
FSU DEPARTMENT OF COMPUTER SCIENCE

1

Av oiding Conditional Branches
by Code Replication

by

Frank Mueller
Humboldt-Universita

..
t zu Berlin

David Whalley
Florida State University



FSU DEPARTMENT OF COMPUTER SCIENCE

2

Related Work

• Improving Performance via Code Replication

— Inlining: Holler and Davidson

— Loop Unrolling/Software Pipelining

— Avoiding Pipeline Stalls: Golumbic and
Rainish

— Avoiding Unconditional Jumps: Mueller
and Whalley

• Avoiding Conditional Branches via a Superopti-
mizer: Granlund and Kenner

• Branch Correlation: Krall, Young and Smith



FSU DEPARTMENT OF COMPUTER SCIENCE

3

Example of Avoiding Branches

• Conditional branches can often be avoided.

ORIGINAL AFTER RESTRUCTURING______________________ ___________________
flag = 1; flag = 1;
while (cnd1 && flag) { if (cnd1&& flag)

A; do {
if (cnd2) { A;

B; if (cnd2) {
flag = 0; B;
} flag = 0;

C; C;
} if (cnd1)

break;
break;
}

C;
}

while (cnd1);



FSU DEPARTMENT OF COMPUTER SCIENCE

4

Overview

• Determine potentially avoidable branches.

• Restructure control flow.

• Compress restructured control flow.

• Replicate and position restructured code.



FSU DEPARTMENT OF COMPUTER SCIENCE

5

Determining Where Branches Are Affected

• Which registers and variables are affected in a
basic block?

• Which registers and variables affect a compari-
son? Expandthe comparison to find out.

r[1]=HI[_g]; /* sethi %hi(_g),%g1 */
r[8]=R[r[1]+LO[_g]]; /* ld [%g1+%lo(_g)],%o0 */
IC=r[8]?5; /* cmp %o0,5 */
PC=IC<0,L20; /* bl L20 */
=>
IC=R[HI[_g]+LO[_g]]?5;



FSU DEPARTMENT OF COMPUTER SCIENCE

6

Finding Avoidable Branches Algorithm

• The iterative algorithm below determines which
branches can potentially be avoided.

DO
FOR each block B in the loop DO

B->in := NULL.
FOR each immediate predecessor P of B DO

B->in := B->in ∪∪ P->out.
IF P contains a branch THEN

B->in := B->in ∪∪ (any branches that
the transition from P to B subsumes).

END IF
END FOR
B->out := B->in - (the branches that B affects).
B->out := B->out ∪∪ (the branches made known

by the effects in B).
IF B contains a branch THEN

B->out := B->out ∪∪ B.
END IF

END FOR
WHILE any changes



FSU DEPARTMENT OF COMPUTER SCIENCE

7

Example of Potentially Known Branches

1

2

3

4 5

6

7

8

3<=

2<=

7<=

J

J

J

F

F

F

2 in: 2,3,7
3 in: 2,3,7 3 out: 2,3,7
4 in: 2,3,7 4 out: 2,7
5 in: 2,3,7 5 out: 2,3,7
6 in: 2,3,7 6 out: 3,7
7 in: 2,3,7 7 out: 2,3,7

2 out: 2,3,7

Original Loop Potentially Known Branches



FSU DEPARTMENT OF COMPUTER SCIENCE

8

Conditional Branch States

• Each block is assigned a state for each avoidable
branch.

— unknown

— fall-through

— branch

• unknown state when

— branch not yet encountered

— branch unpredictably affected

• known state when

— immediate predecessor block contains
the branch

— branch predictably affected



FSU DEPARTMENT OF COMPUTER SCIENCE

9

Decidable Effects on Branches

• This table depicts three ways that some other
block can cause a branch result to become
known.

Case DecidableEffect
Av oidable IC=r[8]?0; /* cmp %o0,0 */

Branch PC=IC==0,L1; /* be L1 */

Other r[8]=-1; /* move -1,%o0 */
Block

I.

Av oidable IC=r[2]?50; /* cmp %g2,50 */
Branch PC=IC>0,L2; /* bg L2 */

Other r[2]=r[2]+1; /* add 1,%g2,%g2 */
Block

II.

Av oidable IC=r[2]?76; /* cmp %g2,76 */
Branch PC=IC>0,L4; /* bg L4 */

Other IC=r[2]?83; /* cmp %g2,83 */
Block PC=IC<=0,L3; /* ble L3 */

III.



FSU DEPARTMENT OF COMPUTER SCIENCE

10

Subsumption Jump Requirements

• Cases when the result of one branch can cause
another branch to be taken.

known subsumable jump
result branch requirement example

v = c1 v = c2 c1 = c2 v = 10 → v = 10
since 10 = 10

v ≠ c2 c1≠ c2 v= 10 → v ≠ 15
since 10≠ 15

v rel2 c2 c1 rel2 c2 v = 10 → v < 20
since 10 < 20

v ≠ c1 v= c2 N/A N/A

v ≠ c2 c1= c2 v ≠ 10→ v ≠ 10
since 10 = 10

v rel1 c1 v rel2 c2 addeq(rel1) = addeq(rel2) v≥ 11→ v > 10
&& since ’≥’ = ’ ≥’

c1* addeq(rel1) c2* && 11≥ 10+1

v = c2 N/A N/A

v ≠ c2 c1noeq(rel1) c2 v≥ 20→ v ≠ 10
since 20 > 10



FSU DEPARTMENT OF COMPUTER SCIENCE

11

Subsumption Fall-Through Requirements

• Cases when the result of one branch can cause
another branch to not be taken.

known subsumable fall through
result branch requirement example

v = c1 v = c2 c1 ≠ c2 v= 10 → ¬(v = 15)
since 10≠ 15

v ≠ c2 c1= c2 v = 10 → ¬(v ≠ 10)
since 10 = 10

v rel2 c2 ¬(c1 rel2 c2) v = 10 → ¬(v > 20)
since ¬(10 > 20)

v ≠ c1 v= c2 c1 = c2 v ≠ 10→ ¬(v = 10)
since 10 = 10

v ≠ c2 N/A N/A

v rel1 c1 v rel2 c2 opp(noeq(rel1), noeq(rel2)) v≥ 10→ ¬(v < 10)
&& since opp(’>’, ’<’)

¬(c1* addeq(rel2) c2*) && ¬(10≤ 10-1)

v = c2 c1 noeq(rel1) c2 v≥ 20→ ¬(v = 10)
since 20 > 10

v ≠ c2 N/A N/A



FSU DEPARTMENT OF COMPUTER SCIENCE

12

Restructuring Algorithm

• The iterative algorithm produces a dummy con-
trol-flow graph.

Set the initial dummy node to be the header of the original loop
with a state of unknown for all avoidable branches.

Set the current dummy node to be this initial node.
WHILE there are dummy nodes to process DO

FOR each successor of the current dummy node DO
Calculate the state of the successor.
IF a node associated with the successor exists with the

same exact state for all avoidable branches THEN
Connect the current dummy node

to that existing node.
ELSE

Create a new dummy node with this state,
connect the current dummy node to it, and
append it to list of dummy nodes.

END IF
END FOR
Advance to the next dummy node to be processed.

END WHILE



FSU DEPARTMENT OF COMPUTER SCIENCE

13

Example of Restructuring a Loop

1

2

3

4 5

6

7

8

3<=

2<=

7<=

J

J

J

F

F

F

1

2

3

4 5

2 2

3

7 7

7

62F

2F

2F

2F

2F3J

2F3J

2F3J

2F3J

8

Original Loop Restructured Control Flow



FSU DEPARTMENT OF COMPUTER SCIENCE

14

Av oiding Branches Not in Innermost Loops

• The same algorithm was applied to levels of a
function other than innermost loops.

— Loops within a function are restructured
in the order of most deeply nested first.

— An inner loop is treated like a single ba-
sic block when restructuring an outer
loop.

— The outermost level of a function is
treated as a loop with no backedges.



FSU DEPARTMENT OF COMPUTER SCIENCE

16

Compression Algorithm

• The iterative algorithm eliminates unnecessary
nodes.

FOR each node in the dummy graph DO
IF the node contains a branch and has a known state

for that branch THEN
Mark the node as reaching that branch.

END IF
END FOR
DO

FOR each node in the dummy graph DO
IF the node has a known state for a branch and

an immediate successor reaches that branch THEN
Mark the node as reaching that branch.

END IF
END FOR

WHILE any changes
FOR each node in the dummy graph DO

Set the state of the node as unknown for any branch
that is not marked as having been reached.

IF another instance of the node exists
with the same state THEN
Delete the node and adjust the transitions in the graph.

END IF
END FOR



FSU DEPARTMENT OF COMPUTER SCIENCE

17

Replication and Positioning
of the Restructured Loop

• Heuristics to limit code expansion.

• New loop generated by replication, control flow
is adjusted, and avoidable branches are eliminat-
ed.

• Blocks are positioned to reduce the number of
unconditional jumps.

• Reapply other optimizations (dead code elimina-
tion).



FSU DEPARTMENT OF COMPUTER SCIENCE

18

Example of Positioning the Restructured Code

1

2

3

4 5

2 2

3

7 7

7

62F

2F

2F

2F

2F3J

2F3J

2F3J

2F3J

8

1

2

6

7

2

3

8

7

5

3

2

7

4

Restructured Control Flow Positioned Code



FSU DEPARTMENT OF COMPUTER SCIENCE

19

Positioning Algorithm

• The recursive algorithm positions the restruc-
tured code and attempts to reduce the frequency
of unconditional jumps.

PROCEDURE order(List, B, S-List)
IF B not marked as done AND

none of the members of S-List dominate B THEN
IF B is header of loop L AND there exists an

unmarked successor of an exit block in L THEN
B := unmarked successor of this exit block in L.

END IF
Mark B as done.
S-list := successors of B ordered by loop frequency.
WHILE S-list not empty DO

S := head of S-list.
S-list := tail of S-list.
order(List, S, S-list).

END WHILE
Insert B at the head of List.

END IF
END PROCEDURE



FSU DEPARTMENT OF COMPUTER SCIENCE

20

Static Results

• Test programs and increase in code size.

Static Instructions
Total RestructName Description

banner bannergenerator +18.24% +170.59%
cacheall cachesimulator +3.08% +21.89%
cal calendargenerator +21.51% +120.97%
ctags Ctags generator +10.53% +35.49%
dhrystone integer benchmark +8.60% +18.23%
join relationaljoin files +6.65% +17.09%
od octaldump +36.32% +129.09%
sched instructionscheduler +34.25% +87.02%
sdiff side-by-side file diffs +1.25% +3.78%
wc word counter +39.22% +172.73%
whetstone FPbenchmark -0.89% -8.74%
av erage +16.25% +69.83%



FSU DEPARTMENT OF COMPUTER SCIENCE

22

Sources for Avoiding Branches

• Not Affected: A path exists from a branch back
to the same branch without it being affected.

• Constant Comparison: An effect in another block
causes the branch result to become known.

• Same Direction: An effect will not change the
state of a branch given that the branch already
has a specific result.

• Subsumption: The result of one branch may indi-
cate the direction that a different branch will
take. 35.65% Not A�ected20.71% Subsumption
40.30% Constant Comparison 3.34% Same Direction



FSU DEPARTMENT OF COMPUTER SCIENCE

22



FSU DEPARTMENT OF COMPUTER SCIENCE

23

Future Work

• Restructuring across loop boundaries.

• Restructuring code containing indirect jumps.

• Use interprocedural and pointer analysis to avoid
additional branches.

• Use profiling.



FSU DEPARTMENT OF COMPUTER SCIENCE

24

Future Work (Cont.)

• Inv estigate other methods for determining when
the result of one branch subsumes another. Con-
sider a machine that core dumps when a memory
reference is performed at address zero. The sec-
ondif statement below could be avoided when
the firstif statement is not entered.

C Source Code Segment Corresponding RTLs
---------------------- --------------------
if (p->value == value) { r[1]=R[r[2]];

... IC=r[1]?r[3];
p = p->next; PC=IC==0,L10;
} ...

if (p) r[2]=R[r[2]+4];
L10: IC=r[2]?0;

PC=IC!=0,L20;



FSU DEPARTMENT OF COMPUTER SCIENCE

25

Conclusions

• Avoiding conditional branches by replicating
code

— relatively simple optimization to imple-
ment

— can be frequently applied

— significant performance improvements
for the restructured code portions


