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CHAPTER 1

INTRODUCTION

Most of the time, faced with a time/space trade-off, a compiler writer will choose to

optimize time, even at the cost of space. This was not always the case. Early in the

history of computers, programmers would try everything they could think of to reduce

the size of their code to get it to fit in the computer’s constrained space. As memory and

disk space became cheaper and larger, the focus of optimizations shifted to saving time.

Lately, program bloat has become normal. Programs are growing larger because people

are more willing to buy programs that have extra functionality, even if they don’t need

the functionality. In addition, some time saving optimizations can greatly increase the

space needed for a program. These optimizations include loop unrolling [1], inlining [2],

scalar expansion [3], avoiding jumps [4], avoiding branches [5], and many others. This

results in programs with very large executables.

Some of the early techniques to reduce process memory requirements were

EQUIVALENCE statements in FORTRAN, variant records in Pascal, and unions in C.

FORTRAN EQUIVALENCE statements allow the programmer to specify that two or

more variables should be assigned the same address in memory. Variant records in Pascal

and unions in C provide a way for the programmer to declare a variable that can have

different types at different times in the program. The alignment requirements and space

allocation are handled automatically by the compiler. Howev er, there is a drawback; the
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programmer must keep track of the field type in the union each time it is referenced in

the program. If the programmer stores the union as one field type and then loads it as a

different field type, the results may be unpredictable and are machine dependent [6].For

each of the methods mentioned above, strange and subtle errors can be introduced if the

programmer does not track the live ranges of the variable accurately. For the programmer

maintaining this code, it adds a whole new lev el of complexity.

Another method often used to squeeze programs into a small space was overlaying.

One portion of the program was always present in memory and would control the

loading of other programs. Programmers spent much of their time dividing their

programs into overlays, which were portions that never needed to be active

simultaneously [7].

As processor speeds continue to increase faster than main memory and disk access

times, the performance of a memory hierarchy is becoming more significant [8].

Reducing the size of a program on a machine with virtual memory can enhance paging

performance. A page fault can easily require 700,000 to 6,000,000 cycles to resolve [8].

Thus, avoiding a single page fault by overlapping run-time stack data can result in a

significant performance improvement. Decreasingthe memory used by a process by

overlapping run-time stack variables may improve data caching when the size

requirements for data are diminished.

Processors are now being used in an increasing number of applications that are

embedded within some other type of system. These systems frequently have no virtual

memory so programs must be able to completely reside within main memory. Even the

small improvement shown by non-inlined programs may tilt the balance in favor of the

program fitting within the mandated space.
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This thesis describes a technique for reducing the amount of memory required for a

process by overlapping run-time stack data. As a quick explanation of what this

optimization does, consider the simple but unrealistic program in Figure 1.

#include <sys/types.h>
#include <sys/time.h>
#include <stdio.h>
void main()
{
int x, y, a, b;

srand((int) time()); /* Line 1 */
y = rand() % 100; /* Line 2 */
x = y * y; /* Line 3 */
printf("The square of %d is %d.\n", y, x); /* Line 4 */

a = rand() % 500; /* Line 5 */
b = a * a; /* Line 6 */
printf("The square of %d is %d.\n", a, b); /* Line 7 */

}

Figure 1: A Simple Program

A variable is said to be live from the point that it is first assigned a value to the point

where it is last used. The extent of the program that the variable is live is called the live

range of that variable. The live ranges of the variables depicted by the source lines1 in

the program in Figure 1 are as follows:

1. x Lines 3-4
2. y Lines 2-4
3. a Lines 5-7
4. b Lines 6-7

One can see that the variablesx andy and the variablesa andb have conflicting live

ranges, but neitherx nory conflicts witha andb. This can be graphically depicted as in
1 Live ranges are actually ranges of machine instructions in our compiler.
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Figure 2, where each edge represents a conflict.

x y

a b

Figure 2: Conflict Graph

Since the live ranges ofx anda, x andb, y anda, y andb do not conflict (that is, the

variables are not live at the same time), any of these variables could be given overlapping

locations on the stack. In the simple case with no register allocation and no overlapping,

the variables would have been assigned offsets as follows:

x = 92

y = 96

a = 100

b = 104

With overlapping turned on and register allocation still off, the variables would have

been assigned the following offsets:

x = 92

a = 92

y = 96

b = 96

In the first case the activation record would be 112 bytes, whereas in the second case
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the activation record would be 104 bytes, for a savings of 8 bytes.1

In reality, in the simple program of Figure 1, the programmer would have reused the

first two variables, rather than declaring two new variables. Also, all four of the variables

would have been assigned to registers, leaving no room for improvement via overlapping

run-time stack data. However, the example is a simple way to understand what the

optimization can accomplish. Since programs are not often as simple as in Figure 1, it is

easier to automate the reusing of space rather than to rely on the programmer to

recognize every opportunity to reuse stack space. It is especially better to automate the

process than to rely on the programmer to correctly identify and implement the

overlapping opportunities. The programmer may fail to take advantage of opportunities

or fail to implement the opportunities properly. For example, programmers rarely make

use of unions. Relying on the programmer to force two or more variables into one may

make the program less readable. Automating the overlapping of variables supports the

software engineering design principle of using descriptive variable names. When

overlapping was applied with standard optimizations, not much improvement was noted.

However, when applied with inlining a good improvement was seen. This is because

inlining greatly expanded the opportunities for overlapping.

1 The size of a SPARC activation record must be an integer multiple of 8. The first 92 bytes are required to support register
windows and other static information for the SPARC calling sequence. More details about the structure of a SPARC activation record
will be given later.
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CHAPTER 2

RELATED WORK

While most optimizations focus on saving time, there are some that concentrate on

saving space. The optimization described in this thesis is the first work that contains a

general algorithm for reducing run-time stack data.

Several algorithms exist for reducing instruction space. Code hoisting moves

identical instructions from multiple blocks in different paths to a single dominating block

[9]. Crossjumping moves identical instructions from multiple blocks in different paths

to a single post-dominating block [10].Fraseret. al. [11] achieve a 7% decrease in the

number of static instructions by applying a general text compression algorithm to

assembly code.However, the number of instructions executed typically increased.Liao

et. al. [12] developed techniques to decrease the number of instructions in programs

compiled for DSP architectures that only allow auto-increment and auto-decrement

modes for accessing memory. The main goal was to decrease the dynamic number of

instructions required to access memory, but had the side effect of compressing code.

Bowman [13] describe a method over overlapping instructions using algorithms to

implement cross-jumping and abstracting relocatable code portions.Using this

approach, minimal or no dynamic instruction increases were observed.

Wolfe [14] describes techniques for contracting arrays into scalar variables. This

optimization is typically only possible after previously expanding a scalar variable into
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an array to support vectorizing optimizations.Ramsey [15] reduced the size of object-

code files by abstracting common relocation information to support more efficient and

machine-independent linking. The process memory requirements of the compiled

programs were not affected. Inthe technical report mentioned above, Bowman et. al.

achieved a 7% reduction in process size by overlapping static data with other static data

using a method similar to the one described in this thesis. Bowmanet. al.further report a

23% savings in code space when overlapping static data with program instructions.
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CHAPTER 3

OVERVIEW AND ENVIRONMENT

Overlapping run-time stack data was implemented as an extension to a optimizing

compiler called VPO (Very Portable Optimizer) [16] that compiles programs for the

SPARC architecture.C programs are fed into the front end, VPCC (Very Portable C

Compiler) [17]. Figure 3 contains an overview of the interaction between VPCC and

VPO.

Back End and

Run-Time

Stack Data

Overlapper
Files

Source

C

End

Front

C
Assembly

File

Unoptimized

RTLs

Figure 3: Environment

VPCC performs no optimizations. It translates the C code into machine independent

intermediate code. This intermediate code is then used by VPO to perform the

optimizations and produce the executable machine code. The code generator in VPCC

translates the intermediate code into register transfer lists (RTLs) [18]. All optimizations

occur on RTLs. The format of the RTLs is machine independent, but the RTLs can be

checked after each transformation to ensure that they represent a valid operation on the

machine for which the code is being compiled. Each RTL has the following format:
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{dst = src;} dead register list

where there can be one or moredst = src;transfers depending upon the number of

effects per machine instruction for the particular machine. Thedst can be a register or

memory reference, while thesrc can be any expression which is permissible for that

particular machine.

VPO optimizes programs one function at a time. Figure 4 contains the order of

optimizations for VPO. The optimization described in this thesis takes place during the

branch chaining
useless jump elimination
dead code elimination
eliminate unconditional jumps by reorder ing code
instr uction selection
ev aluation order determination
global instruction selection
register assignment
jump minimization
instr uction selection
eliminating jumps in loops
do {

register allocation
instr uction selection
common subexpression elimination
dead var iable elimination
code motion
recurrences
strength reduction
induction var iable elimination
useless jump elimination
cheaper instruction replacement
instr uction selection
}

while change;
setup entry and exit
instr uction scheduling
fill slots
useless jumps

Figure 4: Order of Compiler Optimizations in VPO
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setup entry and exit phase. This phase has the responsibility of adjusting the entry and

exits of a function to conform to the calling sequence conventions of the machine. The

actions in this phase include generating code to allocate/deallocate space on the run-time

stack for the activation record, saving/restoring registers, and assigning offsets of local

variables.

The stack locations for the run-time stack data are assigned during the setup entry and

exit phase. As one can see, almost all of the optimizations have been performed before

the stack location of the run-time stack data is considered. VPO previously assigned the

stack location to the run-time stack data by assigning locations in decreasing order of

size (largest data first). This had the simple appeal of minimizing the amount of padding

needed for correct alignment. Otherwise, the order of local variables and temporaries in

an activation record were considered unimportant.

A SPARC activation record has the format illustrated in Figure 5.Activation records

16 registers
(register window)
64 bytes

4 bytes
hidden parameter

24 bytes
parameters

temporaries
and
locals

Figure 5: Structure of a SPARC Activation Record
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are aligned on an eight byte boundary. The size of an activation record must be an

integer multiple of eight. This preserves alignment on an 8-byte boundary and allows the

compiler to ensure that local variables are properly aligned to prevent misalignment

exceptions.
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CHAPTER 4

OVERLAPPING RUN-TIME STACK VARIABLES

Overlapping run-time stack data requires the following steps: 1) determine if the

variables were used indirectly, 2) if a variable is used indirectly, determine where it is

referenced, 3) determine the live range of each variable, 4) build an interference graph

based on the live range of each variable, 5) establish the order in which the live ranges of

the variables will be assigned offsets to achieve maximum overlap with minimum

alignment padding penalty, and 6) assign an offset for each live range of a variable in

such a way that it does not overlap with any variable that has a conflicting live range.

Figure 6 contains the C source code for the example that will be used to illustrate the

process of overlapping run-time stack data. Figure 7 displays the resulting RTLs with no

register allocation performed. The control flow of the program is also represented.

If the address of a variable is taken but not immediately used, the variable is said to

have been used indirectly. Arrays are by definition indirectly referenced. Detection of

accurate live ranges of non-scalar variables is much more difficult since the range of

elements accessed and the loops driving the induction variable(s) associated with the

memory reference must be known [19].To determine which variables are being

referenced indirectly, each RTL in the function is examined to detect 1) if it references a

variable, and 2) whether the reference is inside a memory reference. If a variable is

being referenced outside of a memory reference, it is being used indirectly and is
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void main()
{

char array[20], c, j;
int char_count, i, i_count;
double f;

c = input();
i = 0;
while ((c != EOF) && (i < 20))
{
array[i++] = c;
c = input();
}

j = array[i];
f = 1.0;
printf("The last character is %c. f is %f\n", j, f);
char_count = i;
i_count = 0;
for (i = 0; i < char_count; i++)

if (array[i] == ’i’)
i_count++;

printf("There are %d i’s out of %d chars\n", i_count, i);
}

Figure 6: An Example Function

marked. An example of an RTL where a variable (array) is being used indirectly is

RTL number 15 in Figure 7.

Scalar variables that are not used indirectly can have more than one live range. Each

live range of a scalar variable is from the set(s) of the variable to the last use(s) before

the next set(s) or the end of the function. Similar analysis to determine the live ranges of

scalar variables is performed during register allocation.

Because of the difficulty in determining the exact live ranges of indirectly used

variables, one large live range was calculated for these variables. This one live range is

the extent from its first reference(s) to its last reference(s). This live range was calculated

by intersecting the basic blocks that precede the references to the variable with the

blocks that can follow the references. All of the blocks containing the references are
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11. r[9]=r[8]+1;
*12. R[r[14]+.1_i_1]=r[9]; r[9]
+13. r[9]=r[14]+.1_array;
*14. b[10]=B[r[14]+.1_c]; .1_c
#15. B[r[8]+r[9]]=b[10]; b[10]r[8]r[9]
16. ST=HI[_input]+LO[_input],68,0; ICFC
*17. B[r[14]+.1_c]=b[8]; b[8]
18. PC=L29;

19. L30
+20. r[8]=r[14]+.1_array;
*21. r[9]=R[r[14]+.1_i_1];
22. b[8]=B[r[9]+r[8]]; r[8]r[9]
*23. B[r[14]+.1_j]=b[8]; b[8]
24. r[8]=HI[L01];
25. d[0]=D[r[8]+LO[L01]]; r[8]
*26. D[r[14]+.1_f]=d[0];
27. r[8]=HI[L32];
28. r[8]=r[8]+LO[L32];
*29. r[9]=(B[r[14]+.1_j]{24)}24; .1_j
30. F[r[14]+76]=HP[d[0]];
31. F[r[14]+80]=LP[d[0]]; d[0]
32. r[10]=R[r[14]+76];
33. r[11]=R[r[14]+80];
34. ST=HI[_printf]+LO[_printf],84,4; ICFC
*35. r[12]=R[r[14]+.1_i_1]; .1_i_1

*37. R[r[14]+.1_i_count]=0;
*38. R[r[14]+.1_i_2]=0;
39. PC=L35;

*2. B[r[14]+.1_c]=b[8]; b[8]
*3. R[r[14]+.1_i_1]=0;

4. L29
*5. r[8]=(B[r[14]+.1_c]{24)}24;
6. IC=r[8]?-1; r[8]
7. PC=IC:0,L30;

*8. r[8]=R[r[14]+.1_i_1];
9. IC=r[8]?20;
10. PC=IC‘0,L30;

Block 2

Block 3

Block 4

Block 5

1. ST=HI[_input]+LO[_input],68,0; ICFC 40. L36
+41. r[8]=r[14]+.1_array;
42. r[8]=(B[r[9]+r[8]]{24)}24;
43. IC=r[8]?105; r[8]
44. PC=IC!0,L33;

Block 6Block 1

Block 7

61. PC=RT; Block 11

60. ST=HI[_printf]+LO[_printf],80,3; ICFC
*59. r[10]=R[r[14]+.1_i_2]; r[14].1_i_2
*58. r[9]=R[r[14]+.1_i_count]; .1_i_count
57. r[8]=r[8]+LO[L39];
56. r[8]=HI[L39];

Block 10

55. PC=IC<0,L36;
54. IC=r[9]?r[8]; r[8]
*53. r[9]=R[r[14]+.1_i_2];
*52. r[8]=R[r[14]+.1_char_count];
51. L35 Block 9

*50. R[r[14]+.1_i_2]=r[8]; r[8]
49. r[8]=r[9]+1; r[9]
48. L33

Block 8

*47. R[r[14]+.1_i_count]=r[8]; r[8]
46. r[8]=r[8]+1;
*45. r[8]=R[r[14]+.1_i_count]; .1_i_count

*36. R[r[14]+.1_char_count]=r[12]; r[12]

+ - variable’s address taken indirectly
# - variable referenced indirectly

* - variable referenced directly

Figure 7: RTLs for the Example Function

included in this one live range. Inthe example function, the variablearray is the only

14



variable that has its live range calculated in this fashion. The variablearray initially

has blocks 4 (RTL 13), 5 (RTL 20), and 6 (RTL 41) marked as referencing it.The

dataflow is traced forward (resulting in the marking of blocks 2-12) and back (resulting

in the marking of blocks 1-10) and the results are intersected. This results in a live range

that spans from block 2 through block 10.

Before calculating the extent of an indirectly referenced variable, the compiler first

must determine where the variable’s address is actually referenced. This is accomplished

by using a demand-driven approach rather than an exhaustive solution. At each point

where the address of run-time stack data is taken indirectly, the compiler recursively

searches forward marking all memory references that use the address. This is an effective

approach because we found that in general the distance between taking the address of a

local variable and the points where the address is dereferenced are typically close.

If the compiler detects that the address itself is stored into memory, then the point of

the store and the return points in the function are marked as references since pointer

analysis is not performed. The same action occurs if the address is passed to a function

since inter-procedural analysis is not performed. In both cases this action causes the live

range of the indirectly referenced variable to span from the point of the store or the call

to the end of the function. Note that such a variable may still be overlapped with another

variable that is only referenced before the store or call.

Once the live ranges of the variables are determined, an interference graph is built.

This is similar to the interference graph that VPO uses for register allocation. The range

of RTLs for each live range is compared with every other live range to determine if they

conflict (that is, if they hav eRTLs in common). By definition, different live ranges of

the same variable cannot overlap. Each live range of a variable is numbered, in effect
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creating a different variable name for each live range. The interference graph for the

example function is depicted in Figure 8.

i_count

char_count i_2

array

i_1

cj

f

Figure 8: Conflict Graph for Example Program
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The next step is to sort the live ranges to allow for the best overlap while reducing the

alignment padding penalty. Sev eral versions of a similar scheme were tried. Chaitinet.

al., found that assigning live ranges with the greatest conflict level first was the best

heuristic to use when allocating live ranges to registers [20]. The rationale for using this

scheme for overlapping run-time stack data is that if a live range conflicts with most of

the other live ranges in the function, then assigning its offset early within the activation

will give it the best chance of being overlapped with the few liv e ranges with which it

does not have any conflicts. So, this scheme was tried first. However, padding is

introduced to ensure that alignment requirements are met.(For the SPARC, floats and

doubles must be aligned on an 8-byte boundary. In VPO, structures and arrays are

aligned on 8-byte boundaries for simplicity.) When there was little opportunity for

overlapping data this heuristic often caused the size of the activation record to be larger

than it would have been if this optimization were not enabled, because of the extra

padding required.Thus, this heuristic was rejected. The next approach was to sort the

live ranges by size of the variable, with the live ranges of variables of the same size

sorted by conflict level. This completely solved the problem of some activation records

being larger after the optimization was applied to the programs in the test set. Upon

further consideration, it was apparent that size was less important than alignment

requirements. Now, the live ranges are sorted first by their alignment requirement, then

by conflict level.

The final step is to assign the offset. For ease, offsets of live ranges were first assigned

as relative offsets to each other and then the existing procedure for assigning exact

offsets was used. Variables with the same offset are assigned the same address.

Figure 9 shows the algorithm used to assign live ranges of run-time stack data to
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WHILE any live ranges left to assign DO
curr_lr := live range not yet assigned with biggest alignment requirement and highest conflict level;
curr_lr->offset := first offset where locals can be assigned;
FOR lr := each live range in function DO

IF (lr->status = assigned) AND (curr_lr IN lr->conflicts) AND
does_overlap(lr, curr_lr) THEN
curr_lr->offset := lr->offset + lr->size;
curr_lr->offset := curr_lr->offset + necessary alignment padding

curr_lr->status := assigned

Figure 9: Run-Time Stack Live Range Offset Assignment Algorithm

offsets. The current live range of a variable is assigned to the first offset that does not

overlap with any previously assigned live ranges conflicting with the current live range.

Table 1 lists all the information needed to assign the offsets for the variables of the

example function in Figure 6. It shows the resulting offsets with and without this

optimization applied. The variables are listed in the order that offsets are assigned.The

number of conflicts was difficult to determine quickly, due to the internal representation

of the conflicts. Each variable had a structure for each conflict for each block that they

conflicted. The total number of conflicts were counted. This discriminates against

variables that are live across few blocks, asj in this example. Thevariablesf and

Table 1: Live Range Information for Example Function

Number Live Range Name Live Range Conflicts With Size in Bytes Offset Offset Without
Over lapping

1 array 2-10 2,3,4,5,6,7,8 20 96 96
2 f  5.26 1,6,8 8 120 136
3 i_count 5.37-10.58 1,4,5 4 92 132
4 i_2 5.38-10.59 1,3,5 4 116 128
5 char_count 5.36-9.52 1,3,4 4 120 124
6 i_1 1.2-5.39 1,2,7,8 4 92 128
7 c  1.2-4.14 1,6 1 116 116
8 j  5.23-5.39 1,2,6 1 116 120
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array must be aligned on an 8-byte boundary;c, j, char_count, i_count, i_1,

andi_2 all must be aligned on a 4-byte boundary. Thus,f andarray have the greatest

alignment requirement. The variablearray was the first to be assigned an offset and it

must be aligned on an 8-byte boundary, so it received the offset of 96. The variablef

conflicts witharray, so it was assigned the first offset past the end ofarray that was

on an 8-byte boundary. This turned out to be 120.The variablei_count needs only to

be aligned on a 4-byte boundary and thus fits at offset 92. The variablei_2 conflicts

with i_count andarray. It can be overlapped withf, but there is unallocated space

between 116 and 120, so its offset is 116. The variablechar_count conflicts with

i_count, array andi_2, but notf, so it gets placed at 120. The variablei_1 can

overlap with i_count at 92. The variablesc and j both conflict withi_1 and

array, but not each other, nor i_2, so they are assigned the offset of 116. The resulting

space utilization can be seen graphically in Figure 10.

array

92 96 116 120

96 116 12092

array

Allocation Without Overlapping

Allocation With Overlapping

unused

i_count
i_1

127

128

c
j
i_2

f

136 143132

i_counti

124

jc
count
char_

f
char_count

Figure 10: Offset Allocation
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CHAPTER 5

RESULTS

Table 2 shows the results of overlapping run-time stack data on 19 test programs. The

programs consist of various benchmarks, Unix utilities, and application programs.The

number of bytes shown for the stack size is obtained by simply calculating the sum of

the sizes of the different activation records as opposed to measuring the space used for

the run-time stack at execution time. The number of bytes required for library functions

is not included because library functions are dynamically linked.

The table also shows the results when overlapping run-time stack data was combined

with inlining. Inlining was accomplished by modifying an existing inliner within VPCC,

which only performed inlining within a single file of a compiled program. The new

inliner processes all of the files of intermediate code produced from every source file in

the program, resolves conflicting labels between the files, and removes functions that are

no longer referenced.Notice that the size of the run-time stack data changed after

inlining. Sometimesthe size was decreased due to fewer activation records required.

Sometimes it was increased due to multiple inlined copies of functions each requiring a

copy of their variables.

The results show very little improvement when inlining is not invoked. This is

because without inlining there were very few opportunities for improvement. There were
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Table 2: Results of Overlapping Run-time Stack Data

Without Inlining With Inlining
Stack Bytes Percent Stack Bytes Percent
Size Saved Decrease Size Saved Decrease

Program Descr iption

ackerman Synthetic Benchmar k 312 8 2.56% 232 8 3.45%
bubblesor t Synthetic Benchmark 568 8 1.41% 136 8 5.88%
cal Calendar Generator 384 0 0.00% 96 0 0.00%
cmp Comparison of Two Files 768 0 0.00% 192 0 0.00%
csplit Split a File 1488 0 0.00% 728 0 0.00%
ctags C Tags Generator 8144 0 0.00% 24544 88 0.36%
dhr ystone Synthetic Benchmark 664 0 0.00% 200 8 4.00%
grep Patter n Search 592 0 0.00% 304 0 0.00%
join Relational Join on Files 480 0 0.00% 96 0 0.00%
lex Scanner Generator 9472 0 0.00% 7208 8 0.11%
linpack Linear Algebra Routines 1504 48 3.19% 3312 112 3.38%
mincost VLSI Circuit Par titioning 1216 0 0.00% 192 8 4.17%
prof Profile a Program 1584 0 0.00% 400 40 10.00%
sdiff Side-by-Side File Display 2536 0 0.00% 5784 16 0.28%
spline Smooth Cur ves 560 8 1.43% 200 8 4.00%
tr Translate Characters 192 0 0.00% 96 0 0.00%
tsp Traveling Sales Person 3008 8 0.27% 2216 56 2.53%
whetstone Arithmetic Operations 568 0 0.00% 488 296 60.66%
yacc Parser Generator 4232 0 0.00% 1360 8 0.59%

average 1989 4 0.47% 2510 34 5.23%

290 total functions in the 19 test programs. Of these functions, 51 were leaf functions,

186 required no stack space for run-time variables, and 10 required only 8 bytes for run-

time stack data. This left only 43 functions where overlapping could be attempted. 12 of

those 43 functions had a stack size of only 112, meaning that the maximum overlap

potential for those functions is only 8 bytes. Unless the programmer uses many local

variables, this optimization is not worth invoking when inlining is not also invoked.

After inlining, 69 functions remained. (Twenty of the functions were in lex). Of these,

46 provide no opportunity for overlapping. The remaining functions generally provided

good opportunities for overlap. The reason that inlining increases the opportunities for

overlap is because when a function is inlined, it brings its local variables with it. The

greater the number of local variables, the more likely it is that some of them will be
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overlappable. Whether the inlined functions were nested or serial also impacts upon

overlapping opportunities. Functions that were nested provide less opportunity for

overlap, because there is a higher probability that the live ranges will conflict. Upon

examining cases where little overlap occurred in large functions, such as main() in sdiff,

it became clear that with more exact calculation of the live range of arrays, the size of

the stack could be reduced by as much as 75%.In no case did overlapping run-time

stack data ever result in a larger activation record size.

The fact that the optimization was implemented on a SPARC impacted the percentage

of improvement. The SPARC typically requires 92 bytes for state information for each

activation record. Most machines require less space overhead for activation records.
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CHAPTER 6

FUTURE WORK

There are many avenues open for continuing investigation in overlapping run-time stack

data. Calculating the exact live range of indirectly referenced variables could extract

large gains, especially when combined with inlining. Inlining created the opportunities

for greater overlapping. Combiningoverlapping with other optimizations that increase

the data size of a program should be tested for potential benefits.

The ordering of live ranges was based solely on alignment requirements and conflict

level. Many heuristics have been proposed for register-coloring algorithms. These

heuristics should be tested for their applicability to overlapping run-time data. A

different heuristic may provide greater gains.

The decrease in process memory requirements was measured; however, a more

detailed analysis of the effect that overlapping run-time stack data has on performance is

needed. Onlystatic run-time stack measurements were obtained. Recursive programs

may use much more stack space. It is also unclear how the reduction in stack size will

impact data caching and paging performance. It is unlikely that the small size decreases

reported will have a significant impact.

A technique to promote global variables to local variables was considered but rejected

because it would interfere with combining overlapping run-time stack data with

overlapping static data. Promoting global variables could be included as an option when
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the optimization to overlap run-time stack data is used but the optimization to overlap

static data is not.
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CHAPTER 7

CONCLUSION

The thesis presents a compiler optimization for reducing process memory requirements

by overlapping run-time stack data. Each variable is examined to determine if it is ever

used indirectly. The live ranges of each variable are then determined. Variables that have

been used indirectly are assigned one large live range. Based on the live ranges, an

interference graph is created. Each live range is assigned an offset in such a way that no

conflicting live range overlaps with it, but non-conflicting live ranges share overlapping

locations in memory. Analysis of this technique shows that there are very few

opportunities for overlapping with traditional optimizations applied.Programmers who

use many local variables will benefit, but the test suite showed that most programmers

rely on global variables or only need a small enough number of variables that all fit

within a SPARC register window. Inlining increased overlap opportunities greatly. A 5%

decrease in run-time stack memory requirements was noted when inlining was combined

with overlapping run-time stack data.
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ABSTRACT

Most compiler optimizations focus on saving time, sometimes at the expense of

increasing size. Processor speeds continue to increase at a faster rate than main memory

and disk access times. Reducing the size of a program may result in improved memory

hierarchy performance. This thesis describes a way to reduce process size and memory

requirements by automatically overlapping run-time stack data. To overlap run-time stack

data, the live ranges of each overlappable variable was computed. An interference graph

was produced to detect conflicts among the live ranges. The live ranges were sorted

according to their alignment requirement and number of conflicts. Each live range was

then assigned a stack offset. If two or more live ranges do not conflict, they can be

assigned offsets in such a way that they are overlapped in the activation record. The

results show very little improvement when the optimization is used alone, and significant

improvements when combined with inlining.
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