
USING A SWAP INSTRUCTION TO COALESCELOADS AND STORES
Name: Apan QasemDepartment: Department of Computer ScienceMajor Professor: David B. WhalleyDegree: Master of ScienceTerm Degree Awarded: Spring, 2001A swap instruction, which exchanges a value in memory with a value in aregister, is available on many architectures. The primary application of a swapinstruction has been for process synchronization. This thesis shows that a swapinstruction can often be used to coalesce loads and stores in a variety of applications.The thesis describes the analysis necessary to detect opportunities to exploit a swapand the transformation required to coalesce a load and a store into a swap instruction.The results show that both the number of accesses to the memory system (data cache)and the number of executed instructions are reduced. In addition, the transformationreduces the register pressure by one register at the point the swap instruction is used,which sometimes enables other code-improving transformations to be performed.Using a swap instruction can also allow additional ILP scheduling opportunities byeliminating structural hazards to memory by reducing the number of memory accessesperformed.

THE FLORIDA STATE UNIVERSITYCOLLEGE OF ARTS AND SCIENCES
USING A SWAP INSTRUCTION TO COALESCELOADS AND STORES

ByAPAN QASEM
A Thesis submitted to theDepartment of Computer Sciencein partial ful�llment of therequirements for the degree ofMaster of Science

Degree Awarded:Spring Semester, 2001

The members of the Committee approve the thesis of Apan Qasem defended onMARCH 21, 2001.

David B. WhalleyProfessor Directing ThesisRobert van EngelenCommittee MemberXin YuanCommittee Member

ACKNOWLEDGEMENTSI want to express my gratitude to Dr. David Whalley, my major professor, for hisguidance, support and patience during my research. I would also like to thank mycommittee members Dr. Robert van Engelen and Dr. Xin Yuan for providing valuablesuggestions along the way.

iii

TABLE OF CONTENTSList of Tables : vList of Figures : viAbstract : vii1. INTRODUCTION : 12. RELATED WORK : 43. OPPORTUNITIES FOR EXPLOITINGA SWAP INSTRUCTIONIN VARIOUS APPLICATIONS : 64. A CODE-IMPROVING TRANSFORMATION TO EXPLOITTHE SWAP INSTRUCTION : 114.1 Ensuring Memory Addresses Are Equivalent Or Are Di�erent 154.2 Finding a Location to Place the Swap Instruction 164.3 Exploiting More Opportunities for the Swap Instruction by RenamingRegisters . 215. RESULTS : 246. CONCLUSION : 27REFERENCES : 28BIOGRAPHICAL SKETCH : 30

iv

LIST OF TABLES4.1 A Subset of the Rules Used for Memory Disambiguation 175.1 Test Programs . 245.2 Results . 26

v

LIST OF FIGURES1.1 Contrasting the E�ects of Load, Store, and Swap Instructions 23.1 Code Segment in Polynomial Approximation from Chebyshev Coe�cients 63.2 Example of Exchanging the Values of Two Variables 73.3 Example of Unrolling a Loop to Provide an Opportunity to Exploit aSwap Instruction . 73.4 Speculative Use of a Swap Instruction . 93.5 Example Depicting Why the Swap Instruction Should Be Exploited asa Low-Level Code-Improving Transformation . 104.1 Simple Example of Coalescing a Load and Store into a Swap Instruction 114.2 Example of Exchanging the Values of Two Variables 124.3 Algorithm for Coalescing a Load and a Store into a Swap Instruction . . 134.4 Examples of Detecting If Memory Addresses Are the Same or Di�er . . . 154.5 Algorithm for Finding a Location to Place The Swap Instruction 184.6 Examples of Finding a Location to Place the Swap Instruction 194.7 The Value to be Stored Must Not Be Used after the Store 194.8 Examples of Finding a Location to Place the Swap Instruction 204.9 Examples of Finding a Location to Place the Swap Instruction 214.10 Example of Applying Register Renaming to Permit the Use of a SwapInstruction . 224.11 Another Example of Applying Register Renaming to Permit the Use ofa Swap Instruction . 23
vi

ABSTRACTA swap instruction, which exchanges a value in memory with a value in a register,is available on many architectures. The primary application of a swap instructionhas been for process synchronization. This thesis shows that a swap instruction canoften be used to coalesce loads and stores in a variety of applications. The thesisdescribes the analysis necessary to detect opportunities to exploit a swap and thetransformation required to coalesce a load and a store into a swap instruction. Theresults show that both the number of accesses to the memory system (data cache)and the number of executed instructions are reduced. In addition, the transformationreduces the register pressure by one register at the point the swap instruction is used,which sometimes enables other code-improving transformations to be performed.Using a swap instruction can also allow additional ILP scheduling opportunities byeliminating structural hazards to memory by reducing the number of memory accessesperformed.

vii

CHAPTER 1INTRODUCTIONIn the recent past technological innovations in processor design have outpacedadvances in memory systems. As a result, processor speeds are increasing at a fasterrate than memory speeds. This increasing performance gap between processors andmemory systems creates a memory bottleneck for many applications. To addressthis problem many attempts have been made both at the hardware and the softwarelevel. Hardware solutions have mainly focussed on creating wider datapaths betweenthe processor and the memory system. On the other hand, software solutions haveallowed multiple accesses to the memory system to occur simultaneously. This thesisproposes a compiler optimization that makes use of a swap instruction to combineloads and stores to decrease the total number of memory accesses in a program.An instruction that exchanges a value in memory with a value in a register hasbeen used on a variety of machines. The primary purpose for these swap instructionsis to provide an atomic operation for reading from and writing to memory, whichhas been used to construct mutual-exclusion mechanisms in software for processsynchronization. In fact, there are other forms of hardware instructions thathave been used to support mutual exclusion, which include the classic test-and-setinstruction. This thesis describes how a swap instruction can also be used by alow-level code-improving transformation to coalesce loads and stores into a singleinstruction.A swap instruction described in this thesis exchanges a value in memory with avalue in a register. This is illustrated in Fig. 1.1, which depicts a load instruction,1

(b) Store Instruction (c) Swap Instruction(a) Load Instruction

r[2] = M[x]; M[x] = r[2]; r[2] = M[x]; M[x] = r[2];Figure 1.1. Contrasting the E�ects of Load, Store, and Swap Instructionsa store instruction, and a swap instruction using an RTL (register transfer list)notation. Each assignment in an RTL represents an e�ect on the machine. The listof e�ects within a single RTL are accomplished in parallel. Thus, the swap instructionis essentially a load and store accomplished in parallel.A swap instruction can be e�ciently integrated into a conventional RISC archi-tecture. First, it can be encoded using the same format as a load or a store sinceall three instructions reference a register and a memory address. Only additionalopcodes are required to support the encoding of a swap instruction.Second, access to a data cache can potentially be performed e�ciently for a swapinstruction on most RISC machines. A direct-mapped data cache can send the valueto be loaded from memory to the processor for a load or a swap instruction inparallel with the tag check. This value will not be used by the processor if a tagmismatch is later discovered [7]. A data cache is not updated with the value to bestored by a store or a swap instruction until after the tag check [7]. Thus, a swapinstruction could be performed as e�ciently as a store instruction on a machine witha direct-mapped data cache. In fact, a swap instruction requires the same number ofcycles in the pipeline as a store instruction on the MicroSPARC I [11]. One shouldnote that a swap instruction will likely perform less e�ciently when it is used forprocess synchronization on a multiprocessor machine since it requires a signal overthe bus to prevent other accesses to memory.Finally, it is possible that a main memory access could also be performede�ciently for a swap instruction. Reads to DRAM are destructive, meaning thatthe value read must be written back afterwards. A DRAM organization could be2

constructed where the value that is written back could di�er from the value that wasread and sent to the processor. Thus, a load and a store to a single word of mainmemory could occur in one main memory access cycle.The remainder of this thesis has the following organization. Chapter 2 introducesrelated work that allows multiple accesses to memory to occur simultaneously. Chap-ter 3 describes a variety of di�erent opportunities for exploiting a swap instructionthat commonly appear in applications. Chapter 4 presents the conditions necessaryto coalesce a load and store pair into a swap instruction and describes issues relatedto implementing this code-improving transformation. Chapter 5 presents the resultsof applying the code-improving transformation on a variety of applications. Finally,the conclusions are stated in Chapter 6.

3

CHAPTER 2RELATED WORKBecause memory tra�c plays such a critical role in program performance therehas been a large amount of work that focus on reducing the memory bandwidthrequirements of a program. A number of algorithms have been proposed forperforming register allocation. Register allocation is a transformation that allocatesvariables to registers. When a variable is allocated to a register, the loads andstores previously necessary to obtain the value of that variable is eliminated. Thistransformation signi�cantly reduces the total number of memory accesses in aprogram.Cache blocking is another optimization that is used for reducing the number ofaccesses to higher levels of memory. This technique is used for numerical algorithmsthat work with large data sets. The data sets for numerical algorithms are often solarge that only a fraction of the set �ts into the data cache. In these cases, even if thedata are reused they may be displaced from the cache before they are reused. Cacheblocking transforms the code so that a block of data is read into the cache, thenused a number of times before it is replaced by another block. Thus, this techniqueimproves the overall performance of a program by reducing the number of cachemisses [8].Register blocking is a similar technique that transforms the code so that un-necessary loads to array elements are eliminated. This technique is often used incombination with cache blocking to reduce the number of memory references.4

Although there has been a large amount of work on techniques that reduce thememory bandwidth requirements only a few of these have focussed on reducingmemory bandwidth requirements by allowing multiple accesses to the memory systemto occur in a single cycle. Superscalar and VLIW machines have been developedwhere a wider datapath between the data cache and the processor has been usedto allow multiple simultaneous accesses to the data cache. Likewise, a widerdatapath has been implemented between the data cache and main memory to allowmultiple simultaneous accesses to main memory through the use of memory banks.A signi�cant amount of compiler research has been spent on trying to scheduleinstructions so that multiple independent memory accesses to di�erent banks canbe performed simultaneously [6].Memory access coalescing is a code-improving transformation that groups multi-ple memory references to consecutive memory locations into a single larger memoryreference. This transformation was accomplished by recognizing a contiguous accesspattern for a memory reference across iterations of a loop, unrolling the loop, andrescheduling instructions so that multiple loads or stores could be coalesced [4].Direct hardware support of multiple simultaneous memory accesses in the form ofsuperscalar or VLIW architectures requires that these simultaneous memory accessesbe independent in that they access di�erent memory locations. Likewise, memoryaccess coalescing requires that the coalesced loads or stores access contiguous (anddi�erent) memory locations. In contrast, the use of a swap instruction allows a storeand a load to the same memory location to be coalesced together and performedsimultaneously. In a manner similar to the memory access coalescing transformation,a load and a store are coalesced together and explicitly represented in a singleinstruction.
5

CHAPTER 3OPPORTUNITIES FOR EXPLOITING A SWAPINSTRUCTION IN VARIOUS APPLICATIONSA swap instruction can potentially be exploited when a load is followed by a storeto the same memory address and the value stored is not computed using the valuethat was loaded. We investigated how often this situation occurs and we have foundmany direct opportunities in a number of applications. Consider the following codesegment in Fig. 3.1 from an application that uses polynomial approximation fromChebyshev coe�cients [10].
...
sv = d[k]

= 2.0*d[k-1] - dd[k];
;

d[k]
...Figure 3.1. Code Segment in Polynomial Approximation from Chebyshev Coe�-cientsThere is �rst a load of the d[k] array element followed by a store to the sameelement, where the store does not use the value that was loaded. Comparable codesegments containing such a load followed by a store were found in other diverseapplications, such as Gauss-Jordan elimination [10] and tree traversals [5].A more common operation where a swap instruction can be exploited is whenthe values of two variables are exchanged. Consider Fig. 3.2(a), which depicts theexchange of the values in x and y at the source code level. Fig. 3.2(b) indicates thatthe load and store of x can be coalesced together. Likewise, Fig. 3.2(c) indicates thatthe load and store of y can also be coalesced together. However, as we will discover6

in Chapter 4 only a single pair of load and store instructions in an exchange of valuesbetween variables can be coalesced together.
(a) Exchange of Values

Source Code Level
in x and y at the

t = x;
x = y;
y = t;

(b) The Load and Store

Coalesced Together
of x Can Be

t = ;
 = y;
y = t;

(c) The Load and Store

Coalesced Together
of y Can Be

t = x;

 = t;
x = ;y
y

x
x

Figure 3.2. Example of Exchanging the Values of Two VariablesThere are numerous applications where the values of two variables are exchanged.Various sorts of an array or list of values are obvious applications in which aswap instruction could be exploited. Some other applications requiring an explicitexchange of values between two variables include transposing a matrix, the travelingsalesperson problem, solving linear algebraic equations, fast fourier transforms, andthe integration of di�erential equations. The above list is only a small subset of theapplications that require this basic operation.There are also opportunities for exploiting a swap instruction after other code-improving transformations have been performed. Consider the code segment inFig. 3.3(a) from an application that uses polynomial approximation from Chebyshevcoe�cients [10].
 d[j] = d[j-1]-dd[j];

(a) Original Loop

for (j = n-1; j > 1; j--)
}
 = d[j-2]-dd[j];d[j-1]
 d[j] = -dd[j];d[j-1]
for (j = n-1; j > 1; j -= 2) {

(b) Loop after UnrollingFigure 3.3. Example of Unrolling a Loop to Provide an Opportunity to Exploit aSwap InstructionIt would appear in this code segment that there is no opportunity for exploitinga swap instruction. However, consider the body of the loop executed across two7

iterations, which is shown in Fig. 3.3(b) after unrolling the loop by a factor of two.For simplicity, we are assuming in this example that the original loop iterated an evennumber of times. Now the value loaded from d[j-1] in the �rst assignment statementin the loop is updated in the second assignment statement and the value computed inthe �rst assignment is not used to compute the value stored in the second assignment.We have opportunities for exploiting a swap instruction across loop iterations by loopunrolling in a number of applications, which includes linear prediction, interpolationand extrapolation, and solution of linear algebraic equations.Loop unrolling increases the opportunities for exploiting more swap instructionsin a loop by coalescing loads and stores across loop iterations. When the distancevector of the anti-dependencies of a pair of array references in a one-dimensionalloop is some positive integer Distance, and we assume that the loop unroll factor isa multiple of Distance, that isLoop Unroll Factor = k �Distance (3.1)for some positive integer constant k, then it can be shown thatStatic Memory References Saved = $k2% �Distance (3.2)For example in Fig. 3.3, we have Distance = 1 and k equals the loop unroll factor.Thus, one memory reference is saved each time the loop is unrolled twice.As the loop unroll factor increases, more memory references can be saved bycoalescing loads and stores into swap instructions. However, the code size increasedue to increased loop unrolling may not justify the reduction in memory referencesperformed. Of course, loop unrolling provides additional bene�ts, such as reducedloop overhead and better opportunities for scheduling instructions.Finally, we have also discovered opportunities for speculatively exploiting a swapinstruction across basic blocks. Consider the code segment in Fig. 3.4, which assignsvalues to an image according to a speci�ed threshold [9]. p[i][j] is loaded in8

 for (i = 0; i < m; i++) {
for (i = 0; i < n; i++)

 else

 }

 if <= t)
 = 1;

 = 0;

p[i][j]
p[i][j]

p[i][j]Figure 3.4. Speculative Use of a Swap Instructionone block and a value is assigned to p[i][j] in both of its successor blocks. Theload of p[i][j] and the store from the assignment to p[i][j] in the then or elseportions of the if statement can be coalesced into a swap instruction since thevalue loaded is not used to compute the value stored. The store operation can bespeculatively performed as part of a swap instruction in the block containing theload. We have found that stores can be performed speculatively in a number of otherimage processing applications, which include clipping and arithmetic operations.Sometimes apparent opportunities at the source code level for exploiting a swapinstruction are not available after other code-improving transformations have beenapplied. Many code-improving transformations either eliminate memory references(e.g. register allocation) or move memory references (e.g. loop-invariant codemotion). Coalescing loads and stores into swap instructions should only be performedafter all other code-improving transformations that can a�ect the memory referenceshave been applied. Fig. 3.5(a) shows an exchange of values after the two values arecompared in an if statement. Fig. 3.5(b) shows a possible translation of this codesegment to machine instructions. Due to common subexpression elimination, theloads of x and y in the block following the branch have been deleted in Fig. 3.5(c).Thus, the swap instruction cannot be exploited within that block. This exampleillustrates why the swap instruction should be performed late in the compilation9

r[1] = M[x];
r[2] = M[y];
IC = r[1] ? r[2];
PC = IC <= 0, L5;
M[x] = r[2];
M[y] = r[1];

Due to Common Subexpression Elimination
(c) Loads Are Deleted in the Exchange of Values

M[y] = r[1];
M[x] = r[2];

PC = IC <= 0, L5;
IC = r[1] ? r[2];
r[2] = M[y];
r[1] = M[x];

 y = t;
}

if (x > y) {
 t = x;
 x = y;

r[1] = M[x];
r[2] = M[y];

(a) Exchange of Values
in x and y at the

Source Code Level

(b) Loads are Initially
Performed in the Exchange

of Values of x and y

Figure 3.5. Example Depicting Why the Swap Instruction Should Be Exploited asa Low-Level Code-Improving Transformationprocess when the actual loads and stores that will remain in the generated code areknown.

10

CHAPTER 4A CODE-IMPROVING TRANSFORMATIONTO EXPLOIT THE SWAP INSTRUCTIONFig. 4.1(a) illustrates the general form of a load followed by a store that canbe coalesced. The memory reference is to the same variable or location and theregister loaded (r[a]) and register stored (r[b]) di�er. Fig. 4.1(b) depicts the swapinstruction that represents the coalesced load and store. Note that the register loadedhas been renamed from r[a] to r[b]. This renaming is required since the swapinstruction has to store from and load into the same register.
(a) Load Followed by a Store (b) Coalesced Load and Store

...
r[a] = M[v];

M[v] = r[b]; r[b] = M[v]; M[v] = r[b];Figure 4.1. Simple Example of Coalescing a Load and Store into a Swap InstructionFig. 4.2(a), like Fig. 3.2(a), shows an exchange of the values of two variables,x and y, at the source code level. Fig. 4.2(b) shows similar code at the SPARCmachine code level, which is represented in RTLs. The variable t has been allocatedto register r[1]. Register r[2] is used to hold the temporary value loaded from yand stored in x. At this point a swap could be used to coalesce the load and storeof x or the load and store of y. Fig. 4.2(c) shows the RTLs after coalescing the loadand store of x. One should note that r[1] is no longer used since its live range hasbeen renamed to r[2]. Due to the renaming of the register, the register pressure atthis point in the program ow graph has been reduced by one. Reducing the register11

pressure can sometimes enable other code-improving transformations that require anavailable register to be applied. Note that the decision to coalesce the load and storeof x prevents the coalescing of the load and store of y.
(a) Exchange of Values

Source Code Level
in x and y at the

t = x;
x = y;
y = t;

(b) Exchange of Values

Machine Code Level
in x and y at the

r[1] = M[x];
r[2] = M[y];
M[x] = r[2];
M[y] = r[1];

(c) After Coalescing the
Load and Store of x

M[x] = r[2]; r[2] = M[x];
M[y] = r[2];

r[2] = M[y];

Figure 4.2. Example of Exchanging the Values of Two VariablesFig. 4.3 gives a high-level description of the algorithm that was used for thecode-improving transformation to coalesce a load and a store into a swap instruction.The algorithm goes through each basic block looking for a load followed by a storeto the same address. Once a matching load and store has been found it combinesthe two memory references together into a single swap instruction if the followingconditions are met.(1) The store must follow the load within the same block or consecutively executedblocks. If the load is in a separate block, then we must guarantee that a store tothe same location occurs in each successor. This allows us to speculatively apply theswap optimization in some cases.(2) The addresses of the memory references in the load and store instructionshave to be the same. The process of checking if two memory addresses are equivalentis complicated since the code-improving tranformation is performed late in thecompilation process. Details of the technique used to check if two memory addressesare equivalent is provided in Section 4.1.(3) There can be no possibility of an intervening store to the same address betweenthe load and the store. Fig. 4.4(b) shows a load of a variable v followed by a storeto the same variable with an intervening store. The compiler must ensure that the12

FOR B = each block in function DOFOR LD = each instruction in B DOIF LD is a load AND Find Matching Store(LD, B, LD!next, ST, P)AND Meet Swap Conds(LD, ST) THENSW = Create("%s=M[%s];M[%s]=%s;",ST!r[b], LD!load addr,LD!load addr, ST!r[b]);Insert SW before P;Replace uses of L!r[a] with S!r[b] until L!r[a] dies;Delete LD and ST;BOOL Find Matching Store(LD, B, FIRST, ST, P) fFOR ST = FIRST to B!last DOIF ST is a store THENIF ST!store addr == LD!load addr THENIf FIRST == B!�rst THENRETURN TRUE;ELSERETURN Find Place To Insert Swap(LD, ST, P);IF ST!store addr != LD!load addr THENCONTINUE;IF cannot determine if the two addresses are same or di�erent THENRETURN FALSE;IF FIRST == B!�rst THENRETURN FALSE;FOR S = each successor of B DOIF !Find Matching Store(LD, S, S!�rst, ST, P) THENRETURN FALSE;FOR S = each successor of B DOIF Find Place To Insert Swap(LD, ST, P) THENRETURN TRUE;RETURN FALSE;gBOOL Meet Swap Conds(LD, ST)fRETURN (value in ST!r[b] is guaranteed to not depend on the value in LD!r[a])AND (ST!r[b] dies at the store)AND ((ST!r[b] is not reset before LD!r[a] dies)OR (other live range of S!r[b] can be renamed to use another register));gFigure 4.3. Algorithm for Coalescing a Load and a Store into a Swap Instruction13

value in r[c] is not the address of the variable v. If the value in r[c] is determinedto be the address of variable v then the compiler will attempt to coalesce the loadof variable v with the store that uses the register r[c]. On the other hand, if itis determined that the store using r[c] is to a di�erent memory location than thecompiler would proceed with the steps required to coalesce the load and store ofvariable v. If the analysis, as described in Section 4.1, cannot guarantee a di�erentaddress in an intervening store, the transformation is not performed.(4) The value in r[b] that will be stored cannot depend on the value loadedinto r[a]. If the value to be stored depends on the loaded value then the load hasto be executed before the store. Since, the swap instruction performs the load andstore in parallel, this would prevent us from applying the tranformation in this case.However, as discussed in Section 4.3, in some cases we can eliminate false dependeciesvia register renaming that enables us to appply the transformation.(5) The instruction containing the �rst use of the register assigned by the loadhas to occur after the last reference to the register to be stored. If this is not thecase then the load and store cannot be made contiguous for them to be coalescedinto a swap intstruction. However, the compiler was sometimes able to rescheduleinstructions between the load and store so that this condition was met. Details ofthis rescheduling algorithm is discussed in Section 4.2.(6) The value in the register to be stored cannot be used after the store instruction.The reason why this condition needs to be satis�ed is explained in Section 4.2.(7) The register that was loaded has to be able to be renamed to the register thatwas stored. In some cases register renaming can be used so that this condition ismet. This is dicussed in detail in Section 4.3.The following subsections describe issues relating to this code-improving trans-formation.
14

4.1 Ensuring Memory Addresses Are Equivalent Or AreDi�erentOne of the requirements for a load and store to be coalesced is that the load andstore must refer to the same address. Fig. 4.4(a) shows a load using the addressin register r[2] and a store using the address in r[4]. The compiler must ensurethat the value in r[2] is the same as that in r[4]. This process of checking thattwo addresses are equivalent is complicated due to the code-improving transformationbeing performed late in the compilation process. Common subexpression eliminationand loop-invariant code motion may move the assignments of addresses to registersfar from where they are actually dereferenced.
(b) Load and Store to the Same(a) Same Addresses after

Expanding the Expressions Variable with an Intervening Store

r[2] = r[3] << 2;
r[2] = r[2] + _a;
r[5] = M[r[2]];
...
r[4] = r[3] << 2;
r[4] = r[4] + _a;
M[r[4]] = r[6]; M[v] = r[b];

...
M[r[c]] = r[d];
...
r[a] = M[v];

Figure 4.4. Examples of Detecting If Memory Addresses Are the Same or Di�erWe implemented some techniques to determine if the addresses of two memoryreferences were the same or if they di�ered. Addresses to memory were expanded bysearching backwards for assignments to registers in the address until all registers arereplaced or the beginning of a block with multiple predecessors is encountered. Forinstance, the address in the memory reference being loaded in Fig. 4.4(a) is expandedas follows: r[2]) r[2] + a) (r[3] << 2) + a15

The address in the memory reference being stored would be expanded in a similarmanner. Once the addresses of two memory references have been expanded, then theyare compared to determine if they di�er. If the expanded addresses are syntaticallyequivalent, then the compiler has ensured that they refer to the same address inmemory.We also associated the expanded addresses with memory references before code-improving transformations involving code motion were applied. The compilertracked these expanded addresses with the memory references through a varietyof code-improving transformations that would move the location of the memoryreferences. Determining the expanded addresses early simpli�ed the process ofcalculating addresses associated with memory references.Another requirement for a load and a store to be coalesced is that there are noother possible intervening stores to the same address. Fig. 4.4(b) shows a load of avariable v followed by a store to the same variable with an intervening store. Thecompiler must ensure that the value in r[c] is not the address of the variable v.However, simply checking that two expanded addresses are not identical does notsu�ce to determine if they refer to di�er locations in memory. Various conditionscan be checked to determine if two addresses di�er. Table 1 depicts some of theseconditions that indicate if two addresses di�er.4.2 Finding a Location to Place the Swap InstructionWhen trying to �nd a place to insert the swap instruction a number of conditionshave to be met. Fig. 4.5 illustrates the algorithm that was used to �nd a locationto place the swap instruction. As can be seen from Fig. 4.5 in addition to checkingfor the conditions the algorithm also tries to reschedule instructions to meet theseconditions. We now take a look at the conditions that need to be met for insertinga swap instruction into the program. 16

Table 4.1. A Subset of the Rules Used for Memory DisambiguationNum Condition ExampleFirst Address Second Address1 The addresses areto di�erent classes(local variables,arguments, staticvariables, andglobal variables.
M[a] M[r[30]+x]

2 Both addresses areto the same classand their namesdi�er. M[a] M[b]3 One address is toa variable that hasnever had its ad-dress taken and thesecond address isnot to the samevariable.
M[r[14]+v] M[r[7]]

4 The addresses arethe same, exceptfor di�erent con-stant o�sets. M[(r[3] << 2) + a] M[(r[3] << 2) + a+4]
Condition 1: The swap instruction has to be placed before the instructioncontaining the �rst use of the register assigned by the load.Consider the example in Fig. 4.6(a). The value in variable v is loaded into registerr[a]. This value is then used by another instruction and then �nally the value in r[b]is stored into the location of variable v. Here, although we have a load and a storeto the same memory address we cannot just arbitrarily decide on a place to insertthe swap instruction. Lets say, we placed the swap instruction after the instructionthat uses the value of r[a] as shown in Fig. 4.6(b). It is easy to see in this case thatthe instruction that uses the value of r[a] will not have the correct value. For that17

BOOL Find Place To Insert Swap(LD, ST, P)fIF LD!r[a] is not used between LD and ST THENP = ST;RETURN TRUE;IF ST!r[b] is not referenced between LD and ST THENP = LD!next;RETURN TRUE;IF �rst use of LD!r[a] after LD comes after the last reference to ST!r[b]before the store THENP = instruction containing �rst use of LD!r[a] after LD;RETURN TRUE;IF �rst use of LD!r[a] after LD can be moved after the last referenceto ST!r[b] before the store THENMove instructions as needed;P = instruction containing �rst use of LD!r[a] after LD;RETURN TRUE;ELSERETURN FALSE;g Figure 4.5. Algorithm for Finding a Location to Place The Swap Instructioninstruction, r[a] will contain the value from its previous set. Therefore, we needto place the swap instruction before any instruction that uses the value of r[a] asshown in Fig. 4.6(c).Condition 1 would be su�cient for placing a swap instruction if we did not haveany references to the register from which the value is stored in between the loadand store of the same memory location. However, in many situations there may bereferences to the register from which the value is stored both before and after thestore instruction. As stated previously, if the value of the stored register is usedafter the store then we cannot apply the tranformation. Consider the example inFig. 4.7(a), where r[b] is used after the store. Fig. 4.7(b) shows that coalescing theload and store can result in a di�erent value in r[b].18

r[a] = M[v];
...
... = ... r[a] ...;
...

M[v] = r[b];

...

... = ... r[a] ...;

...

r[b] = M[v]; M[v] = r[b];

(b) r[a] Has Incorrect Value When

The First Reference to r[a]
Load and Store Coalesced After

r[b] = M[v]; M[v] = r[b];

...

... = ... r[b] ...;

...

(a) Use of r[a] Appears
between a Load and a

Store to the same location

(c) Coalesced Load and Store Placed
Before First Reference to r[a] and

r[a] renamed to r[b]Figure 4.6. Examples of Finding a Location to Place the Swap Instruction
(a) Use of r[b] Following Store

...
M[v] = r[b];

r[a] = M[v];

...
r[c] = r[b];

(b) Illegal Coalescing

r[b] = M[v]; M[v] = r[b];
...

r[c] = r[b];
...

Figure 4.7. The Value to be Stored Must Not Be Used after the StoreUnlike the above situation, a reference to the stored register before the storedoes not rule out the possibility of applying the tranformation completely. However,in such a case we need to be careful about where we place the swap instruction.This leads us to the second condition that must be satis�ed for inserting a swapinstruction.Condition 2: The swap instruction has to be inserted after the instructioncontaining the last reference to the register to be stored.For example, consider the sequence of RTLs in Fig. 4.8(a). A use of r[b] appearsbetween the load and store of variable v. Lets consider that instruction to be theinstruction with the last reference to r[b] before the store to the location of variable19

v. Now if we placed the swap instruction before the instruction containing the lastreference to r[b] we will end up with the code that appears in Fig. 4.8(b). Herealso we notice that the instruction containing the reference to r[b] will contain anincorrect value. After coalescing the load and store, r[b] will have the value ofvariable v. However, there is no guarantee that this is the value r[b] was supposedto have at that point in the execution of the program.
r[a] = M[v];
...

...

M[v] = r[b];

...

...

between a Load and a
Store to the same location

(c) Coalesced Load and Store Placed

... = ... r[b] ...;
r[b] = M[v]; M[v] = r[b];

(a) Use of r[b] Appears (b) r[b] Has Incorrect Value When
Load and Store Coalesced before

The Last Reference to r[b]

... = ... r[b] ...;

...
r[b] = M[v]; M[v] = r[b];

... = ... r[b] ...;

...

After Last Reference to r[b]Figure 4.8. Examples of Finding a Location to Place the Swap InstructionWe have looked at two conditions that have to be met when we are trying to �nda location for inserting the swap instruction. For clarity, in the previous examples wehave treated these two conditions separately. However, it is likely that in many casesboth Condition 1 and Condition 2 will need to be satis�ed. We can combine thesetwo conditions to come up with the following more general condition for inserting aswap instruction.Condition 3: For a load and a store to be coalesced into a swap instruction theinstruction containing the �rst use of the register assigned by the load has to occurafter the last reference to the register to be stored.20

For example, consider the example in Fig. 4.9(a). A use of r[a] appears beforethe last reference to r[b] before the store instruction. In this situation it would beillegal to make the load and store of variable v contiguous.
r[a] = M[v];
...
... = ... r[a] ...;
... = ... r[b] ...;
...
M[v] = r[b];

...

r[a] = M[v];
M[v] = r[b];
... = ... r[a] ...;
...

... = ... r[b] ...;

r[b] = M[v]; M[v] = r[b];

r[a] = M[v];
...
... = ... r[b] ...;
... = ... r[a] ...;
...
M[v] = r[b];

(b) First Use of r[a]
Appears after the Last

Reference to r[b]

...

... = ... r[b] ...;

...

... = ... r[b] ...;

(d) After Coalescing the Load
and Store and Renaming

r[a] to r[b]

(c) Load and Store
Can Now Be

Made Contiguous

(a) Use of r[a]
Appears before a
Reference to r[b]

Figure 4.9. Examples of Finding a Location to Place the Swap InstructionFig. 4.9(b) shows that the compiler is sometimes able to reschedule the instruc-tions between the load and the store to meet this condition. Now the load and thestore can be moved where the load appears immediately before the store, as shownin Fig. 4.9(c). Once the load and store are contiguous, the two instructions can becoalesced. Fig 4.9(d) shows the code sequence after the load and store have beendeleted, the swap instruction has been inserted, and r[a] has been renamed to r[b].4.3 Exploiting More Opportunities for the SwapInstruction by Renaming RegistersWe encountered another complication due to coalescing loads and stores intoswap instructions late in the compilation process. Pseudo registers, which containtemporary values, have already been assigned to hardware registers when thecoalescing transformation is attempted. The compiler reuses hardware registerswhen assigning pseudo registers to hardware registers in an attempt to minimize21

r[a] = M[v];
...
M[v] = r[b];
...
r[b] = ...;
...
... = ... r[a] ...;
...
... = ... r[b] ...;

r[a] = M[v];
...
M[v] = r[b];
...
r[c] = ...;
...
... = ... r[a] ...;
...
... = ... r[c] ...;

(b) Live Range of r[b] after Store
Has Been Renamed to r[c]

...
r[b] = M[v]; M[v] = r[b];
...
r[c] = ...;
...
... = ... r[b] ...;
...
... = ... r[c] ...;

(c) After Coalescing the Load and Store
and Renaming the Live Range of r[a] to r[b]

(a) r[b] Is Set in the
Live Range of r[a]

Figure 4.10. Example of Applying Register Renaming to Permit the Use of a SwapInstructionthe number of hardware registers used. The implementation of the code-improvingtransformation sometimes renamed live ranges of registers to permit the use of aswap instruction. Consider the example in Fig. 4.10(a), which contains a set of r[b]after the store and before the last use of the value assigned to r[a]. In this situation,we would run into problems if we tried to rename all occurences of r[a] after thestore with r[b]. The reason for this is that the live range of r[a] overlaps withanother live range of r[b]. So, if we renamed r[a] with r[b] all instructions thatuse the value of r[a] within the live range of r[b] would contain an incorrect valuein the renamed register. When we rename occurences of r[a] after the store withr[b] we would like for r[b] to contain the value that was loaded from the location ofvariable v. However, in this situation the renamed registers would contain the valuecorresponding to the set of r[b] that follows the store.Although this situation poses a problem in applying the transformation we wereable to avoid this problem by attempting to rename the second live range of r[b]to a di�erent available register. Fig. 4.10(b) shows this live range being renamed to22

r[c]. Fig. 4.10(c) depicts that the load and store can now be coalesced since r[a]can be renamed to r[b].
for (j = n-1; j > 1; j -= 2) {

 d[j] = r[1];
 r[1] = r[1]-r[2];
 r[2] = dd[j];

 r[3] = r[3]-r[4];
 r[4] = dd[j-1];
 r[3] = d[j-2];

}

for (j = n-1; j > 1; j -= 2) {

}

 = r[3];

 r[2] = dd[j];
 r[1] = r[1]-r[2];
 d[j] = r[1];
 r[1] = d[j-2];
 r[2] = dd[j-1];
 r[1] = r[1]-r[2];

d[j-1] = r[1];

 r[1] = ;d[j-1]

(c) After Scheduling the Instructions

(a) After Loop Unrolling (b) After Register Renaming

(d) After Coalescing the Load and Store

for (j = n-1; j > 1; j -= 2) {
 r[1] = d[j-1];
 r[2] = dd[j];
 r[1] = r[1]-r[2];
 d[j] = r[1];

r[3]
 = d[j-2];r[4]
 r[3] = r[3]-r[4];
 d[j-1] = ;
}

for (j = n-1; j > 1; j -= 2) {

}

 r[3] = d[j-2];
 r[4] = dd[j-1];
 r[3] = r[3]-r[4];

 r[2] = dd[j];
 r[1] = r[3]-r[2];
 d[j] = r[1];

d[j-1]d[j-1] r[1] = ;
d[j-1]

d[j-1] r[3] = ; = r[3];

 = dd[j-1];

r[3]

Figure 4.11. Another Example of Applying Register Renaming to Permit the Useof a Swap InstructionSometimes we had to move sequences of instructions past other instructions inorder for the load and store to be coalesced. Consider the unrolled loop in Fig. 3.3(b).Fig. 4.11(a) shows the same loop, but in a load/store fashion, where the temporariesare registers. The load and store cannot be made contiguous due to reuse of the sameregisters. Fig. 4.11(b) shows the same code after the compiler renamed the registerson which the value to be stored depends. Now the instructions can be scheduled sothat the load and store can be made contiguous as shown in Fig. 4.11(c). Fig. 4.11(d)shows the load and store coalesced and the loaded register renamed.
23

CHAPTER 5RESULTSTable 5.1 describes the numerous benchmarks and applications that were usedto evaluate the impact of applying the code-improving transformation to coalesceloads and stores into a swap instruction. The code-improving transformation wasimplemented in the vpo compiler [1]. Vpo is a compiler backend that is part of thezephyr system, which is supported by the National Compiler Infrastructure project.The programs depicted in boldface were directly obtained from the Numerical Recipesin C text [10]. The code in many of these benchmarks are used as utilities in a varietyof programs. Thus, coalescing loads and stores into swaps can be performed on adiverse set of applications. Table 5.1. Test ProgramsProgram Descriptionbandec constructs an LU decomposition of a sparse representation of a band diagonal matrixbubblesort sorts an integer array in ascending order using a bubble sortchebpc polynomial approximation from Chebyshev coe�cientselmhes reduces an N �N matrix to Hessenberg form�t fast fourier transformgaussj solves linear equations using Gauss-Jordan eliminationindexx cal. indices for the array such that the indices are in ascending orderludcmp performs LU decomposition of an N �N matrixmmid modi�ed midpoint methodpredic performs linear prediction of a set of data pointsrtsp �nds the root of a function using the false position methodselect returns the k smallest value in an arraythresh adjusts an image according to a threshold valuetranspose transposes a matrixtraverse binary tree traversal without a stacktsp traveling salesman problemMeasurements were collected using the ease system that is available with the vpocompiler. In some cases, a swap instruction was emulated when it did not exist. For24

instance, the SPARC does not have swap instructions that swaps bytes, halfwords,oats, or doublewords. The ease system provides the ability to gather measurementson proposed architectural features that do not exist on a host machine [2{3]. Notethat it is sometimes possible to use the SPARC swap instruction, which exchanges aword in an integer register with a word in memory, for exchanging a oating-pointvalue with a value in memory. When the oating-point values that are loaded andstored are not used in any operations, then these values could be loaded and storedusing integer registers instead of oating-point registers and the swap instructioncould be exploited.Table 5.2 depicts the results that were obtained on the test programs for coalescingloads and stores into swap instructions. We unrolled several loops in these programsby an unroll factor of two to provide opportunities for coalescing a load and a storeacross the original iterations of the loop. In these cases, the Not Coalesced columnincludes the unrolling of these loops to provide a fair comparison. The results showdecreases in the number of instructions executed and memory references performedfor a wide variety of applications. The amount of the decrease varied depending onthe execution frequency of the load and store instructions that were coalesced. Asexpected the use of a swap instruction did not decrease the number of data cachemisses. However, the data cache work decreased by 7.81%, where each hit requiredone cycle and each miss required 10 cycles. Due to emulation of some of the swapinstructions execution time measurements could not be obtained. The e�ect on theexecution time would depend on the implementation of the swap instruction and therelative time required for the execution of a swap versus the time required for a loadand a store.
25

Table 5.2. ResultsProgram Instructions Executed Memory References PerformedNot Coalesced Coalesced Decrease Not Coalesced Coalesced Decreasebandec 69,189 68,459 1.06% 18,054 17,324 4.04%bubblesort 2,439,005 2,376,705 2.55% 498,734 436,434 12.49%chebpc 7,531,984 7,029,990 6.66% 3,008,052 2,507,056 16.66%elmhes 18,527 18,044 2.61% 3,010 2,891 3.95%�t 4,176,112 4,148,112 0.67% 672,132 660,932 1.67%gaussj 27,143 26,756 1.43% 7,884 7,587 3.77%indexx 70,322 68,676 2.34% 17,132 15,981 6.72%ludcmp 10,521,952 10,439,152 0.79% 854,915 845,715 1.08%mmid 267,563 258,554 3.37% 88,622 79,613 10.17%predic 40,827 38,927 4.65% 13,894 11,994 13.67%rtsp 81,117 80,116 1.23% 66,184 65,183 1.51%select 19,939 19,434 2.53% 3,618 3,121 13.74%thresh 7,958,909 7,661,796 3.73% 1,523,554 1,226,594 19.49%transpose 42,883 37,933 11.54% 19,832 14,882 24.96%traverse 94,159 91,090 3.26% 98,311 96,265 2.08%tsp 64,294,814 63,950,122 0.54% 52,144,375 51,969,529 0.34%average 6,103,402 6,019,616 3.06% 3,689,893 3,622,568 8.52%

26

CHAPTER 6CONCLUSIONThis thesis presents a technique of exploiting a swap instruction, which exchangesthe values between a register and a location in memory. We have discussed howa swap instruction could be e�ciently integrated into a conventional load/storearchitecture. A number of di�erent types of opportunities for exploiting the swapinstruction were shown to be available. An algorithm for coalescing a load and a storeinto a swap instruction was given and a number of issues related to implementing thecoalescing transformations were described. The results show that this code-improvingtransformation could be applied on a variety of applications and benchmarks andreductions in the number of instructions executed and memory references performedwere observed.

27

REFERENCES[1] M. E. Benitez and J. W. Davidson, \A Portable Global Optimizer and Linker,"Proceedings of the SIGPLAN'88 Symposium on Programming Language Designand Implementation, Atlanta, GA, pp. 329{338 (June 1988).[2] J.W. Davidson and D.B. Whalley, \Ease: An Environment for ArchitectureStudy and Experimentation," Proceedings SIGMETRICS'90 Conference onMeasurement and Modeling of Computer Systems, pp. 259{260 (May 1990).[3] J.W. Davidson and D.B. Whalley, \A Design Environment for AddressingArchitecture and Compiler Interactions," Microprocessors and Microsystems,15(9), pp. 459{472 (November 1991).[4] J.W. Davidson and S. Jinturkar, \Memory Access Coalescing: A Techniquefor Eliminating Redundant Memory Accesses," Proceedings of the SIGPLAN'94Symposium on Programming Language Design and Implementation, pp. 186{195, (June 1994).[5] B. Dwyer, \Simple Algorithms for Traversing a Tree without a Stack," Infor-mation Processing Letters, 2(5), pp. 143{145 (1973).[6] J. Hennessy and D. Patterson, Computer Architecture: A Quantitative Ap-proach, Second Edition, Morgan Kaufmann, San Francisco, CA (1996).[7] M. D. Hill, \A Case for Direct{Mapped Caches," IEEE Computer, 21(11),pp. 25{40 (December 1988).[8] M. Lam, E. E. Rothberg, M. E. Wolf, \The Cache Performance and Op-timizations of Blocked Algorithms," Proceedings of the Fourth InternationalConference on Architectural Support for Programming Languages and OperatingSystems, pp. 63-74, (April 1991).[9] I. Pitas, Digital Image Processing Algorithms and Applications, John Wiley &Sons, Inc., New York, NY (2000).[10] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, NumericalRecipes in C: The Art of Scienti�c Computing, Second Edition, CambridgeUniversity Press, New York, NY (1996).28

[11] Texas Instruments, Inc., Product Preview of the TMS390S10 Integrated SPARCProcessor (1993).

29

BIOGRAPHICAL SKETCHApan Qasem was born on March 24, 1974 in Dhaka, Bangladesh. He received hisBachelor of Science degree in Computer Science from Ohio Wesleyan University in1998. After completing his Masters degree at Florida State University he intends topursue a doctoral degree in Computer Science at Rice University.

30

