, this work �lls another gapbetween realistic WCET prediction of contemporaryarchitectures and its use in schedulability analysis forhard real-time systems.The framework of WCET prediction uses a set oftools as depicted in Figure 1. An optimizing compilerhas been modi�ed to emit control-ow information,data information, and the calling structure of functionsin addition to regular object code generation. A staticcache simulator uses the control-ow information andcalling structure in conjunction with the cache con�gu-ration to produce instruction and data categorizations,which describe the caching behavior of each instructionand data reference, respectively. The timing analyzeruses these categorizations and the control-ow infor-mation to perform path analysis of the program. Thetiming analyzer produces WCET predictions for por-tions of the program or the entire program, dependingon user requests.2. Related WorkIn the past few years, research in the area of predict-ing the WCET of programs has intensi�ed. Conven-tional methods for static analysis have been extendedfrom unoptimized programs on simple CISC processorsto optimized programs on pipelined RISC processors[12, 6], and from uncached architectures to instructioncaches [2, 10, 8] and data caches [9, 11].Kim et al. [9] have recently published work aboutbounding data cache performance for calculated refer-ences, which they refer to as occurring from dynamicload and store instructions. Their approach uses a ver-sion of the pigeonhole principle. For each loop they de-termine the maximum number of references from eachdynamic load/store instruction. They also determinethe maximum number of distinct locations in memoryreferenced by these instructions. The di�erence be-tween these two values is the number of data cachehits for the loop given that there are no conictingreferences. This technique e�ciently detects temporallocality within loops when all of the data referenceswithin a loop �t into cache and the size of each datareference is the same size as a cache line. Their tech-nique at this time does not detect any spatial locality(i.e., when the line size is greater than the size of eachdata reference and the elements are accessed contigu-ously) and detects no temporal locality across di�erentloop nests. Furthermore, they cannot currently dealwith compiler optimizations that alter the correspon-dence of assembly instructions to source code. Suchcompiler optimizations can make calculating ranges ofrelative addresses signi�cantly more challenging.



Source
C

Files

Compiler

Information

Control Flow

Configurations
I/D-Cache

Interface

User

Analyzer
Timing Timing

Predictions

Addr Info

and Relative

Data Decls Address

Calculator

Virtual
Address

Information

Static
Cache

Simulator

Dependent
Machine

Information

Categorizations

I/D-Caching
User

Timing

RequestsFigure 1: Framework for Timing PredictionsLi et al. [11] have described a framework to inte-grate data caching into their integer linear program-ming (ILP) approach to timing prediction. Their im-plementation performs data-ow analysis to �nd con-icting blocks. However, their linear constraints de-scribing the range of addresses of each data referencecurrently have to be calculated by hand. They alsorequire a separate constraint for every element of acalculated reference causing scalability problems forlarge arrays. No WCET results on data caches arereported. The ILP approach facilitates integrating ad-ditional user-provided constraints into the analysis.The possibility of an extension of Park's timingschema for set-associative caches is briey mentionedin [12] However, it has not been formalized nor hasan implementation been described or any results beenreported. The integer linear programming (ILP) ap-proach [11] has been extended to support timing pre-dictions for set-associative instruction caches. An au-tomaton describes transitions between cache states foreach set of conicting blocks and additional cache con-straints describe the problem on the ILP level. The re-sults only estimate the number of cache misses, whichmakes a comparison with our results di�cult since wepredicted both cache hits and misses. Their results in-dicate a much higher overhead of the ILP approach (upto hours) compared to our methods (up to seconds). Itis not clear how their approach scales in general withchanging associativity.3. Data CachesObtaining tight WCETs in the presence of datacaches is quite challenging. Unlike instruction caching,many of the addresses of data references can changeduring the execution of a program. A reference to anitem within an activation record could have di�erentaddresses depending on the sequence of calls associatedwith the invocation of the function. Many data refer-ences, such as indexing into an array, are dynamicallycalculated and can vary each time the data referenceoccurs. Pointer variables in languages like C may beassigned addresses of di�erent variables or an addressthat is dynamically calculated from the heap.Initially, it may appear that obtaining a reasonablebound on worst-case data cache performance is justnot feasible. However, this problem is far from hope-less since the addresses for many data references can bestatically calculated. Static or global scalar data ref-erences do retain the same addresses throughout theexecution of a program. Run-time stack scalar datareferences can often be statically determined as a set

of addresses depending upon the sequence of calls asso-ciated with an invocation of a function. The pattern ofaddresses associated with many calculated references,e.g. array indexing, can also often be resolved statically.The prediction of the WCET for programs with datacaches is achieved by automatically analyzing the rangeof addresses of data references, deriving relative andthen virtual addresses from these ranges, and catego-rizing data references according to their cache behav-ior. The data cache behavior is then included in thepipeline analysis to yield worst-case execution time pre-dictions of program segments.3.1. Calculation of Relative AddressesThe vpo compiler [3] attempts to calculate rela-tive addresses for each data reference associated withload and store instructions after compiler optimizationshave been performed (see Figure 1), which may not betrivial, especially for non-scalar data references. Com-piler optimizations can move instructions between ba-sic blocks and outside of loops so that expansion ofregisters used in the address calculation becomes moredi�cult. Our approach calculates relative data addressinformation automatically after all compiler optimiza-tions have been performed.First, the compiler determines for each loop theset of its induction variables, their initial values andstrides, and the loop-invariant registers. Next, expan-sion of actual parameter information is performed inorder to be able to resolve any possible address param-eters later. Then, expansion of addresses used in loadsand stores is performed. Expansion is accomplished byexamining each preceding instruction represented as anRTL (register transfer list) and replacing registers usedas source values in the address with the source of theRTL setting that register. Induction variables associ-ated with a loop are not expanded. Loop invariantvalues are expanded by proceeding to the end of thepreheader block of that loop. Expansion of the ad-dresses of scalar references to the run-time stack (e.g.local variables) is trivial. Expansion of references tostatic data (e.g. global variables) often requires ex-panding loop invariant registers since these addressesare constructed with instructions that may be movedout of a loop. Although, there is not room in this pa-per to give examples of calculating relative addressesof data memory references, we did �nd many instanceswhere traditional techniques for calculating ranges ofrelative addresses were not adequate due to interfer-ence from various compiler optimizations. For moredetails on statically determining address information
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Figure 2: Virtual AddressSpace (SunOS)
WHILE any change DOFOR each basic block instance B DOIF B == top THENinput state(B) = calc input state(B) = all invalid linesELSEinput state(B) = calc input state(B) = NULLFOR each immed pred P of B DOinput state(B) += output state(P)calc input state(B) += output state(P) + calc output state(P)IF P is in another loop THENinput state(B) += calc output state(P) + data lines(remaining in that loop)output state(B) = input state(B)FOR each data reference D in B DOIF D is scalar reference THENoutput state(B) += data line(D)output state(B) -= data lines(D conicts with)calc output state(B) += data line(D)calc output state(B) -= data lines(conicts with)ELSEoutput state(B) -= data lines(D could conict with)calc output state(B) += data lines(D could access)calc output state(B) -= data lines(D could conict with)Figure 3: Algorithm to Calculate Data Cache Statesfrom fully optimized code see [16].3.2. Calculation of Virtual AddressesCalculating addresses that are relative to the be-ginning of a global variable or an activation record isaccomplished within the compiler since much of thedata ow information required for this analysis is read-ily available due to its use in compiler optimizations.However, calculating virtual addresses cannot be donein the compiler since the analysis of the call graphand data declarations across multiple �les is required.Thus, an address calculator (see Figure 1) uses the rel-ative address information in conjunction with control-ow information to obtain virtual addresses.Figure 2 shows the general organization of the vir-tual address space of a process executing under SunOS.There is some startup code preceding the instructionsassociated with the compiled program. Following theprogram code segment is the static data, which isaligned on a page boundary. The run-time stack startsat high addresses and grows toward low addresses. Partof the memory between the run-time stack and thestatic data is the heap, which is not depicted in the�gure since addresses in the heap could not be calcu-lated statically by our environment.Static data consists of global variables, static vari-ables, and non-scalar constants (e.g. strings). In gen-eral, the Unix linker (ld) places the static data in thesame order that the declarations appeared within anassembly �le. Also, static data within one �le will pre-cede static data in another �le speci�ed later in thelist of �les to be linked. (There are some exceptions tothese rules depending upon how such data is staticallyinitialized.) In addition, padding between variablessometimes occurs. For instance, variables declared asint and double on the SPARC are aligned on wordand double-word boundaries, respectively. In addition,the �rst static or global variable declared in each ofthe source �les comprising the program is aligned on adouble-word boundary.Run-time stack data includes temporaries and lo-

cal variables not allocated to registers. The address ofthe activation record for a function can vary depend-ing upon the actual sequence of calls associated with itsactivation. The virtual address of an activation recordcontaining a local variable is determined as the sumof the sizes of the activation records associated withthe sequence of calls along with the initial run-timestack address. The address calculator (along with thestatic simulator and timing analyzer) distinguishes be-tween di�erent function instances and evaluates eachinstance separately. Once the static data names andactivation records of functions are associated with vir-tual addresses, the relative address ranges can be con-verted into virtual address ranges.Only virtual addresses have been calculated so far.There is no guarantee that a virtual address will be thesame as the actual physical address, which is used toaccess cache memory on most machines. In this paperwe assume that the system page size is an integer mul-tiple of the data cache size, which is often the case. Forinstance, the MicroSPARC I has a 4KB page size and a2KB data cache. Thus, both a virtual and correspond-ing physical address would have the same relative o�setwithin a page and would map to the same line withinthe data cache.3.3. Static Simulation to Produce DataReference CategorizationsThe method of static cache simulation is used tostatically categorize the caching behavior of each datareference in a program for a speci�ed cache con�gura-tion (see Figure 1). A program control-ow graph isconstructed that includes the control ow within eachfunction and a function instance graph, which uniquelyidenti�es each function instance by the sequence of callsites required for its invocation. This program control-ow graph is analyzed to determine the possible datalines that can be in the data cache at the entry andexit of each basic block within the program [13].The iterative algorithm used for static instructioncache simulation [2, 13] is not su�cient for static data



(a) DetectingSpacial Locality int a[100][100]; int a[100][100];main() { /* row order sum */ main() { /* column order sum */int i, j, sum = 0; int i, j, sum = 0;for (i = 0; i < 100; i++) for (j = 0; j < 100; j++)for (j = 0; j < 100; j++) for (i = 0; i < 100; i++)sum += a[i][j]; sum += a[i][j];} }row order: c 25 2500 from [m h h h m h h h m h h h ... m h h h]col order: m from [m m m m m m m m m m m m ... m m m m](b) Detect-ing Temporal Lo-cality across andwithin Loops int i, j, sum = 0, same = 0, a[50], b[50];...for (i = 0; i < 50; i++)sum += a[i]; /* a[i] is ref 1 */for (i = 0; i < 50; i++)for (j = 0; j < 50; j++)if (a[i] == b[j]) /* a[i] is ref 2 and b[i] is ref 3 */same++;ref 1: c 13 from [m h m h h h m h h h m h h h ... m h h h]ref 2: h from [h h ... h h] due to temporal locality across loops.ref 3: c 13 13 from [m h h m h h h ... m h] on �rst execution of inner loop,and [h h h h ... h] on all successive executions of it.Figure 4: Examples for Spacial and Temporal Localitycache simulation. The problem is that the calculatedreferences can access a range of possible addresses. Atthe point that the data access occurs, the data linesassociated with these addresses may or may not bebrought in cache, depending upon how many iterationsof the loop has been performed at that point. To dealwith this problem a new state was created to indicatewhether or not a particular data line could potentiallybe in the data cache due to calculated references. Whenan immediate predecessor block is in a di�erent loop(the transition from the predecessor block to the cur-rent block exits a loop), the data lines associated withcalculated references in that loop that are guaranteedto still be in cache are unioned into the input cachestate of that block. The iterative algorithm in Fig-ure 3 is used to calculate the input and output cachestates for each basic block in the program control ow.Once these cache state vectors have been produced,they are used to determine whether or not each of thememory references within the bounded virtual addressrange associated with a data reference will be in cache.The static cache simulator needs to produce a catego-rization of each data reference in the program. Thefour worst-case categories of caching behavior used inthe past for static instruction cache simulation were asfollows. (1) Always Miss (m): The reference is notguaranteed to be in cache. (2) Always Hit (h): Thereference is guaranteed to always be in cache. (3) FirstMiss (fm): The reference is not guaranteed to be incache the �rst time it is accessed each time the loopis entered, but is guaranteed thereafter. (4) First Hit(fh): The reference is guaranteed to be in cache the�rst time it is accessed each time the loop is entered,but is not guaranteed thereafter. These categorizationsare still used for scalar data references.To obtain the most accuracy, a worst-case catego-rization of a calculated data reference for each itera-tion of a loop could be determined. For example, some

categorizations for a data reference in a loop with 20iterations might be as follows:m h h h m h h h m h h h m h h h m h h hWith such detailed information the timing analyzercould then accurately determine the worst-case pathon each iteration of the loop. However, consider a loopwith 100,000 iterations. Such an approach would bevery ine�cient in space (storing all of the categoriza-tions) and time (analyzing each loop iteration sepa-rately). The authors decided to use a new categoriza-tion called Calculated (c) that would also indicatethe maximum number of data cache misses that couldoccur at each loop level in which the data referenceis nested. The previous data reference categorizationstring would be represented as follows (since there isonly one loop level involved): c 5The order of access and the cache state vectors areused to detect cache hits within calculated referencesdue to spatial locality. Consider the two code seg-ments in Figure 4(a) that sum the elements of a twodimensional array. The two code segments are equiv-alent, except that the left code segment accesses thearray in row order and the right code segment usescolumn order (i.e., the for statements are reversed).Assume that the scalar variables (i, j, sum, and same)are allocated to registers. Also, assume the size of thedirect-mapped data cache is 256 bytes with 16 cachelines containing 16 bytes each. Thus, a single row ofthe array a requiring 400 bytes cannot �t into cache.The static cache simulator was able to detect that theload of the array element in the left code segment hadat most one miss for each of the array elements thatare part of the same data line. This was accomplishedby inspecting the order in which the array was accessedand detecting that no conicting lines were accessed inthese loops. The categorizations for the load data ref-erence in the two segments are given in the same �gure.Note in this case that the array happens to be aligned



on a line boundary. The speci�cation of a single cat-egorization for a calculated reference is accomplishedin two steps for each loop level after the cache statesare calculated. First, the number of references (iter-ations) performed in the loop is retrieved. Next, themaximum number of misses that could occur for thisreference in the loop is determined. For instance, atmost 25 misses will occur in the innermost loop for theleft code segment. The static cache simulator deter-mined that all of the loads for the right code segmentwould result in cache misses. Its data caching behav-ior can simply be viewed as an always miss. Thus, therange of 10,000 di�erent addresses referenced by theload are collapsed into a single categorization of c 252500 (calculated reference with 25 misses at the inner-most level and 2500 misses at the outer level) for theleft code segment and an m (always miss) for the rightcode segment.Likewise, cache hits from calculated references dueto temporal locality both across and within loopsare also detected. Consider the code segment in Fig-ure 4(b). Assume a cache con�guration with 32 16-bytelines (512 byte cache) so that both arrays a and b re-quiring 400 bytes total (200 each) �t into cache. Alsoassume the scalar variables are allocated to registers.The accesses to the elements of array a after the �rstloop were categorized as an h (always hit) by the staticsimulator since all of the data lines associated with ar-ray a will be in the cache state once the �rst loop isexited. This shows the detection of temporal localityacross loops. After the �rst complete execution of theinner loop, all the elements of b will be in cache, sothen all references to it on the remaining executionsof the inner loop are also categorized as hits. Thus,the categorization of c 13 13 is given. Relative to theinnermost loop, 13 misses are due to bringing b intocache during the �rst complete execution of the innerloop. There are also only 13 misses relative to the out-ermost loop since b will be completely in cache on eachiteration after the �rst. Thus, temporal locality is alsodetected within loops.The current implementation of the static data cachesimulator (and timing analyzer) imposes some restric-tions. First, only direct-mapped data caches are sup-ported. Obtaining categorizations for set-associativedata caches can be accomplished in a manner simi-lar to that for instruction caches described in the nextsection. Second, recursive calls are not allowed sinceit would complicate the generation of unique functioninstances. Third, indirect calls are not allowed sincean explicit call graph must be generated statically.3.4. Timing AnalysisThe timing analyzer (see Figure 1) utilizes pipelinepath analysis to estimate the WCET of a sequenceof instructions representing paths through loops orfunctions. Pipeline information about each instruc-tion type is obtained from the machine-dependent data�le. Information about the speci�c instructions ina path is obtained from the control-ow information�les. As each instruction is added separately to thepipeline state information, the timing analyzer uses thedata caching categorizations to determine whether theMEM (data memory access) stage should be treated as

total cycles = curr iter = 0.pipeline info = �rst misses encountered= �rst hits encountered = NULL.WHILE curr iter != n - 1 DOFind the longest continue path.�rst misses encountered += �rst misses thatwere misses in this path.�rst hits encountered += �rst hits thatwere hits in this path.IF �rst miss or �rst hit encountered in this path THENcurr iter += 1.Subtract 1 from the remaining misses of eachcalculated reference in this path.Concatenate pipeline info with the union of theinfo for all paths.total cycles += additional cycles required by union.ELSE IF a calculated reference was encounteredin this path as a miss THENmin misses = the minimum of the numberof remaining misses of each calculatedreference in this path that is nonzero.min misses = min(min misses, n - 1 - curr iter).curr iter += min misses.Subtract min misses from the remainingmisses of each calc ref in this pathConcatenate pipeline info with the union of theinfo for all paths min misses times.total cycles += min misses* (additional cycles required by union).ELSEbreak.Concatenate pipeline info with the union of the pipeline infofor all paths (n - 1 - curr iter) times.total cycles += (n - 1 - curr iter)* (additional cycles required by union).FOR each set of exit paths that have a transition to aunique exit block DOFind the longest exit path in the set.�rst misses encountered +=�rst misses that were misses in this path.�rst hits encountered +=�rst hits that were hits in this path.Concatenate pipeline info with the union of the infofor all exit paths in the set.total cycles += additional cycles required by exit union.Store this information with the exit block for the loop.Figure 5: Worst-Case Loop Analysis Algorithma cache hit or a miss.The worst-case loop analysis algorithmwas modi�edto appropriately handle calculated data reference cat-egorizations. The timing analyzer will conservativelyassume that each of the misses for the current looplevel of a calculated reference has to occur before anyof its hits at that level. In addition, the timing an-alyzer is unable to assume that the penalty for thesemisses will overlap with other long running instructionssince the analyzer may not evaluate these misses in theexact iterations in which they occur. Thus, each calcu-lated reference miss is always viewed as a hit within thepipeline path analysis and the maximumnumber of cy-cles associated with a data cache miss penalty is addedto the total time of the path. This strategy permits ane�cient loop analysis algorithm with some potentiallysmall overestimations when a data cache miss penaltycould be overlapped with other stalls.The worst-case loop analysis algorithm is given inFigure 5. The additions to the previously published



  for (i = 0; i < 100; i++)

}

{

main()

char c[100];

short s[100];

int k[100];

  int i, sum;

  sum = 0;

    if ((i & 3) != 1)

      sum += k[i]+c[i];

    else

      sum += s[i];

   Path B:  Blocks 2, 4, & 5

   Path A:  Blocks 2,3, & 5

Paths in the loop:

load of s[i]

load of c[i]

load of k[i]

r[8]=(B[r[17]]{24)}24; # 16. ldsb  [%l1],%o0

r[9]=R[r[16]];         # 17. ld    [%l0],%o1

r[9]=r[9]+r[8];        # 18. add   %o1,%o0,%o1

PC=L17;                # 19. ba    L17 

r[12]=r[12]+r[9];      # 20. add   %o4,%o1,%o4

r[8]=(W[r[7]]{16)}16;  # 21. ldsh  [%g7],%o0

r[12]=r[12]+r[8];      # 22. add   %o4,%o0,%o4

Instructions 1 through 11

Instructions 12 through 15
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s: c:k[i]: c 50 from [m h m h ... m h ]s[i]: c 25 from [m h h h m h h h ... m h h h]c[i]: c 13 from [m h h h h h h h m h h h h h h h ... m h h h h h h h m h h h]
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Pipeline Diagram for Path B:  Instructions 12-15 and 21-28 (blocks 2,4,5)
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Pipeline Diagram for Path A:  Instructions 12-20 and 23-28 (blocks 2,3,5)Figure 6: Example to Illustrate Worst-Case Loop Analysis Algorithmalgorithm [6] to handle calculated references are shownin boldface. Let n be the maximum number of itera-tions associated with a loop. The WHILE loop termi-nates when the number of processed iterations reachesn - 1 or no more �rst misses, �rst hits, or calculatedreferences are encountered as misses, hits, and misses,respectively. This WHILE loop will iterate no morethan the minimum of (n - 1) or (p + r) times, wherep is the number of paths and r is the number of calcu-lated reference load instructions in the loop.The algorithm attempts to select the longest pathfor each loop iteration. In order to demonstrate thecorrectness of the algorithm, one must show that noother path for a given iteration of the loop will pro-duce a longer time than that calculated by the algo-rithm. Since the pipeline e�ects of each of the paths areunioned, it only remains to be shown that the cachinge�ects are treated properly. All categorizations aretreated identically on repeated references, except for�rst misses, �rst hits, and calculated references. As-suming that the data references have been categorizedcorrectly for each loop and the pipeline analysis wascorrect, it remains to be shown that �rst misses, �rsthits, and calculated references are interpreted appro-priately for each loop iteration. A correctness argu-
ment about the interpretation of �rst hits and �rstmisses is given in [2].The WHILE loop will subtract one from each calcu-lated reference miss count for the current loop in thelongest path chosen on each iteration whenever thereare �rst misses or �rst hits encountered as misses orhits, respectively. Once no such �rst misses and �rsthits are encountered in the longest path, the same pathwill remain the longest path as long as its set of calcu-lated references that were encountered as misses con-tinue to be encountered as misses since the caching be-havior of all of the references will be treated the same.Thus, the pipeline e�ects of this longest path are e�-ciently replicated for the number of iterations associ-ated with the minimum number of remaining missesof the calculated references that are nonzero withinthe longest path. After the WHILE loop, all of the�rst misses, �rst hits, and calculated references in thelongest path will be encountered as hits, misses, andhits, respectively. The unioned pipeline e�ects afterthe WHILE loop will not change since the caching be-havior of the references will be treated the same. Thus,the pipeline e�ects of this path are e�ciently repli-cated for all but one of the remaining iterations. Thelast iteration of the loop is treated separately since the



starting longest iterations totalstep iteration path cycles min misses handled additional cycles cycles1 1 20+18=38 min(13,50)=13 13 20+((20-4)*12)+(18*13)=446 4462 14 20+9=29 min(37)=37 37 ((20-4)*37)+(9*37)=925 13713 51 17+9=26 min(25)=25 25 ((17-4)*25)+(9*25)=550 19214 76 20+0=20 N/A 24 (20-4)*24=384 23055 100 20+0=20 N/A 1 20-4=16 2321Table 1: Timing Analysis Steps for the loop in Figure 6longest exit path may be shorter than the longest con-tinue path.An example is given in Figure 6 to illustrate thealgorithm. The if statement condition was contrivedto force the worst-case paths to be taken when exe-cuted. Assume a data cache line size of 8 bytes andenough lines to hold all three arrays in cache. The �g-ure also shows the iterations when each element of eachof the three arrays will be referenced and whether ornot each of these references will be a hit or a miss. Twodi�erent paths can be taken through the loop on eachiteration as shown in the integer pipeline diagram ofFigure 6. Note that the pipeline diagrams reect thatthe loads of the array elements were found in cache.The miss penalty from calculated reference misses issimply added to the total cycles of the path and is notdirectly reected in the pipeline information since thesemisses may not occur in the same exact iterations asassumed by the timing analyzer.Table 1 shows the steps the timing analyzer usesfrom the algorithm given in Figure 5 to estimate theWCET for the loop in the example shown in Figure 6.The longest path detected in the �rst step is PathA, which contains references to k[i] and c[i]. Thepipeline time required 20 cycles and the misses for thetwo calculated references (k[i] and c[i]) required 18cycles. Note that each miss penalty was assumed to re-quire 9 cycles. Since there were no �rst misses, the tim-ing analyzer determines that the minimum number ofremaining misses from the two calculated references is13. Thus, the path is replicated an additional 12 times.The overlap between iterations is determined to be 4cycles. Note that 4 is not subtracted from the �rst iter-ation since any overlap for it would be calculated whendetermining the worst-case execution time of the paththrough the main function. The total time for the �rst13 iterations will be 446. The longest path detected instep 2 is also Path A. But this time all references toc[i] are hits. There are 37 remaining misses to k[i].The total time for iterations 14 through 50 is 925 cy-cles. The longest path detected in step 3 is Path B,which has 25 remaining misses to s[i]. This results in550 additional cycles for iterations 51 through 75. Af-ter step 3 the worst-case loop analysis has exited theWHILE loop in the algorithm. Step 4 calculates 384cycles for the next 24 iterations (76-99). Step 5 calcu-lates the last iteration to require 16 cycles. The timinganalyzer calculates the last iteration separately sincethe longest exit path may be shorter than other pathsin the loop. The total number of cycles calculated bythe timing analyzer for this example was identical tothe number obtained by execution simulation.A timing analysis tree is constructed to predict theworst-case performance. Each node of the tree repre-sents either a loop or a function in the function instance

graph. The nodes representing the outer level of func-tion instances are treated as loops that will iterate onlyonce. The worst-case time for a node is not calculateduntil the time for all of its immediate child nodes areknown. For instance, consider the example shown inFigure 6 and Table 1. The timing analyzer would cal-culate the worst-case time for the loop and use thisinformation to next calculate the time for the path inmain that contains the loop (block 1, loop, block 6).The construction and processing of the timing analysistree occurs in a similar manner as described in [2, 6].3.5. ResultsMeasurements were obtained on code generated forthe SPARC architecture by the vpo optimizing com-piler [3]. The machine-dependent information con-tained the pipeline characteristics of the MicroSPARCI processor [15]. A direct-mapped data cache con-taining 16 lines of 32 bytes for a total of 512 byteswas used. The MicroSPARC I uses write-through/no-allocate data caching [15]. While the static simulatorwas able to categorize store data references, these cat-egorizations were ignored by the timing analyzer sincestores always accessed memory and a hit or miss asso-ciated with a store data reference had the same e�ecton performance. Instruction fetches were assumed tobe all hits in order to isolate the e�ects of data cachingfrom instruction caching.Table 2 shows the test programs used to assess thetiming analyzer's e�ectiveness of bounding worst-casedata cache performance. Note that these programswere restricted to speci�c classes of data references thatdid not include any dynamic allocation from the heap.Two versions were used for each of the �rst �ve testprograms. The a version had the same size arrays thatwere used in previous studies [2, 6]. The b version ofeach program used smaller arrays that would totally �tinto a 512 byte cache. The number of bytes reported inthe table is the total number of bytes of the variablesin the program. Note that some of these bytes will bein the static data area while others will be in the run-time stack. The amount of data is not changed for theprogram Des since its encryption algorithm is based onusing large static arrays with preinitialized values.Table 2 also depicts the dynamic results from exe-cuting the test programs. The hit ratios were obtainedfrom the data cache execution simulation. Only Sorthad very high data cache hit ratios due to many re-peated references to the same array elements. The ob-served cycles were obtained using an execution simu-lator, modi�ed from [5], to simulate data cache andpipeline a�ects and count the number of cycles. Theestimated cycles were obtained from the timing ana-lyzer discussed in Section 3.4. The estimated ratio isthe quotient of these two values. The naive ratio was



Num Hit Observed Estimated Est/Obs NaiveName Bytes Description or Emphasis Ratio Cycles Cycles Ratio RatioDes 1346 Encrypts and Decrypts 64 bits 75.71% 155,340 191,564 1.23 1.45Matcnta 40060 Count and Sum Values in a 100x100 Int Matrix 71.86% 1,143,014 1,143,023 1.00 1.15Matcntb 460 Count and Sum Values in a 10x10 Int Matrix 70.73% 12,189 12,189 1.00 1.15Matmula 30044 Multiply 2 50x50 Matrices into a 50x50 Int Matrix 62.81% 7,245,830 7,952,807 1.10 1.24Matmulb 344 Multiply 2 5x5 Matrices into a 5x5 Int Matrix 89.40% 11,396 11,396 1.00 1.33Matsuma 40044 Sum Values in a 100x100 Int Matrix 71.86% 1,122,944 1,122,953 1.00 1.15Matsumb 444 Sum Values in a 10x10 Int Matrix 69.98% 11,919 11,919 1.00 1.15Sorta 2044 Bubblesort of 500 Int Array 97.06% 4,768,228 9,826,909 2.06 2.88Sortb 444 Bubblesort of 100 Integer Array 99.40% 188,696 371,977 1.97 2.92Statsa 16200 Calc Sum, Mean, Var., (2 arrays[1000 doubles]) 90.23% 1,237,698 1,447,572 1.17 1.29Statsb 600 ..., StdDev., & Corr. Coe�. (2 arrays[25 doubles]) 89.21% 32,547 37,246 1.14 1.29Table 2: Dynamic Results for Data Cachingcalculated by assuming all data cache references to bemisses and dividing those cycles by the observed cycles.The timing analyzer was able to tightly predict theworst-case number of cycles required for pipelining anddata caching for most of the test programs. In fact, for�ve of them, the prediction was exact or over by lessthat one-tenth of one percent. The inner loop in thefunction within Sort that sorted the values had a vary-ing number of iterations that depends upon a counter ofan outer loop. The number of iterations performed wasoverrepresented on average by about a factor of two forthis inner loop. The strategy of treating a calculatedreference miss as a hit in the pipeline and adding themaximum number of cycles associated with the misspenalty to the total time of the path caused overestima-tions with the Statsa and Statsb programs, which werethe only oating-point intensive programs in the testset. Often delays due to long-running oating-point op-erations could have been overlapped with data cachemiss penalty cycles. Matmula had an overestimationof about 10% whereas the smaller data version Mat-mulb was exact. The Matmul program has repeatedreferences to the same elements of three di�erent ar-rays. These references would miss the �rst time theywere encountered, but would be in cache for the smallerMatmulb when they were accessed again since the ar-rays �t entirely in cache. When all the arrays �t intocache there is no interference between them. However,when they do not �t into cache the static simulatorconservatively assumes that any possible interferencemust result in a cache miss. Therefore, the catego-rizations are more conservative and the overestimationis larger. Finally, the Des program has several refer-ences where an element of a statically initialized arrayis used as an index into another array. There is nosimple method to determine which value from it willbe used as the index. Therefore, we must assume thatany element of the array may be accessed any time thedata reference occurs in the program. This forces allconicting lines to be deleted from the cache state andthe resulting categorizations to be more conservative.The Des program also has overestimations due to datadependencies. A longer path deemed feasible by thetiming analyzer could not be taken in a function dueto the value of a variable. Despite the relatively smalloverestimations detailed above, the results show thatwith certain restrictions it is possible to tightly predictmuch of the data caching behavior of many programs.The di�erence between the naive and estimated ra-

tios shows the bene�ts for performing data cache anal-ysis when predicting worst-case execution times. Thebene�t of worst-case performance from data caching isnot as signi�cant as the bene�t obtained from instruc-tion caching [2, 6]. An instruction fetch occurs for eachinstruction executed. The performance bene�t from awrite-through/no-allocate data cache only occurs whenthe data reference from a load instruction is determinedby the timing analyzer to be in cache. Load instruc-tions only comprised on average 14.28% of the totalexecuted instructions for these test programs. How-ever, the results do show that performing data cacheanalysis for predicting worst-case execution time doesstill result in substantially tighter predictions. In fact,for the programs in the test set the prediction improve-ment averages over 30%.The performance overhead associated with predict-ing WCETs for data caching using this method comesprimarily from that of the static cache simulation. Thetime required for the static simulation increases lin-early with the size of the data. However, even withlarge arrays as in the given test programs this time israther small. The average time for the static simula-tion to produce data reference categorizations for the11 programs given in Table 2 was only 2.89 seconds.The overhead of the timing analyzer averages to only1.05 seconds.4. Set-Associative Instruction CachesModern processors generally use instruction anddata caches to bridge the increasing gap between ever-faster processors and only moderately faster memory.Most caches are split caches, i.e., instruction cache anddata cache are separate. The level of associativity forsuch caches typically ranges between 1 and 8 [4].The method of static cache simulation provides themeans to predict the caching behavior of instructionand data references. This section formalizes the han-dling of set-associative instruction caches. An instruc-tion is assigned a category for each loop level (i.e.,always-hit, always-miss, �rst-hit or �rst-miss, as dis-cussed previously in the context of data caches). Theanalysis for set-associative instruction caches is basedon the following formal framework:De�nition 1 (Potentially Cached) A program linel can potentially be cached if there exists a sequenceof transitions in the combined control-ow graphs andfunction-instance graph such that l is cached when it isreached in the current block.



The traversal of every possible sequence of blocksleads to an exponential explosion. To avoid this over-head, we restrict the analysis to abstract cache states:De�nition 2 (Abstract Cache State (ACS))The abstract cache state of a program line l within ablock and a function instance is the set of program lines(for each level of associativity) that can potentially becached prior to the execution of l within the block andthe function instance.For direct-mapped caches, the ACS is a singletonset used to determine the category of an instructiondescribing the cache behavior. For an n-way set-associative cache, the ACS is an n-tuple of sets.Given the control-ow information of a program anda cache con�guration, the ACSs for each block have tobe calculated. Using data-ow analysis (DFA), eachblock has an input state and an output state, corre-sponding to the ACS before and after the executionof the block, respectively. An iterative algorithm forthe calculation of ACS' via DFA is given in [14]. OurDFA requires a time overhead comparable to that ofinter-procedural DFA performed in optimizing compil-ers. The space overhead is O(pl � bb � fi � n), wherepl; bb; fi; n denote the number of program lines, basicblocks, function instances, and cache associativity, re-spectively. Notice that set-associative caches impose afactor of n, which is typically very small (1 � n � 8) forinstruction caches in contemporary architectures (fordirect-mapped caches n = 1). The correctness of itera-tive DFA has been discussed elsewhere [1]. AdditionalDFA is required to determine the linear cache state andthe post-dominator set for each block before a de�ni-tion for instruction categories can be given.De�nition 3 (Linear Cache State (LCS)) Thelinear cache state of a program line l within a block anda function instance is the set of program lines (for eachlevel of associativity) that can potentially be cached inthe forward control-ow graph prior to the execution ofl within the block and the function instance.The forward control-ow graph is the acyclic graphresulting from the removal of back edges (backwardsedges forming loops [1]) in the regular control-owgraph. Informally, the LCS represents the hypothet-ical cache state in the absence of loops. It will be usedto determine whether a program line may be cacheddue to loops or due to the sequential control ow.De�nition 4 (Post-dominator Set) Thepost-dominator set of a program line l within a blockand a function instance is the self-reexive transitiveclosure of post-dominating program lines.Informally, the post-dominator set describes theprogram lines certain to be reached from the currentblock, regardless of the taken paths in the control ow(see [1] for more details).The instruction categories can now be formally de-�ned (see De�nition 5, at the top of the next page)and implemented rather e�ciently once DFA has beenperformed. First, simple set operations on bit vectorssu�ce to test the conditions. Second, if one conjunctin a condition fails, the remaining ones are not tested.Third, the implementation orders the conjuncts suchthat the least likely ones are tested �rst. To motivatethis de�nition, an informal description of the condi-tions shall be given (see [14] for algorithmic details).

Always-hit: (on spatial locality within the programline) or ((the instruction is in cache in the ab-sence of loops) and ((there are no conicting in-structions in the cache state) or (all conicts �tinto the remaining associativity levels))).First-hit: (the instruction was a �rst-hit for innerloops) or (it is potentially cached, even withoutloops and even for all loop preheaders, it is alwaysexecuted in the loop, not all conicts �t into theremaining associativity levels but conicts withinthe loop �t into the remaining associativity lev-els for the loop headers, even when disregardingloops).First-miss: the instruction was a �rst-miss for innerloops, it is potentially cached, conicts do not�t into the remaining associativity levels but theconicts within the loop do.Always-miss: This is the conservative assumption forthe prediction of worst-case execution time whennone of the above conditions apply.4.1. ExampleConsider the example in Figure 7. Program lines A,B, and C map into the same cache line within a 2-wayset-associative cache. B and C are executed withina loop. A is executed before the loop (instance 1 offoo) and twice within the loop (instances 2 and 3 offoo). For foo(1), A is an always miss since A is not inthe ACS of foo(1). For foo(2), A is a �rst-hit since itwas brought into cache by foo(1), there are 3 conictswithin the loop (and only 2 cache lines within the set)but B is the only conict in the output ACS and theLCS within the loop. For foo(3), A is an always-hitdue to temporal locality since it was brought into theACS by foo(2) and there are no conicts in this ACS.Notice that B and C are always-misses since they arenot in the ACS of their blocks. However, if there wereno calls to foo() within the loop, B and C would be�rst-misses since they would remain in the sets oncethey are referenced and brought into cache and thereare only 2 conicting lines within the loop.4.2. MeasurementsStatic cache simulation and timing analysis wereperformed for instruction caches for 1/2/4/8-way set-associative caches with 16/8/4/2 lines, respectively,and a line size of 16 bytes. Thus, each cache con-�guration has the equivalent storage capacity of 256bytes, which was chosen to model a realistic ratio of
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De�nition 5 (Worst-Case Instruction Categorization) :� Let ik be an instruction within a path, a loop �, and a function instance.� Let n be the degree of associativity of the cache.� Let l = i0::im�1 be the program line containing ik and let ifirst be the �rst instruction of l within the path.� Let sj be the j-th component of the ACS (n-tuple) for l within the path and let s = [1�j�nsj .� Let l map into cache line c, denoted by l ! c.� Let u be the set of program lines in loop �.� Let child(�) be the child loop (inner-next loop within nesting) of � for this path and function instance, ifsuch a child loop exists.� Let header(�) be the set of header paths and preheader(�) be the set of preheader paths of loop �, respec-tively.� Let s(p) be the abstract output cache state of path p.� Let linearj be the j-th component of the LCS (n-tuple) for l within the path and let linear = [1�j�nlinearj.� Let postdom(p) be the set of self-reexive post-dominating programming lines of path p.Then,category (ik; �)=8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:always-hit if k 6= first _ (l 2 linear ^ [ 91�j�n l 2 sj ^ ( �m!c;m 6=ljm 2 sj j = 0 _ �m!c;m 6=ljm 2 sj < n)])�rst-hit if category(ik; child(�)) =�rst-hit_k = first ^ l 2 s ^ l 2 linear^8p2preheaders(�)l 2 s(p) ^ 8p2headers(�)l 2 postdom(p) ^ �m!c;m 6=ljm 2 (s \ u)j � n^�m!c;m 6=lp2preheaders(�)jm 2 (s(p) \ u)j < n ^ �m!c;m 6=ljm 2 (linear \ u)j < n�rst-miss if worst(ik; child(�)) =�rst-miss^k = first ^ l 2 s^�m!c;m 6=ljm 2 sj � n ^ �m!c;m 6=ljm 2 (s \ u)j < nalways-miss otherwiseprogram size and cache size (from 2:1 to 9:1). The es-timated number of cycles for a program execution wasderived from static cache simulation and timing anal-ysis without program execution. This number is com-pared to the number of observed cycles obtained by atrace-driven cache simulation. In the latter case, theprogram was executed with its worst-case input data.The miss penalty was assumed to be 9 cycles [7]. (Forthe numbers reported here, pipeline simulation of thetiming analyzer was intentionally disabled to isolatethe e�ects of caching.)Table 3 shows the results of WCET prediction for a4-way associative cache with 8 lines. The other cachecon�gurations mentioned before yield similar results interms of the ratios and are therefore omitted. The pro-grams are described in Table 2. The observed cyclesduring program execution (column 2) are slightly lessthan the number of cycles estimated by our tools (col-umn 3). The ratio between estimated and observedcycles (column 4) shows that our method yields tightestimations, sometimes even exact ones. The naive ra-tio (column 5) simulates a disabled cache and was cal-culated by assuming that all data cache references weremisses and dividing those cycles by the observed cycles.It shows that an overestimation of the WCET of 9.25times on average for the naive cache is reduced to onlya slight overestimation of 1.32 with our approach, i.e.,when caches are enabled and included in the WCETprediction. The results for some programs require fur-ther explanation.The timing analysis overestimates program Sortadue to a loop with a varying number of iterations as de-scribed in Section 3.5. Likewise, Des causes an overes-timation due to a data dependency that was also previ-

Observed Estimated Est./Obs. NaiveProgram Cycles Cycles Ratio RatioDes 95,877 109,069 1.14 5.58Matcnta 443,754 443,790 1.00 9.99Matmulta 1,430,538 1,430,538 1.00 10.00Matsuma 343,628 343,646 1.00 9.99Sorta 3,130,692 6,249,474 2.00 10.00Statsa 183,491 192,518 1.05 9.94Table 3: Worst-Case Execution Timesously described. For the programs Matcnta, Matsumaand Statsa, the number of cycles was slightly overesti-mated. The programs Matcnta and Matsuma containconditional control ow and would require exhaustiveanalysis of all permutations of execution paths to yieldmore accurate results. Such an approach would resultin exponential complexity. Instead, the timing analyzerapproximates the execution times conservatively usinga �x-point algorithm (see [14]). This trade-o� betweenaccuracy and feasible time complexity still results inrelatively tight but not always precise estimations. Theprogram Statsa su�ers from an overly conservative cat-egorization due to a program line crossing a functionboundary. Nonetheless, the conservative category re-sults in safe estimates that remain very tight.We also measured the average ratio between esti-mated and observed cycles for cache associativities be-tween 1 and 8 and observed that this ratio is inde-pendent of the level of associativity. Furthermore, thedistribution of the instruction categories, averaged overthe test set, varied only insigni�cantly for di�erent lev-els of associativity. Thus, the presented method forWCET predictions yields tight results regardless of theassociativity of caches. Finally, we observed that the



overhead of performing static cache analysis increaseslinearly with the level of cache associativity. The in-crease can be attributed to the overhead of bit-vectoroperations implementing the DFA. The performanceoverhead for direct-mapped caches is extremely low(about 200 ms) and is still respectable (about 1.7 sec)for n = 8, the largest associativity found in today'sprocessors [14]. Thus, static cache simulation is an ad-equate method to model caches for WCET predictionsfor contemporary architectures e�ciently.5. Future WorkThere are several areas of timing analysis that canbe further investigated. The e�ect of wrap-around �lldata caches can be analyzed. We currently assumethat each load requires a constant miss penalty for ac-cessing memory. However, cache lines are �lled frommemory one word at a time, and analyzing the wrap-around �ll behavior can tighten the predicted WCET.Timing predictions for set-associative data caches canbe produced in a manner similar to that for instruc-tion caches described in this paper. Best case timingbounds for both data and set-associative caches mayalso be investigated. An eventual goal of this researchis to integrate the timing analysis of both instructionand data caches to obtain timing predictions for a com-plete machine. Actual machine measurements using alogic analyzer could then be used to gauge the e�ec-tiveness of the entire timing analysis environment.6. ConclusionThere are two general contributions of this paper.First, an approach for bounding the worst-case datacaching performance is introduced. It uses data owanalysis within a compiler to determine a boundedrange of relative addresses for each data reference. Anaddress calculator converts these relative ranges to vir-tual address ranges by examining the order of data dec-larations and the call graph of the program. Catego-rizations of the data references are produced by a staticsimulator. A timing analyzer uses the categorizationswhen performing pipeline path analysis to predict theworst-case performance for each loop and function inthe program. The results so far indicate that the ap-proach is valid and can result in signi�cantly tighterworst-case performance predictions.Second, a report on an implementation of timingpredictions for set-associative caches is given. A formalmethod and the corresponding operational frameworkfor simulating set-associative caches is described. Thismethod of static cache simulation for set-associativecaches is shown to yield adequate results to enable tightpredictions of the WCET by the timing analyzer, re-gardless of the degree of cache associativity. The cachesimulation overhead scales linearly with increasing as-sociativity.Overall, this paper contributes a comprehensive re-port on methods and results of worst-case timing anal-ysis for data caches and set-associative caches. Theanalysis occurred on code generated with all compileroptimizations enabled and requires no user-speci�ed in-formation. The approach taken is unique and providesa considerable step toward realistic worst-case execu-
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