FSU DEPARTMENT OF COMPUTER SCIENCE

~

Avoiding Conditional Branches
by Code Replication

by

Frank Mueller
Humboldt-Unversita zu Berlin

David Whalley
Florida State Umnversity

FSU DEPARTMENT OF COMPUTER SCIENCE

-

~

Related Work

» Improving Performance via Code Replication
— Inlining: Holler and Davidson
— Loop Unrolling/Software Pipelining

— Avoiding Pipeline Stalls: Golumbic and
Rainish

— Avoiding Unconditional Jumps: Mueller
and Whalley

* Avoiding Conditional Branches via a Superopti-
mizer: Granlund and Kenner

* Branch Correlation: Krall, Young and Smith

FSU

DEPARTMENT OF COMPUTER SCIENCE

-

Example of Aoiding Branches

e Conditional branches can often bewled.

ORI G NAL

fla
whi

ig (cndl && flag) {
i f (cnd2) {

flag
}

AFTER RESTRUCTURI NG

flag = 1;
| f (cndl&& fl ag)
do {
A,
i f (cnd2) {

flag = 0;

C

i f (cndl)
br eak:

br eak:

}
C

mhi%e (cndl);

~

FSU DEPARTMENT OF COMPUTER SCIENCE

4 N

Overview

* Determine potentially\aidable branches.
* Restructure control flw.
» Compress restructured controlwlo

* Replicate and position restructured code.

FSU DEPARTMENT OF COMPUTER SCIENCE

-

Determining Where Branches Are Affected

* Which registers and variables are affected in a
basic block?

* Which registers and variables affect a compari-
son? Expanthe comparison to find out.

r[1]=H [_4gd]; [* sethi %i(_g), %@l * |
r[8]=Rr[1]+Ld _g]]; /* Id [Yg1+% o(_g)], %00 */
| C=r[8] ?5; [* cnp %00, 5 */
PC=I C<0, L20; [* Dbl L20 * |

I:(>3=R[H[_g]+Ld _g]]?5;

FSU DEPARTMENT OF COMPUTER SCIENCE

-

-

~

Finding Avoidable Branches Algorithm

* The iteratve dgorithm belav determines which
branches can potentially becaded.

DO
FOR each block B intheloop DO
B->in:= NULL.
FOR each immediate predecessor P of B DO
B->in := B->in_] P->out.
| F P containsa branch THEN
B->in := B->in_J (any branchesthat
thetransition from P to B subsumes).
END IF
END FOR
B->out := B->in - (the branchesthat B affects).
B->out := B->out L] (the branches made known
by the effectsin B).
| F B containsa branch THEN
B->out := B->out L] B.
END IF
END FOR
WHILE any changes

FSU

DEPARTMENT OF COMPUTER SCIENCE

-

Original Loop

1

2

F
3 2<=
F

3<=| 4 5
7<=|7|J

8

~

Example of Potentially Known Branches

Potentially Known Branches

21n:
3in:
41in:
5in:
6 In:
71in:

2,3,7
2,3,7
2,3,7
2,3,7
2,3,7
2,3,7

2 out
3 out
4 out
5 out
6 out
7 out

0 2,3, 7
0 2,3, 7
2,7
0 2,3, 7
3,7
0 2,3, 7

FSU DEPARTMENT OF COMPUTER SCIENCE

-

~

Conditional Branch States

e Each block is assigned a state for eaabicable
branch.

— unknown
— fall-through
— branch
 unknown state when
— branch not yet encountered
— branch unpredictably affected
« known state when

— Immediate predecessor block contains
the branch

— branch predictably affected

FSU DEPARTMENT OF COMPUTER SCIENCE

-

~

Decidable Effects on Branches

* This table depicts three ways that some other

block can cause a branch result to become
known.

Case Decidablgffect
Avoidable | | C=r[8] ?0; /* cnmp %0, 0 */
| Branch PC=I C==0,L1; /* be L1 */
' Other r[8] =-1; /* nove -1, %00 */
Block
Avoidable | 1 C=r[2] ?50; [/* cnp %2, 50 */
Branch PC=1C0,L2; [* bg L2 */

Other r[2]=r[2]+1, /* add 1, %2, %g2 */
Block

Avoidable | | C=r[2] ?76; [* cnp %2, 76 */
Branch PC=I C0,L4; [/* bg L4 */
Other |C=r[2]?83; [* cnp %2, 83 */
Block PC=1 C<=0,L3; /* ble L3 */

FSU

DEPARTMENT OF COMPUTER SCIENCE

-

Subsumption Jump Requirements

» Cases when the result of one branch can cause
another branch to be taken.

~

known subsumable jump
result branch requirement example
v=cl V=C2 cl=c2 v=10 - v=10
since 10 =10
V #C2 cl#c2 v=10 - v#15
since 10# 15
vrel2 c2 clrel2 c2 v=10 - v<20
since 10 < 20
vZcl V=C2 N/A N/A
V Z C2 cl=c2 v£#10 - vz 10
since 10 =10
vrellcl vrel2 c2 addeq(rell) = addeq(rel2) =>v1 - v>10
&& since’'> ="2>'
cl* addeq(rell) c2* && 11> 10+1
V=C2 N/A N/A
V #£C2 clnoeq(rell) c2 v 20 - vz10
since 20 > 10

J

10

FSU DEPARTMENT OF COMPUTER SCIENCE

4 R

Subsumption Fall-Through Requirements

» Cases when the result of one branch can cause
another branch to not be taken.

known subsumable fall through
result branch requirement example
v=cl V=C2 cl#c2 v=10 - —(v = 15)
since 10« 15
V £ C2 cl=c2 v=10 - =(v# 10)
since 10 = 10
vrel2 c2 =(cl rel2 c2) v=10 - =(v>20)
since =(10 > 20)
vZ£cl V=2 cl=c2 v£10 - =(v=10)
since 10 = 10
V #£C2 N/A N/A
vrellcl vrel2 c2 opp(noeq(rell), noeq(rel2)) =10 - —(v < 10)
&& since opp(’>', '<’)
—(c1* addeq(rel2) c2*) && —(1G 10-1)
V=C2 cl noeq(rell) c2 =20 - (v =10)
since 20 > 10
VZ£C2 N/A N/A

- J

11

FSU DEPARTMENT OF COMPUTER SCIENCE

4 N

Restructuring Algorithm

* The iteratve dgorithm produces a dummy con-
trol-flow graph.

Set theinitial dummy nodeto bethe header of the original loop
with a state of unknown for all avoidable branches.
Set the current dummy nodeto bethisinitial node.
WHILE thereare dummy nodesto process DO
FOR each successor of the current dummy node DO
Calculate the state of the successor.
| F a node associated with the successor existswith the
same exact statefor all avoidable branches THEN
Connect the current dummy node
to that existing node.
ELSE
Create a new dummy node with this state,
connect the current dummy nodeto it, and
append it to list of dummy nodes.
END IF
END FOR
Advanceto the next dummy node to be processed.
END WHILE

N J

12

FSU DEPARTMENT OF COMPUTER SCIENCE

4 N

Example of Restructuring a Loop

Original Loop Restructured Control Flow
1 1
Y Y
2 2
F J
3 2<=| 6 2F| 3 6
F J
Y Y
3<=| 4 5 2F | 4 2F3J| 5 7
Y Y Y
7<=|71] J 2F| 7 2F3J| 7
FV l‘l_l l‘l_l
8 2F1 21 2F3J 21
L LI_I
2F3J 3
L

13

FSU DEPARTMENT OF COMPUTER SCIENCE

-

Avoiding Branches Not in Innermost Loops

 The same algorithm was applied tovdis of a
function other than innermost loops.

— Loops within a function are restructured
In the order of most deeply nested first.

— An inner loop is treated l&ka sngle ba-
sic block when restructuring an outer
loop.

— The outermost Mel of a function is
treated as a loop with no backedges.

14

FSU DEPARTMENT OF COMPUTER SCIENCE

4 N

Compression Algorithm

* The iteratve dgorithm eliminates unnecessary
nodes.

FOR each nodein the dummy graph DO
| F the node contains a branch and has a known state
for that branch THEN
Mark the node as reaching that branch.
END IF
END FOR
DO
FOR each nodein the dummy graph DO
| F the node has a known state for a branch and
an immediate successor reachesthat branch THEN
Mark the node as reaching that branch.
END IF
END FOR
WHILE any changes
FOR each nodein thedummy graph DO
Set the state of the node as unknown for any branch
that isnot marked as having been reached.
| F another instance of the node exists
with the same state THEN
Delete the node and adjust the transitionsin the graph.
END IF
END FOR

N J

16

FSU DEPARTMENT OF COMPUTER SCIENCE

4 N

Replication and Positioning
of the Restructured Loop

 Heuristics to limit code expansion.

* New loop generated by replication, controlwlo
IS adjusted, andvaidable branches are eliminat-
ed.

* Blocks are positioned to reduce the number of
unconditional jumps.

. Rea)pply other optimizations (dead code elimina-
tion).

17

FSU DEPARTMENT OF COMPUTER SCIENCE

-

Example of Positioning the Restructured Coc

Restructured Control Flow Positioned Code
1 1|
2
2
6
2F| 3 6 7
\ ..'__
2F | 4 2F3J| 5 7 2
3
2F | 7 2F3J| 7
: : 4
r 1 r a
2F 1 2! 2F3J 2 7
L _ L _
I‘l_l .. r -
2F3J' 3 Lg%'
| 3 |
5
8 7
”
8

18

FSU DEPARTMENT OF COMPUTER SCIENCE

4 N

Positioning Algorithm

 The recursie dgorithm positions the restruc-
tured code and attempts to reduce the frequenc

of unconditional jJumps.

PROCEDURE order(List, B, S-List)
| F B not marked as done AND
none of the membersof S-List dominateB THEN

|F B isheader of loop L AND thereexistsan
unmarked successor of an exit block inL THEN
B := unmarked successor of thisexit block in L.

END IF

Mark B asdone.

Slist := successors of B ordered by loop frequency.

WHILE SHist not empty DO
S:=head of Slist.
Slist :=tail of Sist.
order(List, S, Sist).

END WHILE

Insert B at the head of List.

END IF
END PROCEDURE

N J

19

FSU

DEPARTMENT OF COMPUTER SCIENCE

-

Static Results

~

e Test programs and increase in code size.

Name Description Static Instructions

P Total Restruct
banner bannagenerator +18.24% +170.59%
cacheall cachsimulator +3.08% +21.89%
cal calendagenerator +21.51% +120.97%
ctags Ctags generator +10.53% +35.49%
dhrystone | intger benchmark +8.60% +18.23%
join relationaljoin files +6.65% +17.09%
od octaldump +36.32% +129.09%
sched Instructioscheduler| +34.25% +87.02%
sdiff side-by-side file difs +1.25% +3.78%
wcC word counter +39.22% +172.73%
whetstone| FBenchmark -0.89% -8.74%
avegage +16.25% +69.83%

20

FSU DEPARTMENT OF COMPUTER SCIENCE

/ Sources for &oiding Branches \

* Not Affected: A path ®ists from a branch back
to the same branch without it being affected.

» Constant Comparison: An effect in another block
causes the branch result to become known.

« Same Direction: An effect will not change the
state of a branch g that the branch already
has a specific result.

« Subsumption: The result of one branch may indi-

cate the direction that a different branch will
take.

35.65% Not Affected

20.71% Subsumption

3.34% Same Direction

40.30% Constant Comparison

N J

22

FSU DEPARTMENT OF COMPUTER SCIENCE

~

22

FSU

DEPARTMENT OF COMPUTER SCIENCE

-

* Restructuring across loop boundaries.
* Restructuring code containing indirect jumps.

» Use interprocedural and pointer analysis\toic

Future Work

additional branches.

» Use profiling.

~

23

FSU

DEPARTMENT OF COMPUTER SCIENCE

-

e | Nvest]

~

Future Work (Cont.)

gate other methods for determining when

the result of one branch subsumes anoten-
sider a machine that core dumps when a memory
reference is performed at address zero. The sec-
ondi f statement belw could be aoided when
the firsti f statement is not entered.

C Sour ce Code Segnent
| f (p->val ue
b'¥ p- >next ;

.,
I f (p)

val ue) {

L10:

Correspondi ng RTLs

r[1]"r[3]
=

24

FSU DEPARTMENT OF COMPUTER SCIENCE

4 N

Conclusions

* Avoiding conditional branches by replicating
code

— relatvely simple optimization to imple-
ment

— can be frequently applied

— gignificant performance impx@ments
for the restructured code portions

25

