Isolation and Analysis of Optimization Errors

MICKEY R. BOYD AND DAVID B. WHALLEY
Department of Computer Science B-173, Florida State UniveTaitghasseeFL 32306, U.S.A.

e-mail: whally@cs.fsu.edu

SUMMARY

This paper describes tw related tools deeloped to sup-
port the isolation and analysis of optimization erors in
the vpo optimizer. Both tools rely on vpo identifying
sequences of changesgferred to as transbrmations,
that result in semantically equvalent (and usually
improved) code. One tool determines the first transbr-
mation that causes incorrect output of the execution of
the compiled program. Thistool not only automatically
isolates the illegal transformation, lut also identifies the
location and instant the transformation is perbrmed in
vpo. To assist in the analysis of an optimization ewr, a
graphical optimization viewer was also implemented
that can display the state of the generated instructions
before and after each transformation performed byvpo.
Unique features of the optimization viewer include
reverse viewing (or undoing) of transformations and the
ability to stop at breakpoints associated with the gener
ated instructions. Both tools are useful independently
Together these toolsdrm a powerful ervironment for
facilitating the retargeting of vpo to a new machine and
supporting experimentation with new optimizations. In
addition, the optimization viewer can be used as a
teaching aid in compiler classes.

INTRODUCTION

While the time required to retarget a back end of a box represent logical

compiler to a n& machine has decreasetlep the years,

phonéd04) 644-3506

optimizations to occur more rapidlhey aso increase the
difficulty of analyzing a specific problem.

This paper describes tatools that assist a compiler
writer in isolating and analyzing optimization errofSirst,
an optimization error isolator is presented that can automat-
ically determine the first transformation during the opti-
mization of a program that causes the output of Keeue
tion to be incorrect.Second, an optimization viewer is
described that can graphically depict the state of the gener
ated instructions before and after each transformation per
formed by the optimizer One can easily examine the
invalid transformation discaered by the optimization error
isolator with the optimization viewer and quickly access the
point in the compiler when the transformation is performed.

OVERVIEW OF THE COMPILER

The tools described in this paper support isolating
and analyzing optimization errors for the compiler technol-
ogy known asvpo (Very Portable Optimizer) [BeD88,
Dav86, DaF84]. The optimizerpa replaces the tradi-
tional code generator used in igaompilers and has been
used to build C, Pascal, and Ada compilers. The back end
is retageted by supplying a description of the getr
machine. Usingthe diagrammatic notation of W
[WJIW75], Figure 1 shows theverall structure of a set of
compilers constructed usingpa Vertical columns within a
phases which operate serially
Columns d¥ided horizontally into rows indicate that the

performing this task in an expeditious manner still remains subphases of the column may beaited in an arbitrary

a problem. Onereason is that the rate of wmemachines
being introduced has increaseth addition, there is an

order IL is the Intermediate Language generated by a front
end. Register transfers or ggster transfer lists (R.S)

increasing reliance on compilers to perform more sophisti- describe the &fcts of machine instructions andvieathe

cated optimizations toxeloit architectural featuresUsu-
ally these optimizations can be applied mo&aively in
the back ends of compilers [BeD88].

form of corventional expressions and assignmentssothe
hardwares gorage cells.For example, the RTL
r[1] =r[1] +r[2]; cc =r[1] +r[2] ? O;

Much of the effort required to retarget a back end represents a gster-to-rgister intger add on man
occurs during testing. Often much time is spent determin-machines. Whileary particular RTL is machine-specific,
ing why incorrect code is generated or optimizations cannot theformof the RTL is machine-independent.

be applied for specific programdvost back ends store

All phases of the optimizer manipulatells. An

information about the program that is being compiled in an advantage of using RTLs as the sole intermediate represen-
encoded internal format, whiclxacerbates these problems. tation is that manphase ordering problems are eliminated.

While such formats require

less space and wallo Most optimizations can be\voked in any order and are

allowed to iterate until no more imprements can be
found.

The RTLs are stored in a data structurevjpo that
also contains information about the order and contmelflo
of the RLs within a function. The vpo optimizer was

compiling some functions with optimizations and other
functions without optimizations andecuting the program.

(source languages) . .
If the program recutes correctlythen the compiler writer

Pascal C Ada

Y Y Y knows the problem is in the set of functions that were not
Front Front Front compiled with optimizations. Otherwise, the compiler
End End End writer assumes the problem is in the set of functions that

i'L L i'L were compiled with optimizations. The compiler writer

L] continues to narme down the set of functions that could
Code Code Code contain an error until the function with incorrect code is
Expanders Expanders Expanders isolated.
register| transfer The compiler writer can then compile the isolated
function with and without arious optimizations until find-
Branch Optimizations ing the additional optimization being applied to the func-

tion that causes the compiled program kecete incor

Instruction Selecti
nstruction Sefection rectly. At this point the compiler writer can visually

Evaluation Order Determination inspect the differences between the tssembly ersions
Register Allocation of .the funf:tlons in an attempt to dgtermme the |n§truct|on
Basic — \nstruction | Fill or instructions that appear to cause incorrect behavior.
Common Subexpressio
Block | Global Elimination Scheduling| Dela Given that the compiler writer is able to conclude
Opts | Dataflow | Dead Variable Eliminatio Slots that a specific instruction within a function causes the com-

piled program to produce incorrect results, finding the rea-
son wly the compiler produced this instruction is thetne
Recurrences task. ldentifyingthe optimization that produces the prob-
lem may be difficult since the instruction may only be pro-
duced when a specific combination of optimizations are

Analysis Code Motion

Strength Reduction

Induction Variable

Elimination performed. Een if the compiler writer happens to eor
v rectly identify the optimization that produces the problem,
Object File the point in the compiler when the incorrect transformation

occurs still has to be found? specific optimization may be

)) applied to hundreds of RTLs upowhen compiling a func-
Figure 1: Compiler Structure tion.

While these techniques may sometimes lbectbe,

modified to identify eaclthangeto this data structure and th%./ ae ?ISO quite tedious. F_urth(_armore,. some Comp”er
: R timizations that reducexecution time while increasing
to denote each serial sequence of changes that preserves t .) Lo
. . . code size are becoming more popul@hese optimizations
meaning of the compiled programnin this paper these

: include subprogram inlining [DaH88], loop unrolling
sequences of changes are referred teamsformations [HeP90], and replicating code teaid unconditional jumps

[Muw92]. Whenthese types of optimizations are applied,
ISOLATING OPTIMIZATION ERRORS a sngle function may xpand into seeral thousands lines
Testing is often the most time-consuming component Of assembly codeVisual inspection of such functions to
of retargeting a back end of an optimizing compiler to a discover incorrect instructions is impractical. Using tradi-
newn machine. Muchof the “me Spent during testing tional methOdS to |dent|fy the pOin'[in the Compiler that
involves isolating errors in an optimizer to determineywh causes an imlid instruction to be produced in these func-
specific programs do notecute correctly The compiler ~ tions may also be unrealistic.
writer must not only determine whatas produced incer
rectly in the erroneous program, but also at what point it Automatic Isolation of Optimization Errors

was produced within the compiler. A tool, calledvpoisq has been desloped to automat-
ically isolate the first transformation that causes incorrect
Traditional Isolation of Optimization Errors output from the xecution of the compiled progrant-irst,

Traditionally, the compiler writer initially attempts to ~ the optimization phases applied byo were classified as
determine the specific instruction (or instructions) gener one of two types, necessaryor improvng. A necessary
ated by the compiler that causes the compiled program tg°hase is required to produce code that can be compiled and
execute incorrectly One could first isolate a function that €xecuted. Thes@hases include assigning pseudgisters
contains incorrect instructionsThis is accomplished by to hardware registers and fixing the entry and exit points of

-2-

a function to manage the run-time stack. All phases that The vpoisotool is a C program which uses the C

are not required are referred to a@®mproving. Only systenm() function to irvoke various UNIX shell com-
improving transformations that cause incorrect output can mands. Firstypoisoreads in a file of information indicat-
be isolated bypoisa ing haw to isolate an error within a program. This informa-

The vpoisotool performs a binary search that relies tion includes the basenames of the files that are output from

on the ability to limit the number d@fproving transforma- the code expander (or input ¥po), link and eecute com-
tions applied to a specified function. In the routine that is Mands, maximum cpu time in secondséd for eecu-
invoked when the end of a transformation is identifiego tion (i.e. in case an error causes the program to not termi-
checks a counter to determine if the specified limit to the Nate), desired and actual output filenames, compilation
number ofimproving transformations has been reached. flags (user can specify some or all optimizations to be per
Unfortunately,vpo can be in quite deeply nested routines formed), and strings indicating lines to dgael (i.e. the

and logic at a point when a transformation has been com-Output contains information dependent on timejor
pleted. B check a status flag at each of the points after instance, a manufactured error was inserted during the com-
completing a transformation to memt furtherimproving ~ Pilation of the progranyacc To isolate the errorthe fol-
transformations would e required significant modifica- ~ lowing information was input topoiso

tions to vpa Therefore, vpo was nodified using the cexfiles: yl y2 y3 y4 #

setjnp and | ongj np functions. Thesetj np function link conmand: cc -0 yacc yl.0 y2.0 y3.0 y4.0
saves the values of all gisters, including the stack pointer €execute C_Ofmﬂndi yacc cgramy
and program counteinto a environmentuifer. Immedi- maxi mum tinme: 15

desired output file: yacc. out
actual output file: y.tab.c
conpilation flags: LVGOCMSFA
di sregard strings:

ately before each call to a highestdeoptimization rou-
tine, a call taset j np is performed.Thel ongj np function
uses the environmentfier to restore the values of thegre
isters, which has the effect of transferring control back to

the point immediately following the call tet | rr’p.lA call After reading this informatiorvpoiso has to deter
to | ongj np is executed at the point when the specified mine if an incorrect transformation can be isolat@thus,
limit of the number of transformations was reaché&cke- vpoiso invokes vpo for each file to be compiled with an

cution then resumes after the callstet j np and only the option to record the number @hproving transformations
remainingnecessaryransformations are applied. The fol- required for each function, the function name, and the base-

lowing code illustrates these modifications/fm. name of the file in which the function resideghe vpoiso

/* Within a high lee routine in VPO. * / tool then links andxecutes the program using the specified

o commands. Ithe actual output is the same as the desired

/ * Save arrent environment.* / output, thenvpoiso quits after informing the user that it

setjmp(ny_env); could find no error when all optimizations were applied to
each function in the progranOtherwise vpoisoreads the

/* 1f more optimizations allowed then information generated during the previous compilation and

~ perform register coloring*/ invokes vpo for each file to be compiled indicating that no

i f E;;DL??I;FS) improving transformations are to be performedgain,

vpoisoissues commands to link andeeute the program.
If the actual output differs from the desired output, then
vpoisoexits after informing the user that the error must be
caused by the front end, codgpander or a necessary

/ * Within the routine that is woked when
the end of a transformation is identifieti/

/* If reached limit, then set flag to not allany transformation irvpa
~ more optimizations and restore environment. If vpoisodetermined that the error can be isolated,
if (maxtrans == opttransnum { then it performs a binary search to isolate the first incorrect

moreopt s = FALSE transformation. Thesearch is depicted in the foldng
longj mp(ny_env, 1) pseudocode.

}

! One has to ensure that no local variable is modified between in-
voking setj mp and the call to the optimization routinéf. the variable
was dlocated to a rgister then the ariables value at the point of irok-
ing set j np would be restored by tHeongj np call.

lastmn = 0;
| ast max = total number ofmproving transformations
while (lastmax - lastmin > 0) {

m dnum = (lastnmin + | astmax)/2;
recompile program with only the firgi dnum
transformations performed

remove atual output file

link and execute program

i f (actual output file == desired output file
lastmn m dnumt+1;

el se
| ast max

m dnum

}

(last result was incorrext

badtrans m dnum

el se
badtrans

i f

m dnumt+1;

At this pointvpoisoprints the name of the function contain-
ing the first incorrect transformation and the incorrect trans-
formation number within that functichThe user can then
set a breakpoint in the sourcerdedelugger that is xecut-

To illustrate the performance ofpoisq the results
for finding a manudctured error inserted into the compila-
tion of theyaccprogram is describedThere were a total of
13,955 improving transformations applied with the com-
plete optimization ofyacc The vpoisotool required 16
compilations/gecutions ofyaccand a little under 10 min-
utes of wall-clock time to correctly isolate the erroneous
transformation on a Sun SPARC IP@.log of the actions
performed byvpoisowhen isolating this error is ggn in
Appendix I.

SUPPORTING THE ANALYSIS
OF OPTIMIZATION ERRORS

After isolating the incorrect transformation, the com-
piler writer still has to determine whthe transformation
was poduced. Agraphical optimization viger, called
xvpodh was deeloped to assist in the analysis of optimiza-
tion errors invpo. FHgure 2 depicts he viewing optimiza-
tions will typically be accomplished. One process/i®

ing vpo that will stop when the transformation with that €xecuting under the control of a sourcerdedebugger and
number is encountered. The routinevipo that is irvoked the other isxvpodb By invoking vpo with a source-feel
when the start of a transformation is identified contains thedebuggerthe user can control thexeeution of the opti-

following portion of code. mizer and perform such tasks as setting breakpoints and
printing the values of ariables that are local to routines
within the compiler Before performing ayn optimizations

for the current functionypowill pass a set of messages to
xvpodbthat describe the initial set of RTLs produced by the
code epander After receiving these messagesipodb
will display this initial set to the useSubsequentlyinfor-

if (opttransnum == breakopttransnum
fprintf(stderr,
"inproving trans breakpoint\n");

The user assigns the displayed transformation number t
the br eakopt t r ansnumvariable, sets a breakpoint at the
line where the message is printed, andxeeetes vpo
Thus, using this feature, the compiler writer can quickly
access the point during the compilation that precedes th
incorrectimproving transformation.

The vpoisotool avoids unnecessary recompilation to
reduce the isolation timelf the transformations on func-
tions in a file are not within the current search range that
could contain the first incorrect transformation, then this
file is not recompiled. Recompilation of a file is also
unnecessary when all the functions in the fileuld be
compiled with the same number of transformations as in
the previous compilation. In addition, if a function is in a
file that needs to be compiled and it is not within the cur
rent search range, then the function is compiled with no
optimizations to decrease the compilation time.

2 The vpoisotool is only guaranteed to find the first transformation
that causes incorrect output is possible that a previous transformation
was invdid and the isolated transformation was the first transformation
that maves invdid instructions into a path thatas eecuted. Thissitua-
tion has not occurred when testimgoisowith manufactured or actual-er
rors.

(0]

mation about each transformation to th&@LR will be
passed txvpodb The user can vie these transformations
serially or at specified breakpoints, either in the fmdv

e(sh0/ving the transformations being applied) owemse

(showing them being undone) direction.

messages reflecting

VPO eecuting each change to the
within a program representation Optimization
source-lgel > Viewer
debugger

Figure 2: Typical Use of the Optimization Viewer

% Note that the first 2xecutions were only performed to verify that
an incorrect transformation could be isolated.

XVPODB User Interface The buttons at the bottom of the windwepresent

Figure 3 depicts the interface for the main wiwcs the different options \ailable to the user okvpodbvia
the optimization vierer. The lage display in the center of ~mouse clicks.Four of these buttons resemble the controls
the windav contains a scrollable we of the RILs on an audio tape player (including auteerse). Wherthe

(describing SPARC instructions) in the current function Step Forward (>) and Step Backward (<) buttons are
being compiled. A portion of the RL structure is dis- clicked, xvpodbdisplays the next or pv@dus transforma-
played at a gien point during the compilation. Each basic tl(_)n, respepﬂely. The user can vie a full transforma’qon
block is represented by enclosing if§LR within a rectan- ~ With two dicks of the mouse.In the case ob, the first
gle. Thebasic blocks are displayed in the order thaythe Cclick causes the BEFORE state of the RTLs to be dis-
would appear when generated as assembly instructionsPlayed. TheRTLs that will be deleted or modified are
Transfers of control between basic blocks are depictedhighlighted. Figure3 shows two RTLs about to be com-
using arcs.Forward transfers of control are depicted to the Pinéd during an instruction selection transformatioh.
right of the blocks and backward transfers of control are S&€cond click o> causes the viewer to display the AFTER
depicted on the leftArcs are used to enable a user to dis- State. Thehighlighted RTLs will be those that were just
tinguish aerlapping control transitionsThe RTLs are dis- ~ modified or inserted.Selecting> again will display the
played in human readable form (not the encoded internalBEFORE state of the next transformatiodfter each
format used bwpo). HighlightedRTLs are those that are selection the RL display is automatically scrolled to a

affected by the current transformation being viewed. position where highlighted RTLs are visible.works simi-
larly, except the display of the AFTER state precedes the
VO Cmtmisation Viewer BEFORE. Theuser can apply andverse (or vice-ersa) a
Function | D | [BEFORE | Trans Hum transformation as martimes as desired, which is very use-
Opt Phase | Instruction Selection | Total Transformations ful for grasping the full effect of a complicated transforma-
b ! tion. The Continue Forward (>>) and Continue Back-
'szmmm — ward (<<) buttons are similar te and<, except thg con-
etz tinue to apply transformations until a breakpoint is reached.
e T There are tw main types of breakpoints ixvpodb
3 The first and simplest is ansformation numbebreak-
PeLss: point. Theuser enters a transformation number or num-
= L bers, andkvpodbwill break when encountering the die-
rL3GIRIFL1410.1]: ning or end of those transformations (depending on whether
o T T >> or << was lected). Since/po knows the number of
PL=IC70, 131 each transformation it sendsxepodh this provides a con-
=) venient way to coordinate breakpoints in the compiler and
pre—— ¢ the viever. In addition, this type of breakpoint allows a
FLE1=RSIM321]; user to quickly vier an invdid transformation identified by
FC=RT: VpOiSO
-] f The second type of breakpoint is more genehaik
i tially, the user selects some or all optimization phases from
F[331r 3334103 a toggle menu.After completing this selection the user has
r[341=r[141+.1 c:

two choices. Onehoice is to hee xvpodbstop wheneer
Quie)|tpeions | one of the selected phases is encountered (at tienireg
et Broakpointe << < > -8 or end of the phase, depending on the direction of thve- vie
ing). Alternately the user can choose a set of RTLs to
associate with this breakpoint. Thewir will stop when-
eve any o the selected RTLs is changed during ahthe
Figure 3: Main Windw for the Optimization Viewer selected phasesThus, breakpoints can be set on specific
) _ optimization phases, specific RTLs, olyaombination of
The labels at the top of the windalisplay the name poih Figure4 shows an example of setting this type of

of the function being>@mined, the optimization phase in preakpoint. Theuser has selected the optimization phases
which the current transformation is performed, the unique 5304 can na chooselnitiation Only or Proceed to RL
number of this transformation, and the total number of ggjection

transformations that ka keen receied for this function.
Also shown is the current state, which in this example is
BEFORE. TheBEFORE state indicates that this transfor
mation has not yet been applied to the RTLs.

The options menu allows selection of less commonly
used features of the wier. Currently the options menu
includes buttons to return theTRs to the inital state

(before ag transformations) and to apply all transforma-
tions (thus showing the fully optimized set ofl®). Both

of these functions skip all breakpoints addition, there is

a hutton that allows one to select to proceed to the ne
function within the file being compiled.

[#] ¥PO Optimization Viewer
Function | nunber<} | [AFTER | Trans Wun
Opt Phase | Register P& L. Bl & A [53
B i Set ot Phase 7
e E{\xf;'m‘mxiif}sa Instruction Selection |
[|Eva1uation Order Deterninationl
« [Register Assignment |
rI101=0; | Torps |
rL8IRL (301 Lstr 1 [Dead Variable Elinination |
PL=Loa; | Dptinize Loops |
[Register Allocation |
AN [connon Subswpr Elinination |
r8l=ra]; [Useless Junp Elinination |
rigl=rl10l; [Cheaper Instruction |
P
r[91=r[91+r[81:
r[91=r[91-48; | Recurrences |
P[101=r812 | Strength Reduction |
| Induction Yar Elinination |
-
rlil=r[11]: [Instruction Scheduling |
| Fill Delay Slots |
rl111=r[11]+1; #
o, * ALL *
PC=IC:0,L30:
L [Proceed To RIL Selection |
= [Tnitiation Only |
4 Cancel]
Set Broskpolnty bqﬁq {)

Figure 4. XVYPODB Breakpoint Selections

To illustrate the power okvpodh the process of
using the viever to understand o a particular RTL was
generated is describedhitially, the user selects thpply
All Transformations button (located in the options menu),
which will cause the viger to display the completely opti-
mized set of RLs. Next, the user sets a breakpoint to
cause the viewer to stop onyathange to the desiredTR.

At this point, by successily clicking << the user can vie
each transformation wolving this RTL being undoneThe
transformation can be analyzed by clickirgand > as
mary times as necessaryfhe user can click< until the
transformations that produced the particular RTL are under
stood. If desired, the user could click> to view each
transformation being reapplied to thdIR If an invalid
instruction has been identified and a tookelpoiso is

unavailable, then this technique can also be used to visually

isolate the incorrect transformation.

Implementing XVPODB

Each message fronpo to xvpodbreflects at most a
single change to the data structure containing thesR
The list of message types frorpoto xvpodbinclude:

begin function modify basic block label

end function insert RTL
start optimization phase delete RTL
end optimization phase me RTL
start transformation modify RTL

end transformation
create ne basic block
free up basic block

modify RTL dead register list
modify controlfley successor
modify output position successor

Separately displaying thisvd of detail to the user
would be ecessve. For instance, in Figure 3 the dwiigh-
lighted RTLs are about to be combined together as a result
of an instruction selection transformatiofhe first high-
lighted RTL will be deleted and the second highlighted
RTL will be modified. In fact, showing these dvehanges
as separate steps would be confusing to the user since the
function would not appear eqalent after a single change.
Also, the order in which these tnchanges are applied to
the RTL data structure is unimportant. Therefore, the
effects of all changes that are enclosed betvstart and
end tansformationrmessages are displayed simultaneously

Providing reverse viewing dected the design of the
optimization viever. Frst, the information within each
message has to be retained after being procedsten-
eva a rew nmessage is reced from the compilera rew
node containing the information about the message is added
to the end of a doubly linked listWhen the user chooses to
proceed to the next function, the nodes in the list that com-
prise the function are freedA pointer to this list indicates
the current state of the displayedR. All transforma-
tions preceding and none folng this pointer hee been
applied to the initial set of R.s. If the user steps or con-
tinues in either direction<(>, <<, >>), then the nodes of
the list are treersed (and the changes are applied) in the
appropriate direction until the desired transformation is
reached. Anotheimplication of reverse viewing is that all
information needed to verse a change must be retained.
For example, when neersing adelete RTLchange xvpodb
must regenerate the deleted RTL and insert it into e R
display structure.

The optimization viewer is quite easy to rggir to
versions ofvpofor other architectures. The code compris-
ing xvpodbitself is machine-independeniThe messages
passed fronvpo to xvpodbare accomplished via system
calls using UNIX sockts. Theoptimization viewer \as
developed in X-Windows. AsUNIX has become the most
popular and portable operating system, Jatldws appears
to be achieing the same goals as a graphicaliemment.

A final feature that enhances portability is that the general
form of RTLs is machine-independenthis allows algo-
rithms that perform transformations on the RTLs to be
implemented in machine-independent co&nce most of
the transformations on RTLs wpo are accomplished in a
machine-independent fashion, there arev fedditional
changes required due to the additiorxgbodbwhen retar
getingvpo

The message passing paradigmvjmes the user
with the option of recuting vpo andxvpodbon two differ-

While bugfind and vpoisoshare some similar ideas,
there are also considerablefdiences. Bottbugfind and
ent machines. Due to the use of XAdbws, the user has vpoisouse a binary search technique to isolate optimization
the option to vier the output windows of the twprograms errors. Thevpoisotool finds not only the failing module,
on yet another machine. Thus, one can use the resources &t also the first transformation within a function that
up to three machines to speed up the debugging process. causes incorrect results. The transformation number can be

APPLYING THE TECHNIQUES
TO OTHER OPTIMIZERS

There are certain features gbo that simplified the
development of the tools to isolate and analyze optimiza-
tion errors. Performing code generation before all opti-
mizations allavs vpoisoto accurately determine that a code
generation error was not caused by the optimifiecode
generation s performed after optimizations, then a code
generation error may only occur when the intermediate rep-

resentation is in a specific form (e.g. a particular instance of

a dag). Whenthe number of optimizations performed is
reduced, this specific form may not appdarthis situation

it would be dificult to have a bol automatically determine
that the error was not caused by the optimiZBre struc-
ture of thevpooptimizer also made it easy to stop perform-
ing improving transformations at yapoint during a compi-
lation. Thisability may not be as straightforward to imple-
ment in other optimizers.

Certain features o¥po also simplified the delop-
ment ofxvpodb One such feature is that all phases of the
optimizer manipulate R.s. Becausé¢here is only one type
of data structure to represent program information, only
one algorithm needs to bew#oped to accept changes and
produce a vie& of the data structure. Since each RTL rep-
resents a lgd machine instruction (and can be decoded
into a very readable format), the effect of a modification to
the set of RTLs comprising a function is simple to grasp.
In contrast, most ceentional compiler systems generate
code after optimizations. In these systems tliecefof a
modification on the final code that will be generated may
not be olious. Finally RTLs can easily be displayed in a
linear fashion at anpoint during the optimization.Dis-
playing the representation of a program being optimized
that has a dag or tree intermediate form would be much
more difficult.

COMPARISON WITH RELATED WORK

A tool known asbugfind [CaD90] was decloped to
assist in the delgging of optimizing compilers.The
bugfindtool attempts to determine the highest optimization
level at which each file within a program can be compiled
and produce correct outputo isolate a function that as
not optimized correctlyone has to place each function
within the program in a separate fil€he bugfindtool uses
the makefacility in Unix and is generalized enough tomk
with different compilers.

used to vier the transformation irxvpodband access the
point invpowhen the transformation is about to be applied.
This finer level of isolating errors is important when opti-
mization errors occur in lge functions or code size
increasing transformations are performednlike bugfind
vpoiso can only isolate errors withinpa Howeve, the
techniquesrpoisouses can probably be applied with other
optimizers.

The UW lllustrated Compiler [AHY88], also knm
asicomp graphically displays its control and data struc-
tures during the compilation of a program.feature called
hookpoints is used to specify points in the compiler to
update the windows that V& changed since the last hook-
point was mecuted. Byspecifying hookpoints and break-
points in the compiler a user can control the rate at which
views are displayed during a compilatiomheicompcom-
piler has been used by ungexduate compiler classes to
illustrate the compilation process.

There are man differences betweericomp and
xvpodb The purpose for deloping theicomp compiler
was for use as a teaching tool in an undergraduate compiler
class. Themain purpose for constructingvpodb is to
assist a compiler writer when retargeting the compiler
to a nev machine. Thexvpodbtool can also be used as a
teaching tool in a compiler class to illustratigus com-
piler optimizations. The source programs compiled by
icomp are written in a subset of Pascal called PLThe
vpo back end currently interfaces with a front end called
vpcc(Very Portable C compiler) that supports the complete
C language. Thé&ompcompiler shows views of dérent
portions of the compilation process which includedcks
analysis, parsing, semantic analysis, and code generation.
No optimizations are performed by the compilém con-
trast, xvpodbdisplays the effects of optimizationscéu-
sively. Theicomp compiler allavs breakpoints and hook-
points to be set at different locations in the source code of
the compiler It does not hee the ability to stop when a
userspecified portion of a we is updated. Thexvpodb
tool allovs breakpoints to be set associated with updates to
a ecific portion of the information representing a func-
tion. Theicomp compiler was written in Interlisp-D to
access dcilities in the language for implementing hook-
points and producing graphical display8oth the vpo
compiler andxvpodbare written in C. Thus, optimization
viewers could be delloped for other existing compilers
written in corventional programming languages using the
techniques to implementvpodb Finally, icomp does not
allow revese viewing of transformationslt was stated,
"icompcannot be run in k&rse because of the comyily

of implementing such a featureReverse viaving was fea-
sible in xvpodbsince the information about a function is
represented in only a single type of data structusg.
retaining information about each change to this data struc-
ture the ability to undo transformations was accomplished
without excessie mmplexity.

[BeD8S]

[CaD90]

CONCLUSIONS

The tools described in this papewvbaeveaal impor
tant benefits when retargeting the back end of a compiler[DaH88]
A tool with the ability to isolate incorrect transformations
automatically such asvpoisq may prove o be nvduable,
particularly when employing code size increasing optimiza- [Dav86]
tions. Anoptimization viever, such asxvpodh is dso quite
useful. Displayinghe program representation atyagiven
point during the optimization of a function, stopping at
breakpoints associated with the generated code, aacee
viewing of transformations are all helpful features for ana- [DaF84]
lyzing problems with an optimizerCompilers can also be
used to guide instruction set design to determine if pro-
posed architectural features can bepleited [Daw91l].
Decreasing the time to retgt a compiler to a proposed [DaWw9l]
architecture would also decrease the time required to design
and deelop a nev machine.

Additionally, xvpodbcan be used as a teaching aid
for advanced compiler classeMany recently introduced
machines require sophisticated compiler optimizations to[HeP90]
exploit their architectural featuresAdvanced compiler
courses that present techniques to perform these types of
optimizations may soon become more commariool that

would allow a dudent to interactiely visualize the effect of Muws2]
each transformation euld be quite useful in illustrating
these optimizations.

ACKNOWLEDGEMENTS [WJIW75]

The authors thank Jack @dson for allaving vpoto
be used for this researcfihe identification of each change
and the sequences of changes that comprised the transfor
mations invpowas smplified by the high quality of coding
of vpa which in a very large part is due to the efforts of
Manuel Benitez. Indrakshi Ray testegoiso and made
several suggestions that resulted in an impmeb tool.
Frank Mueller provided manhelpful comments on an ear
lier draft of this paper.

REFERENCES

[AHY88] K. Andrews, R. R. Henry and W K.
Yamamoto, “Design and Implementation of the
UW lllustrated Compilet Proceedings of the
SIGPLAN ’'88 Symposium on dgramming
Languaye Design and Implementation pp.

105-114 (June 1988).

M. E. Benitez and J. WDavidson, ‘A Portable
Global Optimizer and Lingr,” Proceedings of
the SIGPLAN '88 Symposium oroBiamming
Language Design and Implementation pp.
329-338 (June 1988).

J.M. Caron and PA. Darnell, “Bugfind: A
Tool for Debugging Optimizing Compilefs,
Sigplan Notices 25(1) pp. 17-22 (January
1990).

J.Davidson and A. Holler“A Study of a C
Function Inliney’ Software—Pactice & Expe-
riencel8(8) pp. 775-790 (August 1988).

J. W. Davidson, ‘A Retagetable Instruction
Reoganizer” Proceedings of the SIGPLAN '86
Symposium on Compiler Constructjorpp.
234-241 (June 1986).

J.W. Davidson and C. \WFraser “Code Selec-
tion through Object Code Optimization,
Transactions on Rigramming Languges and
System$(4) pp. 7-32 (October 1984).

J.W. Davidson and D. B. Whalie “A Design
Ervironment for Addressing Architecture and
Compiler Interaction$, Microprocessos and
Microsystems15(9) pp. 459-472 (Neember
1991).

JHennessy and D.a®tersonComputer Achi-
tectue: A Quantitative Apmrach, Morgan
Kaufmann, San Mateo, CA (1990).

F Mueller and D. B. Whallg “Avoiding
Unconditional Jumps by Code Replication,
Proceedings of the SIGPLAN '92 Coriece
on Poogramming Languge Design and Imple-
mentation pp. 322-330 (June 1992).

W Wulf, R. K. Johnsson, C. B. &ihstock, S.
O. Hobbs, and C. M. GesahkThe Design of
an Optimizing CompilerAmerican Elseier,

New York, NY (1975).

APPENDIX |

Below is the log fromvpoisowhen isolating the man-
ufactured error inserted during transformation 500 in the stopped optimization of closure after 197 improving transformations

routinesetupin theyaccprogram.

START TIME: 18:02:22

compiling program to check if works with all improving transformations

compiling y1.cex

compiling y2.cex

compiling y3.cex

compiling y4.cex

linking program

executing program

As expected, the output was incorrect.

13955 total improving transformations for program
y1: main: 1-42 y2: fdtype: 6913-6966
y1: others: 43-782 y2: chfind: 6967-7098
y1: chcopy: 783-807 y2: cpyunion: 7099-7409
y1: writem: 808-945 y2: cpycode: 7410-7848
y1: symnam: 946-980 y2: skipcom: 7849-7982
y1: summary: 981-1160 y2: cpyact: 7983-9734
y1: error: 1161-1196 y3: output: 9735-10169
y1: aryfil: 1197-1237 y3: apack: 10170-10473
y1: setunion: 1238-1287 y3: go2out: 10474-10762
y1: prlook: 1288-1368 y3: go2gen: 10763-11128
y1: cpres: 1369-1559 y3: precftn: 11129-11257
y1: cpfir: 1560-2016 y3: wract: 11258-11647
y1: state: 2017-2449 y3: wrstate: 11648-12006
y1: putitem: 2450-2523 y3: wdef: 12007-12019

y1: cempty: 2524-2904 y3: warray: 12020-12121
y1: stagen: 2905-3291 y3: hideprod: 12122-12241
y1: closure: 3292-3873 y4: callopt: 12242-12911
y1: flset: 3874-3989 y4: gin: 12912-13126

y2: setup: 3990-5413 y4: stin: 13127-13491

y2: finact: 5414-5429 y4: nxti: 13492-13648

y2: defin: 5430-5689 y4: osummary: 13649-13724
y2: defout: 5690-5877 y4: aoutput: 13725-13760
y2: cstash: 5878-5922 y4: arout: 13761-13862

y2: gettok: 5923-6912 y4: gtnm: 13863-13955

compiling program to check if works with no improving transformations
compiling y1.cex
compiling y2.cex
compiling y3.cex
compiling y4.cex
linking program
executing program
As expected, the output was correct.

starting binary search to isolate error within 13955 transformations

error within main to gtnm (transformation 1 to 13955)
compiling program: applying transformations 1 to 6978
compiling y1.cex
compiling y2.cex
stopped optimization of chfind after 11 improving transformations
linking program
executing program
execution was incorrect

error within main to chfind (transformation 1 to 6978)
compiling program: applying transformations 1 to 3489
compiling y1.cex

compiling y2.cex
linking program
executing program
execution was correct

error within closure to chfind (transformation 3490 to 6978)
compiling program: applying transformations 3490 to 5234
compiling y1.cex

compiling y2.cex

stopped optimization of setup after 1244 improving transformations
linking program

executing program

execution was incorrect

error within closure to setup (transformation 3490 to 5234)
compiling program: applying transformations 3490 to 4362
compiling y2.cex

stopped optimization of setup after 372 improving transformations
linking program

executing program

execution was correct

incorrect transformation isolated to function setup

error within setup (transformation 4363 to 5234)

compiling program: applying transformations 4363 to 4798
compiling y2.cex

stopped optimization of setup after 808 improving transformations
linking program

executing program

execution was incorrect

error within setup (transformation 4363 to 4798)

compiling program: applying transformations 4363 to 4580
compiling y2.cex

stopped optimization of setup after 590 improving transformations
linking program

executing program

execution was incorrect

error within setup (transformation 4363 to 4580)

compiling program: applying transformations 4363 to 4471
compiling y2.cex

stopped optimization of setup after 481 improving transformations
linking program

executing program

execution was correct

error within setup (transformation 4472 to 4580)

compiling program: applying transformations 4472 to 4526
compiling y2.cex

stopped optimization of setup after 536 improving transformations
linking program

executing program

execution was incorrect

error within setup (transformation 4472 to 4526)

compiling program: applying transformations 4472 to 4499
compiling y2.cex

stopped optimization of setup after 509 improving transformations
linking program

executing program

execution was incorrect

error within setup (transformation 4472 to 4499)

compiling program: applying transformations 4472 to 4485
compiling y2.cex

stopped optimization of setup after 495 improving transformations
linking program

executing program

execution was correct

error within setup (transformation 4486 to 4499)

compiling program: applying transformations 4486 to 4492
compiling y2.cex

stopped optimization of setup after 502 improving transformations
linking program

executing program

execution was incorrect

error within setup (transformation 4486 to 4492)

compiling program: applying transformations 4486 to 4489
compiling y2.cex

stopped optimization of setup after 499 improving transformations
linking program

executing program

execution was correct

error within setup (transformation 4490 to 4492)

compiling program: applying transformations 4490 to 4491
compiling y2.cex

stopped optimization of setup after 501 improving transformations
linking program

executing program

execution was incorrect

error within setup (transformation 4490 to 4491)

compiling program: applying transformations 4490 to 4490
compiling y2.cex

stopped optimization of setup after 500 improving transformations
linking program

executing program

execution was incorrect

incorrect transformation isolated to optimization 500 in function setup

STOP TIME: 18:12:18

-10-

