
1

Improving WCET by Optimizing 
Worst-Case Paths

Wankang Zhao 1, 

William Kreahling 1, David Whalley 1,

Christopher Healy 2, Frank Mueller 3 

1. Florida State University
2. Furman University
3. North Carolina State University



2

Motivation

Benefits gained from reducing Worst-Case 
Execution Time (WCET).

● More likely to meet timing constraints for embedded 
applications. 

● Allow a developer to use a lower clock rate to 
reduce power consumption while still meeting the 
timing constraints.
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Related Work
• Methods to reduce WCET in critical 

sections.
- Marlowe and Masticola, System Integration '92

- Hong and Gerber, PLDI '93

● Reduce WCET on a dual instruction set 
processor.

- Lee, et al, WCET '03 and SCOPES '04

● Tuning WCET by searching for efficient 
optimization phase sequences.

- Zhao et al, RTAS '04 

● WCET Code Positioning.
- Zhao et al, RTSS '04
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Basic Idea

• Traditional path optimization uses profiling data 
to determine the frequent path to optimize.

• Our WCET path optimization uses worst-case 
path information from a timing analyzer to select 
the path to optimize.

• WCET path optimizations are more complex 
than traditional path optimizations since the 
worst-case (WC) path can change after each 
optimization.
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Research Framework

• We retargeted the VPO compiler and our worst-
case timing analyzer to the StarCore SC100 
processor.

• The compiler obtains the WC path information to 
select which paths to optimize and to ensure the 
WCET improves before committing to a code size  
increase.
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Path Optimization Techniques

• Superblock Formation
– Make a superblock along the worst-case path.

• Path Duplication
– Duplicate the worst-case path.

• Loop Unrolling
– Unroll the loop by a factor of two to reduce the 

number of branches of executed and transfer of 
control stalls.

• Apply other optimizations to exploit fewer 
joins in the control flow.
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Superblock Formation
Creates a path of basic blocks where there is a 
single entry and possibly more than one exit.
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WC Path Duplication

• After superblock formation, duplicate the WC 
path to further reduce the WCET along that 
path. 

• Superblock formation should be performed 
before path duplication to eliminate any joins 
along the WC path.  

• Path duplication complicates the timing 
analysis since some paths represent two 
original loop iterations and other paths 
represent one.
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WC Path Duplication Example
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Loop Unrolling

• Duplicates the loop body to reduce the loop 
overhead. 

• We use a new technique to duplicate the loop 
body for loops with an odd number of iterations. 

• Provides more opportunities for superblock 
formation and other optimizations.
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Loop Unrolling (Cont.)
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Loop Unrolling (Cont.) 
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Path Duplication vs. Loop Unrolling

• Path duplication is performed after superblock 
formation and only duplicates the WC path 
within the loop.

– less code size increase

– smaller decrease in WCET

• Loop unrolling is performed before superblock 
formation but duplicates the entire loop.

– greater code size increase

– greater decrease in WCET
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Source Code Example

• Finds index of the maximum value in an array.
• WC path enters the if statement, frequent path 

does not.
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Source Code Example (Cont.)
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Source Code Example (Cont.)
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Source Code Example (Cont.)
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Source Code Example (Cont.)
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Benchmarks
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Experiment 1 

• Apply these optimizations on the WC path in the 
innermost loops.

• Roll back to a previous state if there is no benefit.

Superblock
Formation 

Other 
Optimizations

Code 
Positioning 

Path
Duplication 
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Experimental Results – WCET
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Experimental Results – Code Size
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Experiment 2 

• Apply these optimizations on the innermost 
loops.

• Roll back to a previous state if there is no benefit.

Superblock
Formation 

Other
Optimizations

Code 
Positioning 

Loop 
Unrolling 
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Experimental Results – WCET
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Experimental Results – Code Size
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Average Improvement on WCET 
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Average Improvement on Code Size 



29

Conclusions
• Our compiler uses information from a timing 

analyzer to automatically:
– detect the WC paths in a function

– determine the effect of the WC path optimization on 
these paths

– ensure the WCET improves before committing to a 
code size increase

• Showed that traditional frequent path 
optimizations can be adapted to reduce WCET.

• Developed new WC path optimizations to improve 
WCET while attempting to limit code growth.
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Any Questions?


