Improving WCET by Optimizing
Worst-Case Paths

Wankang Zhao *,
William Kreahling *, David Whalley *,
Christopher Healy *, Frank Mueller °

1. Florida State University
2. Furman University
3. North Carolina State University

Motivation

Benefits gained from reducing Worst-Case
Execution Time (WCET).
* More likely to meet timing constraints for embedded
applications.

* Allow a developer to use a lower clock rate to
reduce power consumption while still meeting the
timing constraints.

Outline

e Related work
e Basic idea
e Research framework

e Path optimization techniques
- superblock formation
- path duplication
- loop unrolling

* EXperiments

* Conclusions

Related Work

* Methods to reduce WCET In critical
sections.

- Marlowe and Masticola, System Integration '92
- Hong and Gerber, PLDI '93

e Reduce WCET on a dual instruction set
Processor.

- Lee, et al, WCET '03 and SCOPES '04
* Tuning WCET by searching for efficient
optimization phase seguences.
- Zhao et al, RTAS '04

* WCET Code Positioning.
- Zhao et al, RTSS '04

Basic Idea

« Traditional path optimization uses profiling data
to determine the frequent path to optimize.

 Our WCET path optimization uses worst-case
path information from a timing analyzer to select
the path to optimize.

« WCET path optimizations are more complex
than traditional path optimizations since the
worst-case (WC) path can change after each
optimization.

Research Framework

 We retargeted the VPO compiler and our worst-
case timing analyzer to the StarCore SC100
processor.

 The compiler obtains the WC path information to
select which paths to optimize and to ensure the
WCET improves before committing to a code size
Increase.

| . control ﬂnw and
| instruction information

_—

Timing

— WCET predictions

Source [——= Assembly
Analyzer
- Files = — Files

Path Optimization Techniques

Superblock Formation
— Make a superblock along the worst-case path.

Path Duplication
— Duplicate the worst-case path.

Loop Unrolling

— Unroll the loop by a factor of two to reduce the
number of branches of executed and transfer of
control stalls.

Apply other optimizations to exploit fewer
joins in the control flow.

Superblock Formation

Creates a path of basic blocks where there Is a
single entry and possibly more than one exit.

1 1
2 \\,\ 2T h
™ | | %
3 /] | 3 4
5 5’ 5
~ 4\
¢ /E / ' [e] [6] [7]
5 / gl TR
pses i, S //'
\ ‘:) . -
| | ES

Original Code After Superblock Formation

WC Path Duplication

« After superblock formation, duplicate the WC
path to further reduce the WCET along that
path.

» Superblock formation should be performed
before path duplication to eliminate any joins
along the WC path.

e Path duplication complicates the timing
analysis since some paths represent two
original loop iterations and other paths
represent one.

WC Path Duplication Example

SN P
3 4|
5’ 5
|
6’ 6 7
LS’\ T

9

After Superblock Formation

[2 ﬂ

3
T
= H
g’
6 7
2° \
3 8 _F')I
3
5
I 6"’ 9
g "

After WC Path Duplication

10

Loop Unrolling

e Duplicates the loop body to reduce the loop
overhead.

 We use a new technigue to duplicate the loop
body for loops with an odd number of iterations.

* Provides more opportunities for superblock
formation and other optimizations.

11

Loop Unrolling (Cont.)

N&l—|

A

a
i

s]

Original

Control Flow

th

3’ 4 = j m

6!‘ ?‘!

EP’ | 61‘ ?1‘
=i 28
2 9
Unrolling for an Even Unrolling for an Odd
Number of lHerations Number of lierations

12

Loop Unrolling (Cont.)

5
a@ipa
&
g
:]
.
6’ 7

After LDDF)_UHFD||ing

n
th

4]

Nlmlm
- - el
- ol e

th
dE
al £l

F
-

L e 7’
CEH W
T,

ol

After Superblock Formation

13

Path Duplication vs. Loop Unrolling

« Path duplication is performed after superblock
formation and only duplicates the WC path

within the loop.
— less code size increase
— smaller decrease in WCET

e Loop unrolling is performed before superblock
formation but duplicates the entire loop.

— greater code size increase
— greater decrease in WCET

14

Source Code Example

* Finds index of the maximum value in an array.
 WC path enters the if statement, frequent path
does not.

m = 0;
updates = 0;
for (i=0; i < 1000; i++)
if (a[m] < a[i]) {
m = 1;

updates++;

15

Source Code Example (Cont.)

1

(T amml >= ari1 2|

| F
m = 1i; 3‘
T
uPdates++;
|

13F; 4
T a[m] >= al[i]
| F
m = i; 5‘
T
uPdates++;

i++; 6
_ | i < 1000

7

After Loop Unrolling

Source Code Example (Cont.)

1
(| amm] >= afi] 2
| F
m= i; 3 T
ipdates++; |
./
it+; 4
T a[m] >= a[i]
F 2
m= i; 5 |
T
_EPdat=s++; J
it
, i++; 6
| i < 1000
]
7

After Loop Unrolling

1
¥
(] am] >= afi] 2|
F “1
m= i; 3
updates++;
T|-+_: 4q*
T a[m] >= a[i]
¥ T)
m= i; 5
updates=++;
T|-+_: 6*
| i < 1000
I F !L/J

k rest of the code

7

After Superblock Formation
of the WC Path

17

Source Code Example (Cont.)

1
o ¥
([| afm] >= afi] 2| T
[.
' { F |
m = i; 3 |
| updates+t+;
i++; 4’
a[m] >= a[i]
| F T
m = i; 57 -
_liPdates++;

| it+; 6’

_ | i < 1000 |
i T 4y
I\\M_ rest of the code

¥
7

After Superblock Formation

3

¥

a[m] > a[i] 2

'II'F

4'.!
a[m] >= a[i+l]

'II'F||

Ly

m = i;
updates++;
it++;

m = i;

‘_l..‘IPd.ﬂtEE++;
it++;

ﬁ"!

i < 1000

s)

m = i;
updates++;
it++;

i+t

i < 1000

Y
rest of the code

After Code Sinking (Partial)

18

Source Code Example (Cont.)

a[m] > a[i]

2

'II'Fl

a[m] >= a[i+l]

4’

T
B

'II'Fl

m = i:

updates++;
it+;
m = i;

quates++;

tn

it++;
i < 1000

| L

i;
updates++;
it++;
it+;
i < 1000
T F
rest of the code

~ After Code Sinking

¥

7T

]

a[m] > a[i]

2

{ F

a[m] >= a[i+l]

4’

1+ F

m = i+l;
updates += 2;

i+= 2;
i < 1000

U

k =g

m = i;
updates++;
i+= 2;
i < 1000
1 F
rest of the code

After Dead Assignment
Elimination and

Instruction Selection

19

Benchmarks

Program Description
Bubblesort |performs a bubble sort on 500 elements
Findmax find the maximum elements in a 1000 element array
Keysearch |performs a linear search involving 4 nested loops for 625
elements
Summidall |sums the middle half and all elements of a 1000 integer vector

Summinmax

Sumoddeven
Sumnegpos

Sumposclr

Sym
Unweight

sums the minimum and maximum of the corresponding
elements of two 1000 integer vectors

sums the odd and even elements of a 1000 integer vector
sums the negative, positive, and all elements of a 1000 integer
vector

sums positive values from two 1000 element arrays and sets
negative values to zero

tests if a 50x50 matrix is symmetric

converts an adjacency 100x100 matrix of a weighted graph to
an unweighted graph

20

Experiment 1

* Apply these optimizations on the WC path in the
Innermost loops.

* Roll back to a previous state if there is no benefit.

Superblock Path Other C_qde_
Formation Duplication ~ Optimizations | Positioning

WCET Ratio

Experimental Results - WCET

@ After Superblock Formation m After WC Path Duplication O After WCET Code Positioning

1
0.95 +- i
0.9
085 —
0.8 4 —
075 1 —
BRE I —
.65 T : T T T 5 T T v T T T T
+ > = = 0 & = + o
= & & 8 § g ¢ 3§ & 5 8
¢ 5§ § © £ § £ & 7 T 5
e = 0 = = = o = % -
= = @ > b = 2 = = ©
e v n S = £)
)) >

22

Size Ratio

Experimental Results — Code Size

@ After Superblock Formationm After WC Path Duplication O After WCET Code Positioning

2.25

2

1iFa

T

1.25

075

0.5

F

bubblesort

findmax |

keysearch

summidall

summinmax

sumnegpos

sumoddeven

sumposclr

sym

unweight
average

23

Experiment 2

* Apply these optimizations on the innermost

loops.

* Roll back to a previous state if there is no benefit.

Loop
Unrolling

Superblock
Formation

Other
Optimizations

Code
Positioning

24

Experimental Results - WCET

After Loop Unrolling m After Superblock Formation After WCET Code Positioning

|
W o0
2
o

ohed 130M

afelane

Bl mun

| Jjosodwins

| usAsppowns
_ sodfsuwns
_. Xewujwwns

| |leplwwns

yoseashAay

| xewpuy

Hoss[qdqng

25

Size Ratio

Experimental Results — Code Size

@ After Loop Unrolling m After Superblock Formation After WCET Code Positioning

205

2.5

2:29

2
1.75 [
1.5] —
1 : T T E = T T T g T T T T
— g
5 s 5 © S S & S £ = o>
D = o = o = O = =2 &
© £ ® = o [ih] o w Q b
<@ < @ = £
=) o o = iy
Fot c w = = c o e — "
5 2 > =3 = = = S = i
O & » = = = 7!
wn w a

26

WCET Ratio

Average Improvement on WCET

1.00

0.98

O Phase1 BPhase2 [1Phase3

0.96

0.94 -

092 -

0.90 -

0.88 -

0.86 -

0.84 -
0.82 -
0.80 -
0.78 -
0.76 -

0.74 A
Experiment 1 Experiment 2

Code Size Ratio
— e e e e b e e e e e e e e — —
OO0 NNWWEADRDROIO O ~I ~ 0
oMo ghoghogmmoghoogmoogho o O

Average Improvement on Code Size

Phase 1 B Phase 2 [1Phase 3

Experiment 1 Experiment 2

Conclusions

e Our compiler uses information from a timing
analyzer to automatically:
— detect the WC paths in a function

— determine the effect of the WC path optimization on
these paths

— ensure the WCET improves before committing to a
code size increase

« Showed that traditional frequent path
optimizations can be adapted to reduce WCET.

 Developed new WC path optimizations to improve
WCET while attempting to limit code growth.

29

Any Questions?

30

