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Abstract

Real-time pogrammes have to deal with the problem of
relating timing constraints associated with source code to
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user can understand\ user needs to kmothe correspon-
dence between sequences of machine instructions and
lines of source code.

sequences of machine instructions. This paper describes This problem is similar to the one of symbolic dgb

an ewironment to assist userin the specification and
analysis of timing consdints. Auser is allowed specify
timing constraints within the source code of a Ggpam.

A user interface for a timing analyzer wasvetoped to
depict whether these constraints wetolated or met.In
addition, the interface allows portions ofggrams to be
quickkly selected with the casponding bounded times,
souice code lines, and mhioe instructions automatically
displayed. Theesult is a user-friendly etfironment that

supports the user specification and analysis of timing con-
straints at a high (source code) level and retains the accu-

racy of low (machine code) level analysis.

1. Introduction

One contrgersial aspect of real-time systems is
whether timing analysis should be performed at a high
(source code) or @ (machine code) l&l. An advantage
of high-level analysis is that the results of the timing pre-
dictions can be easily related to a us@&ming bounds
are obtained for each highvi# language construct, which
includes statements, loops, and functioifie assump-
tion is that timing bounds for a specific machine can be
associated with each of these construdisifortunately,

current architectural features, such as pipelines and
caches, preclude a single a priori time associated with a

high-level language constructln addition, global com-
piler optimizations can affect ioa gecific construct is
translated and its associated timing hétra While much

more accurate timing bounds can be obtained by perform-

ing the analysis at the machine codeligit is still impor

tant to relate these timing predictions in a manner that a

*This work was supported in part by the Office ofvileResearch
under contract number N00014-94-1-00@6preliminary version of the
viewer was described in [1]JRobert Arnold is currently working for
Peek Taffic Transyt. LoKo is aurrently working for the Florida Depart-
ment of Insurance.

ging of optimized codeMarny users are willing to rely on
symbolic debugging of unoptimized codeveyi that the
behaior of the unoptimized and optimized programs are
semantically eqwilent. Hawever, correct behavior of
real-time programs demands that the results are produced
on time. Thus, the timing analysis should be at thel le

of the optimized machine instructions or the compiler
should maintain an accurate mapping between the high-
level and low-level representations.

This paper describes an environment to support the
specification and analysis of timing constraints. Th&-en
ronment allows specification of constraints at the source
code leel, performs the timing analysis at the machine
code leel, and provides a graphical display of the rela-
tionship between the machine instructions (i.e. assembly
code) and the corresponding source codée timing
analysis is performed for the MicroSPARC | processor
[2]. Other papers are\ailable for readers interested in
how the timing predictions are actually obtained [3], [4].

2. Owerview

The design of the environment described in this paper
includes the following goals:
(1) A user should be able to quickly specify constraints and
obtain timing predictions for the specified portions of a pro-
gram.

Theuser should only be allowed to select portions of the
program for which timing bounds can be obtained.
Theability to specify constraints and obtain timing predic-
tions should not inhibit compiler optimizations from being
performed.

The correspondence between source code and machine
code of the program selected by the user for timing predic-
tion should be graphically depicted.

Figure 1 gves an werview of the cont&t in which
timing predictions are obtainedControl-flov informa-
tion, which includes timing constraint specifications, is
stored as a side effect of the compilation of a fildis
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Figure 1: Overviw of Obtaining Timing Predictions

control-flov information is passed to a static cache simu- informed of ag potential timing constraint violationdn
lator, which constructs the control-flograph of the pro-  addition, the user may wish to monitor the constrained
gram that consists of the call graph and the contral éfo sections of code to determinevihalose the predicted
each function. The program controlsiograph is then  worst-case xecution time is to violating a timing con-
analyzed for a gien cache configuration and a cgteiza- straint. Finally the ability to obtain timing predictions on
tion of each instructios’ potential caching behavior is constrained code portions should not inhibit the optimiza-
produced. Ngt, a timing analyzer uses the instruction tions performed by a compiler.

caching catgorizations along with the control-foinfor- The ability to capture these constraintasnaccom-
mation provided by the compilewhich includes the  plished by modifying the front end of a C compiler called
source lines associated with each basic block, to estimatgpcc[9]. This constraint information was passed through
the best-case andonst-case performance for each 100p the back end of a C compiler callego [10]. Source
and function within the programFinally, a gaphical Jines associated with basic blocks are teatkvhile per
user interface (GUl) is ioked that allavs the user to forming the Optimizations im'po_ The back end corys
request the status of the constrained sections and timinghe constraint information along with the correspondence
predictions for other specified portions of the program.  petween source lines and assembly code to the timing
analyzer in the control-fle information.
3. RelatedWork

The environment described in this paperwaiausers
to specify timing constraints in the source code on func-

language constructs to@ress timing constraintsMany tions, loops, and paths. Figure 2 depicts the three types of

authors hee alded real-time constructs to existing lan- constraints that can be specifiethe code within this fig-
guages, such as C [5], C++ [6], and Euclid [7]. In addi- Ur® contains a function that calculates the sum and count

of the nonngdive and ngaive values of a matrix.The
function is constrained to no more than 2 millisecondls.
best-case constraint for the function was not specified.
The inner loop within the function has a best-case con-
straint of 500 nanoseconds and aersi-case constraint of
3 microseconds. Apath is specified by annotating source
4. Specificationof Timing Constraints lines, which must be contained within the path. If a
source line contains anviocation of a function, then the
Real-time programs may oftenvgaiming constraints  time required toxecute that function (and grother func-
on portions of source code, which are sometimes referredions that could be iked from it) is included when the
to as critical sections. It is desirable tos/bdhese timing  timing analyzer determines if the constraint was satisfied.
constraints expressed within the source code and be autdFhese annotations are of the fo@, wheren is the path
matically checked as programs are beingeltped and  identifier The annotations require only anecharacters
later maintained.ldeally, the timing analysis could occur to facilitate their placement on the source lines being
each time the program is linked and the user can bespecified. On®f the annotations within a path musvéa
- a best and/or wrst-case constraint. There areotaer-
The user is prompted for the minimum and maximum loop itera- lapping paths within the inner loop thatveamnstraints.

tions of loops when it could not be calculated by the comphNete that Pah 1 goes throuah source lines 13 and 15 and path 2
at this time only pipeline and instruction caching hétrais analyzed 9 9 P

[3], [4]. Work is currently proceeding on analyzing data cachingbeha 90€S through lines 13, 18, and 19. Thus, this simple
ior. method of specifying paths is quite flexible.

There has been much work on proposing real-time

tion, mary new real-time languages with features for
expressing timing constraints v& been proposed and
implemented. Unfortunatelyhere has been little work in
the area of pndding support for user analysis of timing
constraints.




1 functinmebnd [:2ns]

2 void Sun(Array, Nonnegcnt, Negcnt, nonnegsum Negsumn)
3 matrix Array;

4 int *Nonnegcnt, *Negcent, *Nonnegsum *Negsum Select a function within the progranm,

5(
6 int i, j;

7 voi d Addnonneg(), Addneg();
8

9

function nane

*Nonnegsum = *Negsum = *Nonnegcnt = *Negcnt = 0; astbit
10 for (i=1; i <= MAXSIZE; i++)
11 | oopti mebnd [ 500ns: 3us]
12 for (j=1; j <= MAXSIZE; ] ++) main
13 if (Array[i][j] >= 0) { @[ :150ns] @[ 10ns: 100ns]
14 Addnonneg(Array[i][j], Nonnegsun);
15 (*Nonnegcnt ) ++; a
16 }
17 el se {
18 *Negsum += Array[i]l[j]; @
19 (*Negcnt) ++;
20 } Cycles to Execute the ks Function
21} Best Case 3588 Horst Case 5633
Figure 2: Source Code with Timing Constraints [ Exit | [Constraints | [More Detail | | fack
Figure 3: Main Windw at Function Level
5. Userinterface Note that a comment precedes each basic block that iden-

) o o tifies the block number and the associated source lines.
The user interface isvoked dter the timing analyzer  These comments in the assembly windand the line

has analyzed the entire prograrfigures 3 and 4 depict  \ mpers in the source windodlow a wser to quickly

the three windows that arenglys displayed for the timing 4155 the relationship between the higrele(source

analysis é;rap?[{(;al user |tnt§n‘e. T':h'gure3 5’:_0"’5 fﬂt]r? code) and low-leel (machine code) representations.

main windav ot the user integice. - Theop section of the Figure 4 also illustrates a pitfall a user may face with

main windav displays a message indicating the current : .
the tool. Source code lines are only tracked to a basic

action the user can perform with a mouse selection in theolock levd. Sometimesontimizations muoe individual
middle section.The middle section of the main wingo . . P .
instructions from one basic block to anotheFor

has a specific portion highlighted, which indicates the cur . : o .
. instance, the last instruction in block 5 of Figure 4 corre-
rent program construct for which best-case andswvcase . _ ; ;
sponds to the assignment of zera tap. | at line 40 in

“m”?g predlct!ons are d|splayed n t_he lower part_ of this the source code. This instructiorasvcopied from block
section. Portion®f the middle section of the windo . -
. : 0 into block 5 when filling the delay slot for the preced-
associated with other program constructs can be selecte -
by simplv clicking on the aoprooriate linethe bottomn Ing branch. The user has the responsibility to ensure that
y Py 9 bprop ' the selected source lines correspond to the assembly

section of the main windo contains buttons that allo . . . -
instructions that are examined by the timing analyzer.

the user to select thevid of information displayed. o o
The timing analyzer constructs a tree to simplify the

Figure 4 shws the tvo other windows in the user . -
interface that are wlays displayed. The left windocon- process of bounding the timing performance of a pro-
' ram. Eachlode in the tree corresponds to a function or

tains a display of the source code of the program beinﬁ . o .
- . atural loop instanceA function is analyzed as though it
analyzed. Théighlighted lines are thexecutable source .
: Co . was a ratural loop that iterates only once when entered.
lines that correspond to the highlighted construct in the i
middle section of the main windo Wheneer a dfferent The most straightforward approach for allog one to
obtain timing predictions from arious portions of the

construct is selected in the main wimgdhe highlighted
program would be to ale the user to mee yp or down a

lines in the source and assembly wiwdoare automati- ! e .
cally updated and scrolled to the appropriate position.  Sindle node of the timing tree at a time. The authors real-
ized that most usersomld not be interested in trersing

Note that the source lines within the display are num- : .
. . . a gaph representing the combined call graph and loop
bered. Thisallows a user to identify constructs that are :
nesting structure of the program. Instead, useosildv

referenced by line numbers in the main windoThe most likely want the capability of accessing specified por
right windav contains a display of the assembly code for . y P y g sp P
tions of the program as quickly as possible. The user

the program.The highlighted asse_mb!y lines correqund interface described in this paper provides threéeint
to the code generated for the highlighted source lines. . . .
methods for quickly accessing portions of a program.



C Source Code of des.c Assenbly Code of des.s

line # source code blk  assenbly code

23 49,17,57,25}; sLl

24 static great kns[171:

25 static int initflag=1:

26 int ii.i.j.k:

27 unsigned long ic,shifter,getbit{}:

28 immenze itmp:

29 void cyfuni}, ks{i: L il tiE]

20 # block 6 (lines 37-38)

il if {initflag) st Hg0,[¥ob]

32 initflag=0: mow  1,¥10

33 bit[1]=shifter=1L* add  ¥sp, 0_STARG, %14

34 forgj=2:j<=32:j++2 bit[j1 = {shifter <<= 133 sethi  ZhiilZ14} 216
T add 16, ¥loil2143 %13

add 13,12, %16
add 213,192,212

# block 7 (lines 38-38)

L2227

1d  [#il + 41.%0l
st Hol,[¥sp + ¢ 0_STARG + 431
1d  [Eill,%o0

3 itmp fitmp,l 3 | gethit{inp, i =t Fo0,[¥sp + LO_STARG]

Ad mov  £14,%00

45 for fi=lii<=1Bri+v+) £ moy #10, %0l

46 ii o= fisw==1717-i : i} call  ks.3

47 cyfunditmp,l, kns[iil, &ick: moy  X1E, o2

48 ic "= itmp,r: # block 8 {lines 38-38)

43 itmp,r=itmp,l: add  ¥16.12,%16

i} itmp,l=ic: cnp #16,HiZ

51 ¥ ble L22F

02 ic=itmp,rs add  £10.1.%10

53 itmp,r=itmp,l # block 9 (lines 40-40

) itmp,l=ict =t Fo0, [¥sp + ,1_itnpl
55 {%out ), r=(kout ), 1=0Lz &

56 for (j=32,k=641 j »= 1t j—, k=3 &

67 {koutd,r = {koutd,r <<= 13 | getbit{itmp.ipm{j]1.323:

58 (kout?,1 = {fkoutd,l <<= 1) | getbit{itmp.ipm(k]1,32}:

59 ¥

B0 ¥ :

Select Path | Eﬁcc@p%é Eﬁ&ﬁceié L flmar 811 : ‘Best Pipeline Dia.| |Horst Pipeline Dia.

Figure 4: Source Code and Assembly Code Windows

User Specified Tining Constraints
Best Casze Best Case Horst Case Horst Case
Hun Predicted Specified Specified Predicted Function Hame Type Source Lines
1 1205 110 1010 3865« main func 9,.37
2 63% 400 500 513= loop 23..23
3 1000
q 263 10 730 297 loop 26, .27
5 272 10 FL 297 loop 31,.31
6 272 10 m2 297 loop 36,.36
7  no path 2h no path path 10, 11, 12,
14
g 20 100 57 path 10, 15

Disniss

Figure 5: Constraints Window

6. SelectingPortions of a Program Figure 5 shows the constraint wingdowhich contains a

Using the Constraints Window scrollable display of the user-specified constraiftsiser

) ] ) may choose to @ the source and assembly windo
_ The first method for accessing portions of the programgispjay the code associated with a constraint by simply
involves using the constraints windafter clicking the  gjicking on the appropriate line within the scrollable sec-
Constraints button in the main winde. The diferent  ion At that point the associated code portion will be

portions of the program that can be accessed are the POpjghlighted and scrolled to the appropriate position in
tions specified in the source code timing constraints.pqih the source and assembly windows.



Select a loop within the function des. Select a path within the function des.
loop nane source lines nest level path blocks source lines
cntire function 21, .58 0 entire function 31,.58
LooP 1 34,.34 1
Loop 2 28,.38 1
LooP 2 41,.43 1
LOoP 4 45, .50 1
LOOP 5 56, .58 1
path 2
1 1z
Cycles to Execute the des Function Cycles to Execute Path 1 within Function des
Best Case 22084 Horst Case 257867 Best Case 22084 Horst Case 58873
| Exit | |Constraints | | Hore Detail | | Back | | Exit | |Constraints | | Hore Detail | | Back |
Figure 6: Main Windw at Loop Level Figure 7: Main Windw at Path Level

For each constraint the winaodisplays the specified execution of the entire program. The remaining four-le
and predicted best andovst-case times in clockycles,2 els are shan in Figures 6 through 9. Selection of a func-
and the location of the constrained source code. If thetion, loop, path, subpath, or range of instructions will
user did not specify a best oorgt-case time in the tim- cause the corresponding bounded predictionyofes to
ing constraint, then the corresponding field in the displaybe displayed and the appropriate lines to be highlighted in
is left blank. If the best-case predicted time is less thanthe other tw windows. Theloops displayed are the loops
the specified best-case timing constraint, then an asteriskvithin the selected functiorA path is defined as a unique
follows the predicted time to indicate that the constraint sequence of basic blocks connected by contral-flan-
has been violatedLikewise, an asterisk will foll the sitions. EacHoop path starts with the loop header and is
worst-case predicted time if itxeeeds its corresponding terminated by a block with a transition to the loop header
worst-case specified timet is possible that a user may or to an exit block outside the loofhe paths at a func-
select a set of lines that cannot becaited in a single  tion level start with the initial block in the function and
path (as in constraint 7 of Figure 5), such ad then and are terminated by blocks containing return instructions.

el se portions of ani f - t hen- el se construct. Note that if a path contains a transition to a header of a
more deeply nested loop, then the entire child loop is rep-

7. SelectingPortions of a Program resented as a single step along that paéttsubpath is a
Using the Main Window subset of the blocks within a path that are connected by

_ . _ control-flow transitions. Asubpath is selected by pressing

The second method for accessingeint portions of  the mouse itton with the cursor on the subpath starting
the program ivolves clicking theMore Detail button  p5ck and releasing it on the ending block. The finaile
a_lfter selectlng_the_appropnate construct in the mldc_ile S€Chf detail consists of machine instruction©nly the
tion of the main winde. There are fie levds of detail @ jystryctions within the initial and ending block of the sub-
user is allowed to vie. The top leel and initial display  path are shen. Theuser selects a beginning instruction
for the middle section of the main windds the list of from the initial block by holding den the mouse utton
functions within the program. This topvie is depicted  gnq selects an ending instruction from the last block by

in Figure 3, which was discussed earlier in the papBe  ¢jeasing the titton® Hence, the user is alked to obtain
function selected by dafilt upon initialization of the a ery fine-grain leel of timing predictions.

interface is tharai n function, which results in displaying

the best and worst-case clockcles representing the Thus, there are fevlevds of detail in a program that a

user can view: functions, loops, paths, subpaths, and
2 These specified and predicted times avergin dock cycles as ranges_of maChme mstru_ctlonAt most five sel_ectlons In
opposed to a time unit (e.g. microseconds).ater section of the paper  the main windw are required for a user to quickly choose
will describe hav the ewironment supports detailed pipeline analysis of
the code portions.This analysis is easily accomplished by presenting % The source windw is rot updated when a range of instructions

performance information based on cycles. within a subpath is selected since source code lines are onlgdréek
the basic block keel.




Select a subpath within path 1
within the function des.

blocks source lines

1 31,.31
36, .36

[

5
= = 3= .

il:j:l 41

17

18,.23 45, .50 loop 4
24 52, .56

31 56, .56

Cycles to Execute Subpath from Block 5 To
Block 17 Best Case 56 Horst Case 82

| Exit | |Constraints | | Hore Detail | | Back |

Figure 8: Main Windw at Subpath Leel

ary specifiable portion of the programrlhe appropriate
timing analysis information is xéracted for each user

the portion of source code can be reached vitereifit

and the slowest of the worst-case times of th&emiht
instances are displayed.

8. SelectingPortions of a Program
Directly from the Source Window

The other method for accessing a portion of the pro-
gram is to select lines of source code directly by using the
mouse as depicted in Figure 1@fter clicking on the
Select Rith button, the user highlights the source lines
within the path to be timedA user may quickly obtain
the best-case andorst-case timing predictions for agse
ment of code by selecting only awsource lines, which
would indicate the start and the end of the path.

Once the user has highlighted the source lines ofinter
est, then the timing bounds can be obtained by clicking on
the Accept button. Atthis point a popup is displayed that
allows the user to select the best or worst-case path or
indicates that no path exists thateeutes instructions
from every selected source line. In addition, the user can
select to viev the loop or function that most tightly
encloses the highlighted lines.

Figures 11 and 12 shothe best and worst case set of
source lines, respeedy, that would be displayed associ-
ated with the source lines selected in Figure 10. In con-
trast to the best case path, bofh statements are entered
in the worst-case pathNote that instructions associated
with other source lines may Ve be eecuted as well
evan in the best caseThe basic block associated with

HARNING: Highlighted source lines may not
natch selected instructions
Click and drag to select instructions.

block instructions

# block 5 {lines 36-36)
L219:

1d  [#o51,%00

p o, 2al

Cycles to Execute from Inst 69 To
Inst 151 Best Case 41 Horst Case 58

| Exit | |Constraints | é Hore Botsll E | Back |

Figure 9: Main Windw at Assembly Leel

source line 36 has to beeeuted to be able to reach line
40 from line 31. Likewise, other lines may ke  be
selection. Ifthere is more than one instance of the userexecuted since their corresponding machine instructions
selected portion (i.e. multiple instances can occur whenare in a selected basic blockor instance, the initializa-
tion of the for loop at line 41 is in the same basic block as
sequences of calls), then tlastest of the best-case times the assignment statement at line 40. Thus, it must include
all source lines associated with a basic block yf snurce
lines in that block are selected.

C Source Code of des.c

line # source code

15 32,24.16,8,57,.49,41,33,25,17,9,1,58,51, 43,35,
18 27,19,11,3,61,53,45,37,29,21,13,5,63, 55,47, 39,
17 31,23,15,73
18 static char ipm[E5]=
13 40,40,8,48,16,56,24,64,32,29,7 47,15,
20 05,23,63,31,30.6,46,14 .54, 22,62, 30,37 ,.5,45,13,
21 53,21,61,29,36.4,44,12 52, 20,60,28,35,3 43,11,
22 51,19,59,27,34.2,42,10,50,18,58,26,33,1, 41,3,
23 49.17.57,25):
24 static great kns=[1717
25 static int initflag=1:
26 int ii,i.§.k:
27 unsigned long ic.shifter,getbitil;
28 immense itmp:
29 woid cyfunl, ksid:
E; if {initflag) {
32 initflag=0;
k1 bitl1]=shifter=1L:
kS fardj=2:j{=32: j++} bit[j] = {shifter = 1)
8 ¥
3B if iknewkeyy {
37 #newkey=03
38 ford{i=lri<=1B:i++} kslkey, i, &kns[ild:
T

itmp.r=itmp 1=0L:

41 for {j=32,k=B43i>=1tj—- k—) £
42 itwp,r = {itmp,r <= 1} | gethit{inp,ip[jl1,32}:
43 itmp,1 = {itmp,] <<= 1} | gethitd{inp,iplk], 320
44 ¥
40 for (i=1ri<=16zi++) {
46 il = Gisw == 17 17-1 1 i
47 cyfuntitmp.l, knsliil, &icd:
48 ic *= itmp,r:
49 itmp,r=itmp,1t
GO itwp,l=ic:
51 ¥
62 ic=itmp.r:
i Belect Path |ﬂccept| |Eancel‘ | Clear A1l |

Figure 10: Selecting a Path via the Source Code



C Source Code of des.c C Source Code of des.c
line # source code line ¥ source code
18 static char ipm[E5]= 18 static char ipm[E5]=
19 £0.40,8,48,16,56,24 64 32,239,747 .15, 15 10.40,8,48,16,56,24 ,84,32,39,7,.47 15,
a0 55,23,63,31,38,6, 46,14, 54,22,62,30,37,5, 45,13, 20 55,23,63,31,38,6,46,14,54,22,62,30,37,5,45,13,
a1 53,21,61,29,36,4,44,12,52,20,60,28,30,3, 43,11, 21 53,21,61.29,36,4,44,12,52,20,60,28,35,3,43,11,
2z 51,19,59,27,34,2,42,10,50,18,58,26,33,1, 41,9, 22 51,19,59,27,34,2,42,10,50,18,58,26,33,1,41.9,
2z 49,17 ,57, 28k 23 49,1757 .25}
24 static great kns[171: 24 static great kns[171:
25 static int initflag=1; 25 static int initflag=1;
26 int 1i.1,0.k: 26 int ii,1,.k:
27 unzigned long ic.shifter.gethit{}: 27 unsigned long ic,shifter,getbitid:
28 immense itmpr 28 inmense itmp:
29 void cufundd, kst 29 void cyfun{l, ks
30 30

3 if (initflag) £
32 initflag=0:

33 bit[1l=shifter=1L:

4 fordj=21j5=32:j++ bit[j]l = (shifter <<= 1)t
T

a7 #rieukey=01

38 fordi=l:i<=1Bri++} kstkey, i, &kns(ild:

42 itmp,r = (itmp,r 1y | getbitiinp,ip[jl,320:
43 itmp,1 = fitmp,1 <¢= 1} | getbit{inp,ip[k1,32)s 43 itmp,l = fitmp,] <<= 1} | getbit{inp,iplk],32}:
44 ¥ 44 ¥
45 for {i=13i<=16ri++> { 45 for {i=lpid=1Bri++) £
46 ii = {dsw == 19 17-i 1 i)z 46 ii = {dsw == 12 17-1 ¢ id:
47 cofuntitmp,l, knsliil, &icd: 47 cyfuntitmp,l, knsliil, &ichs
42 ic ™= itmp.r: 48 ic "= itmp.r:
49 itmp,r=itmp,1; 49 itmp,r=itmp,1;
50 itmp,l=ict 50 itmp,l=ict
51 ¥ a1
52 ic=itmp,r: 52 ic=itmp,r:
53 itmp,r=itmp, 12 63 itmp,r=itmp,1%
54 itmp, l=ics 54 itmp, l=ic:
55 Ckout ) r=(%outy, 1=0L s 23 O¥out,reikout, 1=00s

| Select Pabh | ificcept| [faseel! | Clear A1 | | Belest Pabh | ifiecept [faseel | (lear 81

Figure 11: Best Case Path from Source Lines Figure 12: Worst Case Path from Source Lines
Selected in Figure 10 Selected in Figure 10
9. Supporting Detailed Analysis to know why there is a difference between best armisi
of Timing Constraints case times. In this example, the worst-case time requires

) ) ] 36 more cycles than the best-case time due to four instruc-
The user inteeice can also be used to display informa- (jon cache misses. Other potential pipeline stalls due to

tion to the user about mothe timing prediction &S gyycryral or data hazards can also be quickly analyzed by
obtained. Thisinformation may aid a user inweiting a Lser.

constrained code to satisfy a violated constraliite user

can select tttons at the bottom of the assembly wiwdo 1. Implementation

shawvn in Figure 4 to obtain a pipeline diagram of the best

and worst-case performance of a path containing no loops The user interface is notvoked until the timing anal-

or calls. Figure 13 shows both the best andrst-case  ysis tree is already constructettach node within this
pipeline diagrams associated with a path through a looptree represents a loop or function. Each of these nodes is
In contrast to Figure 4, the assembly wiwdbas been  distinguished by function instances, where a function is
redravn to include numbers with each assembly instruc- uniquely identified by the sequence of call sites required
tion. Thesenumbers are referenced in the scrollable for its invocation. Ifthe user requests a timing prediction
pipeline diagrams to indicate when each instruction enterdor a function, loop or path, then this information can be
a gven dage of the pipeline. The source code winde obtained directly from the timing tredf a function con-
also cwered by the pipeline diagram winds since the taining the selected code portion has more than one
user may confuse the source line numbers with theinstance, then the best-case timing prediction isgbi$t
instruction numbers in the pipeline diagraRipeline dia- one of the best-case predictions among all instances.
grams are useful since a user may wish to understapd whLikewise, the worst-case timing predictiorowd be the

a £quence of instructions required aveyi number of slowest of the worst-case predictions.

cycles. for instance, a user can determine that load stalls  Timing predictions for subpaths and ranges of instruc-
occurred at ycles 7 (between instructions 146 and 147) tions are not stored in the timing analysis tree since there
and 10 (between instructions 148 and 149) in the bestare may combinations of subpaths and ranges of instruc-
case diagram of Figure 13. In addition, a user may wishtions within a single path. If a user requests information



Best Case Pipeline Diagran

Asszenbly Code of des.s

cycle # IF ID EX FPEX CR HB FHB

1: 144

23 145 144

3: 146 145 144

d: 147 146 145 144

52 148 147 146 145 144

63 148 147 146 145

71 148 147 146

8: 149 148 147 146

9: 150 149 148 147

102 150 149 148 147

11z 151 150 149 148

12z 153 151 149

132 154 153 151 149

14z 155 154 153 151

153 156 155 154 153 151

163 157 156 155 154 153

17: 157 156 155 154

18: 158 157 156 155

19: 158 156 155

201 158 156

21z 158

22: 158
Horst Case Pipeline Diagran

cycle # IF ID EX FPEX CR HB FHB

- blk  assenbly code

2 8 138 =t Eg0,[¥i2]
137 sethi  2hi{L283},%od4
138 sethi  Zhi{_bit}, ¥i0
133 add  Hod,Xlo(l283),Xil
140 add  ¥i0,Zlo{_bit}, g4
141 add  ¥il,32.%gh
142 add  Xil,1.%96

143 [#i2], %ol
24 {lin 33-19

# block 29 (lines 192-132}
153 ret
160 restore
Lzeg  "data"
Lzeg "text"
+alobal  _main

_maing
E s - oc

§§§éz<s,‘i' Fipaiing {%m\, é%«%{;z‘s%. Flpelineg i}.iéz\,é

1z 144

23 145 144

33 146 145 144

q; 146 145 144

L} 146 145 144
b3 146 145

71 146

Bz 146

i H 146

102 146

11: 146

12: 146

132 147 146

14z 148 147 146

15z 148 147 146

163 143 148 147 146
17: 150 149 148 147

18: 150 143 148 147
19: 150 149 148
203 150 149

21; 150 149
223 150

23: 150

24z 150

253 150

263 150

Figure 13: Best and Worst-Case Pipeline Diagrams

for a subpath or a range of instructions, then the approprisubpath that includes the initialization offar loop.

ate function within the timing analyzer is reoked for

Yet, the entire first line of thé or statement is high-

each instance of the loop or function in which the subpathlighted, which inappropriately includes the test condition

or range is contained.

and increment as wellLikewise, the selection of this

The user intedce was imp]emented using the X |00p for tlmlng predictions should not include the initial-

Toolkit (Xt) Intrinsics [11] and Xlib [12] libraries.Both
libraries come with each distribution of Xikdows.

ization portion of thd or statment. lraddition, consider
thef or loop from source lines 45-51 in the same figure.

Thus, use of these libraries and the proliferation of X- There are tw paths through this loopHowever, both

Windows should enhance the portability of the interface.

11. Future Work

paths vould be highlighted identically in the source win-
dow since the conditional control flo within the loop is
entirely contained in line 46, which consists of an assign-
ment statement containing a conditiongbression. ét,

One area in which the user interface could be the user interface would alloboth paths to be selected

enhanced is to aNe highlighting and selection of per

via the main winde and the appropriate assembly

tions of a source lineFor instance, Figure 12 shows a instructions would be highlighted.



The user intedce could also support selecting por several alternatves that resulted in a friendlier user inter

tions of source code that includes portions of a lifike

face. Theanorymous referees madeveeal suggestions

character position within the lines where the mouse isthat impraved the quality of the paper.

pressed and released wouldfeaf the corresponding

assembly code selecte@or instance, if a user wished to 14. Refeences

select af or loop with the mouse in the source wimgo

then one could select a character on ftbe statement 1)
that was after the initialization of the loop. The user
could also select a portion of an arithmetigression.

For instance, a function call associated with some observ-
able &ent could be selected [13]. Thus, the compiler and 2]
timing analyzer would hee t track character positions
along with source lines to a basic blockde 3]

12. Conclusions

The user intedce described in this paper pigdes [4]
three methods to alloa user to quickly select a portion
of a program for timing prediction. The first method
allows a user to quickly inspect whether or not the timing
constraints specified in the source code were violated{s)
The second method uses a menu selection approach,
which permits a very fine Vel of selection. r instance,
consider that C conditional expressions @e> b ? a [6]

b), logical operators (i.g.| , &&, and ! ), and assign-
ment of boolean expressions (evg.= i == j ;) often
are expressed on a single source livet, the resulting
assembly instructions will consist of multiple basic
blocks. Likewise, macro calls may be expanded to also [7]
generate multiple basic blocksThe menu selection
approach allows selection of subpathswdoto the
machine instruction lesl. Thethird method allows a user
to directly select paths from the source wiwwdoThis
method is functionally equélent to specifying a path
constraint in the source code using the first method.

This paper describes a solution for resolving the con-[9]
troversy of whether timing analysis should be performed
at a high or lav levd. This controversy is a result of the
desire to relate timing constraints to the source code and10]
to obtain as accurate timing predictions as possiéle.
userfriendly interface has been presented that assists real-
time programmers in relating the analysis of timing con-
straints associated with source code lines to sequences 1]
machine instructions. Thus, specifying and presenting

(8]

timing predictions at a high (source codeyelecan be  [12]
achieved while retaining the accurgc of low-level
(machine code) analysis. [13]
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