Impr oving WCET by Optimizing Worst-Case Paths

Wankang Zhai'), William Kreahlingl, David Whalleyl, Christopher Heal§/, Frank Muelle?
1Computer Science Dept., Florida State University, Tallahassee, FL 32306-4530; e-mail: whalley@cs.fsu.edu
2Computer Science Dept., Furman University, Greenville, SC 29613; e-mail: chris.healy@furman.edu
3Computer Science Dept., North Carolina State University, Raleigh, NC 27695; e-mail: mueller@cs.ncsu.edu

Abstract is called atiming analyzerand the process of performing

It is advantgeous to perform compiler optimizations to this calculation is calledming analysis

lower the WCET of a task since tasks with lower WCETs It is desirable to not only accurately predict the
are aasier to schedule and nwiikely to meet their dead- WCET, but to also impree it. An improvement in the
lines. Compilenwriters in recent yeas have used mfile WCET of a task may enable an embedded system to meet
information to detect the frequentlxesuted paths in a timing constraints that were previously infeasible.
program and thee has been mutefort to develop com- Improving the WCET of a task may also all@an enbed-

piler optimizations to immve tese paths in order to ded system deloper to use a lower clock rate (still meet-
reduce avemgecase execution timeln this paper we ing the timing constraints) andveapower, which is \alu-
describe our apmach to reduce WCET by adapting and able for mobile applications.

applying optimizations designed foefuent paths to the In an effort to impree the avelagecase &ecution
worst-case paths in an applicatiorOur compiler uses time (ACET), compiler designers in recent yearsehesed
feedbak from aur timing analyzer to detect the WCET profile data to determine the frequentikeeuted paths in a
paths through a function that will be subject gg@ssive program and ha cevdoped compiler optimizations to
optimizations, reflect subsequent effects on the WCET Ofmprove the execution time of these paths [LBometimes

the paths due to these optimizations, and to also ensurthe optimizations performed on these frequent or hot paths
that the worst-case path optimizations actually iower may be at expense of the other paths in the function.
the WCET befer ommitting to a code size irease W\e Unfortunately frequent paths optimizations are not guar
ewaluate a number of WC path optimizations anéspnt anteed to reduce the WCET of an application since the

results ShOWing the deease in WCET versus the inase most frequenﬂy xecuted paths may not be the WC paths_

in code size. In this paper we describe an approach for inm

the WCET of an application by performing path optimiza-
tions on the WC paths of a functiokVe haveintegrated a

Generating acceptable code for applications residingiMing analyzer with a compiler where the WCET of the
on embedded systems is challengirdnlike most gen- application and the current function can be calculated on
eral-purpose applications, embedded applications ofterflémand. Theiming analyzer supplies the compiler with
have © meet various stringent constraints, such as time,the WC path information and the compiler applies opti-
space, and peer. Constraints on time are commonly for ~ Mizations on the WC path thatvealeen tradltlo.nally'per
mulated asworst-case(WC) constraints.If these timing ~ formed on frequent pathsAfter each code-improng
constraints are not metyen only occasionally in a hard transformation is performed on the WC path, the timing

real-time system, then the system may not be considere@nalyzer is imoked and up-to-date WCET path informa-
functional. tion is obtained in case the WC path has changeéden

the WC path optimization increases code size, the timing
analyzer is imoked to ensure that the WCET was reduced.
If not, then the WC path transformation is discarded.

1. Introduction

The worst-case execution tim@/CET) must be cal-
culated to determine if a timing constraint willvalys be
met. Simply measuring the »&cution time is not safe .)
since it is difficult to determine input data that will pro- ~1he remainder of the paper has the fally organi-
duce the WCET Accurate and safe WCET predictions zat{orl_. F_lrst,we o_utllne r.elated work in the areas of path
can only be obtained by a tool that statically analyzes arPPtimization and improving WCETSecond, we present

application to calculate an estimated WCESich a tool the perimental environment in which this researchsw
accomplished. Third, we describe the WC path

optimizations that we implemented within our compiler to timing constraints.However, most real-time systems use
automatically improe the WCET of the WC paths in a the WCET of entire tasks to determine if a schedule can
function. Fourth, we gie results for a number of applica- be met. Leeet al. used WCET information to selectwo
tions indicating the WCET impvement by applying to generate code on a dual instruction set processor for the
these WC path optimization:inally, we gve the conclu- ARM and the Thumb [10]. ARM code is generated for a

sions for the paper. selected subset of basic blocks that can impact the WCET
Thumb code is generated for the remaining blocks to min-
2. RelatedWork imize code size. In contrast, wevieacevdoped compiler

optimizations to reduce the WCET of an application on a
There has been a significant amount ofkvover the single instruction set processof genetic algorithm has
past couple of decades onveeping optimizations to been used to search for arfeefive gtimization phase
improve the performance of frequentlyxeeuted paths. sequence that best reduces WCET for an application [11].
Each technique olves detecting the frequentlxeeuted This search uses standard compiler optimizations, whereas
path, distinguishing the frequent path using code duplica-we hae devdoped optimizations that are den by
tion, and applying aariety of other code-improving trans- WCET path information.Finally, a WCET code position-
formations in an attempt to impre the frequent path, ing algorithm has been ddoped to find an ordering of
often at the expense of less frequenkgcaited paths. the basic blocks in a function that attempts to minimize
Much of this work was inspired by the goal of the number of unconditional jumps anddakconditional
increasing the kel of instruction-leel parallelism in pro- branches for transitions between basic blocks that can
cessors that can simultaneously issue multiple instruc-affect the WCET [12]. The optimizations we describe in
tions. Someof the early work in this areavolves a tech- this paper perform transformations to reduce WCET using
nique called trace Schedu"ng' where |ong traces of the fre.COde dUpIication and modification rather than jUSt reerder
quent path are obtained via loop unrolling and the trace igng blocks.
compacted into VLIW instructions [2]A related tech- . .
nique that vas later desloped was called superblock for 3. EXperimental Environment
mation and scheduling [3]. This approach differs in that
tail duplication is used to makhe trace hee mly a sin-
gle entry point, which makes trace compaction simpler . :) i
and more déctive, though typically at thex@ense of an formed. We gve an orerview of the compiler and timing

additional increase in code size as compared to tracénalyzer that we use andvndhey interact. V& dso
scheduling. describe the processor for which the compiler generates

code and the timing analyzer calculates the WCET.

In this section we prade a brief description of the
experimental environment in which this researchsvper

Pah optimizations hee dso been used to impre
code for single issue processoifhis includes techniques
to avoid the execution of unconditional jumps [4] and con-
ditional branches [5] and to perform partial dead code
elimination [6] and partial redundanelimination [7].

We have developed a system, called VIBT(Vpo
Interactve System for Tning Applications), where a
compiler can obtain WCET information from a timing
analyzer upon demand [11]. Figure 1 shows aendew
) . of the flov of information. Thecompiler will send infor

_ While there has been much work orvéleping com- a6i0n about the control floand the current instructions
piler optimizations to reduce@ET and, to a lessexient, that haie been generated to the timing analyz®/CET
to reduce space and power consumption, there has begfedictions will be sent back to the compiléfhe com-
relatively little work to reduce WCETMarlove and Mas- pijer we use is VPO, which performs its optimizations on
ticola outlined hw a variety of standard compiler opti- 5 |ow levd representation that is egelent to machine
mizations could potentially affect timing constraints of ;,structions [13], which allws accurate WCETS to be
critical portlons in a taskHowever, no implementation ,piained from a timing analyzeOne aspect of this sys-
was described [8]. Hong and Gerber deloped & pro- (e that we xtensiely used when applying WC path
gramming language with timing constructs and used agntimizations is the ability to discard pieusly applied
trace scheduling approach to impeocde in what the ansformations when the code size was increased without
deemed to be critical sections of the prograftowever, improving the WCET This feature is accomplished by
no empirical results were\gin snce the implementation eening a linked list of the transformations and their asso-
did not interce with a timing analyzer tovauate the (jated changes, discarding the current state of the program
impact on reducing WCET [9]Both of these papers out- gnresentation, reading in the intermediate representation

lined strategies to nve code outside of critical sections tor the current function, and applying the changes to the
within an application that e keen designated to contain

-2-

point of the last transformation that we wish to retain. one vord (two bytes) to five words (ten bytes) depending
on the instruction type, addressing modes used, ayist re
ter numbers that are referencedll transfers of control

control flow and
instruction info (* Timing Saved (taken branches, unconditional jumps, calls, and returns)
Assembly Fild nalyzer Tstate result in a one to three cycle penalty depending on the
transformation information addressing mode used and if a transfer of control uses a

delay slot. SC100 instructions are grouped into fetch sets,
Figure 1: WCET Aware Compilation Process which are four words (eight bytes) in size and are aligned

on eight byte boundariesWhen a transfer of control
The timing analyzer we use for this study calculates yccours to an instruction in aweetch set and the gt

the WCET for each 'path, Ioop, 'and function in the Pro- instruction spans more than one fetch set, then the proces-
gram. It performs this analysis in a bottom uashion, sor stalls for an additional cycle.
where the WCET for an inner loop (or called function) is

calculated before determining the WCET for an outer loop 4. \\/C Path Optimizations

(or calling function). Our timing analyzer has been used

in the past to predict WCETSs for applications theicete Compilers that attempt to apply path optimizations
on machines with an instruction cache [14, 15], a pipelinetypically identify the frequent paths within a program.
[16, 15], and a data cache [17, 18]. In addition, it can Often optimizations applied for that path may be at the
automatically calculate the maximum number of iterations expense of less frequentlxesuted paths However, there

of mary loops, including those wolving nonrectangular js no guarantee that the WC path will be the same as the
loop nests [19, 20]Finally, the timing analyzer can also frequent path.For instance, consider Figure 2(a), which
detect may constraints on branches that restrict the set of shaws the source code for finding the inds the element
paths that can be taken in a program [21, 22]. for the maximum value in an array and the number of

Our timing analyzer uses a path-based approach, a§mes that the inde for the maximum element ag
opposed to using integer linear programming (ILP) [23, Updated. Figure2(b) shows the corresponding control
24, 25] or symbolicxecution [26, 27]. The result of ILP ~ flow after unrolling the loop by a factor of wso hat the
analysis is a single WCET prediction for the entire task, loop overhead (compares and branches of the loap- v
which means that it does not pite the detailed path able i) can be reduced. The WC path (blocks and transi-
information needed by a Comp"er to perform optimiza_ tionS) is depicted in bold. Note that |00p unrolling and all
tions to impree WCET. The analysis time for symbolic Other optimizations are performed at aviteve by the
execution is proportional to the WC number of instruc- compiler backend to be able to assess the impact on both
tions that would be xecuted. Thussymbo”c ecution the WCET and code size. While the code in this figure is
analysis can be prohibitly slow, which is not ideal for ~ represented at the source codeeliéo smplify its presen-
interfacing with a compiler In contrast, our path-based tation, the analysis is performed by the compiler at the
approach both provides the WCET path information assembly instruction Vel after compiler optimizations
needed by a compiler to perform WCET path optimiza- have keen applied to alle more accurate timing predic-

tions and performs the timing analysis very quickly [22]. tions. Theconditions hee been reersed in the control
flow to represent the condition tested by a conditional

We haveported both the VPO compiler and our tim- branch at the assemblyi

ing analyzer to the StarCore SC100 processor [28jis
processor has neither a memory hiergr¢ho caches or WCET code positioning needs to beveri by WCET
virtual memory system) nor an OS, whichcilitates path information. Our timing analyzer calculates all paths
obtaining tight WCET predictions [11]t has no architec- Within each loop and the outenv of a function. Apath

tural support for floating-point operations since it is a digi- consists of nodes that are basic blocks and edges that are
tal signal processor that is instead designed fedfpoint ~ control-flov transitions. EacHoop path starts with the
arithmetic. Ithas 16 data registers and 16 addregiste |00p entry block (the loop header) and is terminated by a
ters. TheSC100 also has a simple divdage pipeline, block that has a transition back to the header (the back
where most instructions can perform theteaition in a €dge) or outside the loopA function path starts with the
single stage. There are no pipeline interlocks and it is thefunction entry block and is terminated by a block contain-
responsibility of the compiler to schedule instructions and INg a return.If a path enters a nested loop, then the entire
to insert noops when a subsequent instruction uses th@ested loop is considered a single node along that path.
result of a preceding instruction that will not beitable Our compiler obtains the WCET for each path in the

in the pipeline. The size of the instructions can vary from function from the timing analyzeif the timing analyzer

Al2—>3-—>4-—>5—>6 m= 0 1
m= o: B:2—3—=4—6 ’
' C:2-=4-—>=5-—=>6§ updates = 0O; m= 0, 1
updates = 0; D: 2—=4-—6 i =o0; updates = 0;
f i=0; i<1000; i++ -0
or (i ! !) (c) Loop Paths i i =0
if (a[m <afi]) { alnl > ali] 2 I
me F (el >= ali]
updat es++; m= 0; 1 &
} dates = 0; >= afi+1
(a) Source Code updat s ' a[ni afi+1] .
i =0; lF a[nj >= a[i+1]
T m=i; 5 T F
((Talm >=ali] 2 updat es++; m=i+1; 5
F i+] T updat es += 2;
=i; =i; i += 2; !
m= o0 1 m=i; 3 T m=i; T | 2; 6 T
updat es++; updat es++; T i < 1000
updates = O; - .
) i+ 4 i+ 6
i =0; . . -
T a[n] >= a[i] L i < 1000 m=i; 6"
- l F T T updat es++;
a[m >=ali] m=i; 5 T m=i; 6" i+=2;
— 3 updat es++; updat es++; _]i < 1000
m; L . T i+ 6 it
updat es++; \\ i < 1000 L i ++; i ++; 4
T 7 (: J T i < 1000 a[n >= ali] F
T alm >= ali] i ++; 4 ¢F
TF a[m >= a[i] 4 F F m=i+1; 51 |;
pep— 5 F a[m >= ali] updat es++;
u ;at;es++' T F ms= i 5 T ¢ F ¢
P - updat es++; E m=i+1; 5 - i ++; 6
- updat es++; i < 1000
i ++; 6 -
i < 1000 L 6
' | |i <1000 e 6
i < 1000 .
! (f) After Dead Assignment
Eliminati d
(b) Control Flow after Unrolling |m|pa lon an .
(d) After Superblock Instruction Selection
Formation of the WC Path (e) After Sinking Code in the Superblock

Figure 2: Example lllustrating WCET Superblock Formation and Associated Optimizations

calculates the WCET path information on the original assessed between each basic block and path A is the cur
positioned code, then changing the order of the basicent WC path in the loop due to it containing the most
blocks due to performing WC path optimizations may instructions. Hwever, when the array contains random
result in unanticipated increases in the WCET for othervalues, path D would liély be the most frequent path
paths since praously contiguous edges may become non- executed since not finding a wemaximum is the most
contiguous and be assessed a transfer of control penaltyikely outcome of each iteratiolhus, this example illus-

We cecided instead to treat the basic blocks as being ini-trates that the frequent path and the WC path may differ.

tially unpositioned so that the current layout of the basic We atempt WC path optimizations on the WC path in

blocks does not bias the selection of the WC paife e innermost loops of a function or at the outeelli t he
accomplish this by actually modifying the code so that all ¢,¢tion has no loops. Once the WC path is identified, we

transitions between blpcks are qccomplished using a transé\ttempt superblock formation on that paffihis means
fer of control and will result in a transfer of control that we duplicate code so that the path is only entered at

penalty This means an unconditional jump is added after 4, header of the loopConsider Figure 2(d), where a
each basic block that does not already end with an unconéuperblock (2.3-.4' 5 6 representing path A mp

ditional transfer of control (i.e., unconditional jump or ;g only entered at block 2. Blocks 4', 5, and 6 are dupli-

return). Unnecessarjumps are later deleted so that an .oias of blocks 4. 5. and 6 respedfi. Note that there
accurate WCET may be obtained to determine if the trans-¢ i multiple exits from this superblock, but there is

formations are beneficial. only a single entry point.

Figure 2(c) enumerates the four different paths pgiinguishing the WC path may enable other com-
through the loop.Transfer of control penalties are initially piler optimizations. In Figure 2(d), blocks 3 and 4' and

blocks 5’ and 6 are merged togetheRemaoving joins analyzer to obtain the WCET.
(incoming transitions) from the WC path may enable some
optimizations by itself.

When it is beneficial, the compiler also sinks an
instruction further down in the WC path. Theotassign-
ments in block 3 of Figure 2(d) and the increment of
from block 4’ in Figure 2(d) are sunk after tradlthrough
transition of block 4’ into the top portion of block 5’ in
Figure 2(e). Likewise, we hge © duplicate these assign-
ments after the taken transition of block 4’, which are
assigned to the top portion of blocK.6Due to the high
cost of SC100 transfers of control, we continue to dupli-
cate code until another transfer of control is encountered
when sinking assignmentsfahe WC path, as shom by
the duplicated code in the bottom portion of block 6' Figure 3: Example Illustrating Superblock Formation
This additional code duplicationv@ids introducing an
extra unconditional jump at the end of block, Gvhich
decreases the WCET of the path containing that block.

(b) After Superblock
(a) Original Control Flow Formation

Some transformations, such as distinguishing the WC
path through WC superblock formation and code sinking,
- .)] can increase the number of instructions in the function.

Initially it may appear that there is no benefit from gjnce our target application area is for embedded systems,
performing code sinkingFigure 2(f) shows the updated \ye would prefer not to increase code size unless thase w
code after performing dead assignment elimination, 5 orresponding benefit obtained by decreasing the
instruction selection, and common subexpression elimina\yceT As mentioned preiously, we havethe ability in
tion. Thefirst assignment tenin block 5' of Figure 2(€) v/|STA to discard previously applied transformations.
is nav dead since its value is vex used and this assign- Thys, the compiler irokes the timing analyzer to obtain
ment is deleted in Figure 2(f)Likewise, the multiple the WCET before and after applying each code size
increments to theipdatesvariable in block 5’ of Flgure' increasing transformation. If the transformation does not
2(e) are combined into a single instruction in block 5’ of yecrease the WCEThen we restore the state of the pro-
Figure 2,(f)- In a,ddmon, the 0w pair of increments of in gram representation prior to the point when the transfor
_blocks 5 aqd 6’ and in block Ga_re combined into single qation vas applied. Alternatively, a wser could specify
mcrelmen.t:i in blocks 6" and’6’Finally, the mcye'Ter.n. ?f the ratio of the code size increase to the WCET decrease
the 1 ++; " statement past the assignmem "= i ; that he/she is willing to accept. Note that the timing ana-
statement in block 5’ causes the source of that statement tR/zer returns the WCET of the entire program. By check-
be modifigd. Other optimizations are al_so r_eapplied thating the prograng entire WCET the compiler discards all
can exploit the superblock control Wlowith its single ¢qde size increasing transformations where the WC path
entry point. These optimizations include constant propa-yges not contribute to theveall WCET, even though the

gation, copy propagation, and strength reduction. transformation may decrease the WCET of the loop or
Figure 3 more clearly illustrates the WC superblock function in which the WC path resides.
formation processFigure 3(a) depicts the original control This ability to discard previously applied transforma-

flow. The blocks and transitions that are in bold indicate tjons also allows our compiler to aggressi apply an

the WC path, 2.3-5-6-8, through the loopWe gart ,niimization in case the the resulting transformation will
at the beginning of the WC path and duplicate code up t0ye peneficial. For instance, notice that the number of
the last point where other pathsveamn entry point (join (5en conditional branches, which result in a transfer of
block) into the WC path. Figure 3(b) si® the control onirol penalty on the SC100, could be reduced in the WC
flow after duplicating code along the WC path. At this path within a loop by duplicating this patFor instance,
point there is only a single entry point in the WC path, reqadless of ha the nonexit path 23-5' 6"~ 8 — in
which is the loop hgagier at block 2. The glgorlthm leo Figure 3(b) is positioned, it ould require at least one
malkes the blocks within the WC path contiguous, which ansfer of control since the last transition is back to block
eliminates transfers of control within the superblock. 5 Figure4 shows the control-flar graph of Figure 3(b)

After superblock formation, the compiler also attempts 4fiar duplicating the WC path. Now the path
other code impnaing transformations that may exploitthe > 3 5 g g .2 .3 .5 6" .8 _ in Figure 4

new control flov and aftervards ivokes te timing can potentially be treersed with only a single transfer of

control. For our studywe atempted WC path duplication these figures is again depicted in bold. Note that the WC
on each of the innermost loops of a function. loop path in Figure 5(b) starts at block 2’, the loop header
and ends at block 8. In both Figure 5(a) and 5(b) the com-
pare and branch instructions in block 8 are eliminated,
which will reduce both the @ET and WCET Howeva,

the approach in Figure 5(b) does not result in merged
blocks, such as blocks 8 and 2’ in Figure 5(a), which may
result in fewer other compiler optimizations being
enabled. Figures(c) shavs the code from Figure 5(a)
after forming a superblock for the WC pathikewise, a
superblock could also be formed for the WC path in Fig-
ure 5(b). By contrasting Figure 4 with Figure 5(c), one
can see that loop unrolling folleed by superblock forma-
tion can result in a greater code size increase. While loop
unrolling followed by superblock formation will ity
result in lower WCETS, superblock formation falled by
path duplication may be a more attraetdternative when

the code size is constrained.

Figure 4: WC Path Duplication of Graph in Figure 3b)

WC path duplication presents interesting challenges
to the timing analyzer and the compiler since sonyelic
paths, such as-2...- 8" in Figure 4, represent tvitera-
tions of the original loop and others, such as42....- 8,
represent a single iterationVe anotated the duplicated
loop headerblock 2’ in Figure 4, so that the timing ana-
lyzer counts an»dra iteration for ap path containing it.
We dso modified the compiler to retain the original num-
ber of loop iterations before WC path duplication and to
halve the WCET of paths containing the duplicated loop
header when performing code positioning [12].

Finally, we dso investigated performing limited loop
unrolling followed by superblock formation and associ-
ated other compiler optimizations to exploit the modified
control flov. For our study we unrolled only the inner
most loops of a function by adtor of two dnce we
wished to limit the code size increzfsEigure 5(a) shas
the control flev of Figure 3(a) after unrolling by araétor

. . (a) Unrolling (b) Unrolling for (c) After Performing
of two when the Orlgmal |00p had awem number of ite the Loop in an Odd Number Superblock Formation

ations. Figure5(b) shows ha our compiler uses a less Figure 3(a) of Iterations on Figure 5(a)
cornventional approach to perform loop unrolling by an
unroll factor of tw and still not require anxra copy of
the loop body when the original number of loop iterations Prior to irvoking the timing analyzer after performing
is odd. Each WC loop path (blocks and transitions) in each WC path optimization, we also perform instruction

Figure 5: Unrolling Followed by Superblock Formation

g hes that berf ling of th block scheduling, WCET code positioning [12], insertion of
ome approaches that perform unrolling of the superblock re- AT
quire a cleanup loop to handle exits from the superblock and this cIeanu;J_qOOpS to address data hazards (the SC100 has no plpellne

loop can be unstructured [29fVe culd not use such an approach since INterlocks), and WCET target alignment [12]. Much of
our timing analyzer requires that all loops be structured for the analysis. the WCET impreement that vas previously obtained

Table 1: Benchmarks Used in the Experiments

Program Description
bubblesort performa hubble sort on 500 elements
findmax findghe maximum element in a 1000 element array
keysearch performa linear search wolving 4 nested loops for 625 elements
summidall sumshe middle half and all elements of a 1000 integer vector

summinmax | sumthe minimum and maximum of the corresponding elements®i®00 integer vectors
sumoddeen | sums the odd andven dements of a 1000 integer vector
sumngpos sumshe n@aive, positive, and all elements of a 1000 integer vector

sumposclr sumpositive values from tw 1000 element arrays and setg#eve \values to zero
sym testsf a 50x50 matrix is symmetric
unweight cowerts an adjacerycl00x100 matrix of a weighted graph to an unweighted graph
from WCET code positioning may wobe ahieved by Table 2: Baseline Results
superblock formation and WC path duplication due to the ob g WCET T WeET
; ; ; sere
resulting contiguous layout of the blocks in the WC path. Program Cycles Cycles | Ratio
i bubblesort 7,248,033 7,499,047| 1.035
5. EXpe”mental Results findmax 19,997 20,002 | 1.000
. . . . keysearch 30,667 31,142 | 1.015
This section describes the results of a setxpkes- sﬁymmidall 18.516 18521 | 1.000
ments to illustrate the fefctiveness of improving WCET summinmax 23,009 23,015 | 1.000
by performing WC path optimizations. All of the opti- sumngpos 20,010 20,015 | 1.000
mizations described in the pieus section were imple- sumoddeen 2,525 22,549 1.001
mented in our compiler and the measurements were auto- S;mposclr 5351504133 gégég i'ggg
matically obtained by applying these optimizations. unweight 350’,412 350"717 1.001
Table 1 shavs the benchmarks we used for our avaage 781,953 807,152 | 1.006
experiment§ All of these benchmarks were selected since
they have conditional constructs and V& keen used in a Table 3 shows the fct on WCET after performing
previous timing analysis studies. superblock formation, WC path duplication, and WCET

Table 2 shows the accumaof our timing analyzer code positioning. Note these WC path optimizations are
The measurements are taken after all optimizations ha applied after all other cemntional code-improving opti-
been applied except for those that are performed toMizations hee been performed.For each of these opti-
improve the WC paths.We dd include WCET taget mizations, the transformationas not retained when the
alignment [12], but did not include WCET code position- WCET was not impreed. Thus,the code size was not
ing [12] since we wish to sho that the WC path opti- increased unless the WCET was reduced. The results
mizations often obtain much of the WCET code position- after superblok formation were obtained by applying
ing benefit. The observed cyclesvere obtained by run- ~ superblock formation follved by a number of compiler
ning the program>ecutables through the SC100 simula- OPtimizations to impree the code due to fewer joins in the
tor [30] using WCET input data. All input and output Superblock. Onlythree of the ten benchmarks imped.
were accomplished by reading from and writing to global We ®metimes found there are multiple paths in the bench-
variables, respectély, to avoid having to estimate the mark that hae he same WCETIn these cases impring
WCET of performing actual 1/6.The WCET cyclesare one path does not reduce the WCET since the WCET for
the WCET predictions obtained from our timing analyzer another path with the same WCET is not decreaSée:

The WCET atio is the WCET cyclesdivided by the =~ WC path is also often already positioned with orayl f
observed cyclesin general, our timing analyzer is able to through transitions, which occurs whefi- t hen state-
obtain tight WCET predictions for SC100 generated code.ments are used instead of - t hen- el se statements.

2 The benchmarkindmaxcontains the example code shown in % The WCET input data had to be meticulously determined since
Figure 2. However, we assigned the initial value far in thef or loop to the WCET paths were often difficult to detect manually due to control-
be 1 instead of 0Thus, when applying loop unrolling for this bench- flow penalties. V& dd not obtainobserved cyclesfter applying WC
mark, the compiler uses the approachvehin Figure 5(b).We tsed an path optimizations since this would typically requiravi@CET input
initial value of 0 in Figure 2 in order to simplify the example. data for each benchmark due to changes in the WCET paths.

Table 3: Results after Superblock Formation and WC Path Duplication

After Superblock Brmation AfterWC Path Duplication After WCET Positioning

Program WCET Size | Time WCET Size Tme WCET Size Tme

Cycles Ratio| Ratio | Ratio|| Cycles Ratio| Ratio | Ratio|| Cycles Ratio| Ratio | Ratio
bubblesort || 7,499,047 1.000 | 1.000 | 1.40|| 7,498,548| 1.000 | 1.144 | 2.40| 7,497,047| 1.000 | 1.123 | 5.47
findmax 20,002| 1.000 | 1.000 | 1.29 20,002 | 1.000 | 1.000 | 2.14 18,010 | 0.900 | 1.655 | 5.43
keysearch 31,142 1.000 | 1.000 | 1.17 25,267 | 0.811 | 1.247| 2.08 24,958 | 0.801 | 1.312 | 5.83
summidall 18,521| 1.000 | 1.000 | 1.43 18,128 | 0.979 | 1.789 | 2.57 16,324 | 0.881 | 1.737 | 6.71
summinmax 23,015 1.000 | 1.000 | 1.33 23,015 | 1.000 | 1.000 | 2.33 20,021 | 0.870 | 1.067 | 5.22
sumngpos 20,015/ 1.000 | 1.000 | 1.43 20,015| 1.000 | 1.000 | 2.29 18,021 | 0.900 | 1.133 | 6.71
sumoddeen 16,547 | 0.734 | 1.038 | 1.63 16,547 | 0.734 | 1.392 | 2.38 16,546 | 0.734 | 1.000 | 4.50
sumposclr 30,019 0.968 | 1.420 | 1.27 30,019 | 0.968 | 1.951| 2.18 26,024 | 0.839 | 2.222 | 6.09
sym 55,497| 1.000 | 1.000 | 1.30 51,822 | 0.934 | 1.598 | 2.50 50,603 | 0.912 | 1.660 | 5.90
unweight 321,017| 0915 | 1.049 | 1.38|| 321,017| 0.915| 1.573 | 2.13]] 300,920| 0.858 | 1.622 | 5.88
avaage 803,487| 0.962 | 1.051 | 1.36|| 802,438| 0.934 | 1.369 | 2.30|| 798,847 | 0.870 | 1.453 | 5.78

Changing the layout in this situation will not reduce the
number of transfer of control penalties in the WC path.
Finally, other optimizations often had no opportunity to be

applied after superblock formation due to the path contain-

ing code for only a single iteration of the loop.

To abtain the resultafter WC path duplicatiorwe
performed superblock formation folled by WC path
duplication. Ifthe WCET did not impnee, then we dis-
carded the transformation$n contrast to superblock for
mation alone, WC path duplication after superblock for
mation was more successful at reducing the W.CHfst,

benefits for ACET would be obtainedrive d the bench-
marks improed after superblok formation was per-
formed following loop unrolling.We found that eliminat-
ing one of the loop branches after unrolling caused other
optimizations to be applied after superblock formation.
WCET code positioning also impred the oserall WCET

for one half of the benchmarks beyond what could be
accomplished by unrolling and superblock formation
alone. Theesults in Table 4 shothat the loop unrolling
reduces WCET more than WC path duplicatiomt b
results in a greater increase in code size.

assignments were often sunk across the duplicated loop While the WCET is reduced by applying the WC path

header of the me WC path and other optimizations
applied on the transformed cod8econd, there was typi-
cally one less transfer of control after WC path duplication
for every other original iteration.Eliminating a transfer of
control is almost alays beneficial on the SC100.

The resultsafter WCET positioningvere obtained by
performing superblock formation, WC path duplication,
and WCET code positioningSometimes superblock for
mation and/or WC path duplication did not impeothe
WCET, but applying WCET code positioning in addition
to these transformations resulted in an impnoent. The
combination of applying all three optimizationgasvwer
4% more beneficial orvarage than applying WCET code
positioning alone. While superblock formation or WC
path duplication did not alys provide the best layout for
the basic blocks, WCET code positioning couldvite a
better layout resulting in an additional impement.

Table 4 shows the &fct on WCET after unrolling
innermost loops by a factor of twsuperblock formation
(as depicted in Figure 5), and WCET code positionifg.
expected, loop unrolling reduced WCETH typical input
data vas aailable for these benchmarks, then comparable

optimizations, there is an accompanying substantial code
size increase, as shown shown in Tables 3 an®de
must keep in mind that the benchmarks used in this ,study
like most timing analysis benchmarks, are quite small.
Thus, the duplicated blocks from applying superblock for
mation, WC path duplication, and loop unrolling comprise
a dgnificant percentage of the total code siBerforming
these optimizations on larger applications should result in
a gnaller percentage code size increase.

Thetime ratios in Tables 3 and 4 indicate the increase
in compilation time from performing these optimizations.
There were seral factors that resulted in longer compila-
tion times compared to those cited in a previous study
[12]. First,the optimizations that we applied increased the
number of basic blocks and paths in the program, which
increased the timing analysis time and required additional
invocations of the timing analyzer for WCET code posi-
tioning. Secondwe had to perform required phases (fix-
ing the entry/git of the function to address calling con-
ventions and instruction scheduling to address the lack of
pipeline interlocks) before woking the timing analyzer
In contrast, WCET code positioning is performed after

Table 4: Results after Loop Unrolling and SuperBlock Formation

After Loop Unrolling After Superblock érmation AfterWCET Positioning

Program WCET Size | Time WCET Size Tme WCET Size Tme

Cycles Ratio | Ratio | Ratio|| Cycles Ratio | Ratio | Ratio|| Cycles Ratio | Ratio | Ratio
bubblesort || 7,248,546 0.967 | 1.349 | 1.00|| 7,248,546| 0.967 | 1.349 | 2.20|| 7,247,046 | 0.966 | 1.329 5.33
findmax 18,006| 0.900 | 1.379 | 1.14 16,014 | 0.801 | 1.983 | 3.00 16,014 | 0.801 | 1.983 5.57
keysearch 28,767, 0.924 | 1.435| 1.08 24,767 | 0.795 | 1.242 | 1.75 24,767 | 0.795 | 1.242 3.75
summidall 16,520 0.892 | 1.386 | 1.29 16,520 | 0.892 | 1.386 | 2.57 15,077 | 0.814 | 2.105 9.29
summinmax 21,015 0.913 | 1.533| 1.56 21,015| 0.913 | 1.533 | 4.67 19,021 | 0.826 | 1.600 | 11.89
sumngpos 17,015/ 0.850 | 1.400 | 1.14 17,015 | 0.850 | 1.400 | 5.57 16,021 | 0.800 | 1.533 | 20.00
sumoddeen 20,052 | 0.889 | 1.481 | 1.88 17,048 | 0.756 | 1.759 | 4.88 15,548 | 0.690 | 1.759 | 10.25
sumposclr 29,018 0.936 | 1.642| 4.82 28,019 | 0.903 | 2.765 | 5.73 27,024 | 0.871 | 2.802 | 15.55
sym 50,597| 0.912 | 1.546 | 1.10 50,597 | 0.912 | 1.546 | 1.90 49,372 | 0.890 | 1.546 4.20
unweight 330,716| 0.943 | 1.561 | 1.25|| 311,017| 0.887 | 2.098 | 2.88|| 311,017 | 0.887 | 2.098 6.50
aveage 778,025/ 0.913 | 1.471| 1.63| 775,056| 0.868 | 1.706 | 3.51|| 774,091| 0.834 | 1.800 9.23

these phasesWe dscarded these transformations after feedback from the timing analyzer to ensure that each
invoking the timing analyzer by reading in the intermedi- code size increasing transformation im® the WCET

ate file and reapplying the transformations up to thebefore allowing it to be committed.

desired point in the compilation. The extra I/O to support During the course of this research, we realized that

this feature had a lge impact on compilation timeThe 41 optimizations applied on the WC path to reduce

ability to dlsca_lrd prewogsly applied transformatlons is NOt \wcET will in general be less fettive than reducing

a feature that is\ailable in most compilers. ACET when applied on the frequent pat@ne path
As mentioned pngously, a dgnificant portion of the within a loop may beecuted much more frequently than

benefit from the WC path optimizations (superblock for other paths in the loop. In contrast, the WC path within a

mation and WC path duplication) is obtained by the con-loop may be only slightly better than other pattier-

tiguous layout of the WC path. One should note that theforming optimizations on the WC path may quickly lead

WC path optimizations presented in this paper are compu+to another path having the greatest WQCRfich can limit

tationally much lessxpensve than WCET code position- the benefit that can be obtainedowever, we were able

ing, which requires an wocation of the timing analyzer to shav that reasonable WCET imprements can still be

after each time an edge is selected to be contigutiuss, achieved by gptimizing the WC paths of an application.

the WCET code positioning requires rngamore in/oca-

tions of the timing analyzer when it is performeds 7. Acknowledgements

shavn in Tables 3 and 4, WCET code positioning has a

much greater impact on compilation time. The anonymous wewers’ suggestions impved the
quality of the paperWe thank StarCore for providing the
6. Conclusions software (assembletinker, smulator, etc.) and documen-

tation that were used in this projecthis research as

In this paper we hee described he the WCET of a supported in part by NSF grants EIA-0072043,
program can be reduced by optimizing the WC paths.CCR-0208892, CCR-0312493, CCR-0312531, and
Compiler optimizations to impke te performance of CCR-0312695.
paths typically use profile data to find the frequent paths in
a program. Incontrast, our compiler automatically uses 8. References
feedback from our timing analyzer to detect the WCET
paths through a functionWe haveshavn that traditional
frequent path optimizations can be applied to WC paths
filtr)]g Ir\?vgrgggggtesdlm:/]eoz\tliSnliEzgt(i:c?:sbesSct:)rt\a:ansd(\i/i/acd%ath [2] J._A. Fisher “Trace S_cheduling: Aé’ch_nique for Global

o . ! Microcode Compactioh,|EEE Transactions on Comput-
dupllcatllon and (_:onstralned unrolll.ng fqr an gdd number ers30(7) pp. 478-490 (July 1981).
of iterations, to impree WCET while minimizing code 3]
growth. We dso found that it was critical to obtain

[1] T. Ball and J. Larus, “Using Paths to Measure, Explain,
and Enhance Program Befa,” Computer 33(7) pp.
57-65 (July 2000).

W. Hwu, S. Mahlke, WChen, P Chang, N. Vérter R.
Bringmann, R. Ouellette, R. Hank, Kiyohara, G. Haab,

(4]

(5]

(6]

(7]

(8]

E)

(10]

(11]

(12]

(13]

(14]

(15]

(16]

J. Holm, and D. Leery, “The Superblock: An Eéctive
Technique for VLIW and Superscalar Compilation,
Journal of Supercomputingpp. 229-248 (1993).

F. Mueller and D. B. Whallg “Avoiding Unconditional
Jumps by Code ReplicatidnProceedings of the SIG-
PLAN '92 Confeence on Rsgramming Languge
Design and Implementatiorpp. 322-330 (June 1992).

F. Mueller and D. B. Whalle “Avoiding Conditional
Branches by Code ReplicatidriProceedings of the SIG-
PLAN ’'95 Conference on 8&gramming Languge
Design and Implementatiprpp. 56-66 (June 1995).

R. Gupta, D. Berson, and J. Fang, “Path Profile Guided
Patial Dead Code Elimination Using Predicatiofro-
ceedings of the International Conéeice on Brallel
Architecture and Compilation &chniques pp. 102-115
(1997).

E. Morel and C. Rewise, “Global Optimizations by
Suppression of Partial Redundanc¢ieSpmmunications

of the ACM22(2) pp. 96-103 (February 1979).

T. Marlove and S. Masticola, “Safe Optimization for
Hard Real-Time ProgrammirigSystem Inigration, pp.
438-446 (June 1992).

S.Hong and R. GerbetCompiling Real-Time Programs
into Schedulable CodeProceedings of the SIGPLAN
'93 Conference on Bgramming Languge Design and
Implementation pp. 166-176 (June 1993).

S.Lee, J. Lee, C. &k, and S. Min, A Flexible Tradeoff
between Code Size and WCET Using a Dual Instruction
Set ProcessgrInternational Workshop on Softweaend
Compiles for Embedded Systempp. 244-258 (Septem-
ber 2004).

W. Zhao, PKulkarni, D. Whallg, C. Healy, F. Mueller,
and G. Uh, “Tuning the WCET of Embedded Applica-
tions,” Proceedings of the IEEE Reahle and Embed-
ded Echnolgy and Applications SymposiunfMay
2004).

W. Zhao, D. Whallg, C. Healy, and F Mueller, “WCET
Code Positioning, Proceedings of the IEEE Reahle
Systems Symposiu(@ecember 2004).

M. E. Benitez and J. WDavidson, ‘A Portable Global
Optimizer and Linkr,” Proceedings of the SIGPLAN '88
Symposium on Bgramming Languge Design and
Implementation pp. 329-338 (June 1988).

R. Arnold, E Mueller, D. Whalley, and M. Harmon,
“Bounding Worst-Case Instruction Cache Performahce,
Proceedings of the iffeenth IEEE Real-Time Systems
Symposiumpp. 172-181 (December 1994).

C.Healy R. Arnold, FE Mueller, D. Whalley, and M. Har
mon, “Bounding Pipeline and Instruction Cache Perfor
mance,” IEEE Tansactions on Computer48(1) pp.
53-70 (January 1999).

C. A. Healy D. B. Whalley, and M. G. Harmon, “Inte-
grating the Timing Analysis of Pipelining and Instruction
Caching,” Proceedings of the Sixteenth IEEE Reaté
Systems Symposiurpp. 288-297 (December 1995).

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]

[29]

(30]

-10-

R. T. White, F Mueller, C. A. Healy, D. B. Whallgy, and

M. G. Harmon, “Timing Analysis for Data Caches and
Set-Associatie Caches,”Proceedings of the IEEE Real-
Time TEchnolgy and Applications Symposiumpp.
192-202 (June 1997).

R. T. White, F Mueller, C. A. Healy, D. B. Whalley, and

M. G. Harmon, “Timing Analysis for Data Caches and
Wrap-Around Fill Caches, Real-Tme Systems pp.
209-233 (Neember 1999).

C. A. Healy M. §ddin, V. Rustagi, and D. B. Whale
“Bounding Loop lterations for ifning Analysis; Pro-
ceedings of the IEEE Real-Timechnolgy and Applica-
tions Symposiumpp. 12-21 (June 1998).

C. Healy M. Sjédin, V. Rustagi, D. Whallg, and R. \an
Engelen, “Supporting iming Analysis by Automatic
Bounding of Loop lterations,Real-Tme Systems pp.
121-148 (May 2000).

C. A. Healy and D. B. Whallg “Tighter Timing Predic-
tions by Automatic Detection and Exploitation cdlite-
Dependent ConstraintsProceedings of the IEEE Real-
Time Bchnolgy and Applications Symposiurpp. 79-88
(June 1999).

C. Healy and D. Whallg “Automatic Detection and
Exploitation of Branch Constraints for Timing Analysis,
IEEE Transactions on Softwar Engineering 28(8) pp.
763-781 (August 2002).

Y. S. Li, S. Malik, and A. Wolfe, “Efficient Microarchi-
tecture Modeling and&@h Analysis for Real-Time Soft-
ware,” Proceedings of the Sixteenth IEEE Reahd Sys-
tems Symposiunpp. 298-307 (December 1995).

H. Theiling, C. Ferdinand, and R. Wilhelm, “Fast and
Precise WCET Prediction by Separate Cache eaatt P
Analyses,’Real-Time Systeni8(May 2000).

J.Engblom and A. Ermedabhl, “Modeling ComplElows
for Worst-Case Execution Time AnalySif2roceedings
of the IEEE Real-Time Systems Symposildecember
2000).

T. Lundgvist and PSenstrom, “Integrating Path and
Timing Analysis using Instruction-iel Simulation
Techniques,”ACM SIGPLAN Wrkshop on Languges,
Compiles, and ®ols for Embedded Systemgp. 1-15
(June 1998).

T. Lundgvist and PStenstrém, “An Integrated Path and
Timing Analysis Method based on CyclevieeSymbolic
Execution,”Real-Tme Systemd7pp. 183-207 (Neem-
ber 1999).

StarCoreJnc. and Atlanta, GASC110 DSP Cer Refer-
ence Manual2001.

J.Hennessy and D.a&erson,Computer Achitecture: A
Quantitative Appvach, Thid Edition, Morgan Kauf-
mann, San Francisco, CA (2002).

StarCoreInc. and Atlanta, GASC100 Simulator Refer
ence Manual2001.

