
1

Improving WCET by Optimizing
Worst-Case Paths

Wankang Zhao 1,

William Kreahling 1, David Whalley 1,

Christopher Healy 2, Frank Mueller 3

1. Florida State University
2. Furman University
3. North Carolina State University

2

Motivation

Benefits gained from reducing Worst-Case
Execution Time (WCET).

● More likely to meet timing constraints for embedded
applications.

● Allow a developer to use a lower clock rate to
reduce power consumption while still meeting the
timing constraints.

3

Outline

● Related work
● Basic idea
● Research framework
● Path optimization techniques

- superblock formation

- path duplication

- loop unrolling
● Experiments
● Conclusions

4

Related Work
• Methods to reduce WCET in critical

sections.
- Marlowe and Masticola, System Integration '92

- Hong and Gerber, PLDI '93

● Reduce WCET on a dual instruction set
processor.

- Lee, et al, WCET '03 and SCOPES '04

● Tuning WCET by searching for efficient
optimization phase sequences.

- Zhao et al, RTAS '04

● WCET Code Positioning.
- Zhao et al, RTSS '04

5

Basic Idea

• Traditional path optimization uses profiling data
to determine the frequent path to optimize.

• Our WCET path optimization uses worst-case
path information from a timing analyzer to select
the path to optimize.

• WCET path optimizations are more complex
than traditional path optimizations since the
worst-case (WC) path can change after each
optimization.

6

Research Framework

• We retargeted the VPO compiler and our worst-
case timing analyzer to the StarCore SC100
processor.

• The compiler obtains the WC path information to
select which paths to optimize and to ensure the
WCET improves before committing to a code size
increase.

7

Path Optimization Techniques

• Superblock Formation
– Make a superblock along the worst-case path.

• Path Duplication
– Duplicate the worst-case path.

• Loop Unrolling
– Unroll the loop by a factor of two to reduce the

number of branches of executed and transfer of
control stalls.

• Apply other optimizations to exploit fewer
joins in the control flow.

8

Superblock Formation
Creates a path of basic blocks where there is a
single entry and possibly more than one exit.

9

WC Path Duplication

• After superblock formation, duplicate the WC
path to further reduce the WCET along that
path.

• Superblock formation should be performed
before path duplication to eliminate any joins
along the WC path.

• Path duplication complicates the timing
analysis since some paths represent two
original loop iterations and other paths
represent one.

10

WC Path Duplication Example

11

Loop Unrolling

• Duplicates the loop body to reduce the loop
overhead.

• We use a new technique to duplicate the loop
body for loops with an odd number of iterations.

• Provides more opportunities for superblock
formation and other optimizations.

12

Loop Unrolling (Cont.)

13

Loop Unrolling (Cont.)

14

Path Duplication vs. Loop Unrolling

• Path duplication is performed after superblock
formation and only duplicates the WC path
within the loop.

– less code size increase

– smaller decrease in WCET

• Loop unrolling is performed before superblock
formation but duplicates the entire loop.

– greater code size increase

– greater decrease in WCET

15

Source Code Example

• Finds index of the maximum value in an array.
• WC path enters the if statement, frequent path

does not.

16

Source Code Example (Cont.)

17

Source Code Example (Cont.)

18

Source Code Example (Cont.)

19

Source Code Example (Cont.)

20

Benchmarks

21

Experiment 1

• Apply these optimizations on the WC path in the
innermost loops.

• Roll back to a previous state if there is no benefit.

Superblock
Formation

Other
Optimizations

Code
Positioning

Path
Duplication

22

Experimental Results – WCET

23

Experimental Results – Code Size

24

Experiment 2

• Apply these optimizations on the innermost
loops.

• Roll back to a previous state if there is no benefit.

Superblock
Formation

Other
Optimizations

Code
Positioning

Loop
Unrolling

25

Experimental Results – WCET

26

Experimental Results – Code Size

27

Average Improvement on WCET

28

Average Improvement on Code Size

29

Conclusions
• Our compiler uses information from a timing

analyzer to automatically:
– detect the WC paths in a function

– determine the effect of the WC path optimization on
these paths

– ensure the WCET improves before committing to a
code size increase

• Showed that traditional frequent path
optimizations can be adapted to reduce WCET.

• Developed new WC path optimizations to improve
WCET while attempting to limit code growth.

30

Any Questions?

