Avoiding Conditional Branches by Code Replication

FRANK MUELLER

Fachbereich Informatik
Humboldt-Universitazu Berlin
Unter den Linden 6
10099 Berlin, Germany

SUMMARY

On-chip instruction caches ae increasing in size.Com-
piler writers ar e exploiting this fact by applying a vari-
ety of optimizations that improve the execution peror-
mance of a program at the expense of ineasing its
code size.This paper describes a new optimization that
can be used to eoid conditional branches by eplicating
code. Thecentral idea is to determine if thee are paths
where the result of a conditional branch will be knavn
and to replicate code to exploit it. Algorithms ae
described for detecting when branches & avoidable,
for restructuring the control flow to avoid these
branches, and for positioning the replicated blocks in
the restructured code. The results indicate that the
optimization can be frequently applied with reductions
in both the number of instructions executed and total
instruction cache work.

INTRODUCTION

This paper describes awmegpproach for woiding
conditional branches by using code replicatiofhis
approach is accomplished in three steps for each loep le
of a function. First, analysis is performed to determine
whether ag conditional branches can beaided. Second,
an algorithm is used to determinevhthe control flev can
be restructured tovaid conditional branches by replicating

DAVID B. WHALLEY

Departmensf Computer Science
Florida State University
TalahasseeFL 32306-4019, U.S.A.
e-mail: whalley@cs.fsu.edu

phone: (904) 644-3506

results when a routine is inlined from more than one call
site. Execution performance benefits often occur since the
call and return arevaided and more information isvail-

able for other optimizations [DaH88]Loop unrolling
replicates the body within a loop. This optimization
reduces the number of compare and conditional branch
instructions gecuted by the loop and can result in more
effective sheduling of instructions within the loop body
[HeP90]. Replicatingportions of basic blocks has been
performed to @oid pipeline stalls for superscalar machines
[GoR90]. Softvare pipelining replicates code associated
with loops to produce a revised kernel of the loop that has
fewer pipeline stalls [Jai91].

Detecting the dependences between loop iterations
has been described by Banerjee [Ban9djis analysis has
been used to reorder loop iterations to enhance performance
for vectorization, parallelization, and caching.

Mueller and Whallg investigated &oiding uncondi-
tional jumps by code replication [MuW92]Jnconditional
jumps were replaced with a replicated sequence of instruc-
tions that either reaches a return alts into the block that
positionally follows the original unconditional jumplhe
growth in code size as minimized by choosing the short-
est path for the replacement.

A superoptimizer will generate arxlgaustve st of
bounded sequences of instructions with the goal of finding

basic blocks. At this point heuristics are used to determine@ ®quence that will produce the same effect as a more

whether the transformation isonthwhile. Finally new

expensve equence of instructionsThe more rpensve

blocks is established.

RELATED WORK

There are sgral optimizations that he been deel-
oped in an attempt to impre performance despite the
penalty of increasing code sizélining replaces a call by
the body of the routine beingvioked. Increaseaode size

and replaced with the lesgmensve quence. Thisech-
nique has been used to eliminate conditional branches o
short instruction sequences in rganstances on the IBM
RS/6000 [GrK92].

The optimization described in this paper can be
viewed as partial redundap@imination (PRE) of condi-
tional branches. PRE traditionally places copies of a com-
putation at other points in the controhfldo force the orig-
inal copy to become fully redundant so it can be deleted
[MoR79]. Thetransformation described in this paper dif-
fers since it imolves restructuring the control floby repli-
cating entire sequences of basic blocks.

The research described in the current papes w
inspired by the work of Krall [Kra94].Similar work was
later published by Young and Smithd$94]. Kralloften

result of the conditional branch has néeef. Theinitial
test of thef | ag variable would be #oided since the com-
parison is known to be trueln addition, the remaining

found a high correlation between the past results ofassignments tdé| ag can be remeed, assuming that the

branches and the future results of the same derdiit

value is not used after the loofrinally, space for the local

branches in a loop. This correlation typically increased f | ag variable would not be neededvgn that this was the
when code was replicated in the loop to distinguish only place in the function in which it was used.

between different loop pathd.he authors of this paper sus-
pected that the high correlation obsshby Krall may indi-
cate that manpaths in the replicated code were not possi-
ble due to data dependenciekhus, mag branches in the
replicated code could potentially beoaed.

MOTIVATION

While it has been shown that most unconditional
jumps can be eliminated by code replication [MuW92], it is
obvious that fever conditional branches can beo@led.
One may be inclined to belie that such transformations
would only rarely be possibleHowever, there are man
common instances in programs that can be ingoto The
examples in this section arevgh in C mde to more con-
cisely depict the transformations performetihe control
flow of the restructured C codegsments would be compa-
rable to a restructured flograph of basic blocks. Note that
the actual implementation of this general optimizatias w
performed in the back end of a compiler and ynather
types of transformation instances were applied.

l. Often, a flag is used by a programmer to exit a loop.

For example, consider the foldng segments of codelhe
original loop will &it if either a general condition or a flag
is false. Thecode to test thél ag variable is not within

the loop after restructuring since the replication of the code]y,

associated with statemenC;™ allows this test to be
avaded. Theflag will be zero or nonzero depending upon
the initial path taken and all subsequent tests of ahahle

fl ag are eliminated. Other optimizations that could be
applied to further impnee the code are depicted by italiciz-
ing the code portions that can be remth Thetest of
cndl afterfl ag is set to zero can be rewen dnce the

ORI G NAL AFTER RESTRUCTURI NG
I ag = flag = 1,
Ie(cndl&&flag) { i f (cndl&&flag)
A {
if (cnd2) {
B; |f (cnd2) {
fla ag = 0;
} fI ag =
C, C
} if (cndl)
br eak;
br eak;
}
G
1
while (cndl);

Il. Often, conditions may be tested that will result in a
conditional branch alays branching or afays falling
through once the branch has a certain redtit. instance,
consider the following code gments. Thdeft code sg-
ment contains a simple loop that will exit when both condi-
tions are &lse. Assumdéhat the wariablei is only incre-
mented in the loop. If the condition < 100 is ever
false, then it will alvays remain false for the remainder of
the loop. The right code segment shows the testing of the
first condition can bevaided after it becomes false.

ORI G NAL
< 100 ||

AFTER RESTRUCTURI NG
while (i < 100) {
N

while (i sonecnd) {
A

i :H'; i 1I-+;
’ \/\hil}e (somecnd) {
A

i ’++;
}

Similar behavior may be predicted for equality and
inequality tests.Given that a ariable is only incremented
or only decremented fowery iteration of a loop, an equal-
ity test of that variable with a loopviariant value will only
be true at most once for theeeution of the entire loop.
Likewise, a test for inequality of that variable will only be
false at most once.

A programmer may also often repeat conditions in
i f statements to impue readability For instance, check-
ing whether a pointer is not NULL may be doneesal
times in diferenti f statements in the same looBonsider
the follonving segments of code. Assume that thgablep

in the original code segment is not affected by the co@e in

ORI G NAL AFTER RESTRUCTURI NG
whi I e (somecnd) { whi I e (sonecnd) {
|f(p&& p == vall) |f(p){
if (p == val 1)
el se
G el se
if (p && *p == val 2)
i f (p == val 2)
el se
E; el se
;:; got o doE;
el se {
G
doE: E;

}
Fi
}

andC, but is afected by the code iAor F. The test op in (Register Transfer Lists).

the second f statement can bevaided by replicating the ([17=nH[g; /* sethi %i(_g), %1 x/
code inC. r[8]=R[r[1]+L] g]]; /* Id [vg1+% o(_g)], Y0 */

: - " " | C=r[8] ?5; /* cmp %0, 5 */
IV. Aninvariant condition may be tested inside of a loop. PO=| (<0, L20; I+ bl 120 y

In fact, loop iwvariant conditions are often generated due to _
applying other optimizationsConsider the nested loops in The effect of the comparison can be expanded to:
the following left code ggment. Itappears there are no 1 C=RIHI [_g] +Ld _g]]?5;

apparent imariant conditions. Yet, the inner loop will be 5 aqdition, for each basic block in the loop the compiler
transformed to woid executing an unconditional jump at getermines the set of gisters and variables that are

the end of the loop body on each iteration. As shown in theagected by instructions within the current blockhus, the
middle code sgment, the test condition is also tested ini- compiler can determine that a basic block updating the

tially before the loop is entered. This condition is 100p giopa| \ariableg could afect the result of this conditional
invariant in the outer loop and can beoiled by replicating branch. Updateso the raistersr[1] (%gl) or r[8]

code as shown in the right code segment. (%0) would hae o efect.
CRIGNAL AFTERCPTIM ZATION _ RESTRUCTURED The compiler next attempts to determine if there
do {A_ do & iA;O' exists a path through a loop from the point immediately
for (i=0; i =0; if (0<N) { after a conditional branch is encountered to the same
! :’;‘) if (d%<?') g%t? doB; branch without the comparison associated with the branch
B : A being afected. Ifa conditional branch is not affected in a
f? i}++? id;% path in which it is encountered, then that same path could
while (cnd); while (i<N); doB: B: be taken agin and the result ofxecuting the conditional
}C: i}++? branch would not change.
while (cnd); &/\/ﬂi le (i<N); There are cases where a conditional branch could be
Y affected in each path it is encountered, but still could be
while (cnd); avdded. Oneinstance is when a basic block can affect a
el SL { conditional branch, but only if the result of the branch had
ggt? doC, not already been in a specific direction (as depicted in
A Example Il in the motiation section). Detecting this situa-
doC: C tion requires remembering whether each branels Vast
whi |}e (cnd); taken or not.
}

The processing of a block may also mdhke result
A more traditional technique, callednswitching of a conditional branch known at that point. This situation

would simply test the loop Wrriant condition initially and ~ May occur as the result of updating a variable or register (as
then enter one of twloops based on the result [LRS76]. depicted in Example | in the maétion section) or when
Note that the total code replicated is greater in the generafhe result of one conditional branch subsumes another (as
approach described in this paper than it would be for shavn in Example Il in the motgtion section). The com-

unswitching This increase is due to only testing theaii piler needs to detect if the conditional branch can be

ant condition when it needs to beeeuted. Unlile reached from this block without being affected again.

unswitching the general approach described in this paper The algorithm for determining which branches can

will never increase the dynamic number of conditional be potentially woided is shwn in Figure 1. Each block

branchesxecuted. will have an in and anout state indicating the branches

whos? results are known at the beginning and end of the
DETERMINING WHETHER BRANCHES 1ock, A rane st o become oo s por 1 e
CAN BE AVOIDED grap « !

branch being xecuted whose result subsumes the branch,

Analysis is performed to determine whether the con- o the effects of a blockA known branch can become
ditional branches in a loop can beo@ed by replicating

code. Thecompiler first calculates the set ofyigters and ! The actual algorithm is a bit more complicatéfwo in and out

variables upon which a conditional branch (and its associ- states were actually calculated for each blo&8ame effects will only

ated compare instruction) depends This s&4 walculated malke a ranch result unknen if the branch result had been in a specific

b di he & fth : . . . direction. Inthese situations, only theut state of the block associated
y eXp_an Ing the) .Cts of the ComPare 'nStrUCt'on aSSOCI- yith the specific direction affected will be the one updated.

ated with the conditional branclor instance, consider the

following SPARC instructions represented asILR

unknavn due to an effect within a blockA branch is
potentially aoidable if it is in the blocls in state and is not
affected within the block (or is made known due to an
effect within the same block).

DO

(a) Original Loop (b) Potentially Known Branches

2in:2,3,7 2out: 2,3,7
3in: 2,3,7 3out: 2,3,7
4in: 2,3,7 4out: 2,7
5in:2,3,7 5out: 2,3,7
6in: 2,3,7 6out: 3,7
7in:2,3,7 7out:2,3,7

FOR each block B in the loop DO
B->in := NULL.
FOR each immediate predecessor P of B DO
B->in := B->in 0 P->out.
IF P contains a branch THEN
B->in := B->in (ary branches that
the transition from P to B subsumes).
END IF
END FOR
B->out := B->in.
B->out := B->out - (the branches that B affects).
B->out := B->out] (the branches made known
by the effects in B).
IF B contains a branch THEN
B->out := B->out] B.
END IF
END FOR
WHILE ary changes

(c) Restructured Control Flow (d) Positioned Code

Figure 1: Finding Aoidable Branches Algorithm

An example is gien in Fgure 2 to illustrate the algo-
rithm. Figure2 (a) depicts the original loop. Blocks 2, 3,
and 7 hge a onditional branch. Block 4 affects the condi-
tional branch in block 3 and block 6 affects the conditional
branch in block 2. The conditional branch in block 7 is
affected by other instructions in the same blo&gure 2
(b) shows the branches that are potentiallyvkmat the
entry and exit point of each basic block. The branches for
blocks 2 and 3 arevaidable since theare in thein states
and not affected within their own blocks. While the branch

in plock ! i_s in the?n state for th.at.bIOCK' the brgnch is not has not been encountered\poaisly in the control flor. A
avadable since It 1S affected W'thm block 7. Figures 2 (c) block will also hae ax unknownstate for a conditional
and 2 (d) will be discussed later in the paper. branch if the block affects the conditional branch in a man-
ner where the result okecuting the branch cannot be pre-
RESTRUCTURING THE CONTROL FLOW dicted. Thestate for a conditional branch within a block
TO AVOID BRANCHES will be set tofall-throughor branchif the immediate prede-
Once it has been determined that one or more condi-C€SSOr W&s the block containing the conditional branch.
tional branches in a loop can beoed, the control fl The state to be set depends upon whether the successor is a

within the loop can be restructureddn algorithm to ‘@l through or target of the branch.

accomplish the restructuring is based on keeping a state in The state for a conditional branch can also be set to a
each block for eachvaidable conditional branch in the fall-throughor branchwhen an effect in another portion of
loop. Ablock can inherit its state from a predecessor block the loop causes the result of the comparison to bekno

or change its state due to an effect within the block or dueTable 1 shows three suclkxamnples. Caséshows another

Y
[~ o

Figure 2: Restructuring a Loop tovéid Branches

to being an immediate successor of amidable condi- block setting one of the operands of tkpanded compari-
tional branch.A state associated with a conditional branch son to a constant. Thus, the result of the conditional branch
can hae me of three alues:unknown fall-through or can be determined to Wall-through at that point. Case Il
branch illustrates that the state of a conditional branch may not be

changed een though a variable or register within the asso-

An unknown state indicates that it is not kmp X _ i
ciated expanded comparison is updatd&the other block

whether or not the branch will be &k Ablock will typi-
cally have tis state for a conditional branch if the branch

-4-

Case DecidablEffect

Avoidable | | C=r[8] ?0; /* cmp %0, 0 */

| Branch PC=I C==0, L1; /* be L1 */

' Other r{8]=-1, /* move -1, %0 */
Block

Avoidable | 1 C=r[2]?50; /* cnmp %92, 50 */

' Branch PC=1C0,L2; [/* bg L2 */

' Other | r[2]=r[2]+1; /* add 1,9%g2, %g2 */
Block

Avoidable | 1 C=r[2]?76; /* cnp %92, 76 */

" Branch PC=I C0, L4; /* bg L4 */

' Other IC=r[2]?83; /* cnp %2, 83 */

Block PC=I C<=0, L3; /* ble L3 */

Table 1: Decidable Effects on Branches

will have ro &fect on the result of the conditional branch
when the state is alreadiyanch Case Il depicts a situa-

r[2] > 76 will jump when it is known that[2] >
83, as hdicated by the jump requirement in the thireévro
from the bottom of Table 2.

The restructuring algorithm shown in Figure 3 will
produce a dummy graph to efficiently represent théseel
control flov of the loop. If it is later determined that the
restructuring is wrthwhile, then the dummy graph will be
used to modify the actual control\flaf the function. The
central idea of the algorithm in Figure 3 is that & mede
will be added when no current node for that blogists
with the same set of states for thweidable branchesNote
that since each branch carvea sates, the upper bound
for the code size increase @%3"), wheren is the number
of branches that can beaided. Inpractice, such increases
have ot been obserd. Havever, to avoid an ecessie
code increase, a heuristi@svused to limit the value afin
a sngle loop. If more tham branches could bevaided in
a loop, themn branches are chosen based on thelilibod
of being reached from the loop headek conditional

tion where one conditional branch may also subsumePranchin a node that has a knowail{through or branch

another conditional branchin other words, the direction

state for that conditional branch will be eliminated in the

taken by one conditional branch may indicate the direction restructured code. Note that the associated comparison and

taken by another conditional branch in the same loop.

Assume the instructions in the other block arecated and
the branch is not t&n. Theavadable conditional branch
will be taken ifr [2] is not affected between thgeeution

of the two branches since the value i 2] is guaranteed

to be greater than 83. Note that the conditional branch can-

not be aoided if the conditional branch in the other block
is taken.

In general, a conditional branch can only be poten-
tially subsumed by another conditional branch when one
argument of each comparison is identical and the other
argument of each comparison is a constant or the same

invariant value. TBble 2 depicts the different cases when

the result of one conditional branch subsumes another

branch?® Column 1 shows a kmen result from one condi-
tional branch. This result is determined by not only the

operands of the comparison and the branch relational oper

ator, but also by whether or not the branch wastakFor
instance, the known result after the conditional branak w
not taken in the other block of Case lll iable 1 would be
r{2] > 83. The second column in Table 2 depicts the
condition associated with the branch to be subsunked.
instance, the subsumable condition associated witll-a
able branch in Case Il ofable 1 would be[2] > 76.
The third and fifth columns of Table 2 define the require-
ments for the widable branch to jump or fall through,
respectiely. A conditional branch with the condition

2 Note determining that a branch can beided when it is encoun-
tered and not affected in a path (asvehan Figure 2) is really a case of
the branch subsuming itself.

other dead instructions may be eliminated as well.

Set the initial dummy node to be the header of the original loop
with a state ofinknownfor all avoidable branches.

Set the current dummy node to be this initial node.

WHILE there are dummy nodes to process DO

FOR each successor of the current dummy node DO

Calculate the state of the successor.

IF a node associated with the successor exists with the
same exact state for all@dable branches THEN
Connect the current dummy node

to that existing node.

ELSE
Create a ng dummy node with this state,

connect the current dummy node to it, and
append it to list of dummy nodes.

END IF

END FOR
Advance to the next dummy node to be processed.
END WHILE

Figure 3: Restructuring Algorithm

Figure 2 (c) shows the restructured controlwflo
(dummy graph). The state isvgh to the left of each block,
which is depicted with the block number of the conditional
branch and whether it fell through (F) or jumped (J) in the
original loop. For instance, 2F3J indicates that the condi-
tional branch in block 2 willdll through next time and the
branch in block 3 will jump.A basic block represented
with a dashed box indicates that the conditional branch
(and typically its associated comparison) is unnecessary
and will not be placed in the restructured code.

known subsumable jump fall through
) example . gample
result branch requirement requirement
v=cl v=c2 cl=c2 v=10 -v=10 cl#c2 v=10 - (v =15)
since 10 = 10 since 15
vV #C2 cl#c2 v=10 - v#15 cl=c2 v=10 - =(v#10)
since 10« 15 sincel0 = 10
vrel2 c2 clrel2 c2 v=10 -v<20 =(clrel2 c2) v=10 - =(v > 20)
since 10 < 20 since (10 > 20)
v#cl v=¢c2 N/A N/A cl=c2 vz 10 - =(v =10)
since 10 = 10
vV #C2 cl=c2 v£10 - v#£10 N/A N/A
since 10 = 10
vrell cl vrel2 c2 addeq(rell) = addeq(rel2) =>d1 - v>10 || opp(noeq(rell), noeq(rel2)) =10 - —(v<10)
&& since’>' =">' & & since opp(>', '<)
cl* addeq(rell) c2* && 11> 10+1 =-(cl*addeq(rel2) c2*) && (10 10-1)
v=c2 N/A N/A c1 noeq(rell) c2 v 20 - =(v=10)
since 20 > 10
vV #Cc2 clnoeq(rell) c2 220 - v#£10 N/A N/A
since 20 > 10
where

(1) visavariable

(2) cisaconstant

(3) relis'<,'<, > or'>

(4) opp(rellrel2) returns true when (x rell y) && (x rel2 y) carveeboth be true (e.g. x >y && x <)

(5) noeq(relyeturns the relational operator withoutyaaguality (e.g. noegg’) and noeq(’>") both return '>’)
(6) addeq(relyeturns the relational operator with an equality (e.g. addgg(hd addeq(’>") both returre’)
(7) c*is aconstant that is adjusted by 1 in the appropriate direction if addeq(rel) != rel

Table 2: Subsumption Requirements

Note that if block 3 is reached, then the conditional branch COMPRESSING THE RESTRUCTURED GRAPH

loop. Likewise, if block 5 is reached, then both the condi- the restructuring algorithmFor instance, consider the con-
tlonal branches in blocks 2 and 3 can be subsequentlytyq flow of a function depicted in Figure 4 (assume the
avdded. conditional branch in block 2 subsumes the conditional
branch in block 7.1f the branch in block 2 jumps to block
7, then it is known that the branch in block 7 will transfer
control to block 8. Likewise, if block 2 falls through to
block 3, then the branch in block 7 will transfer control to
block 9. However, the eecution of block 6 affects the
branch in block 7. Figure 4 (b) shows the restructured con-
trol flow using the algorithm in Figure 3. Duplicate nodes
cIor blocks 3, 4, and 5 are generated sincg bawea dffer-

ent state for the branch in block 7. But these duplicate
nodes are unnecessary since the state of the branch will be
unknown upon transition to block 6.

Once the loop has been restructured, the dummy
graph is then compressed to eliminatey amnecessary
nodes. Theaalgorithm for compressing the graph is wimo
in Figure 5. The central idea is that the state of a branch in
a node will become unknown unless it can reach a node
containing that branch with that statBigure 4 (c) shas

AVOIDING BRANCHES NOT
WITHIN INNERMOST LOOPS

The algorithm shown in Figure 3as also xtended
to avoid branches that are not in the innermost loops of a
program. Thdoops of a function are processed in decreas-
ing order of their nesting ¥&l. Oncean inner loop has
been processed, the effects of all of its blocks are unione
before processing the xteouter level loop. Whileprocess-
ing the net outer loop, the inner loop is treated as if it were
a dngle block. The outermostvel of a function is treated
as a loop with no baeklges. Onlybranches at the current
loop level are considered candidates for beingoided.
Furthermore, the &fcts of an inner loop are not currently
used to mad the states of branches at outer loopele
known.

FOR each node in the dummy graph DO
(a) Original Control Flow (b) Restructured Control Flow IF the node contains a branch and has a known state
for that branch THEN
Mark the node as reaching that branch.
END IF
END FOR
DO
FOR each node in the dummy graph DO
IF the node has a known state for a branch and
an immediate successor reaches that branch THEN
Mark the node as reaching that branch.
END IF
END FOR
WHILE ary changes
FOR each node in the dummy graph DO
Set the state of the node as unknown fgrlaanch
that is not marked as having been reached.
IF another instance of the node exists
with the same state THEN
Delete the node and adjust the transitions in the graph.
END IF
END FOR

Figure 5: Compression Algorithm

The first stage estimates the increase in size of the
restructured code.The number of additional instructions
for a loop was limited toeid a significant increase in
code size. When this limit & exceeded, the analysiasv
reinvoked with a decremented number ofaided branches
to further reduce the amount of replicated code.

Figure 4: Eliminating Unnecessary Dummy Graph Nodes During the second stage, the restructured code is gen-

erated by replicating the corresponding blocks of the origi-
nal loop and adjusting the control iloaccording to the

the control flev of Figure 4 (b) after compressidn. dummy graph representing the revised control.fldThis
includes the elimination ofvaidable branches and adjust-
REPLICATION AND POSITIONING ing the control-flav transitions to enter and lea te
FOR THE RESTRUCTURED CODE restructured code instead of the original loop.

During the third stage, the loop information within
the revised control fle is calculated. This information is
subsequently used to adjust the positional order within the
restructured code by calling the procedorder, which is
shovn in Figure 6. This recurgd pocedure is initially
invoked with an empty list, the first block of the restruc-
tured code, and another empty list as paramefens. out-
put of the algorithm is a list of blocks corresponding to a
positional order such that unconditional jumps amided
when possible.The algorithm attempts to reduce the num-
ber of unconditional jumps via code positioning. While the

% |t may be possible to perform this analysis on the control & restructured control flw reduces the number of conditional
sociated with the original loop and adijust the states of the dummy nodes apranches, it also introduces replicated blocks withiw ne
they are produced in the algorithm shown in Figure 3. Thus, the last loop loops. It is imperatie © find a ‘good” positioning of these
in Figure 5 vould not be required if unnecessary nodes axerriatro- blocks or the benefit ofvaided conditional branches may
duced. well be outweighed by the introduction of unconditional
jumps to adjust the replicated controMlo

Given the revised control fle represented in the
dummy graph, the replication and positioning for the
restructured code is accomplished in multiple stagést,

a <t of heuristics are applied to determinevibiding the
conditional branches should be performefiecond, the
blocks of the original loop are replicatedhird, the blocks
are positionally ordered to reduce the number of uncondi-
tional jumps in the replicated cod&inally, a rumber of
optimizations are reapplied to the function in order to
exploit the simplified control fi in the restructured code.

PROCEDURE order(List, B, S-List)
IF B not marked adoneAND
none of the members of S-List dominate B THEN
IF B is header of loop L AND there exists an
unmarked successor of an exit block in L THEN
B := unmarked successor of this exit block in L.
END IF
Mark B asdone
S-list := successors of B ordered by loop freqyenc
WHILE S-list not empty DO
S := head of S-list.
S-list ;= tail of S-list.
order(List, S, S-list).
END WHILE
Insert B at the head of List.
END IF
END PROCEDURE

Figure 6: Positioning Algorithm

The algorithm works as follows. The recwesiroce-
dure order terminates when all blocks are marked as done.
The dominator check forces the recursion to backtrack
along the control flw when a block is encountered that is

dominated by an unprocessed sibling block. The dominator

check provides the means to position if-then-else state
ments (gen nested ones) before amlocks following the
if-then-else construct.

When a loop header is found, the algorithm folo
the control flev backwards to an exit block of the loop. It
then processes an unmeadk successor of the exit block
first. Thus, the algorithm attempts to process ttietdock
last, i.e. the «it block is positioned at the bottom of the
loop. This &oids an unconditional jump at the bottom of
the loop.

The successor lisB-list of the current block is
ordered in monotonically increasing loop frequeiof the
blocks. On a tie of frequepca Hock outside the current
loop (that includes blocB) appears first in the list. This
ordering ensures that the recursion isoked on lower-
frequeny successor blocks first, thereby inserting these
blocks inList before ag higher frequeng blocks. (Notice
the post-recursion action to insert bloBkat the head of
List.)

As an example, consider the restructured contral-flo

collected to yield thd.ist = {2, 3, 5, 7} This positional
order aoids ary unconditional jumps inside the loo-he
resulting positioned loop is shown in Figure 2 (d)he
dashed boxes indicate basic blocks where conditional
branches were eliminated\otice that there are uncondi-
tional jumps following tw instances of block 7 to block 8
as indicated by the dotted transitions. These jumps cannot
be eliminated, but tlyehave been mwed outside of ag
loop within the restructured code. Thus, thekegution
frequeng will be much less onvarage compared to gn
instruction inside a loop.

During the last stage, a number of standard optimiza-
tions are reapplied to the replicated code. Thiswallthe
compiler to tak alvantage of the simplified control flo
due to the elimination of conditional branches. The absence
of a branch and & comparison operation often results in
the elimination of a mgister assignment if the registeasv
dead after the comparison. The moréeetive reapplied
optimizations include: dead code elimination (to delete
dead assignments), branch chaining (to minimize tee- o
head of branches from within the replicated code $asit*-
rounding code), global gister allocation, common sube
pression elimination, and code motion. The latter optimiza-
tions are applied to tekadvantage of the we loop struc-
tures within the replicated codeThe efectiveness of
avading conditional branches can only be fullyptoited
when these optimizations are reapplied.

At an earlier stage of this ark, other basic block
reordering algorithms were tested. It was found that the
benefit of &oided conditional branches (and their corre-
sponding compares) was sometimes outweighed by intro-
ducing unconditional jumps on frequentlyeeuted paths.
Thus, an increase in the number akeuted instructions
occasionally occurredThe algorithm described in Figure
6, on the other hand, yielded the best results for programs
with different replication patterns by introducingwier
unconditional jumps.

RESULTS

The optimization to wid conditional branches as
implemented in the compiler back-end VPO (Very Portable
Optimizer) [BeD88]. The analysis and replication were
performed after all other optimizations had been initially

graph in Figure 2 (c). This graph contains a sequence ofépplied, &cept for filling delay slots, to maximize the bene-

blocks, 5-7-2-3, in a separate loop. If block 3 was position-
ally the last block in the loop, iteauld contain an uncondi-
tional jump to block 5. The ake dgorithm will eventually
result in a call torder(listl, 5, list2) The procedure deter
mines that 5 is a loop headdtr then follows the control
flow backwards inside the loop to find block 2, a successor
of exit block 7. This results in a sequence of calleder

with blocks 3, 5, and 7, following the control lofor-
wards. On the post-recursion action, these blocks are

fit of the traditional optimizations firdt. Measurements
were collected on code generated by the compiler using
EASE (Environment for Architectural Study and Experi-
mentation) [DaW91l] on the SPARC architecture for a

4 Unstructured loops can be introduced in the restructured code.
Thus, loop optimizations should be initially applied before the restructur
ing optimization.

Name Description Static Instructions Dynamic Instructions Cache Information

Total Restruct Total Restruct Branch HitRatio Change Work
banner bannegenerator +18.24% +170.59% | -4.43% -5.43% -10.51%| 98.97% -0.34% -1.77%
cacheall cachsimulator +3.08% +21.89% | -2.23% -1858% -23.48%| 76.21% +0.03% -2.30%
cal calendagenerator +21.51% +120.97% | -3.20% -12.48% -40.13%| 99.80% -0.35% -0.21%
ctags Ctags generator +10.53% +35.49%| -1.67% -2.07% -5.91%| 98.92% -0.40% +1.54%
dhrystone | intger benchmark +8.60% +18.23%| -1.06% -7.44% -20.00%| 84.62% -0.70% +1.56%
join relationaljoin files +6.65% +17.09%| -7.91% -9.87% -6.37%| 98.15% -0.79% -2.28%
od octaldump +36.32% +129.09% | -9.57% -12.18% -12.99%| 95.56% +1.60% -18.89%
sched instructioscheduler | +34.25% +87.02% | -5.55% -8.39% -10.29%| 96.00% +1.22% -13.15%
sdiff side-by-side file difs +1.25% +3.78% | -4.15% -9.01% +0.00%| 97.45% +0.09% -4.78%
wc word counter +39.22% +172.73% -11.11% -12.82% -22.15%| 99.89% -0.07% -10.52%
whetstone| F®enchmark -0.89% -8.74% | -6.81% -59.18% -75.00%| 100.00% -0.00% -6.45%
aveage +16.25% +69.83% | -5.24% -14.31% -20.62%| 95.05% +0.03% -5.21%

Table 3: Measurements

number of C programs, which included benchmarks, UNIX restructured code resulted in about 14%de instructions
utilities, and user applications. executed compared to their original loops and 20%efe
Table 3 shavs the measurements for these programs. executed conditional branches. The numbers indicate that
Each program was tested with and withouvading condi- the local savings of this meoptimization can be substantial
tional branches. The numbers in the table represent the pewhen the original code portion is compared with the
centage of change after applying thewneptimization. restructured code. Theverall savings for a program
Column 3 refers to the change in program size. Column 4depend on thexecution frequeng of the restructured loop.
shaws the increased percentage of static instructions onlylt was surprising to find thatven benchmark programs,
within the restructured code portions (loop or function such as dhrystone and whetstone, contained opportunities
level). Column5 depicts the decrease in the total number for the nev optimization with respectable savings.
of executed instructionsColumn 6 illustrates the reduction The hit ratio and i8 change provides a general idea
of executed instructions only within the restructured code. of the test programs’ caching performanceweeer, for
Column 7 reeals the dynamic change of branch instruc- reasons mentioned ptieusly, the cache wrk is a better
tions. Columns8 and 9 report the total hit ratio before the indicator to @auate the ne optimization. Thecache weork
new optimization and the change in the hit ratio after apply- indicates that the reduced number réarited instructions
ing the nev optimization, respeotely. Finally, column 10 outweighs the increase in code size garage, &en for a
refers to the effect on cache work for a direct-mapped 1kBrelatively small cache size of 1kB. These results invptb
instruction cache with a 16 byte line size. The cacbhekw with larger cache sizes. Due to changes in the layout of
is calculated by the formulazache work = cache hits + basic blocks, the cache measurements naay from pro-
cache misses * miss penaltyThe miss penalty was esti- gram to program. Thus, thevemage results seem more
mated at 10 cycles and a hit at 1 cycle [Smi82]. The cacheconclusve than the cache work of nisingle program.

work is a better measurement than the hit ratio for tiaé e Figure 7 shass the proportional benefit of the fif-
uation of optimizations when the number ofteeuted ent techniques employed tocid conditional branches.
instructions changes [DaH92]. Not afectedindicates branches that were encountered and

The static measurements shthat replication results not afected when reached on a subsequent loop iteration
in an increase of code size of about 16%, depending on(as shown in Figure 2). These cases account for about 1/3
hov mary conditional branches could bevaided. The
original code portions increased by about 70% wara@e ditional branches (due to gotos) in the restructured code. This resulted in
an overall reduction of code sizeven dter replication. For sdiff, the num-
when th@' were restructured. ber of compares and branches did not chafides was due to input data
The dynamic measurements indicate a savings ofthat neer resulted in eecuting the restructured code portions where con-
executed instructions of about 5% omemge? The ditional branches wereveided. Thedynamic savings were due to the e
ecution of fewer unconditional jumpdt was observed that restructuring

5) . .the code preided nev opportunities to @oid unconditional jumps via
The whetstone benchmark was reduced in code size due to a Cha"?:ode positioning.

of unconditional jumps in whetl(), accompanied by sets and tests of the
same local variable. These chains were greatly simplified by thepte
mization. Furthermore, the code positioning algorithm eliminated uncon-

-0-

of the aoided branches.Subsumptionmeans waoiding

ary function is iwoked. In addition, it wvas assumed that

branches whose direction can be inferred from the result ofary variable could be updated wheeea dore through a
other branches (as depicted in Case lll of Table 1) andpointer was encounterednterprocedural and pointer anal-

accounts for eer 1/5 of the saings. Brancheavdded due

to constant comparisonisnply that an gpanded compari-
son was known due to an effect along a contrel-fbath
(see Case | of Table 1) and are responsiblevier 40% of

the sa@ings. Ina few @ses, branches will follo the same
direction since the result of the comparison can no longer
be affected (as portrayed in Case Il of Table 1).

ysis would preide additional opportunities forveiding
branches.

CONCLUSIONS

This paper described a general approach Yoiding
conditional branches by replicating code. The restructured

code often contains simplified controlMlghat allows other
optimizations to be applied morefestively. Vectorizing

35.65% Not Affected

20.71% Subsumption

3.34% Same Direction

and parallelizing compilers, in particulanay benefit from
loops with fewer conditional branche§he optimization
could often be applied and resulted in significant perfor
mance impraeements for the code portions on which the
transformations were appliedThe benefits of this opti-
mization will improve & instruction cache sizes continue to

increase. Therare also promising future imprements

40.30% Constant Comparison
Figure 7: Sources forwiding Branches

A number of programs beyond the set iable 3
were tested and it was found that some conditional
branches could bevaided in &ery one of these programs.
Yet, about 1/3 of the programs resulted in &ecation ben-
efit of 1% or less. It was also observed that tHecef
tiveness of waoiding conditional branches is highly data
dependent. Ifbranches are vaided in loops with high

that could be made to alloa greater number of conditional
branches to bevaided.

ACKNOWLEDGEMENTS

The authors thank Jack idson for allaving vpoto
be used for this researctRicky Benitez deeloped the
ability in vpoto expand the effects of anTR for use in
other optimizations.This ability was used to expand the
effects of compare instructions, which ped quite useful
for determining the set of registers andrigbles upon

execution frequencies, then the benefits can be quite highwhich a conditional branch depends. Brad Caldemily

This observation would suggest thatiaing conditional
branches could be seleday applied where profiling data
indicates that high benefits are more likely.

FUTURE WORK

There are seeral areas that could be explored to pro- [Ban93]
vide more opportunities forvaiding conditional branches.
The effects at each exit of an inner loop are not currently
used to aoid branches in outer loopsyet, the results of
inner loops are often tested in conditions in outer loops.
The authors are considering applying the optimization to
the control flev of an entire function all at once, rather than
one loop at a time. Thus, the optimization could also be
applied to functions containing unstructured loops. In addi-
tion, loops containing indirect jumps and associated jump

[BeDS8]

tables are not currently restructured. [DaH88]
Opportunities for weoiding conditional branches

would increase if more information wasalable. For

instance, flags are often declared as glohehbles. Acall [DaH92]

to mary functions, such aprintf, would not afect a
global flag. However, the current analysis, which does not
perform interprocedural analysis, has to assunyegibal
variable could be d&écted in an unknown manner wheae

-10-

Ratliff, Randy White, and the anonymouwiesvers pro-
vided s&eral helpful suggestions that imprel the quality
of the paper.

REFERENCES

U. Banerjee, Loop Tansformations for
Restructuring Compilers: The oEndations,
Kluwer Academic Publishers, Norwell, MA
(1993).

M. E. Benitez and J. WDavidson, ‘A Portable
Global Optimizer and Lindr,” Proceedings of
the SIGPLAN 88 Symposium oroBramming
Languagie Design and Implementation pp.
329-338 (June 1988).

J.Davidson and A. Holler“A Study of a C
Function Inliney’ Software—Pactice & Expe-
riencel8(8) pp. 775-790 (August 1988).

J.W. Davidson and A. M. Holler* Subprogram
Inlining: A Study of its Efects on Program
Execution Tme,” IEEE Tansactions on Soft-
ware Engineering18(2) pp. 89-102 (February
1992).

[Dawo1]

[GOR90]

[GrK92]

[HeP90]

[Jaio1]

[Kra94]

[LRS76]

[MoR79]

[Muwo2]

[Smig2]

[Y0S94]

J.W. Davidson and D. B. Whalig “A Design
Environment for Addressing Architecture and
Compiler Interaction, Microprocesscs and
Microsystems15(9) pp. 459-472 (Nwember
1991).

M. C. Golumbic and VRainish, “Instruction
Scheduling beyond Basic BlockdBM Jour-
nal of Reseath and Development34(1) pp.
93-97 (January 1990).

T. Granlund and R. Bnner “Eliminating
Branches using a Superoptimizer and the GNU
C Compiler” Proceedings of the SIGPLAN '92
Confeence on Rsgramming Languge Design
and Implementatignpp. 341-352 (June 1992).

JHennessy and D.a@&ersonComputer Achi-
tectue: A Quantitative Apmach, Morgan
Kaufmann, San Mateo, CA (1990).

S.Jain, “Circular Scheduling: A Ne Tech-
nique to Perform Software PipelinifigPro-
ceedings of the SIGPLAN 91 Symposium on
Programming Languge Design and Imple-
mentation pp. 219-228 (June 1991).

A. Krall, “Improving Semi-static Branch Pre-
diction by Code Replicatich,Proceedings of
the SIGPLAN '94 Symposium oroBramming
Languaye Design and Implementation pp.
97-106 (June 1994).

P M. Lewis, D. J. Rosenkrantz, and R. E.
Stearns, Compiler Design TheoryAddison-
Wesley, Reading, MA (1976).

E. Morel and C. Revoise, “Global Optimiza-
tions by Suppression of Partial Redundanties,
Communications of theGM 22(2) pp. 96-103
(February 1979).

F. Mueller and D. B. Whalle “Avoiding
Unconditional Jumps by Code Replication,
Proceedings of the SIGPLAN '92 Coriece
on Programming Languge Design and Imple-
mentation pp. 322-330 (June 1992).

A. J. Smith, “Cache MemoriésComputing
Surveydl 4(3) pp. 473-530 (September 1982).

C.Young and M. D. Smith, “Impning the
Accuray of Static Branch Prediction Using
Branch Correlatiofi, Proceedings of the Sixth
International Conference on ghitectural Sup-
port for Pogramming Languges and Opeat-
ing Systemspp. 232-241 (Neember 1994).

-11-

