
FSU DEPARTMENT OF COMPUTER SCIENCE

1

Av oiding Unconditional Jumps

by Code Replication

by

Frank Mueller and David B. Whalley

Florida State University



FSU DEPARTMENT OF COMPUTER SCIENCE

2

Overview

• uncond. jumps

— occur often in programs [4-10% dynamically]

— produced by loops, conditional statements, etc.

— can almost always be avoided

• technique to avoid uncond. jumps

— introduction

— evaluation



FSU DEPARTMENT OF COMPUTER SCIENCE

3

Motivation

• code generated includes uncond. jumps for

— while-loops and for-loops typically

— if-then-else construct always

— other language constructs (break, goto, continue
in C)

— as a side-effect of optimizations

• uncond. jump instruction can be avoided when code is repli-
cated from the target

• methods often employed for certain class of loops in front-
end

• new method

— is part of optimizations in back-end of compiler

— can be applied universally to all uncond. jumps

— may introduce sources for other optimizations



FSU DEPARTMENT OF COMPUTER SCIENCE

4

Example 1

While-Loop (RTLs for 68020)

i = 1;
while (x[i]) {

x[i-1] = x[i];
i++;

}

without replication with replication

a[0]=a[6]+x.+1; NZ=B[a[6]+x.+1]?0;
a[1]=a[0]; PC=NZ==0,L16;

L15 a[0]=a[6]+x.;
NZ=B[a[0]]?0; L000
PC=NZ==0,L16; B[a[0]]=B[a[0]+1];
B[a[0]-1]=B[a[1]++]; a[0]=a[0]+1;
a[0]=a[0]+1; NZ=B[a[0]+1]?0;
PC=L15; PC=NZ!=0,L000;

L16 ... L16 ...



FSU DEPARTMENT OF COMPUTER SCIENCE

5

Example 2

For-Loop (RTLs for 68020)

for (i = k; i < 10; i++)
x[i] = y[i];

without replication with replication

d[0]=L[a[6]+k.]; d[0]=L[a[6]+k.];
NZ=d[0]?10;
PC=NZ>=0,L0001;

a[0]=d[0]+a[6]+x.; a[0]=d[0]+a[6]+x.;
a[1]=d[0]+a[6]+y.; a[1]=d[0]+a[6]+y.;
PC=L18;

L19 L19
B[a[0]++]=B[a[1]++]; B[a[0]++]=B[a[1]++];
d[0]=d[0]+1; d[0]=d[0]+1;

L18
NZ=d[0]?10; NZ=d[0]?10;
PC=NZ<0,L19; PC=NZ<0,L19;
... L0001 ...



FSU DEPARTMENT OF COMPUTER SCIENCE

6

Example 3

Exit Condition in the Middle of a Loop (RTLs for 68020)

i = 1;
while (i++ < n)

x[i-1] = x[i];

without replication with replication

d[1]=1; d[0]=1;
a[0]=a[6]+x.; d[1]=2;

L15 NZ=d[0]?L[_n];
d[0]=d[1]; PC=NZ>=0,L16;
a[0]=a[0]+1; a[0]=a[6]+x.+1;
d[1]=d[1]+1; L000
NZ=d[0]?L[_n]; B[a[0]]=B[a[0]+1];
PC=NZ>=0,L16; a[0]=a[0]+1;
B[a[0]]=B[a[0]+1]; d[0]=d[1];
PC=L15; d[1]=d[1]+1;

L16 ... NZ=d[0]?L[_n]
PC=NZ<0,L000;

L16 ...



FSU DEPARTMENT OF COMPUTER SCIENCE

7

Example 4

If-Then-Else Statement (RTLs for 68020)

if (i > 5)
i = i / n;

else
i = i * n ;

return(i);

without replication with replication

NZ=L[a[6]+i.]?5; NZ=L[a[6]+i.]?5;
PC=NZ<=0,L22; PC=NZ<=0,L22;
d[0]=L[a[6]+i.]; d[0]=L[a[6]+i.];
d[0]=d[0]/L[a[6]+n.]; d[0]=d[0]/L[a[6]+n.];
L[a[6]+i.]=d[0]; L[a[6]+i.]=d[0];
PC=L23; a[6]=UK;

L22 PC=RT;
d[0]=L[a[6]+i.]; L22
d[0]=d[0]*L[a[6]+n.]; d[0]=L[a[6]+i.];
L[a[6]+i.]=d[0]; d[0]=d[0]*L[a[6]+n.];

L23 L[a[6]+i.]=d[0];
a[6]=UK; a[6]=UK;
PC=RT; PC=RT;



FSU DEPARTMENT OF COMPUTER SCIENCE

8

Remote Preheader

0

2

2

1

3

4

5

1

5

4

3

No Preheader Remote Preheader



FSU DEPARTMENT OF COMPUTER SCIENCE

9

Algorithm JUMPS

1. set up matrix (used to find shortest replication sequence)

2. traverse basic blocks until uncond. jump found

3. choose replication sequence (towards return or loop)

4. expand replication sequence to include all blocks within a
loop

5. replicate code and adjust its control flow

6. adjust control flow of portion of loops which was not copied

7. if control flow has become non-reducible then remove repli-
cated code



FSU DEPARTMENT OF COMPUTER SCIENCE

11

Interference with Natural Loops

1

2 3

77’

5’

4’

6

5

4

6’

1

2 3

4

5

6

7

32

1

77’

5’

4’

6

5

4

...
...

...
...

...

Without Replication With Partial Replication With Loop Replication



FSU DEPARTMENT OF COMPUTER SCIENCE

12

Partial Overlapping of Natural Loops

1

2

3

4

1

2

3

1’

4 4

1’

3

2

1

...
...

...

Initial Control Flow After Replication Adjusted Control Flow



FSU DEPARTMENT OF COMPUTER SCIENCE

13

Measurements

• for Motorola 68020/68881 and Sun SPARC

• test programs included

— benchmarks

— UNIX utilities

— applications

• instrumentation of programs at code generation time

• compiled with different sets of optimizations:

— SIMPLE: standard opt.

— LOOPS: standard opt. + code replication at loops

— JUMPS: standard opt. + generalized code repl.



FSU DEPARTMENT OF COMPUTER SCIENCE

15

Measurements (cont.)

Number of Static and Dynamic Instructions (Sun SPARC)

Sun SPARC

program staticinstructions dynamicinstructions executed
SIMPLE LOOPS JUMPS SIMPLE LOOPS JUMPS

cal 338 +3.25% +21.89% 37,237 -2.95% -3.15%
quicksort 321 +5.61% +50.16% 836,404 -2.86% -14.21%
wc 209 +0.96% +58.37% 540,158 -0.00% -1.96%
grep 968 +4.24% +79.34% 1,930,791 -0.04% -3.57%
sort 1,966 +4.63% +89.17% 1,181,960 -0.71% -10.49%
od 1,352 +4.59% +95.19% 2,336,014 -8.84% -10.22%
mincost 1,068 +6.84% +30.99% 335,750 -0.59% -3.91%
bubblesort 175 +7.43% +5.14% 29,071,668 -0.05% -0.07%
matmult 218 +4.59% +3.67% 14,403,714 -0.08% -0.28%
banner 169 +7.69% +66.27% 2,565 -1.68% -10.25%
sieve 93 +3.23% +3.23% 2,184,965 -13.73% -13.73%
compact 1,491 +1.07% +75.18% 13,409,945 -1.94% -4.86%
queens 114 +0.00% +7.89% 263,518 -0.00% -0.03%
deroff 7,987 +1.50%+204.98% 448,581 -0.01% -3.13%
av erage 1,176 +3.97% +56.53% 4,784,519 -2.39% -5.71%



FSU DEPARTMENT OF COMPUTER SCIENCE

16

Measurements (cont.)

Number of Static and Dynamic Instructions (Motorola 68020)

Motorola 68020

program staticinstructions dynamicinstructions executed
SIMPLE LOOPS JUMPS SIMPLE LOOPS JUMPS

cal 323 +3.72% +24.77% 36,290 -3.09% -3.17%
quicksort 245 +3.67% +37.96% 536,566 -0.39% -3.96%
wc 173 +0.58% +56.65% 421,038 -0.00% -5.32%
grep 775 +3.35% +80.90% 1,309,586 -0.03% -3.44%
sort 1,558 +3.98% +63.67% 902,075 -1.49% -12.43%
od 1,198 +2.92% +85.73% 1,980,808 -9.45% -10.30%
mincost 906 +3.20% +35.98% 302,062 -1.10% -5.13%
bubblesort 137 +3.65% +2.92% 20,340,231 -18.92% -18.92%
matmult 146 +3.42% +3.42% 4,891,507 -0.21% -0.21%
banner 177 +3.95% +55.93% 2,473 -1.42% -13.34%
sieve 70 +1.43% +1.43% 1,759,088 -8.53% -8.53%
compact 1,143 +0.70% +73.93% 10,602,159 -1.54% -5.26%
queens 94 +0.00% +12.77% 189,518 -0.00% -0.05%
deroff 5,730 +1.06%+155.17% 360,051 -0.03% -7.05%
av erage 905 +2.55% +49.37% 3,116,675 -3.30% -6.94%



FSU DEPARTMENT OF COMPUTER SCIENCE

18

Future Work

• handle indirect jumps in algorithm

— should improve dynamic savings

— may reduce size of generated code

• limit length of replication sequence, use depth-bound DFS

— should reduce size of generated code

— should improve compile-time overhead of opti-
mization phase

• determine best phase ordering

— trade-off compile-time / exploit optimizations



FSU DEPARTMENT OF COMPUTER SCIENCE

19

Conclusions

• code replication

— avoids almost all uncond. jumps

— reduces number of executed instructions by 6%

— increases number of instructions between branch-
es by 1.5 on SPARC

— results in 4% decreased cache work (except for
small caches)

— increases code size by 53%

— outperforms traditional methods to avoid uncond.
jumps

— should be applied in the back-end of highly opti-
mizing compilers



FSU DEPARTMENT OF COMPUTER SCIENCE

20

Order of Optimizations

branch chaining;

dead code elimination;

reorder basic blocks to minimize jumps;

code replication (either JUMPS or LOOPS);

dead code elimination;

instruction selection;

register assignment;

if (change)

instruction selection;

do {

register allocation by register coloring;

instruction selection;

common subexpression elimination;

dead variable elimination;

code motion;

strength reduction;

recurrences;

instruction selection;

branch chaining;

constant folding at conditional branches;

code replication (either JUMPS or LOOPS);

dead code elimination;

} while (change);

filling of delay slots for RISCs;


