
Improving Performance by Branch Reordering

MINGHUI YANG ∗ , GANG-RYUNG UH†, AND DAVID B. WHALLEY ∗
∗ Department of Computer Science, Florida State University, Tallahassee, FL 32306-4530

e-mail: {myang,whalley}@cs.fsu.edu; phone: (850) 644-3506
†Lucent Technologies, 1247 S. Cedar Crest Blvd., Allentown, PA 18103-6209

e-mail: uh@lucent.com; phone: (650) 712-2447

ABSTRACT

The conditional branch has long been considered an expen-
sive operation. Therelative cost of conditional branches
has increased as recently designed machines are now rely-
ing on deeper pipelines and higher multiple issue.Reduc-
ing the number of conditional branches executed can often
result in a substantial performance benefit.This paper
describes a code-improving transformation to reorder
sequences of conditional branches. First, sequences of
branches that can be reordered are detected in the control
flow. Second, profiling information is collected to predict
the probability that each branch will transfer control out of
the sequence. Third, the cost of performing each condi-
tional branch is estimated.Fourth, the most beneficial
ordering of the branches based on the estimated probability
and cost is selected.The most beneficial ordering often
included the insertion of additional conditional branches
that did not previously exist in the sequence.Finally, the
control flow is restructured to reflect the new ordering. The
results of applying the transformation were significant
reductions in the dynamic number of instructions and
branches, as well as decreases in execution time.

1. INTRODUCTION

Sequences of conditional branches occur frequently
in programs, particularly in nonnumerical applications.
Sometimes these branches may be reordered to effectively
reduce the dynamic number of branches encountered dur-
ing program execution. Onetype of reorderable sequence
consists of branches comparing the same variable or
expression to constants.These sequences may occur when
a multiwaystatement, such as a Cswitch statement, does
not have enough cases to warrant the use of an indirect
jump from a table. Also, control statements may often
compare the same variable more than once.

Consider the following code segment in Figure 1(a).
Assume that there is typically more than one blank read per
line and EOF is only read once.Many astute programmers
may realize that the order of the statements may be changed
to improve performance. Infact, we found that the authors

of most Unix utilities were quite performance conscious
and would attempt to manually reorder such statements.A
conventional manual reordering shown in Figure 1(b)
would improve performance by performing the three com-
parisons in reverse order. Howev er, the most commonly
used characters (e.g. letters, digits, punctuation symbols)
have an ASCII value that is greater than a blank (32), car-
riage return (10), or EOF (-1). Figure 1(c) shows an
improved reordering of the statements that increases the
static number ofif statements and associated conditional
branches, but normally reduces the dynamic number of
conditional branches encountered during the execution.

if (c == ’\n’)
X;

else if (c == ’ ’)
Y;

else
Z;

while ((c=getchar()) != EOF)

while (1) {
c = g etchar();
if (c == ’ ’)

Y;

X;
else if (c == EOF)

break;
else

Z;
}

else if (c == ’\n’)

while (1) {
c = g etchar();
if (c > ’ ’)

else if (c == ’ ’)
Y;

else if (c == ’\n’)
X;

else if (c == EOF)
break;

else

}

(a) Original Code Segment

(b) Conventional Reordering

(c) Improved Reordering

goto def;

def: Z;

Figure 1: Example Sequence of Comparisons
with the Same Variable

Manually reordering a sequence of comparisons of a
common variable or inserting extra if statements to
achieve performance benefits, as shown in Figures 1(b) and
1(c), can lead to obscure code.A general improving

-1-

transformation to automatically reorder branches may help
encourage the use of good software engineering principles
by performance conscious programmers.

This paper describes a method for reordering code to
reduce the number of branches executed. Figure2 presents
an overview of the compilation process for reordering
branches. Afirst compilation pass is applied to a C source
program. Allconventional optimizations are applied except
for filling delay slots. Sequences of reorderable branches
comparing a common variable are detected in the control
flow and an executable file is produced that is instrumented
to collect profiling information about how often each
branch in a sequence will transfer control out of the
sequence. Thisprofile data and an estimated cost for
executing each branch is used during a second compilation
pass to select the most beneficial branch sequence ordering.
Delay slots are filled after branch reordering and the final
executable is produced. The transformation was frequently
applied with reductions in instructions executed and execu-
tion time.

for
instrumented

executable

profiling

training

data

input
first

compilation

C

source

program

executable

compilationdata

with
branches
reordered

test

input

data

secondprofile

Figure 2: Overview of Compilation Process
for Branch Reordering

2. RELATED WORK

There has been some research on other techniques
for avoiding the execution of conditional branches.Loop
unrolling has been used to avoid executions of the condi-
tional branch associated with a loop termination condition
[DaJ96]. Loopunswitching moves a conditional branch
with a loop-invariant condition before the loop and dupli-
cates the loop in each of the two destinations of the branch
[AlC71]. Different search methods based on static heuris-
tics for the cases associated with amultiwaystatement have
been studied [Spu94]. Conditional branches have also been
avoided by code duplication [MuW95]. This method deter-
mines if there are paths where the result of a conditional
branch will be known and duplicates code to avoid execu-
tion of the branch. The method of avoiding conditional
branches using code duplication has been extended using
interprocedural analysis [BGS97].Finally, conditional
branches have been coalesced together into an indirect
jump from a jump table [UhW97].

There have also been studies about reordering or
aligning basic blocks to minimize pipeline penalties associ-
ated with conditional branches [CaG94, YJK97].However,
this reordering or alignment of basic blocks does not
change the order or number of conditional branches
executed. Instead,it only changes whether the branches
will fall through or be taken.

3. DETECTING A REORDERABLE SEQUENCE

The approach used for finding a sequence of reorder-
able branches that compare a common variable required
associating branch targets with ranges of values.

Definition 1. A range is a set of contiguous integer values.

Definition 2. A range condition is a branch or a pair of
consecutive branches that tests if an integer variable is
within a range.

Definition 3. A consecutive sequence of range conditions
[R1,...,Rn] is a path, where each node is a range condition
testing the same variable and each edge is a control-flow
transition to the next range condition in the sequence.

Definition 4. A reorderable sequence of range conditions
is a consecutive sequence of range conditions, where the
range conditions may be interchanged in any permutation
with no effect on the semantics of the program.

The possible types of ranges and the corresponding
range conditions are shown in Table 1, wherev stands for
the branch variable andc represents a constant. When a
range is a single value or a range is unbounded in one
direction, a single conditional branch can be used to test if
the variable is within the range.Tw o conditional branches
are needed when a range is bounded and spans more than a
single value, as depicted in Form 4 in Table 1.

Form Range Range Condition

1 c..c v== c
2 MIN..c v <= c
3 c..MAX v >= c
4 c1..c2 c1<= v && v <= c2

Table 1: Ranges and Corresponding Range Conditions

Figure 3(a) depicts a sequence of two range condi-
tions. R1 andR2 are range conditions that can consist of
one or two branches that check to see if a variable is in a
range. T1 andT2 are target blocks of the range conditions
and the corresponding range of values for the range condi-
tion is given to the right of these blocks.T3 is the default
target block when neither range condition is satisfied.Fig-
ure 3(b) shows how the sequence can be reordered.

-2-

T1

P

R1

R2 T2

T3

T1

T2
T

T
F

F

T

T
F

F

T3

P

R2

R1

[c1..c2]

[c3..c4] [c1..c2]

[c3..c4]

not {[c1..c2],[c3..c4]} not {[c1..c2],[c3..c4]}

(a) Original Sequence (b) Reordered Sequence

Figure 3: Example of Reordering Range
Conditions with No Intervening Side Effects

Definition 5. Two ranges are nonoverlapping if they do not
have any common values.

Definition 6. A side effect in a range condition is an
instruction that updates a variable or a register and the
updated value can reach a use of that variable or register
outside of the range condition.

Theorem 1. A sequence of two consecutive nonoverlap-
ping range conditions can be reordered with no semantic
effect on the program if the sequence can only be entered
through the first range condition, the two range conditions
contain only pairs of comparisons and conditional
branches, and the sequence has no side effects.

Proof: Consider the original and reordered sequences of
range conditions in Figure 3.The two sequences are
semantically equivalent given that (1) the state of the pro-
gram is equivalent in both sequences when blocksT1, T2,
andT3 are reached, (2) blocksT1, T2, and T3 are always
reached in both sequences under the same conditions, and
(3) no new error exceptions are raised.

Condition 1 is satisfied since the range conditionsR1 and
R2 have no side effects. Condition2 is satisfied since the
ranges associated withT1, T2, and T3 are nonoverlapping,
there are no assignments in either range condition that can
affect the other, and the only predecessor of the second
range condition is the first range condition. Condition 3
can be satisfied by considering the following two facts.
First, no new error exceptions can be introduced after exit-
ing the reordered sequence due to conditions 1 and 2.Sec-
ond, no new error exceptions can be introduced inR1 or R2
since comparison and conditional branch instructions can-
not raise error exceptions on the target architecture.

Given Theorem 1, it can be shown through induction that a
sequence of nonoverlapping range conditions testing the
same variable can be reordered with no semantic effect on
the program if the sequence can only be entered through the
first range condition, the sequence contains only pairs of
comparisons and conditional branches, and the sequence
has no side effects.1

1 The inductive proofs are not given in this paper due to lack of
space and that these proofs were straightforward.

The detection of a sequence of reorderable range
conditions was accomplished using the algorithm in Figure
4. Insteadof storing a sequence of branches, we instead
store a sequence of ranges. The algorithm first finds two
nonoverlapping range conditions comparing the same vari-
able. Afterwards, it repeatedly detects an additional
nonoverlapping range condition until no more range condi-
tions with nonoverlapping ranges can be found.

FOR each block B DO
IF (B is not marked AND

B has a branch that compares
a variable V to a constant) T HEN

IF (Find_First_Two_Conds(B, V, R1, R2, N)) T HEN
Ranges = {R1, R2};
C = N;
mark blocks associated with R1 and R2;
WHILE Find_Range_Cond(Ranges, V, C, R, N) DO

Ranges += R;
C = N;
mark block(s) associated with R;

Store info about Ranges for profiling;

BOOL FUNCTIONFind_First_Two_Conds(B, V, R 1, R2, N)
{

IF (Find_Range_Cond({}, V, B, R1, N1) AND
Find_Range_Cond(R1, V, N1, R2, N2)) T HEN

N = N2;
RETURN TRUE;

ELSE
Rt = R1;
IF (Find_Range_Cond(Rt, V, B, R1, N1) AND

Find_Range_Cond(R1, V, N1, R2, N2)) T HEN
N = N2;
RETURN TRUE;

RETURN FALSE;
}

BOOL FUNCTIONFind_Range_Cond(Ranges, V, B , R, N)
{

IF (B has a branch that compares V to a constant C) T HEN
IF branch operator is "==" THEN

R = C..C;
N = B’s fall-through succ;
RETURNNonoverlapping(R, Ranges);

ELSE IF branch operator is "!=" THEN
R = C..C;
N = B’s taken succ;
RETURNNonoverlapping(R, Ranges);

ELSE IF (B’s branch and the branch of a succ S of B
form a bounded range R AND

B and S have a common succ AND
Nonoverlapping(R, Ranges)) T HEN

N = the succ of S not associated with R;
RETURN TRUE;

ELSE
SWITCH (branch operator)

CASE "<": R = MIN..C-1; I = C ..MAX;
CASE "<=": R = MIN..C; I = C+1..MAX;
CASE ">=": R = C..MAX; I = M IN..C-1;
CASE ">": R = C+1..MAX; I = M IN..C;

IF (Nonoverlapping(R, Ranges)) T HEN
N = B’s fall-through succ;
RETURN TRUE;

ELSE
N = B’s taken succ;
RETURNNonoverlapping(R = I, Ranges);

RETURNFALSE;
}

Figure 4: Detecting a Reorderable Sequence

-3-

Figure 5 shows an example of detecting a sequence
of range conditions. Figures 5(a) and 5(b) show a C code
segment and the corresponding control flow produced by
the compiler. Figure 5(c) shows the sequence of reorder-
able range conditions that are detected using the algorithm
in Figure 4. Note that all of the ranges are nonoverlapping.

if (c >= ’a’ && c <= ’z’ ||

c >= ’ A’ && c <= ’Z’)

T1;

else if (c == ’_’)

T2;

T3;

else

T4;

(a) C Code Segment

else if (c <= ’˜’)

Blocks Range Target

1,2 T1

3,4 T1

6 T2

8 T4

(c) Reorderable Range Conditions

[97..122]

[65..90]

[95..95]

[127..MAX]

1

2

c < 97

c <= 122

c < 65

c > 90

T1

3

4

5

F

F

F

F

T

T

T

T

c != 95

T2

T3

T4

6

7

8

9

10

F

F

T

T

c > 126

(b) Control Flow

Figure 5: Example of Detecting Range Conditions

A more complete set of branches that compare a
common variable to constants may be detected by propa-
gating value ranges through both successors of each branch
(i.e. detecting a DAG of branches instead of a path of range
conditions) [UhW97]. There were two reasons why
reordering was limited to sequences of range conditions.
First, there were very few cases that we examined where a
sequence of range conditions did not capture the entire set
of branches comparing a common variable to constants.
Second, we show in this paper that it is possible to start
with a sequence and guarantee an improved reordered
sequence with respect to profile and cost estimates.

4. MAKING SEQUENCES REORDERABLE

It may appear that the restrictions in Theorem 1
would result in few reorderable sequences of range condi-
tions being detected. In fact, most of the sequences could

be altered to meet these restrictions.For instance, the range
conditions can be duplicated to ensure that the sequence is
always entered at the head.Likewise, if a basic block con-
tainingR1 did have a preceding side effect, then it could be
split apart into the portion with the side effect and the por-
tion without one. Only the latter portion containing the
range condition would be reordered.Finally, there will typ-
ically be no assignments of registers or variables associated
with a range condition. The branch variable may be loaded
into a register preceding the first range condition.Any sub-
sequent loads of the branch variable in the sequence would
be redundant and are usually eliminated by the compiler.
Thus, each range condition could usually be accomplished
with just comparison and branch instructions since the
value of the branch variable was typically available in a
register and the constants tested in the range condition
could be represented in the comparison instructions for
most ranges of values. Theorem1 can be extended to allow
other instructions to produce the values being compared, as
long as these instructions have no side effects and do not
affect previous range conditions in the original sequence.

Sometimes intervening side effects do exist between
range conditions.Rather than attempting to reorder such
sequences directly, we instead determine if we can move
the side effects out of the sequence by duplicating code.
Figure 6(a) shows a sequence of two range conditions with
an intervening side effect S, which is actually in a block
containingR2. Figure 6(b) portrays how the side effect can
be moved after R2 by duplicatingS on both transitions
from the range condition. Note that the transitions fromP2
andP3 require that the side effect S be placed in separate
basic blocks. The resulting sequence of range conditions
now has no intervening side effects and can be reordered.

T1R1
T

F

S

R2 T2

T3

T

F

P1

P2

P3

T1R1
T

F

R2 S
T

S T2

T3

F

P2

P3

P1

(a) Original Sequence (b) Transformed Sequence

Figure 6: Moving Side Effects from
a Sequence of Two Range Conditions

Theorem 2. A side effect between two consecutive range
conditions can be duplicated to follow the second range
condition with no semantic effect on the program if the side
effect does not affect the branch variable of the second
range condition and the sequence can only be entered
through the first range condition.

-4-

Proof: Consider the original and transformed sequences of
range conditions in Figure 6. The two sequences are
semantically equivalent given that (1) state of the program
is equivalent in both sequences when blocksT2 andT3 are
reached, (2) blocksT2 andT3 are always reached in both
sequences under the same conditions, and (3) no new error
exceptions are raised.

Condition 1 is satisfied since the range conditionR2 in the
transformed sequence has no side effects,S is executed in
both sequences whenT2 or T3 is reached after executing
R2, and S is not executed if T2 or T3 is reached without
executing R2. Condition 2 is satisfied sinceS does not
affect the branch variable ofR2. Condition 3 can be satis-
fied by noting that no new side effects are introduced in the
transformed sequence.

Given Theorem 2, it can be shown through induction that a
sequence of range conditions with intervening side effects
can be transformed to have no intervening side effects and
still have the same semantic effect on the program if the
side effects do not affect the branch variable of the range
conditions and the sequence is only entered through the
first range condition.

5. PRODUCING THE PROFILE INFORMATION

The profiling code for reordering range conditions
checks if the common variable is within ranges of values.
The compiler needs to know how often each range condi-
tion in the sequence would have a transition out of the
sequence given it was executed when the head of the
sequence is encountered.The instrumentation code for
obtaining profile information about the sequence was
entirely inserted at the head of the sequence to check every
range condition in the sequence.However, additional
ranges have to be determined from the ones calculated by
the algorithm in Figure 4.

Definition 7. An explicit range is a range that is checked
by a range condition.

Definition 8. A default range is a range that is not checked
by a range condition.

Consider the original sequence of range conditions in
Figure 7(a). There are additional ranges associated in the
default target TD since these ranges will span any remain-
ing values not covered by the other ranges. It is assumed in
this figure thatMIN < c1, c2+1 < c3, and c4 < MAX. Fig-
ure 7(b) shows an equivalent sequence with these default
ranges explicitly checked. Figure7(c) shows a reordered
sequence of range conditions, where the range condition for
the last default range in 7(b) was placed first in the
sequence. Oncea point is reached in the sequence where
there is only a single target possible, then all remaining
range conditions need not be explicitly tested as shown in
Figure 7(d). The compiler calculated these remaining
ranges by sorting the explicit ranges and adding the

minimum number of ranges to cover the remaining values.

R3

R4 TD

[MIN..c1-1]

[c2+1..c3-1]

T

T

F

F

T

F

F

P

T

T
R1

R2

T1 [c1..c2]

R5

T2 [c3..c4]

(c) Reordered Sequence

[c4+1..MAX]

T

F

F

P

T

T
R1

R2

T1 [c1..c2]

R5

T2 [c3..c4]

TD

F

[MIN..c1-1]

[c2+1..c3-1]

(d) Equivalent Reordered Sequence

[c4+1..MAX]

T

F

P

R1 T1 [c1..c2]

T
R2 T2 [c3..c4]

T

R3

R4

R5

TD

T

T

T

[MIN..c1-1]

[c2+1..c3-1]

F

F

F

(b) Equivalent Original Sequence

[c4+1..MAX]

T1

P

R1
T

[c1..c2]

TD

[c2+1..c3-1]

R2 T2 [c3..c4]
T

[MIN..c1-1]

F

F

(a) Original Sequence

[c4+1..MAX]

Figure 7: Example of Reordering Default Range Conditions

6. SELECTING THE SEQUENCE ORDERING

The ordering for a reorderable sequence of range
conditions was chosen by using the factors specified in the
following two definitions.

Definition 9. pi is the probability that range condition Ri

will exit the sequence of range conditions.

Eachpi was calculated using the profile information indi-
cating how often the corresponding range conditionRi

would exit the sequence if it was executed. Theaccuracy
of this probability depends on the correlation of the branch
results between using the training data set and the test data
set. It has been found that conditional branch results can
often be accurately predicted using profile data [FiF92].

Definition 10. ci is the cost of testing range condition Ri.

Each ci was estimated by determining the number of
instructions required for the corresponding range condition.
This cost includes the conditional branch(es), associated
comparison(s), and any instructions that produce the values
being compared. (A more accurate cost estimate could be
obtained by estimating the latency and pipeline stalls asso-
ciated with these instructions.) Some factors of the cost
can vary depending upon the ordering of range conditions
selected. Inthese cases, a conservative estimation of the
cost was used.

-5-

Definition 11. TheCost([R1,...,Rn]) is the estimated cost of
executing a sequence of range conditions.

The explicit cost of a sequence of range conditions is calcu-
lated as a sum of products. One factor is the probability
that a range condition will be reached and will exit the
sequence, which is equal to the probability that the range
condition will be satisfied since the range conditions are
associated with nonoverlapping ranges. The other factor is
the cost of performing the instructions in that range condi-
tion and all preceding range conditions in the sequence.
Equation 1 represents the explicit cost of executing a
sequence ofn range conditions, where every range associ-
ated with the sequence is explicitly checked.

Explicit_Cost([R1, . . . ,Rn])
(1)= p1c1 + p2(c1 + c2) + . . .+ pn(c1 + c2 + . . .+ cn)

Theorem 3. A sequence of two consecutive nonoverlap-
ping range conditions can be optimally ordered with
respect to the probability and cost estimates as [Ri,Rj]
when pi/ci ≥ pj/cj.

Proof: An optimal ordering of two consecutive nonoverlap-
ping range conditions can be achieved when the explicit
cost of the selected ordering is less than or equal to the
explicit cost of the other ordering.

Explicit_Cost([Ri , Rj]) ≤ Explicit_Cost([Rj , Ri])
pi ci + p j (ci + c j) ≤ p j c j + pi (c j + ci)

pi ci + p j ci + p j c j ≤ p j c j + pi c j + pi ci

p j ci ≤ pi c j

p j /c j ≤ pi /ci

pi /ci ≥ p j /c j

Intuitively, this means that it is desirable to first execute the
range conditions that have a high probability of exiting the
sequence along with a low cost. Given Theorem 3, it can
be shown through induction that an entire sequence of
explicitly specified nonoverlapping range conditions can be
optimally ordered.

However, there is also a default cost, which occurs
when no range condition is satisfied and the control trans-
fers to the default target. Equation2 shows the complete
cost of a sequence, where only the firstn ranges are
explicit.

Cost([R1, . . . ,Rn]) = E xplicit_Cost([R1, . . . ,Rn]) +
(2)(1 − (p1 + . . .+ pn))(c1 + . . .+ cn)

Once only a single target remains, then the range conditions
associated with that target need not be tested.Consider
again the example in Figure 7(a). The three targets of the
range conditions areT1, T2, and TD. Each of these targets
could be potentially used as the default target and its asso-
ciated range conditions would not have to be tested. The
TD target has three associated ranges.If any of these
ranges are explicitly checked, then Theorem 3 should be

used to establish its best position relative to the other
explicitly checked range conditions to achieve the lowest
cost for the sequence.If TD will be used as the default tar-
get, then at least one of the three range conditions should
not be explicitly checked.

Definition 12. mindefault(Ti) is the minimum cost of any
ordering of a range condition sequence, whereTi is used as
the default target.

For each potential default target having m associated
ranges, there are 2m-1 possible combinations of these range
conditions that do not have to be explicitly checked. The
compiler used the orderingp1/c1 ≥ ... ≥ pm/cm between the
m ranges of a target to consider onlym possible combina-
tions of default range conditions, {{Rm}, { Rm-1,Rm}, ...,
{ R1,...,Rm}}. The compiler selected the lowest cost combi-
nation of default ranges by calculating the minimum cost of
the sequence excluding the range conditions associated
with each of these sets. Assume thatt is the number of
unique targets out of the sequence.The compiler then cal-
culates the minimum of {mindefault(T1), mindefault(T2),
..., mindefault(T t)}. Note that only the cost ofn sequences
have to be considered, wheren is the total number of
ranges for all of the targets.

Our approach is not guaranteed to be optimal.How-
ev er, we also implemented an exhaustive approach to find
the lowest cost sequence. Our approach always selected the
optimal sequence for every reorderable sequence in every
test program for the training data sets.

Equation 3 represents the cost of executing a
sequence ofn-1 explicitly checked range conditions, where
only range conditioni is a default range.

Cost([R1, . . . ,Ri−1,Ri+1,. . . ,Rn])
= p1c1 + . . .+ pi−1(c1 + . . .+ ci−1)

+ pi+1(c1 + . . .+ ci−1 + ci+1) + . . .

+ pn(c1 + . . .+ ci−1 + ci+1 + . . .+ cn)
(3)+ pi (c1 + . . .+ ci−1 + ci+1 + . . .+ cn)

However, Equation 3 can be rewritten as Equation 4, where
the cost of a sequence of range conditions with a default
range can be calculated by subtracting the difference from
Equation 1.

Cost([R1, . . . ,Ri−1,Ri+1,. . . ,Rn])
= Cost([R1, . . . ,Rn]) + pi (ci+1 + . . .+ cn)

(4)− ci (pi + . . .+ pn)

The ordering of a sequence of range conditions was
selected using the algorithm in Figure 8. The algorithm
first uses Equation 1 to calculate the cost of the optimal
sequence when all of the range conditions are explicitly
checked. It then uses Equation 4 to avoid calculating the
complete cost of then different sequences. The complexity
of the algorithm isO(n), wheren is the number of ranges in
the sequence.

-6-

/* Assume the range conditions are sorted in descending order of Pi/Ci.
Calculate the cost with all range conditions explicitly checked.*/

Explicit_Cost = 0.0;
cost = 0;
FOR i = 1 to n DO

cost += C[i];
Explicit_Cost += P[i]*cost;

/* tcost[i] = Ci+1 + ... + Cn and tprob[i] = Pi + Pi+1 + ... + Pn.*/
tcost[n] = 0;
tprob[n] = P[n];
FOR i = n-1 downto 1 DO

tcost[i] = C[i+1] + tcost[i+1];
tprob[i] = P[i] + tprob[i+1];

/* Now find the sequence with the lowest cost.*/
Lowest_Cost = Explicit_Cost;
FOR each unique target T DO

Cost = Explicit_Cost;
Elim_Cost = 0;
FOR each range Ri in T from lowest

to highest P[i]/C[i] DO
Cost += P[i]*(tcost[i] - Elim_Cost)

- C [i]*tprob[i];
IF Cost < Lowest_Cost THEN

Lowest_Cost = Cost;
Best_Sequence = current sequence;

Elim_Cost += C[i];

Figure 8: Sequence Ordering Selection Algorithm

7. IMPROVING THE SELECTED SEQUENCE

Other improvements were obtained after the ordering
decision was made.The compiler can determine the best
ordering of the two branches within a single range condi-
tion that is of type Form 4 shown in Table 1. The compiler
assumed that both branches would be executed in estimat-
ing the cost for selecting the range condition ordering.If
the result of the first branch indicates that the range condi-
tion is not satisfied, then the second branch need not be
executed. Assumethat such a range condition,Ri, is the ith
range condition in the sequence and is associated with the
range[c1..c2]. The probability that the value of the com-
mon variable is below or above the range[c1..c2] at the
point that the range condition is performed can be deter-
mined as follows. We know that the range conditions asso-
ciated with the sequence[R1,R2,...,Ri-1] have already been
tested and the value of the common variable cannot be in
these ranges ifRi is reached.Given that there aren total
range conditions, the compiler examined the probability for
each of the remaining ranges,[Ri+1,Ri+2,...,Rn], to deter-
mine the probability thatv < c1 versus thatv > c2. Based
on these probabilities, the branch is placed first that is most
likely to determine if the range condition is not satisfied.

Another improvement that was performed after the
range conditions have been ordered is to eliminate redun-
dant comparisons.For instance, consider Figure 9(a).
There are two consecutive range conditions that test if the
common variable is in the ranges[c+1..max] and [c..c].
Figure 9(b) shows a semantically equivalent comparison
and branch for the first range condition. The comparison

instruction within the second range condition becomes
redundant and the compiler eliminates it.

first comparison: IC=v?c+1; IC=v?c;
first branch:

second comparison:
second branch:

PC=IC>=0->L1;
IC=v?c;
PC=IC==0->L2;

PC=IC>0->L1;

PC=IC==0->L2;
(b) After(a) Before

Figure 9: Eliminating Redundant Comparisons Example

8. APPLYING THE TRANSFORMATION

Once a branch ordering has been selected, the com-
piler will apply the reordering transformation.Figure 10(a)
shows a control-flow segment containing a sequence of
three explicit range conditions (R1, R2, and R3) and two
intervening side effects (S1 and S2). Figure10(b) shows
the control flow with the replicated range conditions (R1’,
R2’, and R3’) inserted. Thepredecessors of the first origi-
nal range condition now hav e transitions to the first repli-
cated range condition. Note that the target TD in Figure
10(a) has a fall-through predecessor. Code starting at the
target block TD was duplicated until an unconditional
jump, return, or indirect jump was found.This approach
avoided increasing the number of unconditional jumps
executed from the reordered sequence and also simplified
the estimation of the cost of a reordered sequence.A simi-
lar approach has been used when transforming code to
improve branch prediction [YoS94]. Figure10(c) shows
the control flow with the two intervening side effects dupli-
cated to allow the sequence of range conditions to be
reordered.T2 is also duplicated to avoid an extra uncondi-
tional jump. Figure 10(d) shows the control flow after
reordering the range conditions.R4 was one of the original
default range conditions and is now explicit and first in the
replicated sequence.R1’ andR2’ have also been reversed.
Figure 10(e) shows the code after applying dead code elim-
ination. Theoriginal range conditionsR1 and R2 were
deleted, while range conditionR3 remains since it was still
reachable from another path. Other optimizations, such as
code repositioning and branch chaining to minimize uncon-
ditional jumps, were also reinvoked to improve the code.

9. RESULTS

Table 2 shows the three different sets of heuristics
used when translatingswitch statements. Thefront end
used Heuristic Set I, which are the same heuristics used in
the pcc front end [Joh79], when compiling for a SPARC
IPC and a SPARC 20. The authors used the dual loop
method [CDV86] and found that indirect jumps on the
SPARC Ultra I were about four times more expensive than
indirect jumps on the SPARC IPC or SPARC 20 [Uh97].
Therefore, Heuristic Set II used for the Ultra only generated
an indirect jump whenn ≥ 16. Finally, Heuristic Set III
always generated a linear search, which achieved the maxi-
mum benefit from reordering.

-7-

S1

S2

TD

R1 T1
T

F

S1

R2

F

S2

R3 T3
T

TD

T2

T

...

F

P2

P1

(a) Original Sequence

R1 T1
T

F

S1

R2

F

S2

R3 T3
T

TD

...

T

T2

F

P1

P2

R1’

S1

R2’

F

R3’

S2

F

F

T

T

T

TD

...

P3

...

P3

(b) After Duplicating the Sequence

P1

...

T2

P2

S1

T2

S1

S2

T3

T1 R1’

F

R2’

F

R3’

F

F
T

T

T

R1
T

F

S1

R2

F

S2

R3
T

TD

F

P3

...

T

(c) After Eliminating Intervening Side Effects

R4

F

F

R3’

F

F

R2’

R1’

R1
T

F

S1

R2

F

S2

R3
T

TD

F

P1

...

T2

P2
P3

...

T
T

T

T

S1

S2

T3

S1

T2

T1

...

T2

P2

F

F

R3’

FS1

S2

T

T3

R4

F

TD

T
R2’

R1’

T1

T

P1

S2

P3

...

S1

T2

TD

F

R3
T

(e) After Dead Code Elimination(d) After Reordering Range Conditions

T T

S2

S1S1

S2

TD

Figure 10: Applying the Reordering Transformation

Term Definition

n Number of cases in aswitch statement.
m Number of possible values between the first and last case.

Heuristic
Set

Indirect Jump Binary Search Linear Search

I n ≥ 4 && ! indirect_jump !indirect_jump&&
m ≤ 3n && n ≥ 8 !binary_search

II n ≥ 16 && !indirect_jump !indirect_jump&&
m ≤ 3n && n ≥ 8 !binary_search

III never nev er always

Table 2: Heuristics Used for TranslatingswitchStatements

Measurements were collected on the code generated
for the SPARC architecture by thevpo compiler [BeD88]
using theeaseenvironment [DaW91]. Table 3 shows the
test programs used for this study. We chose these non-
numerical applications since they tend to have complex
control flow and a higher density of conditional branches.
Table 4 shows the dynamic frequency measurements that
were obtained.The Original Insts column contains the
number of instructions executed with all ofvpo’s conven-
tional optimizations applied.We present in the rest of the
table the percentage change in the number of instructions

Program Description

awk Pattern Scanning and Processing Language
cb A Simple C Program Beautifier
cpp CCompiler Preprocessor
ctags GeneratesTag File for vi
deroff Removes nroff Constructs
grep Searchesa File for a String or Regular Expression
hyphen ListsHyphenated Words in a File
join RelationalDatabase Operator
lex Lexical Analysis Program Generator
nroff Text Formatter
pr PreparesFile(s) for Printing
ptx Generatesa Permuted Index
sdiff Displays Files Side-by-Side
sed StreamEditor
sort Sortsand Collates Lines
wc DisplaysCount of Lines, Words, and Characters
yacc Parsing Program Generator

Table 3: Test Programs

and branches executed after reordering sequences of range
conditions. Thereordering transformation had significant
benefits both in reducing the total number of instructions
and conditional branches. The original default target in a
sequence was almost always selected as the default target
for the reordered sequence.However, the profile data also

-8-

Switch Reordered
Trans- Original
lation

Heuris-
tics

Insts Insts Branches
Program

awk 13,611,150 -2.02% -4.19%
cb 17,100,927 -7.65% -15.46%
cpp 18,883,104 -0.13% -0.19%

ctags 71,889,513 -9.10% -14.72%
deroff 15,460,307 -1.53% -2.63%
grep 9,256,749 -3.60% -8.31%

hyphen 18,059,010 +3.42% +3.40%
join 3,552,801 -1.68% -2.12%
lex 10,005,018 -4.56% -10.39%

nroff 25,307,809 -2.48% -6.35%
pr 73,051,342 -16.25% -29.96%
ptx 20,059,901 -9.18% -13.28%
sdiff 14,558,535 -16.09% -37.03%
sed 14,229,310 -1.16% -2.03%
sort 23,146,400 -47.20% -57.38%
wc 25,818,199 -15.05% -26.26%

yacc 25,127,817 -0.25% -0.44%

av erage 23,477,465 -7.91% -13.37%

Set I

awk 13,552,831 -2.97% -6.15%
cb 17,100,927 -7.65% -15.46%
cpp 18,880,116 -0.13% -0.19%

ctags 71,824,093 -9.02% -14.64%
deroff 15,451,383 -1.39% -2.38%
grep 9,938,414 -10.53% -22.04%

hyphen 18,059,010 +3.42% +3.40%
join 3,552,801 -1.68% -2.12%
lex 10,003,391 -4.57% -10.40%

nroff 25,313,527 -2.50% -6.39%
pr 73,051,352 -16.25% -29.96%
ptx 20,059,901 -9.18% -13.28%
sdiff 14,558,530 -16.09% -37.03%
sed 14,243,263 -1.28% -2.32%
sort 23,146,400 -47.20% -57.38%
wc 25,818,199 -15.05% -26.26%

yacc 25,127,817 -0.25% -0.44%

av erage 23,510,571 -8.37% -14.30%

Set II

awk 13,651,335 -3.63% -7.44%
cb 19,662,207 -21.79% -37.41%
cpp 30,477,974 -28.37% -41.85%

ctags 72,222,399 -9.13% -14.73%
deroff 15,491,185 -1.40% -2.39%
grep 11,810,072 -32.04% -51.42%

hyphen 18,059,010 +3.42% +3.40%
join 3,552,801 -1.68% -2.12%
lex 10,028,151 -4.77% -10.73%

nroff 25,339,678 -2.53% -6.45%
pr 73,051,352 -16.25% -29.96%
ptx 20,059,901 -9.18% -13.28%
sdiff 14,558,530 -16.09% -37.03%
sed 15,368,724 -10.07% -17.01%
sort 23,146,434 -47.20% -57.38%
wc 25,818,199 -15.05% -26.26%

yacc 25,168,370 -0.47% -0.76%

av erage 24,556,842 -12.72% -20.75%

Set III

Table 4: Dynamic Frequency Measurements

indicated that one of the original default ranges was fre-
quently satisfied and was explicitly checked in the
reordered sequence. Also, comparison instructions became
redundant and were eliminated much more often when an
original default range became an explicit range in the

reordered sequence.One may notice that the transforma-
tion had a slight negative impact on hyphen, which
occurred for a couple of reasons. First, different test input
data was used as compared to the training input data for the
results presented in the table. When we used the same test
input data as the training input data, the number of
branches never increased. Second,the reordering transfor-
mation was applied after all optimizations except for filling
delay slots.Sometimes delay slots would be filled from the
other successor and would not execute a useful instruction.
One should note that inconsistent filling of delay slots also
sometimes resulted in increased performance benefits.The
transformation may also have very significant benefits
when a program executes most of its instructions in a
reorderable sequence, such as insort. The differences
between using the different sets of heuristics indicates that
the effectiveness of branch reordering increases as indirect
jumps become more expensive. It is also interesting to note
that the total number of instructions executed after reorder-
ing often decreased as fewer indirect jumps were generated.
This shows that profile information should be used to
decide if an indirect jump should be generated or branch
reordering should instead be applied.

Branch prediction measurements shown in Table 5
were obtained for the SPARC Ultra I, which supports
branch prediction with a (0,2) predictor with 2048 entries.
The authors anticipated that the number of branch mispre-
dictions would decrease since the number of total branches
executed was substantially reduced.Fewer mispredictions
had been observed when branches were coalesced into indi-
rect jumps [Uh97].However, the misprediction results for
branch reordering were mixed. Nineof the test programs
had fewer mispredictions after reordering and the remain-
ing eight had increases.Overall, the average number of
mispredictions increased.We suspect that adding more
branches to a sequence caused additional mispredictions to

Original Reordered Inst
Mispreds Mispreds Ratio

Program

awk 243,027 -0.46% N/A
cb 440,712 +5.77% 51.41
cpp 389,566 -1.75% N/A
ctags 569,753 +225.50% 5.04
deroff 62,819 -2.87% N/A
grep 115,007 -4.30% N/A
hyphen 266,177 +84.12% -2.76
join 50,440 -5.62% N/A
lex 66,534 +1.93% 355.47
nroff 141,167 -0.93% N/A
pr 750,570 +0.33% 4,793.65
ptx 215,218 +37.58% 22.78
sdiff 156,440 -5.35% N/A
sed 83,579 -1.84% N/A
sort 171,619 -10.41% N/A
wc 481,767 +0.18% 4,519.65
yacc 373,825 +0.55% 30.28

av erage 269,307 +18.97% 1,221.94

Table 5: Branch Prediction Measurements
Using a (0,2) Predictor with 2048 Entries

-9-

occur. But the average ratio of decreased instructions
executed to the increased number of branch mispredictions
was 1221.94 to 1 for these eight programs. Thus, the
increase in mispredictions was far outweighed by the bene-
fit of reducing the number of instructions executed. Com-
parable results were obtained using other branch predictors
as shown in Table 6.

(0,1) Predictor (0,2) Predictor (2,2) Predictor

Reor- Reor- Reor-
dered dered dered

Inst Inst Inst

Mis- Mis- Mis-
preds preds preds

Ratio Ratio Ratio

Entries

32 +16.65% 681.20 +17.37% 1313.47 +17.05% 805.78
64 +21.96% 720.73 +21.15% 1082.02 +20.77% 640.08

128 +21.91% 8583.19 +20.60% 1091.28 +19.40% 661.92
256 +21.91% 972.87 +20.21% 953.70 +19.03% 569.88
512 +19.67% 5852.38 +18.09% 1200.25 +17.34% 681.98

1024 +20.45% 13331.71 +18.88% 1217.61 +18.44% 664.03
2048 +20.59% 13311.73 +18.97% 1221.94 +37.65% 653.02

av erage +21.43% 6207.69 +19.32% 1154.32 +21.38% 668.10

Table 6: Branch Prediction Measurements

The execution time measurements shown in Table 7
were obtained from the average reporteduser times of ten
executions of each program using the C run-time library
function times(). One should note that in Table 4 the mea-
surements from the code compiled by our compiler did not
include the C run-time library code.However, the library
code did contribute to the execution times. Also, the bene-
fits for the Ultra I were probably not as significant due to
the increase in the number of mispredictions.

Machine HeuristicSet Average Execution Time

SPARC IPC I -4.94%
SPARC 20 I -5.57%
SPARC Ultra I II -2.88%

Table 7: Execution Times

Table 8 shows static measurements for the same set
of programs. There was only about a 5% increase in the
number of instructions generated.The Total Seqscolumn
represents the total number of reorderable sequences
detected in each program.The Seqscolumn indicates the
percentage of these sequences that were actually reordered.
The single most common factor that prevented a sequence
from being reordered was that profile data indicated that the
sequence was never executed. Usingmultiple sets of pro-
file data to provide better test coverage would increase this
percentage. TheAvg Seq Lenshows the average number of
branches in each reordered sequence before and after
reordering. Thelength of each reordered sequence typi-
cally increased since often one or more default ranges
became explicit after reordering.Heuristic Set III resulted
in fewer sequences since no binary searches were generated
when translatingswitch statements. Eachbinary search
generated for Heuristic Sets I and II resulted in several
reorderable sequences being detected.

Switch Reordered
Trans- Pro- Total
lation gram Avg Seq Len

Heuris-
tics Orig After

Seqs Seqs
Insts

awk +1.91% 48 16.67% 2.88 3.75
cb +8.32% 12 83.33% 2.50 2.80
cpp +1.57% 15 33.33% 2.20 3.20

ctags +9.48% 28 39.29% 2.64 3.36
deroff +1.58% 38 23.68% 2.67 2.89
grep +3.51% 7 28.57% 3.50 4.50

hyphen +8.70% 3 100.00% 2.67 3.33
join +7.61% 8 37.50% 3.33 3.67
lex +8.55% 95 58.95% 2.55 2.95

nroff +1.62% 87 21.84% 2.95 3.53
pr +2.40% 10 50.00% 3.00 4.20
ptx +1.47% 4 75.00% 3.00 4.33
sdiff +3.48% 8 37.50% 2.67 3.33
sed +4.22% 34 47.06% 2.88 3.50
sort +3.68% 16 56.25% 2.33 2.78
wc +10.20% 3 33.33% 5.00 5.00

yacc +6.42% 35 77.14% 3.70 4.48

avg +4.98% 26 48.20% 2.97 3.62

Set I

awk +2.05% 56 19.64% 3.91 4.55
cb +8.32% 12 83.33% 2.50 2.80
cpp +1.57% 16 31.25% 2.20 3.20

ctags +9.47% 29 37.93% 2.64 3.36
deroff +1.76% 41 24.39% 3.00 3.20
grep +4.11% 19 36.84% 2.57 2.86

hyphen +8.70% 3 100.00% 2.67 3.33
join +7.61% 8 37.50% 3.33 3.67
lex +8.98% 103 58.25% 2.68 3.07

nroff +1.73% 93 25.81% 2.83 3.33
pr +2.62% 11 54.55% 3.67 4.67
ptx +1.47% 5 60.00% 3.00 4.33
sdiff +3.49% 10 40.00% 3.00 3.50
sed +4.32% 41 51.22% 2.81 3.29
sort +3.68% 16 56.25% 2.33 2.78
wc +10.20% 3 33.33% 5.00 5.00

yacc +6.42% 35 77.14% 3.70 4.48

avg +5.09% 29 48.67% 3.05 3.61

Set II

awk +1.97% 42 30.95% 18.15 18.69
cb +11.17% 6 66.67% 5.50 7.75
cpp +2.47% 16 37.50% 14.33 16.50

ctags +6.50% 21 38.10% 3.50 4.50
deroff +1.23% 34 20.59% 5.29 5.57
grep +3.29% 9 44.44% 8.00 8.50

hyphen +8.70% 3 100.00% 2.67 3.33
join +7.61% 8 37.50% 3.33 3.67
lex +6.25% 54 59.26% 6.16 7.00

nroff +1.71% 46 32.61% 6.00 6.87
pr +2.62% 11 54.55% 3.67 4.67
ptx +1.47% 5 60.00% 3.00 4.33
sdiff +3.49% 10 40.00% 3.00 3.50
sed +5.32% 25 48.00% 7.75 8.58
sort +3.76% 11 63.64% 3.57 4.29
wc +10.20% 3 33.33% 5.00 5.00

yacc +6.64% 29 79.31% 4.52 5.65

avg +4.96% 19 49.79% 6.08 6.96

Set III

Table 8: Static Measurements

Figures 11, 12, and 13 show the distribution of the
number of branches in reordered sequences for each of the
three heuristic sets.Note that most of the original
sequences contained only two or three branches.This
shows that much of the benefit for reordering comes from

-10-

short sequences of branches that would never be translated
into indirect jumps.

0

20

40

60

80

100

2 4 6 8 10 12 14 16 18
Original Sequence Length

Average: 2.97

0

20

40

60

80

100

2 4 6 8 10 12 14 16 18
Reordered Sequence Length

Average: 3.62

Figure 11: Sequence Length for Heuristic Set I

0

20

40

60

80

100

2 4 6 8 10 12 14 16 18
Original Sequence Length

Average: 3.05

0

20

40

60

80

100

2 4 6 8 10 12 14 16 18
Reordered Sequence Length

Average: 3.61

Figure 12: Sequence Length for Heuristic Set II

0

10

20

30

40

50

60

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100105
Original Sequence Length

Average: 6.08

0

10

20

30

40

50

60

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100105
Reordered Sequence Length

Average: 6.96

Figure 13: Sequence Length for Heuristic Set III

10. FUTUREWORK

There are several areas in which reordering branches
could be extended. Asequence of range conditions is one
of several approaches that could be used to determine a tar-
get associated with the value of an expression. Essentially,
a sequence of range conditions is a linear search. Some of
these other approaches include performing a binary search,
using a jump table, and hashing [Spu94].Profile data could
be used to more effectively apply these other approaches as
a semi-static search method and to decide when each
method or a combination of methods is most beneficial.

A different type of sequence of branches that can be
reordered using profile data would consist of consecutive
branches with a common successor. Figure 14(a) shows a
C source code segment containing relational and logical
expressions and Figure 14(b) shows the corresponding con-
trol-flow graph. Thesequence of branches in blocks 1, 2,

and 3 have block 4 as a common successor. Likewise, the
sequence of branches in blocks 4 and 5 have block 7 as a
common successor. Figure 14(c) shows these two
sequences of branches after reordering.Note that a
reorderable sequence of branches with common successors
cannot contain intervening side effects. Whileside effects
could be moved out of such a sequence, the resulting
sequence would not contain a common successor block.
Interprocedural analysis could be used to determine if
invoked functions do not cause a side effect. Avoiding the
execution of a function call, such as depicted in block 2,
could have significant performance benefits.Figure 14(d)
depicts that a sequence of branches with a common succes-
sor can be viewed as a single block containing a branch
since such a sequence would have only two possible suc-
cessors. Thefirst sequence (blocks 3, 1, and 2) has two
successors (blocks 5 and 6).Likewise, the second sequence
(blocks 5 and 4) also has two successors (blocks 6 and 7).
Figure 14(e) shows that these sequences can be reordered
when there are no side effects between the sequences.

T

T

T

T

F

F

F
T

F

F
7 6

a==01

2

3 b==2

f()==1

d==4

c==34

5

T

F

F

F

d==4

c==3

b==2

a==0

f()==1

1

5

2

4

3
T

T

F

F T

T

67

(d) Before Reordering Sequences (e) After Reordering Sequences

T1T2 T2 T1

a==0

f()==1

b==2

c==3

d==4

T

T

T

T

F

F

F
T

1

2

3

4

5

F

F
7 6

T

T

T

T

F

F

F
T

F

F
7 6

a==01

2

3 b==2

f()==1

d==4

c==34

5

(b) Before Reordering Branches (c) After Reordering Branches

T2 T1 T2 T1

if (a == 0 && f() == 1 && b == 2 || c == 3 && d == 4)
T1;

else
T2;

(a) C Source Code Segment

Figure 14: Reordering Branches with Common Successors

Obtaining profile data for a sequence of branches
with a common successor will differ from obtaining profile
data for a sequence of nonoverlapping range conditions
testing a common variable. Whileat most one range condi-
tion will be satisfied for a given execution of a sequence of

-11-

nonoverlapping range conditions testing the same branch
variable, more than one branch in a sequence of branches
with a common successor could branch to the common suc-
cessor. Thus, all combinations of branch results would
have to be obtained using an array of profile counters.This
approach may be reasonable for a small sequence length
(e.g.n ≤ 7), which seem to handle most branch sequences
with a common successor [Yan98].

11. CONCLUSIONS

This paper described an approach for using profile
information to decrease the number of conditional branches
executed by reordering branch sequences. An algorithm for
detecting a reorderable sequence of branches testing a com-
mon variable was presented.Profiling was performed to
estimate the probability that each branch will transfer con-
trol out of the sequence.The most beneficial orderings for
these sequences with respect to profiling and cost estimates
were obtained.The results showed significant reductions in
the number of branches and instructions executed, as well
as decreases in execution time.

ACKNOWLEDGEMENTS

The authors thank Jack Davidson for allowing vpo to
be used for this research.Michael Sjödin, Chris Healy, and
the anonymous reviewers provided several helpful sugges-
tions that improved the quality of the paper. We also thank
Mooly Sagiv for reviewing the final version of this paper.

REFERENCES
[AlC71] F. Allen and J. Cocke, “A Catalogue of Opti-

mizing Transformations,” pp. 1-30 in Design
and Optimization of Compilers, ed. R. Rustin,
Prentice-Hall, Englewood Cliffs, NJ (1971).

[BeD88] M. E. Benitez and J. W. Davidson, “A Portable
Global Optimizer and Linker,” Proceedings of
the SIGPLAN ’88 Symposium on Programming
Language Design and Implementation, pp.
329-338 (June 1988).

[BGS97] R.Bodik, R. Gupta, and M. Soffa, “ Interproce-
dural Conditional Branch Elimination,” Pro-
ceedings of the SIGPLAN ’97 Conference on
Programming Language Design and Imple-
mentation, pp. 146-158 (June 1997).

[CaG94] B.Calder and D. Grunwald, “Reducing Branch
Costs via Branch Alignment,” Proceedings of
the Sixth International Conference on Architec-
tural Support for Programming Languages and
Operating Systems, pp. 242-251 (October
1994).

[CDV86] R. M. Clapp, L. Duchesneau, R. A. Volz, T. N.
Mudge, and T. Schultze, “Tow ard Real-Time
Performance Benchmarks for Ada,” Communi-
cations of the ACM 19(8) pp.760-778 (August

1986).

[DaJ96] J.W. Davidson and S. Jinturkar, “Aggressive
Loop Unrolling in a Retargetable, Optimizing
Compiler,” Proceedings of Compiler Construc-
tion Conference, pp. 59-73 (April 1996).

[DaW91] J.W. Davidson and D. B. Whalley, “A Design
Environment for Addressing Architecture and
Compiler Interactions,” Microprocessors and
Microsystems15(9) pp. 459-472 (November
1991).

[FiF92] J.A. Fisher and S. M. Freudenberger, “Predict-
ing Conditional Branch Directions from Previ-
ous Runs of a Program,” Proceedings of the
Fifth International Conference on Architec-
tural Support for Programming Languages and
Operating Systems, pp. 85-95 (October 1992).

[Joh79] S.C. Johnson, “A Tour Through the Portable C
Compiler,” Unix Programmer’s Manual, 7th
Edition2B p. Section 33 (January 1979).

[MuW95] F. Mueller and D. B. Whalley, “Av oiding Con-
ditional Branches by Code Replication,” Pro-
ceedings of the SIGPLAN ’95 Conference on
Programming Language Design and Imple-
mentation, pp. 56-66 (June 1995).

[Spu94] D.A. Spuler, “Compiler Code Generation for
Multiway Branch Statements as a Static Search
Problem,” Technical Report 94/03,James
Cook University, Townsville, Australia (Jan-
uary 1994).

[Uh97] G. Uh, Effectively Exploiting Indirect Jumps,
PhD Dissertation, Florida State University,
Tallahassee, FL (December 1997).

[UhW97] G.R. Uh and D. B. Whalley, “Coalescing Con-
ditional Branches into Efficient Indirect
Jumps,”Proceedings of the International Static
Analysis Symposium, pp. 315-329 (September
1997).

[Yan98] Minghui Yang, Improving Performance by
Branch Reordering, Masters Thesis, Florida
State University, Tallahassee, FL (1998).

[YJK97] C. Young, D. S. Johnson, D. R. Karger, and M.
D. Smith, “Near-optimal Intraprocedural
Branch Alignment,” Proceedings of the SIG-
PLAN ’97 Conference on Programming Lan-
guage Design and Implementation, pp.
183-193 (June 1997).

[YoS94] C. Young and M. D. Smith, “Improving the
Accuracy of Static Branch Prediction Using
Branch Correlation,” Proceedings of the Sixth
International Conference on Architectural Sup-
port for Programming Languages and Operat-
ing Systems, pp. 232-241 (October 1994).

-12-

