
Tuning the WCET of Embedded
Applications

Wankang Zhao 1, Prasad Kulkarni 1,
David Whalley 1,Christopher Healy 2,

Frank Mueller 3, Gang-Ryung Uh 4

1. Florida State University
2. Furman University
3. North Carolina State University
4. Boise State University

 Why Reduce the WCET?

� more likely to meet timing
constraints

� can lower clock rate to reduce
power consumption

Our Approach

� interactive compilation system
� timing analyzer invoked on

demand
� automatically searches for an

optimization phase sequence
that best reduces the WCET

Outline of Rest of Presentation

�Related Work
�Research Framework

- target architecture, compiler, timing analyzer

�Functionality
- include quick demo

�Experiments
�Future Work
�Conclusions

Related Work
� methods to reduce WCET in critical sections

- Marlowe, et al, System Integration '92
- Hong, et al, PLDI '93

� reduce WCET on a dual instruction set
processor
- Lee, et al, WCET '03

� genetic algorithms to search for effective
optimization sequences to improve speed,
space, or a combination of both
- Cooper, et al, LCTES '99
- Kulkarni, et al, LCTES '03

Framework for This Research

Target Architecture:
 StarCore SC100 Processor

� A digital signal processor for embedded
systems.

� No caches and no operating system.

� A simple five stage pipeline machine with
transfer-of-control and target misalignment
penalties.

� The size of instructions varies from 1 word to
5 words.

Our Timing Analyzer

� Calculates WCET for each path, loop, and
function in the program.

� Features
� WCET pipeline analysis - RTSS '95
� WCET cache analysis - RTSS '94, RTAS '97
� automatically calculates the number of loop

iterations - RTAS '98
� detects infeasible paths due to branch

constraints - RTAS '99

Estimating WCET with Transfer of
Control Penalties

� What is the WC path?

� Has been previously used to tune
applications for ACET and code size.

� Now interacts with our timing analyzer
to determine WCET improvement.

VPO Interactive System for Tuning
Applications (VISTA)

VISTA: Functionality

� Provides a graphical display of the low-level
program representation.

� Directs order and scope in which the
optimization phases are applied.

� Shows feedback on the WCET and code size
improvement.

� Reverses previously applied transformations.

� Uses a genetic algorithm to search for the best
order of optimization phases.

Main Window of VISTA

Select Optimization Phases Main Window of VISTA (again)

Select the Candidate Phases Selecting Search Options

Window Showing the Search
Status

GA Results

Experiments

� Evaluated effectiveness of VISTA's GA
search for improving WCET.

� Each phase is considered a gene.

� Each sequence of phases is considered a
chromosome.

� Much faster to interact with a timing
analyzer to obtain WCET than a
simulator to obtain ACET.

Candidate Optimization Phases
branch chaining
remove useless blocks
remove unreachable

code
common subexpression

elimination
register allocation
block reordering
minimize loop jumps
remove useless jumps

loop transformations
merge basic blocks
evaluation order

determination
dead assignment

elimination
strength reduction
reverse jumps
instruction selection

Genetic Algorithm (GA) Parameters
� Sequence length (chromosome) is 1.25 times the

number of phases that were successfully applied
by the batch compiler.

� Population size: 20 sequences
� Generations: 200
� 4 sequences are replaced by crossover

operations.
� Mutation rate: 10% lower half, 5% upper half
� 3 different fitness criteria:

� 100% WCET,100% code size, 50% WCET and
50% code size

DSPstone Benchmarks

Other Benchmarks WCET vs. Observed Cycles

Tuning for WCET Tuning for Code Size

 50% WCET and 50% Code Size Result of the Three Fitness Criteria

Future Work

� Develop compiler optimizations that use
worst-case path information to improve
WCET.

� Example:

� change order of basic blocks to
reduce transfer of control penalties for
worst-case paths

Conclusions

� Developed the first system where a
compiler can invoke a timing analyzer on
demand.

� Showed that WCET can be used as a
fitness value to a genetic algorithm to find
an effective optimization sequence.

� WCET and code size were simultaneously
improved by 6% and 5%, respectively.

