FSU DEPARTMENT OF COMPUTER SCIENCE

~

Avoiding Unconditional Jumps

by Code Replication

by
Frank Mueller and David B. Whalley

Florida State Umnersity

FSU

DEPARTMENT OF COMPUTER SCIENCE

e uncond. jumps

Overview

— occur often in programs [4-10% dynamically]

— produced by loops, conditional statements, etc.

— can almost avays be aoided

« technique toaid uncond. jumps

— Introduction

— evaluation

~

FSU DEPARTMENT OF COMPUTER SCIENCE

~

Motivation

 code generated includes uncond. jumps for
— while-loops and for-loops typically
— if-then-else construct\abys

— other language constructs (break, goto, continue
in C)

— as a gle-effect of optimizations

e uncond. jump instruction can beaded when code is repli-
cated from the target

* methods often empied for certain class of loops in front-
end

* new nmethod
— is part of optimizations in back-end of compiler
— can be applied umersally to all uncond. jumps

— may introduce sources for other optimizations

FSU

DEPARTMENT OF COMPUTER SCIENCE

Example 1

While-Loop (RTLs for 68020)

=1

}

while (X[i]) {
X[i-1] = X([i];
I++;

without replication

with replication

a[0]=a[6]+x.+1;
a[1]=a[0];

L15
NZ=B[a[0]]?0;
PC=NZ==0,L16;
Bla[0]-1]=B[a[1]++];
a[0]=a[0]+1;
PC=L15;

L16

LLOOO

L16

NZ=B[a[6]+X.+1]?0;
PC=NZ==0,L16;
a[0]=a[6]+x.;

B[a[O]]=B[a[0]+1];
a[0]=a[0]+1;
NZ=B[a[0]+1]?0;
PC=NZ!=0,L000:

~

FSU DEPARTMENT OF COMPUTER SCIENCE

Example 2

For-Loop (RTLs for 68020)

for (i=Kk; i< 10; i++)
x[i] = ylif;

without replication

with replication

d[0]=L[a[6]+k.];

a[0]=d[0]+a[6]+X.;
a[1]=d[0]+a[6]+y;
PC=L18;

L19
B[a[0]++]=B[a[1]++];
d[0]=d[0]+1;

L18
NZ=d[0]?10;
PC=NZ<0,L19;

d[O0]=L[a[6]+k.];
NZ=d[0]?10;
PC=NZ>=0,L0001;
a[0]=d[0]+a[6]+X.;
a[1]=d[0]+a[6]+y;

L19
B[a[0]++]=B[a[1]++];
d[0]=d[0]+1;
NZ=d[0]?10;
PC=NZ<0,L19;
L0001

~

FSU

DEPARTMENT OF COMPUTER SCIENCE

Exit Condition in the Middle of a Loop (RTLs for 68020)

Example 3

=1
while (i++ < n)
X[i-1] = X([i];
without replication with replication
d[1]=1; d[0]=1;
a[0]=a[6]+x.; d[1]=2;

L15 NZ=d[O]?L[_n];
d[0]=d[1]; PC=NZ>=0,L16;
a[0]=a[0]+1; a[0]=a[6]+x.+1;
d[1]=d[1]+1; LOOO
NZ=d[0]?L[_n]; B[a[0]]=B[a[0]+1];
PC=NZ>=0,L16; a[0]=a[0]+1;
Bla[0]]=B[a[0]+1]; d[0]=d[1];
PC=L15; d[1]=d[1]+1;

L16 NZ=d[0]?L[_n]

PC=NZ<0,L000;
L16

~

FSU

DEPARTMENT OF COMPUTER SCIENCE

Example 4

If-Then-Else Statement (RTLs for 68020)

~

if (i >5)
i=i/n;

else
I=i*n;

return(i);

without replication

with replication

L22

L23

NZ=L[a[6]+i.]?5;
PC=NZ<=0,L22;
d[O]=L[a[6]+i.];
d[0]=d[0]/L[a[6]+n.];
L[a[6]+i.]=d[O];
PC=L23;

d[0]=L[a[6]+i.]; L22
d[O]=d[O]*L[a[6]+n.];
L[a[6]+1.]=d[O];

a[6]=UK;
PC=H;

NZ=L[a[6]+i.]?5;
PC=NZ<=0,L22;

d[O0]=L[a[6]+i.];

d[0]=d[O]/L[a[6]+n.];

L[a[6]+1.]=d[O];
a[6]=UK;

PC=RH;

d[O]=L[a[6]+1.];
d[O]=d[O]*L[a[6]+n.];
L[a[6]+i.]=d[O];
a[6]=UK;

PC=RT;

FSU DEPARTMENT OF COMPUTER SCIENCE

~

Remote Preheader

No Preheader Remote Preheader

FSU DEPARTMENT OF COMPUTER SCIENCE

~

Algorithm JUMPS

1. set up matrix (used to find shortest replication sequence)
2. traverse basic blocks until uncond. jump found
3. choose replication sequencen@ods return or loop)

4. expand replication sequence to include all blocks within a
loop

5. replicate code and adjust its control flow
6. adjust control fiev of portion of loops which was not copied

7. if control flov has become non-reducible then remmaepli-
cated code

FSU

DEPARTMENT OF COMPUTER SCIENCE

-

-

Interference with Natural Loops

~

Without Replication With Partial Replication With Loop Replication

J

11

FSU

DEPARTMENT OF COMPUTER SCIENCE

-

Patial Overlapping of Natural Loops

SIS

Initial Control Flov After Replication

~

v Q

Adjusted Control Flow

12

FSU DEPARTMENT OF COMPUTER SCIENCE

~

Measurements

« for Motorola 68020/68881 and Sun SPARC
* test programs included
— benchmarks
— UNIX utilities
— applications
e instrumentation of programs at code generation time
« compiled with different sets of optimizations:
— SIMPLE: standard opt.
— LOOPS: standard opt. + code replication at loops

— JUMPS: standard opt. + generalized code repl.

13

FSU

DEPARTMENT OF COMPUTER SCIENCE

Number of Static and Dynamic Instructions (Sun SPARC)

Measurements (cont.)

~

Sun SPARC

program statienstructions dynamimstructions gecuted

SIMPLE LOOPS JUMPS SIMPLE LOOPS JUMPS
cal 338 +3.25% +21.89% 37,237 -2.95% -3.15%
quicksort 321 +5.61% +50.16% 836,404 -2.86% -14.21%
wcC 209 +0.96% +58.37% 540,158 -0.00% -1.96%
grep 968 +4.24% +79.34%| 1,930,791 -0.04% -3.57%
sort 1,966 +4.63% +89.17%| 1,181,960 -0.71% -10.49%
od 1,352 +4.59% +95.19%| 2,336,014 -8.84% -10.22%
mincost 1,068 +6.84% +30.99% 335,750 -0.59% -3.91%
bubblesort 175 +7.43% +5.14%| 29,071,668 -0.05% -0.07%
matmult 218 +4.59% +3.67%| 14,403,714 -0.08% -0.28%
banner 169 +7.69% +66.27% 2,565 -1.68% -10.25%
sieve B +3.23% +3.23%| 2,184,965 -13.73% -13.73%
compact 1,491 +1.07% +75.18%| 13,409,945 -1.94% -4.86%
queens 114 +0.00% +7.89% 263,518 -0.00% -0.03%
derof 7,987 +1.50%+204.98% 448,581 -0.01% -3.13%
aveaage 1,176 +3.97/% +56.53%| 4,784,519 -2.39% -5.71%

-

J

15

FSU

DEPARTMENT OF COMPUTER SCIENCE

Measurements (cont.)

Number of Static and Dynamic Instructions (Motorola 68020)

~

Motorola 68020

program statienstructions dynamimstructions gecuted

SIMPLE LOOPS JUMPS SIMPLE LOOPS JUMPS
cal 323 +3.72% +24.77% 36,290 -3.09% -3.17%
quicksort 245 +3.67% +37.96% 536,566 -0.39% -3.96%
wcC 173 +0.58% +56.65% 421,038 -0.00% -5.32%
grep 775 +3.35% +80.90%| 1,309,586 -0.03% -3.44%
sort 1,558 +3.98% +63.67% 902,075 -1.49% -12.43%
od 1,198 +2.92% +85.73%| 1,980,808 -9.45% -10.30%
mincost 906 +3.20% +35.98% 302,062 -1.10% -5.13%
bubblesort 137 +3.65% +2.92%| 20,340,231 -18.92% -18.92%
matmult 146 +3.42% +3.42%| 4,891,507 -0.21% -0.219
banner 177 +3.95% +55.93% 2,473 -1.42% -13.34%
sieve N +1.43% +1.43%| 1,759,088 -8.53% -8.53%
compact 1,143 +0.70% +73.93%| 10,602,159 -1.54% -5.26%
queens 94 +0.00% +12.77% 189,518 -0.00% -0.05%
derof 5730 +1.06%+155.17% 360,051 -0.03% -7.05%
aveaage 905 +2.55% +49.37%| 3,116,675 -3.30% -6.94%

-

J

16

FSU DEPARTMENT OF COMPUTER SCIENCE

~

Future Work

 handle indirect jumps in algorithm
— should imprave dynamic savings
— may reduce size of generated code

« [imit length of replication sequence, use depth-bound DFS
— should reduce size of generated code

— should imprave compile-time aerhead of opti-
mization phase

* determine best phase ordering

— trade-of compile-time / exploit optimizations

18

FSU DEPARTMENT OF COMPUTER SCIENCE

~

Conclusions

* code replication
— avoids almost all uncond. jumps
— reduces number ofkecuted instructions by 6%

— Increases number of instructions between branch-
es by 1.5 on SPARC

— results in 4% decreased cache work (except for
small caches)

— increases code size by 53%

— outperforms traditional methods tead uncond.
jumps

— should be applied in the back-end of highly opti-
mizing compilers

19

FSU DEPARTMENT OF COMPUTER SCIENCE

4 N

Order of Optimizations

branch chai ni ng;
dead code elim nation
reorder basic blocks to mnimze junps;
code replication (either JUWPS or LOOPS);
dead code elim nation
i nstruction sel ection;
regi ster assignnent;
i f (change)
instruction sel ection;
do {
regi ster allocation by register coloring;
instruction sel ection;
common subexpression elimnation;
dead variabl e elimnation;
code notion
strength reduction;
recurrences;
instruction sel ection;
branch chai ni ng;
constant folding at conditional branches;
code replication (either JUWPS or LOOPS);
dead code elim nation
} while (change);
filling of delay slots for Rl SCs;

20

