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CHAPTER 1

INTRODUCTION

Most of the time, dced with a time/space trade-off, a compiler writer will choose to
optimize time, gen at he cost of space. This was nowvays the case. Early in the
history of computers, programmers would tmerthing they could think of to reduce

the size of their code to get it to fit in the computeonstrained space. As memory and
disk space became cheaper anddaithe focus of optimizations shifted toveag time.
Lately, program bloat has become normal. Programs areiggplarger because people
are more willing to by programs that lva exra functionality even if they don’t need

the functionality In addition, some time saving optimizations can greatly increase the
space needed for a program. These optimizations include loop unrolling [1], inlining [2],
scalar expansion [3],vaiding jumps [4], &oiding branches [5], and marothers. This
results in programs with very larggeeutables.

Some of the early techniques to reduce process memory requirements were
EQUIVALENCE statements in FORTRANaxant records in Pascal, and unions in C.
FORTRAN EQUIVALENCE statements alo the programmer to specify that awor
more variables should be assigned the same address in m&ar@gt records in &scal
and unions in C provide a way for the programmer to declam@iable that can va
different types at different times in the program. The alignment requirements and space

allocation are handled automatically by the compHaweve, there is a drawback; the



programmer must keep track of the field type in the union each time it is referenced in
the program. If the programmer stores the union as one field type and then loads it as a
different field type, the results may be unpredictable and are machine dependEnt [6].
each of the methods mentioned @d@trange and subtle errors can be introduced if the
programmer does not track thediranges of the variable accuratefgr the programmer
maintaining this code, it adds a wholewlevéd of complexity.

Another method often used to squeeze programs into a small spaceenagim.

One portion of the program waswalys present in memory andowld control the
loading of other programs. Programmers spent much of their time dividing their
programs into werlays, which were portions that ves needed to be ao
simultaneously [7].

As processor speeds continue to increase faster than main memory and disk access
times, the performance of a memory hiergrab becoming more significant [8].
Reducing the size of a program on a machine with virtual memory can enhance paging
performance. A pageaiilt can easily require 700,000 to 6,000,000 cycles to refjlv
Thus, aoiding a single page fault byverlapping run-time stack data can result in a
significant performance impvement. Decreasinghe memory used by a process by
overlapping run-time stack variables may impeo cata caching when the size
requirements for data are diminished.

Processors are mobeing used in an increasing number of applications that are
embedded within some other type of system. These systems frequesatlyohartual
memory so programs must be able to completely reside within main me&enythe
small improvement shan by non-inlined programs may tilt the balanceawmd of the

program fitting within the mandated space.
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This thesis describes a technique for reducing the amount of memory required for a
process by werlapping run-time stack data. As a quick explanation of what this

optimization does, consider the simple but unrealistic program in Figure 1.

#i ncl ude <sys/types. h>
#i ncl ude <sys/tinme. h>
#i ncl ude <stdio. h>
voi d main()

{
int x, y, a, b;
srand((int) tinme()); /* Line 1 */
y = rand() % 100; /* Line 2 */
X =y *vy; /[* Line 3 */
printf("The square of % is %.\n", vy, X); /* Line 4 */
a = rand() % 500; /[* Line 5 */
b =a* g /* Line 6 */
printf("The square of % is %.\n", a, b); /* Line 7 */
}

Figure 1: A Simple Program

A variable is said to beve from the point that it is first assigned @uwe to the point
where it is last used. Thetent of the program that the variable ilis alled the e
range of that variable. Thevé ranges of the variables depicted by the sourcellimes

the program in Figure 1 are as follows:

1. x Lines 3-4
2.y Lines 2-4
3. a Lines 5-7
4. b Lines 6-7

One can see that thanablesx andy and the wariablesa andb have onflicting live

ranges, but neither nory conflicts witha andb. This can be graphically depicted as in

Yive ranges are actually ranges of machine instructions in our compiler.



Figure 2, where each edge represents a conflict.

Figure 2: Conflict Graph

Since the e ranges ok anda, x andb, y anda, y andb do not conflict (that is, the
variables are notVe & the same time), grof these variables could bevgn overlapping
locations on the stack. In the simple case with gester allocation and noverlapping,

the variables would va keen assigned offsets as follows:

X =92
y =9
a =100
b =104

With overlapping turned on and register allocation still off, the variables would ha

been assigned the following offsets:

X =92
a=92
y =96
b =9

In the first case the aettion record would be 112 bytes, whereas in the second case



the actvation record would be 104 bytes, for a savings of 8 b]ytes.

In reality, in the simple program of Figure 1, the programmer wouleehaused the
first two variables, rather than declaringdwew vaiables. Also, all four of theariables
would have been assigned to registers, leaving no room for ingmnent via @erlapping
run-time stack data. Heever, the example is a simple way to understand what the
optimization can accomplish. Since programs are not often as simple as in Figure 1, it is
easier to automate the reusing of space rather than to rely on the programmer to
recognize eery opportunity to reuse stack space. It is especially better to automate the
process than to rely on the programmer to correctly identify and implement the
ovelapping opportunities. The programmer may fail toetattvantage of opportunities
or fail to implement the opportunities properlyor example, programmers rarely neak
use of unions. Relying on the programmer to force twmore variables into one may
make the program less readable. Automating therlapping of variables supports the
software engineering design principle of using descmptiariable names. When
overlapping was applied with standard optimizations, not much iwg@rent was noted.
However, when applied with inlining a good imprement was seen. This is because

inlining greatly expanded the opportunities feedapping.

! The size of a SPARC agtiion record must be an integer multiple of 8. The first 92 bytes are required to supzsierre
windows and other static information for the SPARC calling sequence. More details about the structursRE a&Wation record
will be given later.



CHAPTER 2

RELATED WORK

While most optimizations focus on saving time, there are some that concentrate on
saving space. The optimization described in this thesis is the first work that contains a
general algorithm for reducing run-time stack data.

Several algorithms exist for reducing instruction space. Code hoistingesno
identical instructions from multiple blocks in different paths to a single dominating block
[9]. Crossjumping mares identical instructions from multiple blocks in fdifent paths
to a single post-dominating block [10Fraseret. al.[11] achiere a Bb decrease in the
number of static instructions by applying a general text compression algorithm to
assembly codeHowever, the number of instructionscecuted typically increased.iao
et. al. [12] developed techniques to decrease the number of instructions in programs
compiled for DSP architectures that only all@uto-increment and auto-decrement
modes for accessing memoryhe main goal &s to decrease the dynamic number of
instructions required to access memdmyt had the side effect of compressing code.
Bowman [13] describe a methodver overlapping instructions using algorithms to
implement cross-jumping and abstracting relocatable code portitissng this
approach, minimal or no dynamic instruction increases were observed.

Wolfe [14] describes techniques for contracting arrays into scaaahbles. This

optimization is typically only possible after preusly expanding a scalar variable into



an array to support vectorizing optimizatiorRamsg [15] reduced the size of object-
code files by abstracting common relocation information to support more efficient and
machine-independent linking. The process memory requirements of the compiled
programs were not f#cted. Inthe technical report mentioned alepBowmanet. al.
achiezed a ®6 reduction in process size byanlapping static data with other static data
using a method similar to the one described in this theswgmrdoet. al.further report a

23% savings in code space whesrtapping static data with program instructions.



CHAPTER 3

OVERVIEW AND ENVIRONMENT

Overlapping run-time stack data was implemented as an extension to a optimizing
compiler called VPO (§ry Portable Optimizer) [16] that compiles programs for the
SFARC architecture.C programs are fed into the front end, VPCC (Very Portable C
Compiler) [17]. Figure 3 contains arvaview of the interaction between VPCC and

VPO.

c c Back End an
Unoptimized Run-Time Assembly
Source Front )
) RTLs Stack Data File
Files End
Overlapper

Figure 3: Environment

VPCC performs no optimizations. It translates the C code into machine independent
intermediate code. This intermediate code is then used by VPO to perform the
optimizations and produce th&eeutable machine code. The code generator in VPCC
translates the intermediate code into register transfer li$iss{R18]. All optimizations

occur on RTLs. The format of the RTLs is machine independent, butTthe ¢an be
checled after each transformation to ensure thay tepresent a valid operation on the

machine for which the code is being compiled. Each RTL has the following format:



{dst = src;} dead register |ist
where there can be one or malg®t = sr c; transfers depending upon the number of
effects per machine instruction for the particular machine.ddtecan be a register or
memory reference, while th& ¢ can be ay expression which is permissible for that
particular machine.
VPO optimizes programs one function at a time. Figure 4 contains the order of

optimizations for VPO. The optimization described in this thesis takes place during the

branch chaining
useless jump elimination
dead code elimination
eliminate unconditional jumps by reordering code
instruction selection
evaluation order determination
global instruction selection
register assignment
jump minimization
instruction selection
eliminating jumps in loops
do {
register allocation
instruction selection
common subexpression elimination
dead variable elimination
code motion
recurrences
strength reduction
induction variable elimination
useless jump elimination
cheaper instruction replacement
instruction selection
}
while change;
setup entry and exit
instruction scheduling
fill slots
useless jumps

Figure 4: Order of Compiler Optimizations in VPO



setup entry and exit phase. This phase has the responsibility of adjusting the entry and
exits of a function to conform to the calling sequenceventions of the machine. The
actions in this phase include generating code to allocate/deallocate space on the run-time
stack for the actation record, saving/restoring registers, and assigning offsets of local
variables.

The stack locations for the run-time stack data are assigned during the setup entry and
exit phase. As one can see, almost all of the optimizations been performed before
the stack location of the run-time stack data is considered. VPO previously assigned the
stack location to the run-time stack data by assigning locations in decreasing order of
size (largest data first). This had the simple appeal of minimizing the amount of padding
needed for correct alignment. Otherwise, the order of local variables and temporaries in
an actvation record were considered unimportant.

A SPARC actvation record has the format illustrated in FigureActivation records

locals
and
temporaries

parameters
24 bytes

hidden parameter
4 bytes

16 registers
(register window)
64 bytes

Figure 5: Structure of a SPARC Agdtion Record
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are aligned on an eight byte boundafpe size of an actaétion record must be an
integer multiple of eight. This presess alignment on an 8-byte boundary and allows the
compiler to ensure that local variables are properly aligned teeqrenisalignment

exceptions.
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CHAPTER 4

OVERLAPPING RUN-TIME SACK VARIABLES

Overlapping run-time stack data requires the following steps: 1) determine if the
variables were used indirectlp) if a variable is used indirectlydetermine where it is
referenced, 3) determine thedirange of each variable, 4) build an interference graph
based on theve range of each variable, 5) establish the order in which\tbednges of

the variables will be assignedfsd#ts to achee maximum woerlap with minimum
alignment padding penaljtgnd 6) assign an offset for eackdirange of a variable in
such a way that it does notenlap with ary variable that has a conflictingvdé range.
Figure 6 contains the C source code for thangple that will be used to illustrate the
process of werlapping run-time stack data. Figure 7 displays the resulting RTLs with no
register allocation performed. The controMflof the program is also represented.

If the address of a variable is takem not immediately used, the variable is said to
have keen used indirectlyArrays are by definition indirectly referenced. Detection of
accurate lre ranges of non-scalar variables is much morécdit since the range of
elements accessed and the loops driving the induction variable(s) associated with the
memory reference must be known [19T0 determine which ariables are being
referenced indirectlyeach RTL in the function is examined to detect 1) if it references a
variable, and 2) whether the reference is inside a memory reference. If a variable is

being referenced outside of a memory reference, it is being used indirectly and is

12



void nain()

{
char array[20], c, j;
int char_count, i, i_count;
doubl e f;
c = input();
i = 0;
while ((c !'= EOF) && (i < 20))
{

array[i ++] = c;

c = input();
j = array[i];
f =1.0;
printf("The |l ast character is %. f is %\n", j, f);
char _count = i;
i _count = O;
for (i = 0; i < char_count; i++)

if (array[i] =="i")

i _count ++;
printf("There are % i’s out of %l chars\n", i_count, i);
}

Figure 6: An Example Function

marked. An example of an RTL where ariable &rr ay) is being used indirectly is
RTL number 15 in Figure 7.

Scalar variables that are not used indirectly care more than one Ve range. Each
live range of a scalar variable is from the set(s) of #wgable to the last use(s) before
the nat set(s) or the end of the function. Similar analysis to determineviheahges of
scalar variables is performed during register allocation.

Because of the difficulty in determining the exaek lianges of indirectly used
variables, one largeve range was calculated for these variables. This aeerdinge is
the extent from its first reference(s) to its last reference(s). Tkisalinge was calculated
by intersecting the basic blocks that precede the references taribler with the

blocks that can foll the references. All of the blocks containing the references are
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1. ST=HI[_input]+LO[_input],68,0; ICF®@lock 1
*2. B[r[14]+.1_c]=b[8]; b[8]
*3. R[r[14]+.1_i_1]=0;

4.129

*5. r[8]=(B[r[14]+.1_c]{24)}24;
6. 1C=r[8]?-1; r[8]

7. PC=IC:0,L30;

Block 2

*8. 1[8]=R[r[14]+.1_i_1];
9. IC=1[8]?20;
10. PC=IC'0,L30;

Block 3

11. r[9]=r[8]+1,; Block 4
*12. R[r[14]+.1_i_1]=r[9]; r[9]

+13. r[9]=r[14]+.1_array;

*14. b[10]=B[r[14]+.1_c]; .1_c

#15. B[r[8]+r[9]]=b[10];  b[10]r[8]r[9]

16. ST=HI[_input]+LO[_input],68,0; ICFC

*17. B[r[14]+.1_c]=b[8]; b[8]

18. PC=L29;

19.L30

+20. r[8]=r[14]+.1_array;

*21. r[9]=R[r[14]+.1_i_1];

22. b[8]=B[r[9]+r[8]];  r[8]r[9]
*23. B[r[14]+.1_{]=b[8]; b[8]
24, r[8]=HI[LO1];

25. d[0]=DJ[r[8]+LO[LO1]]; r[8]
*26. D[r[14]+.1_f]=d[O];

27. r[8]=HI[L32];

28. r[8]=r[8]+LO[L32];

*29. r[9]=(B[r[14]+.1_j{24)}24; .1_j
30. F[r[14]+76]=HP[d[O]];

31. F[r[14]+80]=LP[d[0]]; d[O]
32. r[10]=R[r[14]+76];

33. r[11]=R][r[14]+80];

34. ST=HI[_printf]+LO[_printf],84,4; ICFC
*35. 1[12]=R[r[14]+.1_i 1]; .1 1
*36. R[r[14]+.1_char_count]=r[12]; r[12]
*37. R[r[14]+.1_i_count]=0;

*38. R[r[14]+.1_i_2]=0;

39. PC=L35;

Block 5

40. L36
+41. r[8]=r[14]+.1_array;
42. r[8]=(B[r[9]+r[8]1{24)}24;
43. IC=r[8]?105; r[8]
44. PC=ICIO0,L33;

Block 6

Block 7
*45. r[8]=R[r[14]+.1_i_count]; .1_i_count
46. r[8]=r[8]+1;
*47. R[r[14]+.1_i_count]=r[8];  r[8]
48133 Block 8
49. r[8]=r[9]+1; r[9]
*50. R[r[14]+.1_i_2]=r[8]; r[8]
51. L35 Block 9
*52. r[8]=R[r[14]+.1_char_count];
*53. r[9]=R[r[14]+.1_i_2];
54. |C=r[9]?r[8]; r[8]
55. PC=IC<0,L36;
56. r[8]=HI[L39];
57. 1[8]=r[8]+LO[L39]; Block 10
*58. r[9]=R[r[14]+.1_i_count]; .1_i_count
*59. r[10]=R[r[14]+.1_i_2]; r[14].1_i_2

60. ST=HI[_printf]+LO[_printf],80,3;

ICFC

61. PC=R;

Block 11

* - variable referenced directly
+ - variables aldress taken indirectly
# - variable referenced indirectly

Figure 7: RTLs for the Example Function
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variable that has its\e range calculated in this fashion. Thariablear r ay initially
has blocks 4 (RTL 13), 5 (RTL 20), and 6 (RTL 41) neailas referencing itThe
dataflav is traced forvard (resulting in the marking of blocks 2-12) and back (resulting
in the marking of blocks 1-10) and the results are intersected. This resultsermamge
that spans from block 2 through block 10.

Before calculating the extent of an indirectly referenced variable, the compiler first
must determine where thanables aldress is actually referenced. This is accomplished
by using a demand-aen goproach rather than arxleaustve lution. At each point
where the address of run-time stack data is taken indirdicdycompiler recursely
searches forward marking all memory references that use the address. Thiddstae ef
approach because we found that in general the distance between taking the address of a
local variable and the points where the address is dereferenced are typically close.

If the compiler detects that the address itself is stored into methenythe point of
the store and the return points in the function are marked as references since pointer
analysis is not performed. The same action occurs if the address is passed to a function
since intetrprocedural analysis is not performed. In both cases this action cause® the li
range of the indirectly referencednable to span from the point of the store or the call
to the end of the function. Note that such a variable may stilV&¢apped with another
variable that is only referenced before the store or call.

Once the ke ranges of the ariables are determined, an interference graphuiis. b
This is similar to the interference graph that VPO uses fpster allocation. The range
of RTLs for each ire range is compared withvery other lve range to determine if tlye
conflict (that is, if thg have RTLs in common). By definition, differentvé ranges of

the same ariable cannot \@rlap. Each e range of a variable is numbered, irieet

15



creating a different variable name for eacle lrange. The interference graph for the

example function is depicted in Figure 8.

i1
AN
array
char_count i 2
i_count

Figure 8: Conflict Graph for Example Program



The next step is to sort thedi ranges to alle for the best werlap while reducing the
alignment padding penaltySeveal versions of a similar scheme were tried. Chagtin
al., found that assigningvé ranges with the greatest conflicvdefirst was the best
heuristic to use when allocatingdi ranges to registers [20]. The rationale for using this
scheme for werlapping run-time stack data is that if @dirange conflicts with most of
the other We ranges in the function, then assigning its offset early within theatdoh
will give it the best chance of beingelapped with the f& live ranges with which it
does not hee any onflicts. So,this scheme was tried first. Wever, padding is
introduced to ensure that alignment requirements are (Ret.the SPARC, floats and
doubles must be aligned on an 8-byte boundanyVPO, structures and arrays are
aligned on 8-byte boundaries for simplicityWhen there was little opportunity for
overlapping data this heuristic often caused the size of theafeti record to be lger
than it would hare been if this optimization were not enabled, because of xt@a e
padding required.Thus, this heuristic was rejected. The next approach was to sort the
live ranges by size of theaviable, with the {ie ranges of variables of the same size
sorted by conflict keel. This completely solved the problem of some\ation records
being larger after the optimization was applied to the programs in the test set. Upon
further consideration, it as apparent that size was less important than alignment
requirements. No, the live ranges are sorted first by their alignment requirement, then
by conflict level.

The final step is to assign the offset. For ease, offsetgeabinges were first assigned
as relatve dfsets to each other and then thestng procedure for assigningkast
offsets was used. Variables with the same offset are assigned the same address.

Figure 9 shows the algorithm used to assige tanges of run-time stack data to

17



WHILE any live ranges left to assign DO
curr_lIr := live range not yet assigned with biggest alignment requirement and highest conflict level;
curr_Ir->offset := first offset where locals can be assigned;
FOR Ir := each live range in function DO
IF (Ir->status = assigned) AND (curr_Ir IN Ir->conflicts) AND
does_overlap(lr, curr_Ir) THEN
curr_Ir->offset := Ir->offset + Ir->size;
curr_Ir->offset := curr_Ir->offset + necessary alignment padding
curr_Ir->status := assigned

Figure 9: Run-Time Stack & Range Offset Assignment Algorithm

offsets. The currentve range of a ariable is assigned to the first offset that does not
overlap with ary previously assignedve ranges conflicting with the currentdi range.

Table 1 lists all the information needed to assign the offsets forahables of the
example function in Figure 6. It shows the resulting offsets with and without this
optimization applied. The variables are listed in the order that offsets are assigmed.
number of conflicts was difficult to determine quickdye to the internal representation
of the conflicts. Eachariable had a structure for each conflict for each block that the
conflicted. The total number of conflicts were counted. This discriminatassag

variables that are Ve across fev blocks, asj in this exkample. Thevariablesf and

Table 1: Live Range Information for Example Function

Number | Live Range Name | Live Range | Conflicts With | Size in Bytes | Offset | Offset Without
Overlapping

1 array 2-10 2,3,4,5,6,7,8 20 96 96

2 f 5.26 1,6,8 8 120 136

3 i_count 5.37-10.58 1,4,5 4 92 132

4 i 2 5.38-10.59 1,3,5 4 116 128

5 char_count 5.36-9.52 1,3,4 4 120 124

6 i1 1.2-5.39 1,2,7,8 4 92 128

7 c 1.2-4.14 1,6 1 116 116

8 j 5.23-5.39 1,2,6 1 116 120

18



array must be aligned on an 8-byte boundaryj , char _count,i count,i 1,
andi _2 all must be aligned on a 4-byte bounddaryus,f andar r ay have the greatest
alignment requirement. Thexiablear r ay was the first to be assigned arfsgt and it
must be aligned on an 8-byte bounday i receved the offset of 96. Theariablef
conflicts withar r ay, so it was assigned the first offset past the endrofay that was
on an 8-byte boundaryThis turned out to be 120rhe \ariablei _count needs only to
be aligned on a 4-byte boundary and thus fits f@ebB2. The ariablei _2 conflicts
with i _count andarr ay. It can be eerlapped withf , but there is unallocated space
between 116 and 120, so its offset is 116. Taeablechar count conflicts with

i _count,array andi _2, but notf , so it gets placed at 120. Theawablei _1 can
ovelap with i _count at 92. The wriablesc andj both conflict withi _1 and
ar r ay, but not each othenori _2, so hey are assigned the fslet of 116. The resulting
space utilization can be seen graphically in Figure 10.

Allocation Without Overlapping
92 96 116 120 124 128 132 136 143

char_

i i_count f
count

unused array c j

Allocation With Overlapping

92 96 116 120 127
i1 2 f

i_count char_count

array

I_
j
c

Figure 10: Offset Allocation
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CHAPTER 5

RESULTS

Table 2 shows the results ofr@lapping run-time stack data on 19 test programs. The
programs consist of various benchmarks, Unix utilities, and application progiémes.
number of bytes shown for the stack size is obtained by simply calculating the sum of
the sizes of the different aestion records as opposed to measuring the space used for
the run-time stack atxecution time. The number of bytes required for library functions
is not included because library functions are dynamically linked.

The table also shows the results whearlapping run-time stack data was combined
with inlining. Inlining was accomplished by modifying an existing inliner within VPCC,
which only performed inlining within a single file of a compiled program. The ne
inliner processes all of the files of intermediate code produced fvem source file in
the program, resolves conflicting labels between the files, and/esriumctions that are
no longer referencedNotice that the size of the run-time stack data changed after
inlining. Sometimeghe size was decreased due to fewenaobn records required.
Sometimes it \&s increased due to multiple inlined copies of functions each requiring a
copy of their variables.

The results she very little improvement when inlining is not wroked. This is

because without inlining there were veryfepportunities for impreement. There were
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Table 2: Results of Overlapping Run-time Stack Data

Without Inlining With Inlining

Program Description Stack | Bytes Percent Stack | Bytes Percent
Size Saved | Decrease Size Saved | Decrease

ackerman Synthetic Benchmark 312 8 2.56% 232 8 3.45%
bubblesort Synthetic Benchmark 568 8 1.41% 136 8 5.88%
cal Calendar Generator 384 0 0.00% 96 0 0.00%
cmp Comparison of Two Files 768 0 0.00% 192 0 0.00%
csplit Split a File 1488 0 0.00% 728 0 0.00%
ctags C Tags Generator 8144 0 0.00% 24544 88 0.36%
dhrystone Synthetic Benchmark 664 0 0.00% 200 8 4.00%
grep Pattern Search 592 0 0.00% 304 0 0.00%
join Relational Join on Files 480 0 0.00% 96 0 0.00%
lex Scanner Generator 9472 0 0.00% 7208 8 0.11%
linpack Linear Algebra Routines 1504 48 3.19% 3312 112 3.38%
mincost VLSI Circuit Partitioning 1216 0 0.00% 192 8 4.17%
prof Profile a Program 1584 0 0.00% 400 40 10.00%
sdiff Side-by-Side File Display | 2536 0 0.00% 5784 16 0.28%
spline Smooth Curves 560 8 1.43% 200 8 4.00%
tr Translate Characters 192 0 0.00% 96 0 0.00%
tsp Traveling Sales Person 3008 8 0.27% 2216 56 2.53%
whetstone Arithmetic Operations 568 0 0.00% 488 296 60.66%
yacc Parser Generator 4232 0 0.00% 1360 8 0.59%
average 1989 4 0.47% 2510 34 5.23%

290 total functions in the 19 test programs
186 required no stack space for run-time variables, and 10 required only 8 bytes for run-
time stack data. This left only 43 functions wheverapping could be attempted. 12 of
those 43 functions had a stack size of only 112, meaning that the maxivedap o

potential for those functions is only 8 bytes. Unless the programmer usgslanah

. Of these functions, 51 were leaf functions,

variables, this optimization is not worthvioking when inlining is not also woked.

After inlining, 69 functions remained. (Twenty of the functions were in lex). Of these,

46 provide no opportunity forverlapping. The remaining functions generally yided

good opportunities forwerlap. The reason that inlining increases the opportunities for

overlap is because when a function is inlined, it brings its loaakbles with it. The

greater the number of local variables, the more likely it is that some of them will be
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ovelappable. Whether the inlined functions were nested or serial also impacts upon
overlapping opportunities. Functions that were nested provide less opportunity for
overlap, because there is a higher probability that the fanges will conflict. Upon
examining cases where littleverlap occurred in lage functions, such as main() in $dif
it became clear that with moreaet calculation of theVe range of arrays, the size of
the stack could be reduced by as much as 76%mo case did \erlapping run-time
stack data\eer result in a larger actation record size.

The fact that the optimization was implemented on a SPARC impacted the percentage
of improvement. The SPARC typically requires 92 bytes for state information for each

activation record. Most machines require less spasehead for actiation records.
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CHAPTER 6

FUTURE WORK

There are manavenues open for continuingvestigation in verlapping run-time stack
data. Calculating the exacwédi range of indirectly referencedanables could »dract
large gains, especially when combined with inlining. Inlining created the opportunities
for greater gerlapping. Combiningoverlapping with other optimizations that increase
the data size of a program should be tested for potential benefits.

The ordering of e ranges was based solely on alignment requirements and conflict
level. Many heuristics hae been proposed for gistercoloring algorithms. These
heuristics should be tested for their applicability teerlapping run-time data. A
different heuristic may provide greater gains.

The decrease in process memory requirements was measurveeehioca nore
detailed analysis of the effect thatedapping run-time stack data has on performance is
needed. Onlystatic run-time stack measurements were obtained. Reeyrsigrams
may use much more stack space. It is also uncleartti® reduction in stack size will
impact data caching and paging performance. It is unlikely that the small size decreases
reported will hae a ggnificant impact.

A technique to promote global variables to local variables was considered but rejected
because it would interfere with combiningredapping run-time stack data with

overlapping static data. Promoting global variables could be included as an option when
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the optimization to werlap run-time stack data is usedtlihe optimization to \@erlap

static data is not.
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CHAPTER 7

CONCLUSION

The thesis presents a compiler optimization for reducing process memory requirements
by overlapping run-time stack data. Each variablexareined to determine if it isver

used indirectlyThe live ranges of each variable are then determined. Variables tat ha
been used indirectly are assigned one large tange. Based on thevd ranges, an
interference graph is created. Eaalte lrange is assigned anfgdt in such a way that no
conflicting live range oerlaps with it, lut non-conflicting We ranges shareverlapping
locations in memory Analysis of this technique shows that there are vewy fe
opportunities for werlapping with traditional optimizations appliedProgrammers who

use maw local variables will benefit, but the test suite showed that most programmers
rely on global variables or only need a small enough numbearidbles that all fit

within a SPARC register windo Inlining increasedwerlap opportunities greatlyA 5%
decrease in run-time stack memory requirements was noted when inlining was combined

with overlapping run-time stack data.
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ABSTRACT

Most compiler optimizations focus onvaag time, sometimes at the expense of
increasing size. Processor speeds continue to increasasiearate than main memory
and disk access times. Reducing the size of a program may result ivethpremory
hierarcly performance. This thesis describes a way to reduce process size and memory
requirements by automatically@lapping run-time stack dataoverlap run-time stack
data, the lre ranges of eachverlappable variable was computed. An interference graph
was produced to detect conflicts among theelianges. The Ve ranges were sorted
according to their alignment requirement and number of conflicts. Bazmahge vas
then assigned a stack offset. Ifotver more live ranges do not conflict, tiiecan be
assigned d$ets in such a way that there overlapped in the actation record. The
results sha very little improvement when the optimization is used alone, and significant

improvements when combined with inlining.
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