Improving Performance by Branch Reordering

MINGHUI YANG [0 GANG-RYUNG U
[Department of Computer Science, Florida
e-mail: {myang,whalley}@cs.fs

tLucent Technologies, 1247 S. Cedar
e-mail: uh@lucent.com;

ABSTRACT

The conditional branch has long been considerekpane

sive qoeration. Therelative mst of conditional branches
has increased as recently designed machines areehp

ing on deeper pipelines and higher multiple issReduc-

ing the number of conditional branchesauted can often
result in a substantial performance beneffthis paper
describes a code-improving transformation to reorder
sequences of conditional branches. First, sequences o

Ht, AND DAVID B. WHALLEY O

Statevénity, Tallahassee, FL 32306-4530
u.edu; phone: (850) 644-3506

Crest Blvd., Allentor,8203-6209
phone: (650) 712-2447

of most Unix utilities were quite performance conscious
and would attempt to manually reorder such statemeits.
conventional manual reordering sWwa in Figure 1(b)
would improve performance by performing the three com-
parisons in reerse order Howeve, the most commonly
used characters (e.g. letters, digits, punctuation symbols)
have an ASCII value that is greater than a blank (32); car
riage return (10), or EOF (-1). Figure 1(c) shows an
improved reordering of the statements that increases the

branches that can be reordered are detected in the contrgitatic number off statements and associated conditional

flow. Second, profiling information is collected to predict
the probability that each branch will transfer control out of
the sequence. Third, the cost of performing each condi-
tional branch is estimatedFourth, the most beneficial

ordering of the branches based on the estimated probability

and cost is selectedThe most beneficial ordering often
included the insertion of additional conditional branches
that did not previously»ast in the sequenceFinally, the
control flow is restructured to reflect the weordering. The
results of applying the transformation were significant
reductions in the dynamic number of instructions and
branches, as well as decreasesetetion time.

1. INTRODUCTION

Sequences of conditional branches occur frequently
in programs, particularly in nonnumerical applications.
Sometimes these branches may be reordereddotiedly
reduce the dynamic number of branches encountered dur
ing program gecution. Onetype of reorderable sequence
consists of branches comparing the sanaziable or
expression to constantsfhese sequences may occur when
a multiwaystatement, such as as@itch statement, does
not have enoughcases to warrant the use of an indirect
jump from a table. Also, control statements may often
compare the same variable more than once.

Consider the following code segment in Figure 1(a).

Assume that there is typically more than one blank read per

line and EOF is only read oncélany astute programmers
may realize that the order of the statements may be change
to improve performance. Irfact, we found that the authors

branches, but normally reduces the dynamic number of
conditional branches encountered during tkezetion.

while ((c=getchar()) != EOF)
if (c=="\n")
X;
elseif (c=="")
v:

else
Z
(a) Original Code Segment

while (1) {
¢ = getchar();
if(c=="")
Y,
else if (c =="\n")
X:

else if (c == EOF)
break;

else
Z;

}

(b) Corventional Reordering

while (1) {
¢ = getchar();
if c>"")
goto def;
elseif (c=="")
v:

else if (c =="\n")
X;
else if (c == EOF)
break;
else
def: Z;
}

(c) Improved Reordering

d

Figure 1: Example Sequence of Comparisons
with the Same Variable

Manually reordering a sequence of comparisons of a
common ariable or inserting »@ra if statements to
achieve performance benefits, as shown in Figures 1(b) and
1(c), can lead to obscure cod& general impreing

transformation to automatically reorder branches may help There hae dso been studies about reordering or
encourage the use of good software engineering principlesaligning basic blocks to minimize pipeline penalties associ-
by performance conscious programmers. ated with conditional branches [CaG94, YJK9Hpwever,

This paper describes a method for reordering code tothis reordering or alignment of basic blocks does not
reduce the number of branchesauted. Figure presents change the order or number of conditional branches
an oerview of the compilation process for reordering e>_<e:uted. Insteadit only changes whether the branches
branches. Airst compilation pass is applied to a C source Wil fall through or be taken.
program. Allcorventional optimizations are appliedaept
for filling delay slots. Sequences of reorderable branches3: DETECTING A REORDERABLE SEQUENCE
comparing a commonaviable are detected in the control The approach used for finding a sequence of reorder
flow and an &ecutable file is produced that is instrumented able branches that compare a common variable required
to collect profiling information about ko often each associating branch targets with ranges of values.
branch in a sequence will- transfer cqntrol out of the Definition 1. Arangeis a set of contiguous irger values.
sequence. Thigrofile data and an estimated cost for o o)
executing each branch is used during a second compilationP€finition 2. A range condition is a branc or a pair of
pass to select the most beneficial branch sequence orderingonsecutive Ences that tests if an irger variable is
Delay slots are filled after branch reordering and the final Within a rang.
executable is produced. The transformatioasafrequently Definition 3. A consecutive sequence of range conditions

applied with reductions in instructionseeuted and xecu- [R1,..,Rn] is a path, wher each node is a ange condition
tion time. testing the same variable and baglge is a ontrol-flow
* transition to the next rarggoondition in the sequence.
c _ taining executable _Definition 4. A reorderable sequence of range conditions
source |- - » first nout - = instrumented is a consecutive sequence ahge mnditions, whes the
compilation for range conditions may be intehanged in any permutation
program data profiling . .
. : with no effect on the semantics of thegoam.
¢ N | Y The possible types of ranges and the corresponding
. range conditions are shown in Table 1, whegands for
. est executable .
profile second - with the branch variable and represents a constant. When a
L~ input L __ gl
data compilation data goarféif::; range is a s_lngle alue or a range is unbounded in one
direction, a single conditional branch can be used to test if

the variable is within the rangélwo conditional branches
are needed when a range is bounded and spans more than a
single value, as depicted in Form 4 in Table 1.

Figure 2: Overvier of Compilation Process
for Branch Reordering

2. RELATED WORK Form | Range Range Condition
There has been some research on other techniques 1 C.C V==

for avoiding the eecution of conditional branched.oop 2 MIN..C V<=

unrolling has been used toaid executions of the condi- 3 c..MAX V>=c¢C

tional branch associated with a loop termination condition 4 cl.c2 cl<=v && v <= ¢c2

[DaJ96]. Loopunswitching maes a ®nditional branch
with a loop-ivariant condition before the loop and dupli- Table 1: Ranges and Corresponding Range Conditions
cates the loop in each of theawlestinations of the branch . . .
[AIC71]. Different search methods based on static heuris- . Figure 3(a) depicts a sequence ob trnge congh—
tics for the cases associated witmaltiwaystatement hae tions. R1 andR2 are range conditions t_hat_can qongst of
been studied [Spu94]. Conditional branchegehdso been one or o branches that check to see if arfable is in a

avdded by code duplication [MuW95]. This method deter range. T1 andT2 are target blocks of the range conditio.ns
mines if there are paths where the result of a conditionalarld the corresponding range @fives for the range condi-

branch will be known and duplicates code woid execu- tion is given to the rig_ht of these bIOCk.S.T3 i_s the.dga.ult
tion of the branch. The method otaiding conditional target block when neither range condition is satisfiEi)-
branches using code duplication has bedersled using ure 3(b) shows hethe sequence can be reordered.
interprocedural analysis [BGS97]Finally, conditional

branches ha keen coalesced together into an indirect

jump from a jump table [UhwW97].

not {[c1..c2],[c3..c4]}

(b) Reordered Sequence

not {[c1..c2],[c3..c4]}
(a) Original Sequence

Figure 3: Example of Reordering Range
Conditions with No Intervening Side Effects

Definition 5. Two ranges ae nonoverlapping if they do rot
have any common values.

Definition 6. A side effect in a range oondition is an
instruction that updates a variable or &gster and the
updated value caread a wse of that variable oregster
outside of the rangmndition.

Theorem 1. A squence of two consecutive neadap-
ping range conditions can beeaordeed with no semantic
effect on the pogram if the sequence can only be emtér
through the first ange condition, the two ange conditions
contain only pais of @mparisons and conditional
branches, and the sequence has no side effects.

Proof. Consider the original and reordered sequences of
range conditions in Figure 3The two squences are
semantically eqwalent given that (1) the state of the pro-
gram is equialent in both sequences when blodks T2,

and T3 are reached, (2) blockgl, T2, and T3 are aWays

The detection of a sequence of reorderable range

conditions vas accomplished using the algorithm in Figure
4.
store a sequence of ranges. The algorithm first finds tw
nonoverlapping range conditions comparing the sarag-v
able.
nonoverlapping range condition until no more range condi-
tions with noneerlapping ranges can be found.

Insteadof storing a sequence of branches, we instead

Aftervards, it repeatedly detects an additional

FOR each block B DO
IF (Bisnot marked AND
B has a branch that compares
a variable V to a constan) T HEN
IF (Find_First_ Two_Conds(B, VR1, R2, N) THEN
Ranges = {R1, R2};
C=N;
mark blocks associated with R1 and R2;
WHILE Find_Range_Cond(Ranges, YC, R, N) DO
Ranges += R;
C=N;
mark block(s) associated with R;
Store info about Ranges for profiling;

BOOL FUNCTIONind_First_Two_Conds(B, VR 1, R2, N)

IF (Find_Range_Cond({}, VB, R1, N1) AND
Find_Range_Cond(R1, VN1, R2, N2) T HEN
N =N2;
RETURN TRUE
ELSE
Rt = R1;
IF (Find_Range_Cond(Rt, VB, R1, N1) AND
Find_Range_Cond(R1, VN1, R2, N2) T HEN
N =N2;
RETURN TRUE
RETURN FALSE

}

BOOL FUNCTIONFind_Range_Cond(Ranges, \B , R, N)

reached in both sequences under the same conditions, andg

(3) no nev error exceptions are raised.

Condition 1 is satisfied since the range conditiBdsand

R2 have o dde efects. Conditior2 is stisfied since the
ranges associated wiffil, T2, and T3 are noneerlapping,
there are no assignments in either range condition that can
affect the otherand the only predecessor of the second
range condition is the first range condition. Condition 3
can be satisfied by considering the followingotfacts.
First, no nav error exceptions can be introduced aftgit-e

ing the reordered sequence due to conditions 1 ar@k2-
ond, no ne error exceptions can be introducedRt or R2
since comparison and conditional branch instructions can-
not raise error exceptions on thegetrarchitecturex

Given Theorem 1, it can be shown through induction that a
sequence of nomerlapping range conditions testing the
same variable can be reordered with no semarféctedn

the program if the sequence can only be entered through the
first range condition, the sequence contains only pairs of
comparisons and conditional branches, and the sequence
has no side effects.

! The inductve poofs are not gien in this paper due to lack of
space and that these proofs were straightforward.

IF (B has a branch that compares V to a constant)CT HEN
IF branch operator is "==" THEN
R=C..C;
N = B’s fall-through succ;
RETURNNonoverlapping(R, Ranges);
ELSE IF branch operator is "!I=" THEN
R=C..C;
N = B’s taken succ;
RETURNNonoverlapping(R, Ranges);
ELSE IF (B’s branch and the branch of a succ S of B
form a bounded range R AND
B and S havre a @mmon succ AND
Nonoverlapping(R, Ranges) T HEN
N = the succ of S not associated with R;
RETURN TRUE
ELSE
SWITCH (branch operator)

CASE "<"R=MIN..C-1; |=C.MAX;
CASE "<=": R = MIN..C; I = C+1..MAX;
CASE ">=": R = C..MAX; I=MIN..C-1;
CASE ">":R=C+1.MAX; I=MIN..C;

IF (Nonoverlapping(R, Ranges) T HEN
N = B’s fall-through succ;
RETURN TRUE
ELSE
N = B’s taken succ;
RETURNNonoverlapping(R = I, Ranges);
RETURNFALSE;

Figure 4: Detecting a Reorderable Sequence

Figure 5 shows an example of detecting a sequencebe altered to meet these restrictiofar instance, the range
of range conditions. Figures 5(a) and 5(b)vel®C mde conditions can be duplicated to ensure that the sequence is
segment and the corresponding contromflproduced by always entered at the headlikewise, if a basic block con-
the compiler Figure 5(c) shws the sequence of reorder tainingR1 did have a peceding side effect, then it could be
able range conditions that are detected using the algorithnsplit apart into the portion with the siddesft and the per

in Figure 4. Note that all of the ranges are nanlapping. tion without one. Only the latter portion containing the
range condition wuld be reorderedFinally, there will typ-
if(c>='a’&&c <=7 ically be no assignments of registers ariables associated
c>='A&&c<=7) with a range condition. The branchriable may be loaded
TL into a raister preceding the first range conditiokny sub-
elseif (c=="_) sequent loads of the branch variable in the sequenaédw
T2 be redundant and are usually eliminated by the compiler
elseif (c<=") Thus, each range condition could usually be accomplished
T3 with just comparison and branch instructions since the
e'sem value of the branch variable was typicallyadable in a

register and the constants tested in the range condition
could be represented in the comparison instructions for
most ranges ofalues. Theoren can be extended to alio
other instructions to produce the values being compared, as
) long as these instructionsyearn dde effects and do not

T

(a) C Code Segment

affect previous range conditions in the original sequence.

sequences directlyve instead determine if we can W&
the side effects out of the sequence by duplicating code.
Figure 6(a) shows a sequence obtange conditions with
an intervening side ffct S, which is actually in a block
containingR2. Figure 6(b) portrays he the side effect can
be maed dter R2 by duplicatingS on both transitions

6

8 . .
range conditions.Rather than attempting to reorder such

}

10

|
[o>ms | Sometimes intervening sidefefts do exist between
|

(b) Control Flow

Blocks | Range | Target from the range condition. Note that the transitions fiR@n
12 | [97.122] | T1 and P3 require that the side fetct S be placed in separate
34 [65..90] T1 basic blocks. The resulting sequence of range conditions
6 [95..95] T2 now has no intervening side effects and can be reordered.
8 [127..MAX] T4

(c) Reorderable Range Conditions

Figure 5: Example of Detecting Range Conditions

A more complete set of branches that compare a
common variable to constants may be detected by propa-
gaing value ranges through both successors of each branch
(i.e. detecting a BG of branches instead of a path of range
conditions) [UhW97]. There were tw reasons wi
reordering vas limited to sequences of range conditions.

First, there were very Ve cases that we examined where a (@) Original Sequence () Transformed Sequence
sequence of range conditions did not capture the entire set Figure 6: Moving Side Effects from
of branches comparing a common variable to constants. a Squence of Wo Range Conditions

Second, we shw in this paper that it is possible to start) _
with a sequence and guarantee an im@doreordered Theorem 2. A dde effect between two consecutiaage

sequence with respect to profile and cost estimates. conditions can be duplicated to follow the secoadge
condition with no semantic effect on thegram if the side
4. MAKING SEQUENCES REORDERABLE effect does not affect the dmwch variable of the second

range andition and the sequence can only be euer

It may appear that the restrictions in Theorem 1 through the first rang condition.

would result in fev reorderable sequences of range condi-
tions being detected. Iradt, most of the sequences could

-4-

Proof. Consider the original and transformed sequences ofminimum number of ranges tow® the remaining values.
range conditions in Figure 6. The dwsequences are
semantically equielent given that (1) state of the program
is equvalent in both sequences when blodksandT3 are
reached, (2) block32 and T3 are alays reached in both
sequences under the same conditions, and (3)wamer
exceptions are raised.

Condition 1 is satisfied since the range conditin the
transformed sequence has no sidea$, S is executed in
both sequences whél2 or T3 is reached afterxecuting [MIN..c1-1]
R2, and S'is not eecuted if T2 or T3 is reached without [c2+1.¢3-1]
executing R2. Condition 2 is satisfied sinc8 does not [c4+1. MAX]
affect the branch variable 2. Condition 3 can be satis- (8) Original Sequence
fied by noting that no meside efects are introduced in the
transformed sequencel

[c4+1..MAX
Given Theorem 2, it can be shown through induction that a

sequence of range conditions with intervening sidecef

can be transformed to V& ro intervening side effects and
still have the same semantic effect on the program if the
side effects do not affect the branch variable of the range
conditions and the sequence is only entered through the
first range condition.

[c2+1..c3-1] [c2+1..c3-1]
5. PRODUCING THE PROFILE INFORMATION (c) Reordered Sequence (d) Equivalent Reordered Sequence
The profiling code for reordering range conditions) -
checks if the commonaviable is within ranges ofaues. Figure 7: Example of Reordering Default Range Conditions

The compiler needs to kmohow dften each range condi-
tion in the sequence would veaa tansition out of the 6. SELECTING THE SEQUENCE ORDERING
sequence gen it was eecuted when the head of the The ordering for a reorderable sequence of range

sequence is encounteredhe instrumentation code for ongitions vas chosen by using the factors specified in the
obtaining profile information about the sequencasw following two definitions.

entirely inserted at the head of the sequence to check e o) B »

range condition in the sequencédowever, additional D¢f|n|t_|on 9. pi is the probablllty_t.hat ange oondition R

ranges hee © be cetermined from the ones calculated by Will €xit the sequence of raegonditions.

the algorithm in Figure 4. Eachpi was alculated using the profile information indi-

cating hev often the corresponding range conditiét

would exit the sequence if it wageeuted. Theaccuracy

of this probability depends on the correlation of the branch

Definition 8. A default rangeis a range that is not beded results between using the training data set and the test data

by a rang condition. set. Ithas been found that conditional branch results can
Consider the original sequence of range conditions in often be accurately predicted using profile data [FiF92].

Figure 7(a). There are additional ranges associated in the pefinition 10. ci is the cost of testing raegondition R.

default taget TD since these ranges will spanyaremain-

ing values not cered by the other ranges. It is assumed in

this figure thaMIN < c1, c2+1 < c3and c4 < MAX. Fig-

ure 7(b) shows an eqaent sequence with these datft

ranges explicitly chedd. Figure7(c) shevs a reordered

sequence of range conditions, where the range condition fo

the last default range in 7(b) was placed first in the

sequence. Once point is reached in the sequence where

there is only a single tget possible, then all remaining

range conditions need not be explicitly tested as shown in

Figure 7(d). The compiler calculated these remaining

ranges by sorting thexplicit ranges and adding the

Definition 7. An explicit range is a range that is hieded
by a rang ocondition.

Each ci was estimated by determining the number of
instructions required for the corresponding range condition.
This cost includes the conditional branch(es), associated
comparison(s), and gnnstructions that produce thalues
rbeing compared. (A more accurate cost estimate could be
obtained by estimating the latgnand pipeline stalls asso-
ciated with these instructions.) Some factors of the cost
can vary depending upon the ordering of range conditions
selected. Inthese cases, a consative estimation of the
cost was used.

-5-

Definition 11. The Cost([R1,...,Rn]) is the estimated cost of
executing a sequence of ramgonditions.

used to establish its best position refatito the other
explicitly checked range conditions to ackeethe lovest

The explicit cost of a sequence of range conditions is calcu-Cost for the sequencéf TD will be used as the default tar
lated as a sum of products. One factor is the probabilityget* then at least one of the three range conditions should
that a range condition will be reached and will exit the Not be explicitly checked.

sequence, which is equal to the probability that the rangeDefinition 12. mindefault(Ti) is the minimum cost of any

condition will be satisfied since the range conditions are
associated with nowerlapping ranges. The other factor is
the cost of performing the instructions in that range condi-
tion and all preceding range conditions in the sequence
Equation 1 represents thexpdicit cost of e&ecuting a
sequence ofi range conditions, wheres&y range associ-
ated with the sequence is explicitly checked.

Explicit_ Cos{[Ry,...,R,])

= PiCy+ PaCL+Cp) +- -+ pp(Cy+Ca+ -+ Cp) (2)
Theorem 3. A ®quence of two consecutive neadap-
ping range nditions can be optimally dered with
respect to the probability and cost estimates agRR
when p/ci = pj/cj.

Proof. An optimal ordering of tw consecutie ronoverlap-
ping range conditions can be acks@ when the gplicit
cost of the selected ordering is less than or equal to th
explicit cost of the other ordering.

Explicit_Cost([R;, Rj]) < Explicit_ Cos{([R;, R])
pici + pj(ci +¢j) < pjc;+pi(c; +c)
PiCi + PjCi + PjC; = PjC; +PiCj+ PG
piCi = PiCj
p]/Cj < pi/Ci
pi/Ci = pJ/C]

a

Intuitively, this means that it is desirable to firgeeute the
range conditions that 1@ a high probability of &iting the
sequence along with aviocost. Given Theorem 3, it can
be shavn through induction that an entire sequence of
explicitly specified noneerlapping range conditions can be
optimally ordered.

However, there is also a dafilt cost, which occurs

ordering of a ange andition sequengavhereTi is used as
the default taget.

For each potential default target Vviag m associated
ranges, there aré"21 possible combinations of these range
conditions that do not kra © be eplicitly checled. The
compiler used the ordering/c1 = ... = pm/cm between the
m ranges of a target to consider omhypossible combina-
tions of default range conditions, R}, { Rm-1,Rm}, ...,
{R41,...Rm}}. The compiler selected the lowest cost combi-
nation of default ranges by calculating the minimum cost of
the sequencexeluding the range conditions associated
with each of these sets. Assume thas the number of
unique targets out of the sequendée compiler then cal-
culates the minimum ofnfiindefault(T 1), mindefault(T 2),

..., mindefault(Tt)}. Note that only the cost af sequences
have © be onsidered, wheren is the total number of

danges for all of the targets.

Our approach is not guaranteed to be optintdw-
evea, we dso implemented anxbaustve gproach to find
the lowest cost sequence. Our approawlayd selected the
optimal sequence forvery reorderable sequence inegey
test program for the training data sets.

Equation 3 represents the cost okemiting a
sequence ofi-1 explicitly checked range conditions, where
only range conditiomis a default range.

COS'([Rl! e !Ri—l,Ri+1,' A Rn])
= PpiCy+- -+ Pia(Cy -+ Ciy)
+ Pisa(Crt -+ Cioy +Ciug) + o
+Pp(C+--+Cg+Cyy+---+Cp)
+P(Crt -+ Gy +Cug +- -+ Cp)

®3)

However, Equation 3 can be rewritten as Equation 4, where

when no range condition is satisfied and the control trans-the cost of a sequence of range conditions with audtef

fers to the defult taget. Equatior2 shows the complete
cost of a sequence, where only the finstranges are
explicit.

Cosi([Ry,...,R,]) = Explicit_Cost([Ry,...,R,]) +

(I-(pat---+p))CLt - +cCn) (2)

Once only a single target remains, then the range conditions

associated with that @et need not be testedConsider

range can be calculated by subtracting théedifice from
Equation 1.

COS‘([Rl! - !Ri—l,Ri+1,' Cey Rn])
= COST([Rl! e ar]) + pi(ci+l +.--+ Cn)

=Ci(pi+---+pn) 4)

The ordering of a sequence of range conditioas w
selected using the algorithm in Figure 8. The algorithm

acpin the example in Figure 7(a). The three targets of thefirst uses Equation 1 to calculate the cost of the optimal

range conditions ar€l, T2, and TD. Each of these tgets

sequence when all of the range conditions amdiatly

could be potentially used as the default target and its assochecled. Itthen uses Equation 4 twad calculating the

ciated range conditions would notveat be ested. The
TD tamet has three associated rangék.any of these
ranges arelicitly checked, then Theorem 3 should be

-6-

complete cost of the different sequences. The comyptg
of the algorithm i€(n), wheren is the number of ranges in
the sequence.

/* Assume the range conditions are sorted in descending order of Pi/Ci.
Calculate the cost with all range conditions explicitly check#d.
Explicit_Cost = 0.0;
cost = 0;
FORi=1tonDO
cost += CJiJ;
Explicit_Cost += P[i]*cost;

/* tcost[i] = Ci+1 + ... + Cn and tprob[i] = Pi + Pi+1 + ... + P.
tcost[n] = 0;
tprob[n] = P[n];
FOR i = n-1 downto 1 DO
tcost[i] = C[i+1] + tcost[i+1];
tprobli] = PJi] + tprobli+1];

/* Now find the sequence with the lowest co$t.
Lowest_Cost = Explicit_Cost;
FOR each unique target T DO

Cost = Explicit_Cost;

Elim_Cost = 0;

FOR each range Ri in T from lowest

to highest P[i]/CJi] DO
Cost += P[i]*(tcost[i] - Elim_Cost)
- C[i]*tprobli];

IF Cost < Lowest_Cost THEN
Lowest_Cost = Cost;
Best_Sequence = current sequence;

Elim_Cost += CJi];

Figure 8: Sequence Ordering Selection Algorithm

7. IMPROVING THE SELECTED SEQUENCE

Other impravements were obtained after the ordering
decision was madeThe compiler can determine the best
ordering of the tw branches within a single range condi-
tion that is of type Form 4 st in Table 1. The compiler
assumed that both branchesul be @&ecuted in estimat-
ing the cost for selecting the range condition orderitg.
the result of the first branch indicates that the range condi

tion is not satisfied, then the second branch need not b

executed. Assuméhat such a range conditioRi, is theith

range condition in the sequence and is associated with th

range[cl..c2] The probability that the value of the com-
mon variable is belw or above the range[cl..c2] at the
point that the range condition is performed can be deter
mined as follavs. Ve know that the range conditions asso-
ciated with the sequend®1,R2,...Ri-1] have dready been

tested and the value of the common variable cannot be in

these ranges iRi is reached.Given that there aren total
range conditions, the compilexamined the probability for
each of the remaining rangg®i+1,Ri+2,...Rn], to deter-
mine the probability that < cl versus thatv > c2. Based

e

instruction within the second range condition becomes
redundant and the compiler eliminates it.

first comparison: IC=v?c+1,; IC=v7c;
first branch: PC=IC>=0->L1, PC=IC>0->L1;
second comparison: 1C=v?c;
second branch: PC=IC==0->L2; PC=IC==0->L2;
(a) Before (b) After

Figure 9: Eliminating Redundant Comparisons Example

8. APPLYING THE TRANSFORMATION

Once a branch ordering has been selected, the com-
piler will apply the reordering transformatiotfrigure 10(a)
shavs a control-flav segment containing a sequence of
three eplicit range conditionsK1, R2, and R3) and two
intervening side décts §1 and S2). Figure 10(b) shavs
the control flev with the replicated range conditionRY’,
R2’, and R3’) inserted. Theredecessors of the first origi-
nal range condition no havetransitions to the first repli-
cated range condition. Note that thegetrTD in Figure
10(a) has a fall-through predecess@ode starting at the
target block TD was duplicated until an unconditional
jump, return, or indirect jump was found'his approach
avdded increasing the number of unconditional jumps
executed from the reordered sequence and also simplified
the estimation of the cost of a reordered sequeAcgmi-
lar approach has been used when transforming code to
improve lranch prediction [¥S94]. FigurelO(c) shavs
the control flev with the two intervening side effects dupli-
cated to allw the sequence of range conditions to be
reordered.T2 is also duplicated tovaid an etra uncondi-
tional jump. Figure 10(d) shes the control flv after

reordering the range conditionR4 was me of the original
default range conditions and iswa@xplicit and first in the
replicated sequenceR1’ andR2’ have dso been reersed.
igure 10(e) shows the code after applying dead code elim-
ination. Theoriginal range condition®k1 and R2 were
deleted, while range conditidR3 remains since it was still
reachable from another path. Other optimizations, such as
code repositioning and branch chaining to minimize uncon-
ditional jumps, were also reioked to improve the code.

9. RESULTS

Table 2 shows the three tifent sets of heuristics
used when translatingwitch statements. Th&ont end

on these probabilities, the branch is placed first that is most!S€d Heuristic Set I, which are the same heuristics used in

likely to determine if the range condition is not satisfied.

Another impraoement that vas performed after the
range conditions k& keen ordered is to eliminate redun-
dant comparisons.For instance, consider Figure 9(a).
There are tw consecutie range conditions that test if the
common variable is in the rangéstl..max] and [c..c].
Figure 9(b) shows a semantically eglent comparison

and branch for the first range condition. The comparison

the pcc front end [Joh79], when compiling for a ARC

IPC and a SPARC 20. The authors used the dual loop
method [CDV86] and found that indirect jumps on the
SRARC Ultra | were about four times morgmensve than
indirect jumps on the SPARC IPC or ARC 20 [Uh97].
Therefore, Heuristic Set Il used for the Ultra only generated
an indirect jump whem = 16. Finally Heuristic Set Il
always generated a linear search, which agidhe maxi-
mum benefit from reordering.

(d) After Reordering Range Conditions

(e) After Dead Code Elimination

Figure 10: Applying the Reordering Transformation

Term Definition
n Number of cases inswitch statement.
m Number of possible values between the first and last case.
Hegztstlc Indirect Jump Binary Search Linear Search
| n=z48&& lindirect_jump lindirect_jum@&
m< 3n && n=8 Ibinary_search
1l n=16 && lindirect_jump lindirect_jum®&&
m< 3n && n=8 Ibinary_search
1] never neve always

Table 2: Heuristics Used for TranslatisgitchStatements

Measurements were collected on the code generated | sed

for the SPARC architecture by thwpo compiler [BeD88]
using theeaseernvironment [DaW91]. Table 3 shavs the
test programs used for this studiVe chose these non-
numerical applications since theéend to hae @mmplex
control flov and a higher density of conditional branches.
Table 4 shavs the dynamic frequepicmeasurements that
were obtained.The Original Insts column contains the
number of instructionsxecuted with all ofvpds conven-
tional optimizations appliedWe present in the rest of the

Program Description
awk Pattern Scanning and Processing Language
cb A Simple C Program Beautifier
cpp CCompiler Preprocessor
ctags Generatekag Hle for vi
derof Removes nroff Constructs
grep Searches Fle for a String or Regular Expressi
hyphen ListsHyphenated Words in a File
join RelationalDatabase Operator
lex Lexical Analysis Program Generator
nroff Text Formatter
pr Preparegile(s) for Printing
ptx Generatea Rermuted Index
sdiff Displays Files Side-by-Side
Streankditor
sort Sortsand Collates Lines
wce DisplaysCount of Lines, Words, and Character,
yacc Rirsing Program Generator

5

Table 3: Test Programs

and branchesxecuted after reordering sequences of range
conditions. Thereordering transformation had significant
benefits both in reducing the total number of instructions
and conditional branches. The original default target in a
sequence was almostalys selected as the defaultgat
table the percentage change in the number of instructiondor the reordered sequencelowever, the profile data also

Switch Reordered r_eordered sequ_enceOne_ may notice that the transf_orma—
Trans- Original tion had a slight mggive impact on hyphen which
lation || Program occurred for a couple of reasons. First, different test input
Heuris- Insts Insts | Branches data was used as compared to the training input data for the
tics results presented in the table. When we used the same test
aV\é< 13,611,150 -2.02% -4.19% input data as the training input data, the number of
c 17,100,927 -7.65% | -15.46% : :
opp 18883104 -013% | -0.19% brar_whes neer m_creased. Seco_nt_he _reordenng transfo_r
ctags 71,889,513 -9.10% | -14.72% mation was applied after all optimizations except for filling
derof || 15,460,307 -1.53% -2.63% delay slots.Sometimes delay slots would be filled from the
grep 9,256,749 -3.60% | -8.31% ; ;
hyphen || 18.059.010 +3.42% | +3.40% other successor andon not_execute_ a useful instruction.
join 3,552,801| -1.68% 2.12% One should note that inconsistent filling of delay slots also
Set | IeXff 10,005,018 -4.56% -10.39% sometimes resulted in increased performance bendfits.
nro 25,307,809| -2.48% -6.35% ; P :
or 73051342 16.25% | -29.96% transformation may also ha vey _S|gn_|f|cant _bene_ﬂts
ptx 20,059,901 -9.18% | -13.28% when a program »x@cutes most of its instructions in a
sdifcf‘ 14,558,535| -16.09% -37.03% reorderable sequence, such assiort The diferences
se 14,229,310 -1.16% | -2.03% : : Cting ind
cort 23146400, -47.20% | -57.38% between using the different sets of he_urlstlcs |nd|ca_tes_ that
we 25,818,199| -15.05% | -26.26% the efectiveness of branch reordering increases as indirect
yacc || 25,127,817 -0.25% | -0.44% jumps become morexpensve. It is dso interesting to note
aveage || 23,477,465 -7.91% | -13.37% that the total number of instructionseeuted after reorder
ank 13552.831| -2.97% -6.15% ing_ often decreased as_/\fer_indirect _jumps were generated.
cb 17,100,927| -7.65% | -15.46% This shows that profile information should be used to
cpp 18,880,116 -0.13% | -0.19% e i o i
ctags | 71824003 -9.02% | -14.64% decide _|f an |nd|re_ct jump should_ be generated or branch
derof || 15451,383| -1.39% -2.38% reordering should instead be applied.
grep 9,938,414 -10.53% | -22.04% Branch prediction measurements whoin Table 5
hyphen 18,059,010 +3.42% +3.40% . .
join 3,552,801 -1.68% | -2.12% were obtalngq for .the BRC Ultra_l l, Whlch support§
Setl lex 10,003,391| -4.57%| -10.40% branch prediction with a (0,2) predictor with 2048 entries.
nroff | 25,313,527 -2.50% -6.39% The authors anticipated that the number of branch mispre-
pr 73,051,352| -16.25% | -29.96% o .
ptx 20,059,901 -9.18% | -13.28% dictions would decreas_e since the number .of totql pranches
sdiff || 14,558,530| -16.09% -37.03% executed was substantially reduceBewer mispredictions
sed || 14243263 -1.28% | -2.32% had been obseed when branches were coalesced into indi-
sort 23,146,400 -47.20% | -57.38%) . o
We 25,818,199| -15.05% | -26.26% rect jumps [UhQ?].Howwq, the mlspred|ctlon results for
yacc 25,127,817 -0.25% | -0.44% branch reordering were maéd. Nineof the test programs
aveage || 23,510,571 -8.37% | -14.30% had fewer mispredictions after reordering and the remain-
awk || 13.651,335| -3.63% -7.44% ing eight had increasesOveraIl, the aerage nulmber of
cb 19,662,207| -21.79% | -37.41% mispredictions increasedWe suspect that adding more
cpp 30,477,974 -28.37% | -41.85% iti i ioti
ctags | 72223308 0.13% | -14.73% branches to a sequence caused additional mispredictions to
derof 15,491,185 -1.40% -2.39% Original Reordered Inst
grep 11,810,072 -32.04% | -51.42% Program | \rcoreds | Mispreds| Ratio
hyphen 18,059,010 +3.42% +3.40%
join 3,552,801| -1.68% | -2.12% ank 243,027 -0.46% N/A
lex 10,028,151 -4.77% -10.73% cb 440,712 | +5.77% 51.41
Setlll |l nroff || 25,339,678| -2.53% -6.45% cpp 389,566 | -1.75% N/A
pr 73,051,352| -16.25% -29.96% ctags 569,753| +225.50% 5.04
ptx 20,059,901| -9.18% | -13.28% derof 62,819 -2.87% N/A
sdiff || 14,558,530| -16.09% -37.03% grep 115,007 | -4.30% N/A
sed 15,368,724 -10.07% | -17.01% hyphen 266,177| +84.12% -2.7§
sort 23,146,434 -47.20% | -57.38% join 50,440 -5.62% N/A
we 25,818,199| -15.05% | -26.26% lex 66,534 +1.93%| 355.47
yacc || 25,168,370 -0.47% | -0.76% nroff 141,167 -0.93%| N/A
! - pr 750,570 | +0.33% | 4,793.63
aveaage 24,556,842 -12.72% -20.75% th 215,218 +37.58% 22.78
: sdiff 156,440 -5.35% N/A
Table 4: Dynamic Frequegdvieasurements sed 83,579 -1.84% N/A
. -, sort 171,619 | -10.41% N/A
indicated that one of the original default ranges was fre- we 481,767 +0.18% | 4,519.61
quently satisfied and ag explicity checked in the yacc 373,825| +0.55% 30.28
reordered sequence. Also, comparison instructions became aveage | 269,307| +18.97% | 1,221.94

redundant and were eliminated much more often when an
original dehult range became an explicit range in the

-0-

Table 5: Branch Prediction Measurements
Using a (0,2) Predictor with 2048 Entries

occur But the aerage ratio of decreased instructions

. . o Switch Reordered
executed to the increased number of branch mispredictions| Trans- Pro- Total
was 1221.94 to 1 for these eight programs. Thus, the | lation gram Insts Avg Seq Len
increase in mispredictionsas far outweighed by the bene- | Heuris- Segs Seags :
fit of reducing the number of instructiongeeuted. Com- ties Orig | After
parable results were obtained using other branch predictors ank +1.91% | 48| 16.67% 288 | 3.75
ch +8.32%| 12 | 83.33%| 250 | 2.80

as shown in Table 6. cpp || +1.57%| 15 | 33.33%| 2.20| 3.20

ctags +9.48%| 28 39.29%| 2.64 3.36

(0,1) Predictor (0,2) Predictor (2,2) Predictor| derof +1.58% 38 23.68% 2.67 2.89

) Reor Reor Reor- re +3.51% 7 28.57% 3.50 4.5(
Entries | dered | ™ dered | ™' || dered | ™ h)g/]pth +8.70%| 3 | 100.00% | 2.67| 3.33
Mis- . Mis- . Mis-) i y

R R R oin +7.61% 8 37.50% 3.33 3.6

preds O || preas | "0 || preas | A lex | +85sv| 05| 58059 255| 205

32 +16.65% 681.20 +17.37% 1313.4 +17.05% 80578 Set | nroff +1.62% 87 21.84% 2.95 3.53
64 +21.96% 720.73 +21.15%) 1082.0 +20.77% 640/08 pr +2.40% 10 50.00% 3.00 4.20

128 +21.91%| 8583.19|| +20.60% 1091.2 +19.40% 661,92

¢

i 0, 0, 2
256 || +21.91%| 972.87|| +20.21%| 953.700 +19.03% 56938 %D]ff +31'4§0A’ 48 ;5'080/" 3'20 ggtg
512 || +19.67%| 5852.38|| +18.00% 1200.25 +17.34% 68198 sdi +3.48% 7.50% .67 -3
1024 || +20.45%| 13331.71|| +18.88% 1217.6]1 +18.44% 664,03 sed +4.22%| 34 47.06%| 2.88 | 3.50
2048 || +20.59%| 13311.73| +18.97% 1221.94 +37.65% 653.02 sort +3.68%| 16 56.25%| 2.33 2.78

wc +10.20% 3 33.33% 5.00 5.00

21.43% 6207.69 19.32¢4 115432 21.38% 668.10
aveage|| +o45% i ToLSp% yacc | +6.42%| 35 | 77.14%| 370 | 4.48

Table 6: Branch Prediction Measurements aw +4.98% 26 48.20% 297 | 3.62
L . ank +2.06% | 56| 19.64% 3.91| 4.55
The eecution time measurements stioin Table 7 cb +8.32%| 12 | 8333%| 250 | 280
were obtained from thevarage reportedisertimes of ten cpp +1.57%| 16 31.25%| 2.20 | 3.20
executions of each program using the C run-time library dCtang ++19'7£:370/% 2491 32749339"3 é-gg g-gg
. . . ero . (] . 0| . .
functiontimes() One should note that in Table 4 the mea- grep +4.11% 19 | 36.84%| 257 | 286
surements from the code compiled by our compiler did not hyphen| +8.70%| 3 | 100.00% | 2.67| 3.33
include the C run-time library codeHowever, the library J|0'n :;-gé(‘)’//O 1533 g;gg‘(’f 3-2’; g-g;
code did contribute to thexecution times. Also, the bene- | setil | o | +1730% | 93 | 25819 283 | 333
fits for the Ultra | were probably not as significant due to pr +2.62% | 11 54.55% | 3.67 | 4.67
the increase in the number of mispredictions. ptx +1.47%) 5 | 60.00%) 3.00/ @ 4.33
sdiff +3.49% | 10 | 40.00% 3.00| 3.50
. — et sed +4.32%| 41 | 51.22%| 2.81| 3.29
Machine HeuristiSet | Aserage Execution Time sort +3.68% 16 56.250| 233 278
SPARC IPC [-4.94% wc +10.20%| 3 | 33.33% | 5.00| 5.00
SPARC 20 [-5.57% yacc +6.42%| 35 | 77.14%| 3.70 | 4.48
- 0,
SPARC Ultra | I 2.88% aw +5.00% | 29 | 48.67% 3.05| 361
Table 7: Execution Times ank || +1.97% | 42| 30.95% 18.15| 18.69
i cb +11.17%| 6 | 66.67% | 5.50| 7.7%
Table 8 shavs static measurements for the same set cpp +2.47%| 16 | 37.50%| 14.33 | 16.50
of programs. There was only about a 5% increase in the ctags +6.50%| 21 | 38.10%| 3.50 | 4.50
. . 0, 0,
number of instructions generate@he Total Seqgscolumn d;reog ++1?;2239& 394 420433/0”’ 58.2090 5é557c
represents the total number of reorderable sequences hyphen| +8.70% 3 | 100.00% | 2.67| 3.33
detected in each progranhe Segscolumn indicates the join +7.61% 8 | 37.50% | 3.33| 3.6]
lex +6.25% | 54 | 59.26% 6.16 | 7.00
percer_1tage of these sequences that were actually reorderedget i nroff 171% 6 3261% 600! 687
The single most commormadtor that preented a sequence pr +2.62% | 11 54.55%| 3.67 | 4.67
from being reordered was that profile data indicated that the ptx +1.47% 5 | 60.00% | 3.00| 4.33
; - sdiff +3.49% | 10 | 40.00% 3.00| 3.50
sequence was ner executed. Usingmultiple gets of pro- sed w5300 25 48.00%| 775! 858
file data to provide better testvaage would increase this sort +3.76%| 11 63.64% | 3.57 | 4.29
percentage. ThAwg S£q Lenshaws the aerage number of we +10.20% 3 3.33% | 5.000 5.00
; yacc +6.64%| 29 79.31%| 4.52 5.65
branches in each reordered sequence before and after
reordering. Thelength of each reordered sequence typi- ayg || *496% | 19| 49.79% 6.08| 6.96
cally increased since often one or more adéf ranges Table 8: Static Measurements

became explicit after reorderingdeuristic Set Il resulted . .
in fewer sequences since no binary searches were generated Figures 11, 12’. and 13 shahe distribution of the
when translatingswitch statements. Eacbinary search number of t_)re}nches in reordered sequences for ea}Ch of the
generated for Heuristic Sets | and Il resulted iness three heuristic ;ets.Note that most of the or|g!nal
reorderable sequences being detected. sequences contained only a\{\or three bre_mches.Thls
shavs that much of the benefit for reordering comes from

-10-

short sequences of branches that woulknbe ranslated and 3 hse Hock 4 as a common successaikewise, the

into indirect jumps. sequence of branches in blocks 4 and ¥ehdock 7 as a
common successor Fgure 14(c) shows these dw
1001 1001 sequences of branches after reorderinfgote that a
801 Average: 2.97 | 80 Average: 3.62 reorderable sequence of branches with common successors
601 601 cannot contain intervening sidefexfts. Whileside efects
401 401 could be mwed out of such a sequence, the resulting
207 207 sequence would not contain a common successor block.
O s B roatade1s 0 T 4 6 B 1012141618 Interprocedural analysis could be used to determine if
Original Sequence Length Reordered Sequence Length invoked functions do not cause a sidéeef. Avoiding the
Figure 11: Sequence Length for Heuristic Set | execution of a function call, such as depicted in block 2,
could hae dgnificant performance benefitdzigure 14(d)
100, 100 depicts that a sequence of branches with a common succes-
801 Average: 3.05 | 80 Average: 3.61 sor can be viewed as a single block containing a branch
601 601 since such a sequence wouldsdnanly two possible suc-
401 401 cessors. Thdirst sequence (blocks 3, 1, and 2) has tw
201 201 successors (blocks 5 and &)k ewise, the second sequence
O s Bloa1ade1s 0 T 4 6 B 101214 1818 (blocks 5 and 4) also hasdveuccessors (blocks 6 and 7).
Original Sequence Length Reordered Sequence Length Figure 14(e) shows that these sequences can be reordered
Figure 12: Sequence Length for Heuristic Set Il when there are no side effects between the sequences.

if(a==08&&f()==18&&b==2|c==3&& d == 4)

g T1;
50 ’
else

401 Average: 6.08 T2;

30 (a) C Source Code Segment
20

104

0 il

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100105
Original Sequence Length

60
50

401 Average: 6.96
304
20
104
0)

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100105
Reordered Sequence Length

Figure 13: Sequence Length for Heuristic Set IlI

10. FUTUREWORK

There are seeral areas in which reordering branches
could be gtended. Asequence of range conditions is one
of several approaches that could be used to determine a tar
get associated with thele of an gpression. Essentially
a ®quence of range conditions is a linear search. Some of
these other approaches include performing a binary search,
using a jump table, and hashing [Spu9Rtofile data could
be used to more fefctively apply these other approaches as
a smi-static search method and to decide when each

method or a combination of methods is most beneficial. (d) Before Reordering Sequences (e) After Reordering Sequences
A different type of sequence of branches that can be Figure 14: Reordering Branches with Common Successors
reordered using profile dataowid consist of consecug Obtaining profile data for a sequence of branches

branches with a common successbigure 14(a) shows a yith a4 common successor will &f from obtaining profile

C source code segment containing relational and logical y5i5 for a sequence of noedapping range conditions
expressions and Figure 14(b) si®the corresponding con- tegting a commonariable. Whileat most one range condi-
trol-flow graph. Thesequence of branches in blocks 1, 2, iion will be satisfied for a géen execution of a sequence of

-11-

nonoverlapping range conditions testing the same branch
variable, more than one branch in a sequence of branchegpajog]
with a common successor could branch to the common suc-

cessor Thus, all combinations of branch result®uld

have 10 be dtained using an array of profile countefiis

approach may be reasonable for a small sequence Iengtrbaw9l]
(e.g.n £ 7), which seem to handle most branch sequences

with a common successor [Yan98].

11. CONCLUSIONS

This paper described an approach for using profile [FiF92]
information to decrease the number of conditional branches
executed by reordering branch sequences. An algorithm for
detecting a reorderable sequence of branches testing a com-
mon variable was presentedProfiling was performed to
estimate the probability that each branch will transfer con-
trol out of the sequencelhe most beneficial orderings for
these sequences with respect to profiling and cost estimate
were obtained.The results showed significant reductions in
the number of branches and instructiorscated, as well

[gon79]

as decreases ixecution time. [Muw9s]
ACKNOWLEDGEMENTS
The authors thank Jack iidson for allaving vpoto
be used for this researcMichael Sjodin, Chris Healynd
the anonymous wewers provided seeral helpful sugges- [Spud4]
tions that imprged the quality of the papefWe dso thank
Mooly Sagv for reviewing the final version of this paper.
REFERENCES
[AIC71] F Allen and J. Cocke A" Catalogue of Opti- [Uh97]
mizing Transformation$,pp. 1-30 in Design
and Optimization of Compilered. R. Rustin,
Prentice-Hall, Engleood Cliffs, NJ (1971). [Uhwa7]
[BeD88] M.E. Benitez and J. WDavidson, ‘A Portable
Global Optimizer and Lindr,” Proceedings of
the SIGPLAN 88 Symposium oroBramming
Languagge Design and Implementation pp.
329-338 (June 1988). [Yan9s8]
[BGS97] R.Bodik, R. Gupta, and M. Siaf “Interproce-
dural Conditional Branch Eliminatidn,Pro-
ceedings of the SIGPLAN '97 Conference on [YJK97]
Programming Languge Design and Imple-
mentation pp. 146-158 (June 1997).
[CaG94] B.Calder and D. Grunwald, “Reducing Branch
Costs via Branch AlignmefitProceedings of
the Sixth International Conference orchitec-
tural Support for Pegramming Languges and [YoS94]
Opemting Systems pp. 242-251 (October
1994).
[CDV86] R.M. Clapp, L. Duchesneau, R. AoM, T. N.

Mudge, and T Schultze, “Towad Real-Tme
Performance Benchmarks for Ad&ommuni-
cations of the M 19(8) pp.760-778 (August

-12-

1986).

J.W. Davidson and S. JinturkatAggressie
Loop Unrolling in a Retargetable, Optimizing
Compiler” Proceedings of Compiler Construc-
tion Conference pp. 59-73 (April 1996).

J.W. Davidson and D. B. Whalig “A Design
Ervironment for Addressing Architecture and
Compiler Interaction$, Microprocessos and
Microsystems15(9) pp. 459-472 (N@ember
1991).

J.A. Fisher and S. M. Freudeniger, “Predict-
ing Conditional Branch Directions from Rie
ous Runs of a ProgramProceedings of the
Fifth International Conference on déhitec-
tural Support for Pogramming Languges and
Opeinating Systemspp. 85-95 (October 1992).

S.C. Johnson,A Tour Through the Portable C
Compiler” Unix Programmers Manual, 7th
Edition 2B p. Section 33 (January 1979).

F. Mueller and D. B. Whalle “Avoiding Con-
ditional Branches by Code ReplicatibriRro-
ceedings of the SIGPLAN 95 Conference on
Programming Languge Design and Imple-
mentation pp. 56-66 (June 1995).

D.A. Spuler “Compiler Code Generation for
Multiway Branch Statements as a Static Search
Problen?, Technical Report 94/03,James
Cook Unwersity, Townsville, Australia (Jan-
uary 1994).

G. Uh, Effectively Exploiting Indirect umps,
PhD Dissertation, Florida State Waisity,
Talahassee, FL (December 1997).

G.R. Uh and D. B. Whalle “Coalescing Con-
ditional Branches into Efficient Indirect
Jumps,’Proceedings of the International Static
Analysis Symposiunpp. 315-329 (September
1997).

Minghui Yang, Improving Performance by
Branch Reordering, Masters Thesis, Florida
State Unversity, Tallahassee, FL (1998).

C.Young, D. S. Johnson, D. R. Kgr, and M.
D. Smith, “Near-optimal Intraprocedural
Branch Alignment, Proceedings of the SIG-
PLAN '97 Conference on Bgramming Lan-
guage Design and Implementatipn pp.
183-193 (June 1997).

C.Young and M. D. Smith, “Impnang the
Accurag of Static Branch Prediction Using
Branch Correlatiofi, Proceedings of the Sixth
International Conference on éhitectural Sup-
port for Pongramming Languges and Opeat-
ing Systemspp. 232-241 (October 1994).

