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Motivation

Benefits gained from reducing Worst-Case
Execution Time (WCET).
* More likely to meet timing constraints for embedded
applications.

* Allow a developer to use a lower clock rate to
reduce power consumption while still meeting the
timing constraints.
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Related Work

* Methods to reduce WCET In critical
sections.

- Marlowe and Masticola, System Integration '92
- Hong and Gerber, PLDI '93

e Reduce WCET on a dual instruction set
Processor.

- Lee, et al, WCET '03 and SCOPES '04
* Tuning WCET by searching for efficient
optimization phase seguences.
- Zhao et al, RTAS '04

* WCET Code Positioning.
- Zhao et al, RTSS '04



Basic Idea

« Traditional path optimization uses profiling data
to determine the frequent path to optimize.

 Our WCET path optimization uses worst-case
path information from a timing analyzer to select
the path to optimize.

« WCET path optimizations are more complex
than traditional path optimizations since the
worst-case (WC) path can change after each
optimization.



Research Framework

 We retargeted the VPO compiler and our worst-
case timing analyzer to the StarCore SC100
processor.

 The compiler obtains the WC path information to
select which paths to optimize and to ensure the
WCET improves before committing to a code size
Increase.
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Path Optimization Techniques

Superblock Formation
— Make a superblock along the worst-case path.

Path Duplication
— Duplicate the worst-case path.

Loop Unrolling

— Unroll the loop by a factor of two to reduce the
number of branches of executed and transfer of
control stalls.

Apply other optimizations to exploit fewer
joins in the control flow.



Superblock Formation

Creates a path of basic blocks where there Is a
single entry and possibly more than one exit.
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WC Path Duplication

« After superblock formation, duplicate the WC
path to further reduce the WCET along that
path.

» Superblock formation should be performed
before path duplication to eliminate any joins
along the WC path.

e Path duplication complicates the timing
analysis since some paths represent two
original loop iterations and other paths
represent one.



WC Path Duplication Example
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Loop Unrolling

e Duplicates the loop body to reduce the loop
overhead.

 We use a new technigue to duplicate the loop
body for loops with an odd number of iterations.

* Provides more opportunities for superblock
formation and other optimizations.
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Loop Unrolling (Cont.)
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Loop Unrolling (Cont.)
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Path Duplication vs. Loop Unrolling

« Path duplication is performed after superblock
formation and only duplicates the WC path

within the loop.
— less code size increase
— smaller decrease in WCET

e Loop unrolling is performed before superblock
formation but duplicates the entire loop.

— greater code size increase
— greater decrease in WCET
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Source Code Example

* Finds index of the maximum value in an array.
 WC path enters the if statement, frequent path
does not.

m = 0;
updates = 0;
for (i=0; i < 1000; i++)
if (a[m] < a[i]) {
m = 1;

updates++;
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Source Code Example (Cont.)
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Source Code Example (Cont.)
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Source Code Example (Cont.)
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Source Code Example (Cont.)
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Benchmarks

Program Description
Bubblesort |performs a bubble sort on 500 elements
Findmax find the maximum elements in a 1000 element array
Keysearch |performs a linear search involving 4 nested loops for 625
elements
Summidall |sums the middle half and all elements of a 1000 integer vector

Summinmax

Sumoddeven
Sumnegpos

Sumposclr

Sym
Unweight

sums the minimum and maximum of the corresponding
elements of two 1000 integer vectors

sums the odd and even elements of a 1000 integer vector
sums the negative, positive, and all elements of a 1000 integer
vector

sums positive values from two 1000 element arrays and sets
negative values to zero

tests if a 50x50 matrix is symmetric

converts an adjacency 100x100 matrix of a weighted graph to
an unweighted graph

20




Experiment 1

* Apply these optimizations on the WC path in the
Innermost loops.

* Roll back to a previous state if there is no benefit.

Superblock Path Other C_qde_
Formation Duplication ~ Optimizations | Positioning




WCET Ratio

Experimental Results - WCET
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Size Ratio

Experimental Results — Code Size
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Experiment 2

* Apply these optimizations on the innermost

loops.

* Roll back to a previous state if there is no benefit.

Loop
Unrolling

Superblock
Formation

Other
Optimizations

Code
Positioning
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Experimental Results - WCET

After Loop Unrolling m After Superblock Formation After WCET Code Positioning
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Size Ratio

Experimental Results — Code Size
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WCET Ratio

Average Improvement on WCET
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Code Size Ratio
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Conclusions

e Our compiler uses information from a timing
analyzer to automatically:
— detect the WC paths in a function

— determine the effect of the WC path optimization on
these paths

— ensure the WCET improves before committing to a
code size increase

« Showed that traditional frequent path
optimizations can be adapted to reduce WCET.

 Developed new WC path optimizations to improve
WCET while attempting to limit code growth.
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Any Questions?
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