USING A SWAP INSTRUCTION TO COALESCE
LOADS AND STORES

Name: Apan Qasem

Department: Department of Computer Science
Major Professor: David B. Whalley

Degree: Master of Science

Term Degree Awarded: Spring, 2001

A swap instruction, which exchanges a value in memory with a value in a
register, is available on many architectures. The primary application of a swap
instruction has been for process synchronization. This thesis shows that a swap
instruction can often be used to coalesce loads and stores in a variety of applications.
The thesis describes the analysis necessary to detect opportunities to exploit a swap
and the transformation required to coalesce a load and a store into a swap instruction.
The results show that both the number of accesses to the memory system (data cache)
and the number of executed instructions are reduced. In addition, the transformation
reduces the register pressure by one register at the point the swap instruction is used,
which sometimes enables other code-improving transformations to be performed.
Using a swap instruction can also allow additional ILP scheduling opportunities by
eliminating structural hazards to memory by reducing the number of memory accesses

performed.

THE FLORIDA STATE UNIVERSITY

COLLEGE OF ARTS AND SCIENCES

USING A SWAP INSTRUCTION TO COALESCE
LOADS AND STORES

By

APAN QASEM

A Thesis submitted to the
Department of Computer Science
in partial fulfillment of the
requirements for the degree of
Master of Science

Degree Awarded:
Spring Semester, 2001

The members of the Committee approve the thesis of Apan Qasem defended on

MARCH 21, 2001.

David B. Whalley
Professor Directing Thesis

Robert van Engelen
Committee Member

Xin Yuan
Committee Member

ACKNOWLEDGEMENTS

I want to express my gratitude to Dr. David Whalley, my major professor, for his
guidance, support and patience during my research. I would also like to thank my
committee members Dr. Robert van Engelen and Dr. Xin Yuan for providing valuable

suggestions along the way.

il

TABLE OF CONTENTS

List of Tables v
List of Figures vi
ADStract vii
1. INTRODUCTION e 1
2. RELATED WORK i 4

3. OPPORTUNITIES FOR EXPLOITING A SWAP INSTRUCTION
IN VARIOUS APPLICATIONS 6

4. A CODE-IMPROVING TRANSFORMATION TO EXPLOIT

THE SWAP INSTRUCTION 11
4.1 Ensuring Memory Addresses Are Equivalent Or Are Different 15
4.2 Finding a Location to Place the Swap Instruction................ 16

4.3 Exploiting More Opportunities for the Swap Instruction by Renaming
Registers 21
5. RESULTS 24
6. CONCLUSION 27
REFERENCES 28
BIOGRAPHICAL SKETCH i 30

v

LIST OF TABLES

4.1 A Subset of the Rules Used for Memory Disambiguation
0.1 Test Programs
9.2 Results

1.1
3.1
3.2
3.3

3.4
3.5

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10

4.11

LIST OF FIGURES

Contrasting the Effects of Load, Store, and Swap Instructions 2
Code Segment in Polynomial Approximation from Chebyshev Coefficients 6
Example of Exchanging the Values of Two Variables............... 7
Example of Unrolling a Loop to Provide an Opportunity to Exploit a

Swap Instruction 7
Speculative Use of a Swap Instruction 9
Example Depicting Why the Swap Instruction Should Be Exploited as

a Low-Level Code-Improving Transformation 10
Simple Example of Coalescing a Load and Store into a Swap Instruction 11
Example of Exchanging the Values of Two Variables............... 12
Algorithm for Coalescing a Load and a Store into a Swap Instruction.. 13
Examples of Detecting If Memory Addresses Are the Same or Differ. .. 15
Algorithm for Finding a Location to Place The Swap Instruction 18
Examples of Finding a Location to Place the Swap Instruction....... 19
The Value to be Stored Must Not Be Used after the Store 19
Examples of Finding a Location to Place the Swap Instruction 20
Examples of Finding a Location to Place the Swap Instruction....... 21
Example of Applying Register Renaming to Permit the Use of a Swap

Instruction 22
Another Example of Applying Register Renaming to Permit the Use of

a Swap Instruction 23

vi

ABSTRACT

A swap instruction, which exchanges a value in memory with a value in a register,
is available on many architectures. The primary application of a swap instruction
has been for process synchronization. This thesis shows that a swap instruction can
often be used to coalesce loads and stores in a variety of applications. The thesis
describes the analysis necessary to detect opportunities to exploit a swap and the
transformation required to coalesce a load and a store into a swap instruction. The
results show that both the number of accesses to the memory system (data cache)
and the number of executed instructions are reduced. In addition, the transformation
reduces the register pressure by one register at the point the swap instruction is used,
which sometimes enables other code-improving transformations to be performed.
Using a swap instruction can also allow additional ILP scheduling opportunities by
eliminating structural hazards to memory by reducing the number of memory accesses

performed.

Vil

CHAPTER 1

INTRODUCTION

In the recent past technological innovations in processor design have outpaced
advances in memory systems. As a result, processor speeds are increasing at a faster
rate than memory speeds. This increasing performance gap between processors and
memory systems creates a memory bottleneck for many applications. To address
this problem many attempts have been made both at the hardware and the software
level. Hardware solutions have mainly focussed on creating wider datapaths between
the processor and the memory system. On the other hand, software solutions have
allowed multiple accesses to the memory system to occur simultaneously. This thesis
proposes a compiler optimization that makes use of a swap instruction to combine
loads and stores to decrease the total number of memory accesses in a program.

An instruction that exchanges a value in memory with a value in a register has
been used on a variety of machines. The primary purpose for these swap instructions
is to provide an atomic operation for reading from and writing to memory, which
has been used to construct mutual-exclusion mechanisms in software for process
synchronization. In fact, there are other forms of hardware instructions that
have been used to support mutual exclusion, which include the classic test-and-set
instruction. This thesis describes how a swap instruction can also be used by a
low-level code-improving transformation to coalesce loads and stores into a single
instruction.

A swap instruction described in this thesis exchanges a value in memory with a

value in a register. This is illustrated in Fig. 1.1, which depicts a load instruction,

r(2] = MxJ; Mx] =r[2]; rf2] = Mx]; Mx] =r[2];
(a) Load Instruction (b) Storelnstruction (c) Swap Instruction

Figure 1.1. Contrasting the Effects of Load, Store, and Swap Instructions

a store instruction, and a swap instruction using an RTL (register transfer list)
notation. Each assignment in an RTL represents an effect on the machine. The list
of effects within a single RTL are accomplished in parallel. Thus, the swap instruction
is essentially a load and store accomplished in parallel.

A swap instruction can be efficiently integrated into a conventional RISC archi-
tecture. First, it can be encoded using the same format as a load or a store since
all three instructions reference a register and a memory address. Only additional
opcodes are required to support the encoding of a swap instruction.

Second, access to a data cache can potentially be performed efficiently for a swap
instruction on most RISC machines. A direct-mapped data cache can send the value
to be loaded from memory to the processor for a load or a swap instruction in
parallel with the tag check. This value will not be used by the processor if a tag
mismatch is later discovered [7]. A data cache is not updated with the value to be
stored by a store or a swap instruction until after the tag check [7]. Thus, a swap
instruction could be performed as efficiently as a store instruction on a machine with
a direct-mapped data cache. In fact, a swap instruction requires the same number of
cycles in the pipeline as a store instruction on the MicroSPARC I [11]. One should
note that a swap instruction will likely perform less efficiently when it is used for
process synchronization on a multiprocessor machine since it requires a signal over
the bus to prevent other accesses to memory.

Finally, it is possible that a main memory access could also be performed
efficiently for a swap instruction. Reads to DRAM are destructive, meaning that

the value read must be written back afterwards. A DRAM organization could be

constructed where the value that is written back could differ from the value that was
read and sent to the processor. Thus, a load and a store to a single word of main
memory could occur in one main memory access cycle.

The remainder of this thesis has the following organization. Chapter 2 introduces
related work that allows multiple accesses to memory to occur simultaneously. Chap-
ter 3 describes a variety of different opportunities for exploiting a swap instruction
that commonly appear in applications. Chapter 4 presents the conditions necessary
to coalesce a load and store pair into a swap instruction and describes issues related
to implementing this code-improving transformation. Chapter 5 presents the results
of applying the code-improving transformation on a variety of applications. Finally,

the conclusions are stated in Chapter 6.

CHAPTER 2

RELATED WORK

Because memory traffic plays such a critical role in program performance there
has been a large amount of work that focus on reducing the memory bandwidth
requirements of a program. A number of algorithms have been proposed for
performing register allocation. Register allocation is a transformation that allocates
variables to registers. When a variable is allocated to a register, the loads and
stores previously necessary to obtain the value of that variable is eliminated. This
transformation significantly reduces the total number of memory accesses in a
program.

Cache blocking is another optimization that is used for reducing the number of
accesses to higher levels of memory. This technique is used for numerical algorithms
that work with large data sets. The data sets for numerical algorithms are often so
large that only a fraction of the set fits into the data cache. In these cases, even if the
data are reused they may be displaced from the cache before they are reused. Cache
blocking transforms the code so that a block of data is read into the cache, then
used a number of times before it is replaced by another block. Thus, this technique
improves the overall performance of a program by reducing the number of cache
misses [8].

Register blocking is a similar technique that transforms the code so that un-
necessary loads to array elements are eliminated. This technique is often used in

combination with cache blocking to reduce the number of memory references.

Although there has been a large amount of work on techniques that reduce the
memory bandwidth requirements only a few of these have focussed on reducing
memory bandwidth requirements by allowing multiple accesses to the memory system
to occur in a single cycle. Superscalar and VLIW machines have been developed
where a wider datapath between the data cache and the processor has been used
to allow multiple simultaneous accesses to the data cache. Likewise, a wider
datapath has been implemented between the data cache and main memory to allow
multiple simultaneous accesses to main memory through the use of memory banks.
A significant amount of compiler research has been spent on trying to schedule
instructions so that multiple independent memory accesses to different banks can
be performed simultaneously [6].

Memory access coalescing is a code-improving transformation that groups multi-
ple memory references to consecutive memory locations into a single larger memory
reference. This transformation was accomplished by recognizing a contiguous access
pattern for a memory reference across iterations of a loop, unrolling the loop, and
rescheduling instructions so that multiple loads or stores could be coalesced [4].

Direct hardware support of multiple simultaneous memory accesses in the form of
superscalar or VLIW architectures requires that these simultaneous memory accesses
be independent in that they access different memory locations. Likewise, memory
access coalescing requires that the coalesced loads or stores access contiguous (and
different) memory locations. In contrast, the use of a swap instruction allows a store
and a load to the same memory location to be coalesced together and performed
simultaneously. In a manner similar to the memory access coalescing transformation,
a load and a store are coalesced together and explicitly represented in a single

instruction.

CHAPTER 3

OPPORTUNITIES FOR EXPLOITING A SWAP
INSTRUCTION IN VARIOUS APPLICATIONS

A swap instruction can potentially be exploited when a load is followed by a store
to the same memory address and the value stored is not computed using the value
that was loaded. We investigated how often this situation occurs and we have found
many direct opportunities in a number of applications. Consider the following code
segment in Fig. 3.1 from an application that uses polynomial approximation from

Chebyshev coefficients [10].

sv = d[k] ;
d[k] = 2.0*d[k-1] - dd[Kk];

Figure 3.1. Code Segment in Polynomial Approximation from Chebyshev Coeffi-
cients

There is first a load of the d[k] array element followed by a store to the same
element, where the store does not use the value that was loaded. Comparable code
segments containing such a load followed by a store were found in other diverse
applications, such as Gauss-Jordan elimination [10] and tree traversals [5].

A more common operation where a swap instruction can be exploited is when
the values of two variables are exchanged. Consider Fig. 3.2(a), which depicts the
exchange of the values in x and y at the source code level. Fig. 3.2(b) indicates that
the load and store of x can be coalesced together. Likewise, Fig. 3.2(c) indicates that

the load and store of y can also be coalesced together. However, as we will discover

6

in Chapter 4 only a single pair of load and store instructions in an exchange of values

between variables can be coalesced together.

t = X t = X t = X
X =Y X =Y, X =Y,
y = t; y =t y =t
(a) Exchange of Values (b) TheLoad and Store (c) TheLoad and Store
inx andy at the of x Can Be of y Can Be
Source Code Level Coalesced Together Coalesced Together

Figure 3.2. Example of Exchanging the Values of Two Variables

There are numerous applications where the values of two variables are exchanged.
Various sorts of an array or list of values are obvious applications in which a
swap instruction could be exploited. Some other applications requiring an explicit
exchange of values between two variables include transposing a matrix, the traveling
salesperson problem, solving linear algebraic equations, fast fourier transforms, and
the integration of differential equations. The above list is only a small subset of the
applications that require this basic operation.

There are also opportunities for exploiting a swap instruction after other code-
improving transformations have been performed. Consider the code segment in
Fig. 3.3(a) from an application that uses polynomial approximation from Chebyshev

coefficients [10].

for (j =n-1;j >1;j -=2) {
dfj] = d[j-1]-dd[j];
for (j =n-1;j >1; j--) dfj-1] =d[j-2]-dd[j];
dfj] =d[j-1]-dd[j]; }
(a) Original L oop (b) Loop after Unrolling

Figure 3.3. Example of Unrolling a Loop to Provide an Opportunity to Exploit a
Swap Instruction

It would appear in this code segment that there is no opportunity for exploiting

a swap instruction. However, consider the body of the loop executed across two

7

iterations, which is shown in Fig. 3.3(b) after unrolling the loop by a factor of two.
For simplicity, we are assuming in this example that the original loop iterated an even
number of times. Now the value loaded from d [j-1] in the first assignment statement
in the loop is updated in the second assignment statement and the value computed in
the first assignment is not used to compute the value stored in the second assignment.
We have opportunities for exploiting a swap instruction across loop iterations by loop
unrolling in a number of applications, which includes linear prediction, interpolation
and extrapolation, and solution of linear algebraic equations.

Loop unrolling increases the opportunities for exploiting more swap instructions
in a loop by coalescing loads and stores across loop iterations. When the distance
vector of the anti-dependencies of a pair of array references in a one-dimensional
loop is some positive integer Distance, and we assume that the loop unroll factor is

a multiple of Distance, that is
Loop Unroll Factor =k - Distance (3.1)
for some positive integer constant k, then it can be shown that
: k :
Static Memory References Saved = 1B Distance (3.2)

For example in Fig. 3.3, we have Distance = 1 and k equals the loop unroll factor.
Thus, one memory reference is saved each time the loop is unrolled twice.

As the loop unroll factor increases, more memory references can be saved by
coalescing loads and stores into swap instructions. However, the code size increase
due to increased loop unrolling may not justify the reduction in memory references
performed. Of course, loop unrolling provides additional benefits, such as reduced
loop overhead and better opportunities for scheduling instructions.

Finally, we have also discovered opportunities for speculatively exploiting a swap
instruction across basic blocks. Consider the code segment in Fig. 3.4, which assigns

values to an image according to a specified threshold [9]. pl[il[j] is loaded in

8

for (i =0; i < n; i++)

for (i = i< m i++) {
if o pli][j]<=t
plilli]l=1;
el se
pl[ill[ji]=0;
}

Figure 3.4. Speculative Use of a Swap Instruction

one block and a value is assigned to p[i] [j] in both of its successor blocks. The
load of p[i] [j] and the store from the assignment to p[i] [j] in the then or else
portions of the if statement can be coalesced into a swap instruction since the
value loaded is not used to compute the value stored. The store operation can be
speculatively performed as part of a swap instruction in the block containing the
load. We have found that stores can be performed speculatively in a number of other
image processing applications, which include clipping and arithmetic operations.
Sometimes apparent opportunities at the source code level for exploiting a swap
instruction are not available after other code-improving transformations have been
applied. Many code-improving transformations either eliminate memory references
(e.g. register allocation) or move memory references (e.g. loop-invariant code
motion). Coalescing loads and stores into swap instructions should only be performed
after all other code-improving transformations that can affect the memory references
have been applied. Fig. 3.5(a) shows an exchange of values after the two values are
compared in an if statement. Fig. 3.5(b) shows a possible translation of this code
segment to machine instructions. Due to common subexpression elimination, the
loads of x and y in the block following the branch have been deleted in Fig. 3.5(c).
Thus, the swap instruction cannot be exploited within that block. This example

illustrates why the swap instruction should be performed late in the compilation

r[1] = Mx];
r[2l = Myl;
IC=r[1] ?r[2];
if (x >y) { PC = IC <= 0, L5;
t = x; r{1] = Mx];
X =y, r(2] = Myl;
y = t; Mx] =r[2];
} Myl = r[1];
(a) Exchange of Values (b) Loads are Initially
inxandy at the Performed in the Exchange
Sour ce Code L evel of Valuesof x and y
rei] = MxJ;
rez2l = Myl

IC=r[1] ?r[2];
PC = 1C <= 0, L5;
Mx] =r[2];
Myl =r[1];

(c) Loads Are Deleted in the Exchange of Values
Due to Common Subexpression Elimination

Figure 3.5. Example Depicting Why the Swap Instruction Should Be Exploited as
a Low-Level Code-Improving Transformation

process when the actual loads and stores that will remain in the generated code are

known.

10

CHAPTER 4

A CODE-IMPROVING TRANSFORMATION
TO EXPLOIT THE SWAP INSTRUCTION

Fig. 4.1(a) illustrates the general form of a load followed by a store that can
be coalesced. The memory reference is to the same variable or location and the
register loaded (r[al) and register stored (r[b]) differ. Fig. 4.1(b) depicts the swap
instruction that represents the coalesced load and store. Note that the register loaded
has been renamed from r[a] to r[b]. This renaming is required since the swap

instruction has to store from and load into the same register.

rfa] = Mv];
MVl = r(b]; f(b] = Mvl; MVl = r[b];
(a) Load Followed by a Store (b) Coalesced Load and Store

Figure 4.1. Simple Example of Coalescing a Load and Store into a Swap Instruction

Fig. 4.2(a), like Fig. 3.2(a), shows an exchange of the values of two variables,
x and y, at the source code level. Fig. 4.2(b) shows similar code at the SPARC
machine code level, which is represented in RTLs. The variable t has been allocated
to register r[1]. Register r[2] is used to hold the temporary value loaded from y
and stored in x. At this point a swap could be used to coalesce the load and store
of x or the load and store of y. Fig. 4.2(c) shows the RTLs after coalescing the load
and store of x. One should note that r[1] is no longer used since its live range has
been renamed to r[2]. Due to the renaming of the register, the register pressure at

this point in the program flow graph has been reduced by one. Reducing the register
11

pressure can sometimes enable other code-improving transformations that require an
available register to be applied. Note that the decision to coalesce the load and store

of x prevents the coalescing of the load and store of y.

ri1] = MxJ;
t=x r(2] = Myl; rf(2] = Myl;
X =y, Mx] =r[2]; Mx] =r[2]; r[2] = Mx];
y =t; Myl = r[1]; Myl =r[2];
(a) Exchange of Values (b) Exchange of Values (c) After Coalescing the
inxandy at the inxandy at the Load and Store of x
Sour ce Code Level Machine Code L evel

Figure 4.2. Example of Exchanging the Values of Two Variables

Fig. 4.3 gives a high-level description of the algorithm that was used for the
code-improving transformation to coalesce a load and a store into a swap instruction.
The algorithm goes through each basic block looking for a load followed by a store
to the same address. Once a matching load and store has been found it combines
the two memory references together into a single swap instruction if the following
conditions are met.

(1) The store must follow the load within the same block or consecutively executed
blocks. If the load is in a separate block, then we must guarantee that a store to
the same location occurs in each successor. This allows us to speculatively apply the
swap optimization in some cases.

(2) The addresses of the memory references in the load and store instructions
have to be the same. The process of checking if two memory addresses are equivalent
is complicated since the code-improving tranformation is performed late in the
compilation process. Details of the technique used to check if two memory addresses
are equivalent is provided in Section 4.1.

(3) There can be no possibility of an intervening store to the same address between
the load and the store. Fig. 4.4(b) shows a load of a variable v followed by a store

to the same variable with an intervening store. The compiler must ensure that the

12

FOR B = each block in function DO
FOR LD = each instruction in B DO
[F LD is a load AND Find Matching Store(LD, B, LD—next, ST, P)

AND Meet_Swap_Conds(LD, ST) THEN

SW = Create(” %os=M|[%s];M[%s|=%s;” ,ST—r[b], LD—load_addr,
LD—load-addr, ST—r[b]);

Insert SW before P;

Replace uses of L—r[a] with S—r[b] until L—r[a] dies;

Delete LD and ST}

BOOL Find_Matching_Store(LD, B, FIRST, ST, P) {
FOR ST = FIRST to B—last DO
IF ST is a store THEN
IF ST—store_addr == LD—load_addr THEN
If FIRST == B—first THEN
RETURN TRUE;
ELSE
RETURN Find_Place_To Insert_Swap(LD, ST, P);
IF ST—store_addr = LD—load_addr THEN
CONTINUE;
IF cannot determine if the two addresses are same or different THEN
RETURN FALSE;
IF FIRST == B—first THEN
RETURN FALSE;
FOR S = each successor of B DO
IF 'Find_Matching_Store(LD, S, S—first, ST, P) THEN
RETURN FALSE;
FOR S = each successor of B DO
IF Find Place_To_Insert_Swap(LD, ST, P) THEN
RETURN TRUE;
RETURN FALSE;

}

BOOL Meet_Swap_Conds(LD, ST){

RETURN (value in ST—r[b] is guaranteed to not depend on the value in LD—r]al)
AND (ST—r[b] dies at the store)
AND ((ST—r[b] is not reset before LD—r[a] dies)
OR (other live range of S—r[b] can be renamed to use another register));

Figure 4.3. Algorithm for Coalescing a Load and a Store into a Swap Instruction

13

value in r[c] is not the address of the variable v. If the value in r[c] is determined
to be the address of variable v then the compiler will attempt to coalesce the load
of variable v with the store that uses the register r[c]. On the other hand, if it
is determined that the store using r[c] is to a different memory location than the
compiler would proceed with the steps required to coalesce the load and store of
variable v. If the analysis, as described in Section 4.1, cannot guarantee a different
address in an intervening store, the transformation is not performed.

(4) The value in r[b] that will be stored cannot depend on the value loaded
into r[a]. If the value to be stored depends on the loaded value then the load has
to be executed before the store. Since, the swap instruction performs the load and
store in parallel, this would prevent us from applying the tranformation in this case.
However, as discussed in Section 4.3, in some cases we can eliminate false dependecies
via register renaming that enables us to appply the transformation.

(5) The instruction containing the first use of the register assigned by the load
has to occur after the last reference to the register to be stored. If this is not the
case then the load and store cannot be made contiguous for them to be coalesced
into a swap intstruction. However, the compiler was sometimes able to reschedule
instructions between the load and store so that this condition was met. Details of
this rescheduling algorithm is discussed in Section 4.2.

(6) The value in the register to be stored cannot be used after the store instruction.
The reason why this condition needs to be satisfied is explained in Section 4.2.

(7) The register that was loaded has to be able to be renamed to the register that
was stored. In some cases register renaming can be used so that this condition is
met. This is dicussed in detail in Section 4.3.

The following subsections describe issues relating to this code-improving trans-

formation.

14

4.1 Ensuring Memory Addresses Are Equivalent Or Are
Different

One of the requirements for a load and store to be coalesced is that the load and
store must refer to the same address. Fig. 4.4(a) shows a load using the address
in register r[2] and a store using the address in r[4]. The compiler must ensure
that the value in r[2] is the same as that in r[4]. This process of checking that
two addresses are equivalent is complicated due to the code-improving transformation
being performed late in the compilation process. Common subexpression elimination
and loop-invariant code motion may move the assignments of addresses to registers

far from where they are actually dereferenced.

r(2] =r[3] << 2

rez] =r[i2] + _a

r(sl = Mr[2]]; rfa] = Mv];

(4] = (3] << 2 Mricl] = rld;
rpd4l = rf4] + _&

Mr[4]] = r[6]; Mv] = r[b];

(a) Same Addresses after (b) Load and Storeto the Same
Expanding the Expressions Variable with an Intervening Store

Figure 4.4. Examples of Detecting If Memory Addresses Are the Same or Differ

We implemented some techniques to determine if the addresses of two memory
references were the same or if they differed. Addresses to memory were expanded by
searching backwards for assignments to registers in the address until all registers are
replaced or the beginning of a block with multiple predecessors is encountered. For
instance, the address in the memory reference being loaded in Fig. 4.4(a) is expanded

as follows:

rl2] = r2]+.a= (r[3] <<2)+_a

15

The address in the memory reference being stored would be expanded in a similar
manner. Once the addresses of two memory references have been expanded, then they
are compared to determine if they differ. If the expanded addresses are syntatically
equivalent, then the compiler has ensured that they refer to the same address in
memory.

We also associated the expanded addresses with memory references before code-
improving transformations involving code motion were applied. The compiler
tracked these expanded addresses with the memory references through a variety
of code-improving transformations that would move the location of the memory
references. Determining the expanded addresses early simplified the process of
calculating addresses associated with memory references.

Another requirement for a load and a store to be coalesced is that there are no
other possible intervening stores to the same address. Fig. 4.4(b) shows a load of a
variable v followed by a store to the same variable with an intervening store. The
compiler must ensure that the value in r[c] is not the address of the variable v.
However, simply checking that two expanded addresses are not identical does not
suffice to determine if they refer to differ locations in memory. Various conditions
can be checked to determine if two addresses differ. Table 1 depicts some of these

conditions that indicate if two addresses differ.

4.2 Finding a Location to Place the Swap Instruction

When trying to find a place to insert the swap instruction a number of conditions
have to be met. Fig. 4.5 illustrates the algorithm that was used to find a location
to place the swap instruction. As can be seen from Fig. 4.5 in addition to checking
for the conditions the algorithm also tries to reschedule instructions to meet these
conditions. We now take a look at the conditions that need to be met for inserting

a swap instruction into the program.

16

Table 4.1. A Subset of the Rules Used for Memory Disambiguation

Num

Condition

Example

First Address

Second Address

The addresses are
to different classes
(local ~ variables,
arguments, static
variables, and
global variables.

M[_al

M[r[30]+x]

Both addresses are
to the same class
and their names

differ.

M[_al

M[_b]

One address is to
a variable that has
never had its ad-
dress taken and the
second address is
not to the same
variable.

M[r[14]+v]

Mlr[7]1]

The addresses are
the same, except
for different con-
stant offsets.

ML(r[3] << 2) + _a]

MI(r[3] << 2) + _a+4]

Condition 1:

The swap instruction has to be placed before the instruction

containing the first use of the register assigned by the load.

Consider the example in Fig. 4.6(a). The value in variable v is loaded into register

r[al. This value is then used by another instruction and then finally the value in r [b]

is stored into the location of variable v. Here, although we have a load and a store

to the same memory address we cannot just arbitrarily decide on a place to insert

the swap instruction. Lets say, we placed the swap instruction after the instruction

that uses the value of r[al as shown in Fig. 4.6(b). It is easy to see in this case that

the instruction that uses the value of r[a] will not have the correct value. For that

17

BOOL Find_Place_To_Insert_Swap(LD, ST, P){

[F LD—r[a] is not used between LD and ST THEN
P = ST;
RETURN TRUE;

[F ST—r[b] is not referenced between LD and ST THEN
P = LD—next;
RETURN TRUE;

IF first use of LD—r[a] after LD comes after the last reference to ST—r[b]
before the store THEN
P = instruction containing first use of LD—r[a] after LD;
RETURN TRUE;

[F first use of LD—r[a] after LD can be moved after the last reference
to ST—r[b] before the store THEN
Move instructions as needed;
P = instruction containing first use of LD—r[a] after LD;
RETURN TRUE;

ELSE
RETURN FALSE;

}

Figure 4.5. Algorithm for Finding a Location to Place The Swap Instruction

instruction, r[al will contain the value from its previous set. Therefore, we need

to place the swap instruction before any instruction that uses the value of r[a] as

shown in Fig. 4.6(c).

Condition 1 would be sufficient for placing a swap instruction if we did not have

any references to the register from which the value is stored in between the load

and store of the same memory location. However, in many situations there may be

references to the register from which the value is stored both before and after the

store instruction. As stated previously, if the value of the stored register is used

after the store then we cannot apply the tranformation. Consider the example in

Fig. 4.7(a), where r[b] is used after the store. Fig. 4.7(b) shows that coalescing the

load and store can result in a different value in r[b].

18

r[a] = Mv]; ..
.= ... r[a]l ...
.= ... or[a] ...

N[V] rfb] = Mvl; Mv] =r[b];

= r[b];
(a) Use of r[a] Appears (b) r[a] HasIncorrect Value When
between aLoad and a Load and Store Coalesced After
Storeto the same location TheFirst Referencetor[a]

rib] = Mvl; Mv] = r[b];
o= .or[b] .

(c) Coalesced L oad and Store Placed
Before First Referencetor[a] and
r[a] renamed to r[b]

Figure 4.6. Examples of Finding a Location to Place the Swap Instruction

rfa] = Mv];
Mv] = r[b]; rib] = Mvl; Mv] =r[b];
rfc] =r[b]; rfcl =r[b];

(a) Use of r[b] Following Store (b) Illegal Coalescing

Figure 4.7. The Value to be Stored Must Not Be Used after the Store

Unlike the above situation, a reference to the stored register before the store

does not rule out the possibility of applying the tranformation completely. However,
in such a case we need to be careful about where we place the swap instruction.

This leads us to the second condition that must be satisfied for inserting a swap

instruction.

Condition 2: The swap instruction has to be inserted after the instruction

containing the last reference to the register to be stored.

For example, consider the sequence of RTLs in Fig. 4.8(a). A use of r[b] appears

between the load and store of variable v. Lets consider that instruction to be the

instruction with the last reference to r [b] before the store to the location of variable

19

v. Now if we placed the swap instruction before the instruction containing the last
reference to r[b] we will end up with the code that appears in Fig. 4.8(b). Here
also we notice that the instruction containing the reference to r[b] will contain an
incorrect value. After coalescing the load and store, r[b] will have the value of
variable v. However, there is no guarantee that this is the value r[b] was supposed

to have at that point in the execution of the program.

rial] = Mvl;
r[b] = v]; vl =r[b];
= b [b] = MV]; MvV] [b]
o = .or[b] ...
Mv] = r[b];
(a) Useof r[b] Appears (b) r[b] HasIncorrect Value When
between aLoad and a L oad and Store Coalesced before
Storeto the samelocation ThelLast Referencetor[b]
e = .or[b]l ...
ribl = Mv]; Mv] =r[b];
(c) Coalesced Load and Store Placed
After Last Referencetor[b]

Figure 4.8. Examples of Finding a Location to Place the Swap Instruction

We have looked at two conditions that have to be met when we are trying to find
a location for inserting the swap instruction. For clarity, in the previous examples we
have treated these two conditions separately. However, it is likely that in many cases
both Condition 1 and Condition 2 will need to be satisfied. We can combine these
two conditions to come up with the following more general condition for inserting a
swap instruction.

Condition 3: For a load and a store to be coalesced into a swap instruction the
instruction containing the first use of the register assigned by the load has to occur

after the last reference to the register to be stored.

20

For example, consider the example in Fig. 4.9(a). A use of r[al appears before
the last reference to r[b] before the store instruction. In this situation it would be

illegal to make the load and store of variable v contiguous.

rfa] = Mv] rla] = Mv];
= rfa] ...; ”:=...r[b]...;
= r[b] ...; = .orfal ...,
MVl = r[b]; MV] = r[b];

(a) Useof r[a] (b) First Useof r[a]
Appearsbeforea Appears after the Last
Referenceto r[b] Referenceto r[b]

T T I <)
r[a] = Mv]; .. = ..o [b] L
Mv] = r[b]; r{b] = Mv]; Mv] =r[b];
L..o= ...orfal = ..o [b] oL
(c) Load and Store (d) After Coalescing the L oad

Can Now Be and Store and Renaming

Made Contiguous r[a] tor[b]

Figure 4.9. Examples of Finding a Location to Place the Swap Instruction

Fig. 4.9(b) shows that the compiler is sometimes able to reschedule the instruc-
tions between the load and the store to meet this condition. Now the load and the
store can be moved where the load appears immediately before the store, as shown
in Fig. 4.9(c). Once the load and store are contiguous, the two instructions can be
coalesced. Fig 4.9(d) shows the code sequence after the load and store have been

deleted, the swap instruction has been inserted, and r[a] has been renamed to r[b].

4.3 Exploiting More Opportunities for the Swap
Instruction by Renaming Registers

We encountered another complication due to coalescing loads and stores into
swap instructions late in the compilation process. Pseudo registers, which contain
temporary values, have already been assigned to hardware registers when the
coalescing transformation is attempted. The compiler reuses hardware registers

when assigning pseudo registers to hardware registers in an attempt to minimize

21

rfa] = Mv]; rfa] = Mv];
MVI = ribl; MVl = r[b];
(bl = . flel = ...
”:=...r[a]...; :::=...r[a]...;
= e D P
(a) r[b] IsSet in the (b) Live Range of r[b] after Store
Live Range of r[a] Has Been Renamed tor[c]

(bl = Mvl; MVl = r[b];

ric]
= ... r[b] ...

: = ... r[c] ...

(c) After Coalescing the Load and Store
and Renaming the Live Range of r[a] tor[b]

Figure 4.10. Example of Applying Register Renaming to Permit the Use of a Swap
Instruction

the number of hardware registers used. The implementation of the code-improving
transformation sometimes renamed live ranges of registers to permit the use of a
swap instruction. Consider the example in Fig. 4.10(a), which contains a set of r [b]
after the store and before the last use of the value assigned to r[a]. In this situation,
we would run into problems if we tried to rename all occurences of r[al] after the
store with r[b]. The reason for this is that the live range of r[al] overlaps with
another live range of r[b]. So, if we renamed r[al] with r[b] all instructions that
use the value of r[a] within the live range of r [b] would contain an incorrect value
in the renamed register. When we rename occurences of r[a] after the store with
r[b] we would like for r [b] to contain the value that was loaded from the location of
variable v. However, in this situation the renamed registers would contain the value
corresponding to the set of r[b] that follows the store.

Although this situation poses a problem in applying the transformation we were
able to avoid this problem by attempting to rename the second live range of r[b]

to a different available register. Fig. 4.10(b) shows this live range being renamed to

22

rlc]. Fig. 4.10(c) depicts that the load and store can now be coalesced since r[a]

can be renamed to r[b].

for (j =n-1; j >1; j -=2) { for (j =n-1; j >1; j -=2) {
r{1] = dfj-1]; rf1] =dj-1];
r(2] = dd[j]; ri2] =ddjl;
rf1] =r[1]-r[2]; ri1] =r[1]-r[2];
daij] = r[1]; daijl = r[1];
r{1] =d[j-2]; r[3] = dd[j-1];
r{2] = ddj-1]; rf4] =dfj-2];
r(1] =r[1]-r(2]; ri3l =r[3]-r[4];
dlj-1] = r[1]; dfj-1] =r[3] ;
} }
(a) After Loop Unrolling (b) After Register Renaming
for (j =n-1;j >1;j -=2) { for (j =n-1;j >1;j -=2) {
r(3] =dj-2]; r(3] =dj-2];
r(4] = dd[j-1]; r(4] = dd[j-1];
r(3] =r[3]-r[4]; r(3] =r[3]-r[4];
rf1] =d[j-1]; r(3] =dj-1]; d{j-1] = r[3];
dfj-1] =r[3]; r(2] =ddfj];
r(2] =dd[j]; ri1] =r[3]-r[2];
rf1] = r[1]-r[2]; daijl = r[1];
diil = rl1; }
}
(c) After Scheduling the Instructions (d) After Coalescing the Load and Store

Figure 4.11. Another Example of Applying Register Renaming to Permit the Use
of a Swap Instruction

Sometimes we had to move sequences of instructions past other instructions in
order for the load and store to be coalesced. Consider the unrolled loop in Fig. 3.3(b).
Fig. 4.11(a) shows the same loop, but in a load/store fashion, where the temporaries
are registers. The load and store cannot be made contiguous due to reuse of the same
registers. Fig. 4.11(b) shows the same code after the compiler renamed the registers
on which the value to be stored depends. Now the instructions can be scheduled so
that the load and store can be made contiguous as shown in Fig. 4.11(c). Fig. 4.11(d)

shows the load and store coalesced and the loaded register renamed.

23

Table 5.1 describes the numerous benchmarks and applications that were used
to evaluate the impact of applying the code-improving transformation to coalesce
loads and stores into a swap instruction. The code-improving transformation was
implemented in the vpo compiler [1].
zephyr system, which is supported by the National Compiler Infrastructure project.
The programs depicted in boldface were directly obtained from the Numerical Recipes
in C text [10]. The code in many of these benchmarks are used as utilities in a variety

of programs. Thus, coalescing loads and stores into swaps can be performed on a

CHAPTER 5

RESULTS

diverse set of applications.

Table 5.1. Test Programs

Program Description

bandec constructs an LU decomposition of a sparse representation of a band diagonal matrix
bubblesort | sorts an integer array in ascending order using a bubble sort

chebpc polynomial approximation from Chebyshev coefficients

elmhes reduces an N X N matrix to Hessenberg form

fft fast fourier transform

gaussj solves linear equations using Gauss-Jordan elimination

indexx cal. indices for the array such that the indices are in ascending order
ludcmp performs LU decomposition of an N X N matrix

mmid modified midpoint method

predic performs linear prediction of a set of data points

rtflsp finds the root of a function using the false position method

select returns the k smallest value in an array

thresh adjusts an image according to a threshold value

transpose transposes a matrix

traverse binary tree traversal without a stack

tsp traveling salesman problem

Measurements were collected using the ease system that is available with the vpo

compiler. In some cases, a swap instruction was emulated when it did not exist. For

24

Vpo is a compiler backend that is part of the

instance, the SPARC does not have swap instructions that swaps bytes, halfwords,
floats, or doublewords. The ease system provides the ability to gather measurements
on proposed architectural features that do not exist on a host machine [2-3]. Note
that it is sometimes possible to use the SPARC swap instruction, which exchanges a
word in an integer register with a word in memory, for exchanging a floating-point
value with a value in memory. When the floating-point values that are loaded and
stored are not used in any operations, then these values could be loaded and stored
using integer registers instead of floating-point registers and the swap instruction
could be exploited.

Table 5.2 depicts the results that were obtained on the test programs for coalescing
loads and stores into swap instructions. We unrolled several loops in these programs
by an unroll factor of two to provide opportunities for coalescing a load and a store
across the original iterations of the loop. In these cases, the Not Coalesced column
includes the unrolling of these loops to provide a fair comparison. The results show
decreases in the number of instructions executed and memory references performed
for a wide variety of applications. The amount of the decrease varied depending on
the execution frequency of the load and store instructions that were coalesced. As
expected the use of a swap instruction did not decrease the number of data cache
misses. However, the data cache work decreased by 7.81%, where each hit required
one cycle and each miss required 10 cycles. Due to emulation of some of the swap
instructions execution time measurements could not be obtained. The effect on the
execution time would depend on the implementation of the swap instruction and the
relative time required for the execution of a swap versus the time required for a load

and a store.

25

Table 5.2. Results

Program Instructions Executed Memory References Performed
Not Coalesced | Coalesced | Decrease || Not Coalesced | Coalesced | Decrease
bandec 69,189 68,459 1.06% 18,054 17,324 4.04%
bubblesort 2,439,005 | 2,376,705 2.55% 498,734 436,434 12.49%
chebpc 7,531,984 | 7,029,990 6.66% 3,008,052 | 2,507,056 16.66%
elmhes 18,527 18,044 2.61% 3,010 2,891 3.95%
fft 4176,112 | 4,148,112 0.67% 672,132 660,932 1.67%
gaussj 27,143 26,756 1.43% 7,884 7,587 3.77%
indexx 70,322 68,676 2.34% 17,132 15,981 6.72%
ludemp 10,521,952 | 10,439,152 0.79% 854,915 845,715 1.08%
mmid 267,563 258,554 3.37% 88,622 79,613 10.17%
predic 40,827 38,927 4.65% 13,894 11,994 13.67%
rtflsp 81,117 80,116 1.23% 66,184 65,183 1.51%
select 19,939 19,434 2.53% 3,618 3,121 13.74%
thresh 7,958,909 | 7,661,796 3.73% 1,523,554 | 1,226,594 19.49%
transpose 42,883 37,933 11.54% 19,832 14,882 24.96%
traverse 94,159 91,090 3.26% 98,311 96,265 2.08%
tsp 64,294,814 | 63,950,122 0.54% 52,144,375 | 51,969,529 0.34%
average 6,103,402 | 6,019,616 3.06% 3,689,893 | 3,622,568 8.52%

26

CHAPTER 6

CONCLUSION

This thesis presents a technique of exploiting a swap instruction, which exchanges
the values between a register and a location in memory. We have discussed how
a swap instruction could be efficiently integrated into a conventional load/store
architecture. A number of different types of opportunities for exploiting the swap
instruction were shown to be available. An algorithm for coalescing a load and a store
into a swap instruction was given and a number of issues related to implementing the
coalescing transformations were described. The results show that this code-improving
transformation could be applied on a variety of applications and benchmarks and
reductions in the number of instructions executed and memory references performed

were observed.

27

1]

3]

4]

7]

8]

[10]

REFERENCES

M. E. Benitez and J. W. Davidson, “A Portable Global Optimizer and Linker,”
Proceedings of the SIGPLAN’88 Symposium on Programming Language Design
and Implementation, Atlanta, GA, pp. 329-338 (June 1988).

J.W. Davidson and D.B. Whalley, “Ease: An Environment for Architecture
Study and Experimentation,” Proceedings SIGMETRICS’90 Conference on
Measurement and Modeling of Computer Systems, pp. 259-260 (May 1990).

J.W. Davidson and D.B. Whalley, “A Design Environment for Addressing
Architecture and Compiler Interactions,” Microprocessors and Microsystems,
15(9), pp. 459-472 (November 1991).

J.W. Davidson and S. Jinturkar, “Memory Access Coalescing: A Technique
for Eliminating Redundant Memory Accesses,” Proceedings of the SIGPLAN’9/
Symposium on Programming Language Design and Implementation, pp. 186—
195, (June 1994).

B. Dwyer, “Simple Algorithms for Traversing a Tree without a Stack,” Infor-
mation Processing Letters, 2(5), pp. 143-145 (1973).

J. Hennessy and D. Patterson, Computer Architecture: A Quantitative Ap-
proach, Second Edition, Morgan Kaufmann, San Francisco, CA (1996).

M. D. Hill, “A Case for Direct-Mapped Caches,” IEEE Computer, 21(11),
pp. 25-40 (December 1988).

M. Lam, E. E. Rothberg, M. E. Wolf, “The Cache Performance and Op-
timizations of Blocked Algorithms,” Proceedings of the Fourth International
Conference on Architectural Support for Programming Languages and Operating
Systems, pp. 63-74, (April 1991).

I. Pitas, Digital Image Processing Algorithms and Applications, John Wiley &
Sons, Inc., New York, NY (2000).

W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical
Recipes in C: The Art of Scientific Computing, Second Edition, Cambridge
University Press, New York, NY (1996).

28

[11] Texas Instruments, Inc., Product Preview of the TMS390510 Integrated SPARC
Processor (1993).

29

BIOGRAPHICAL SKETCH

Apan Qasem was born on March 24, 1974 in Dhaka, Bangladesh. He received his
Bachelor of Science degree in Computer Science from Ohio Wesleyan University in
1998. After completing his Masters degree at Florida State University he intends to

pursue a doctoral degree in Computer Science at Rice University.

30

