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Phase Ordering Problem

® A single ordering of optimization phases
will not always produce the best code

— different applications
— different compilers
— different target machines
® Example
— register allocation and instruction selection

@ ACM SIGPLAN 2004 Conference on Programming Language _ 2



Florida State University Computer Science

M'Approaches to Addressing the

Phase Ordering Problem
® Framework for formally specifying compiler
optimizations.
® Single intermediate language representation
— repeated applications of optimization phases
® Exhaustive search?

® Our approach

— Intelligent search of the optimization space using
genetic algorithm
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Genetic Algorithm

@ A biased sampling search method
— evolves solutions by merging parts of different

solutions
Create ir)itial Evaluate fitness of | Output the
population —  each sequence Terminate best
of optimization in the population cond. ? sequence
sequences found

Perform crossover/
mutation to create <
new generation
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Genetic Algorithm (cont...)

® Crossover
— 20% sequences in each generation replaced

Population 1 Population 2

@ Mutation
— phases in each sequence replaced with a low probability
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Genetic Algorithm (cont...)

C Source R : Assembly
: > Compiler > :
Function Function
candidate best
phases sequence
Genetic
Algorithm
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Experiments

@ Performed on six mibench benchmarks, which
contained a total of 106 functions.

@ Used 15 candidate optimization phases.

@ Seqguence length set to 1.25 times the number of
successful batch phases.

@ Population size set to 20.
Performed 100 generations.
@ Fitness value was 50% speed and 50% size.

&
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Genetic Algorithm — Results
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percentage improvement compared to the batch compiler
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Our Earlier Work

@® Published in LCTES '03

— complete compiler framework
— detailed description of the genetic algorithm

— Improvements given by the genetic algorithm for
code-size, speed, and 50% of both factors

— optimization sequences found by the genetic
algorithm for each function

— Finding Effective Optimization Phase Sequences —
http://www.cs.fsu.edu/~whalley/papers/ictes03.ps
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Genetic Algorithm — Issues

@ Very long search times

— evaluating each sequence involves compiling,
assembling, linking, execution and verification

— simulation / execution on embedded processors Is
generally slower than general-purpose processors

@ Reducing the search overhead
— avoiding redundant executions of the application.

— modifying the search to obtain comparable results in
fewer generations.
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Methods for Avoiding Redundant Executions

@ Detect sequences that have already been
attempted.

@ Detect sequences of phases that have been
successfully applied.

@ Check If an Iinstance of this function has
already been generated.

@ Check if an equivalent function has already
been generated.
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Reducing the Search Overhead

® Avoiding redundant executions.

® ODbtaining similar results in fewer
generations.
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Overview of Avoiding Redundant
Executions

candidate
phases

best
sequence
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Finding Redundant Attempted
Sequences

® Same optimization phase sequence may
be reattempted

— Crossover operation producing a previously
attempted sequence

— Mutation not occurring on any of the phases
In the sequence

— Mutation changing phases, but producing a
previously attempted sequence
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“ Finding Redundant Attempted
Sequences (cont...)

Before mutation After mutation
seqi: |d|aje|d|c]|f seqi: |d|laje|d|c|f
seqj: |fla|c]|b]c|d seqj: |flalclalc|d
segk: | flelc|b|b]|d segk: | flalc|b]c]|d
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Finding Redundant Active Sequences

@ An active optimization phase is one that Is
able to complete one or more transformations.

® Dormant phases do not affect the compilation.
@ Compiler must indicate If phase was active.

Attempted : segi: |d|bleld]c]f seqj: |dlajle|b]|c]f

Active : seqi: dlelc|f seqj: dlelc]f
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Detecting ldentical Code

@ Sometimes identical code for a function
can be generated from different active
seguences.

® Some phases are essentially independent
— branch chaining and register allocation

® Sometimes more than one way to produce
the same code.
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Detecting Identical Code (cont...)

@ Example:
2] = 1; 2] = 1,
r[3] = r[4] + r[2]; r[3] = r[4] + r[2];
=Instruction selection =constant propagation
(3] =r[4] + 1; 2] = 1;

3] =r[4] + 1;

—=dead assignment elimination
r[3] =r[4] + 1;

® Used CRC checksums to compare function
Instances.
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Detecting Equivalent Code

® Code generated by different optimization
seguences may be equivalent, but not

identical.

® Some o

ptimization phases consume

registers.
® Different ordering of such phases may

result In

equivalent instructions, but

different registers being used.
@ ACM SIGPLAN 2004 Conference on Programming Language D_ 23



sum = 0O;
for (1 = 0; 1 < 1000; 1++ )
sum +=a [ 1 ];

Source Code
r{11]=0;

r[10]=HI[a];
r[10]=r[10]+LO[a];

r[10]=0;
ri12]=HI[a];
ri12]=r[12]+LO[a];
r11=r[12]; r[11=r[10];
r[9]=4000+r[12]; r[9]=4000+r[10];
L3 L3 L3
r[81=MLr[111: r[81=MLr[111:
r[10]=r[10]+r[8]; ril1l]=r[11]+r[8];
r1l=r[1]+4; rfll=r[1]+4;
IC=r[1]?r[9]:; IC=r[1]?r[9];
PC=1C<0,L3; PC=1C<0,L3;

r[32]=0;
r[33]=HI[a];
r[33]=r[33]+L0[a];
r[34]=r[33];
r[35]=4000+r[33];

r[36]=M[r[34]];
r[32]=r[32]+r[36];
r[34]=r[34]+4;
1IC=r[34]?r[35];
PC=1C<0,L3;

Register Allocation
before Code Motion

Code Motion before
Register Allocation

After Mapping
Registers
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Number of Avoided Executions

bit count I
dijkstra -
fit |
jpeg . I Equivalent
[ ] Identical
shig . I [] Active
[ ] Attempted
stringsearch | _ I
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Relative Total Search Time

bit COUHT- 3.32 hours to 0.42 hours
dijkstra _ 2.50 hours to 0.63 houyrs

fft __ 3.24 hours to 1.73 hours
jpeg __ 20.45 hours to 9.29 hours

sha __ 1.73 hours to 0.35 hours
stringsearch __ 2.16 hours to 1.15 hours

average NI

0 0.2 0.4 0.6 0.8 1
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Reducing the Search Overhead

® Avoiding redundant executions.

® ODbtaining similar results in fewer
generations.
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Producing Similar Results In
Fewer Generations

® Can reduce search time by running the
genetic algorithm for fewer generations.

® Can obtain better results in the same
number of generations.

®\We evaluate four methods for reducing the
number of required generations to find the
best sequence In the search.
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Using the Batch Sequence

® Capture the active sequence of phases
applied by the batch compiler.

@ Place this sequence in the Initial
population.

® May allow the genetic algorithm to
converge faster to the best sequence it can
find.
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Number of Generations When Using
the Batch Sequence

bit count

dijkstra

i [ | Baseline
fft
E [ ] Using the Batch

| Sequence

jpeg |

sha |

stringsearch |

average |
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number of generations
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Prohibiting Specific Phases

® Perform static analysis on the function.
— No loops, then no loop optimizations.
— No scalar variables, then no register allocation.

— Only one basic block, then no unreachable code
elimination and no branch optimizations.

— Etc.

® Such phases are prohibited from being
attempted for the entire search for that function.

@ ACM SIGPLAN 2004 Conference on Programming Language D_ 31
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Prohibiting Prior Dormant Phases

@ Some phases will be found to be dormant given a
specific prefix of active phases.

@ If encounter the same prefix, then do not allow
these prior dormant phases to be reattempted.

@ Keep a tree of active prefixes and store the
dormant phases with each node in the tree.

@ Changed the genetic algorithm by forcing a prior
dormant phase to mutate until finding a phase
that has been active or not yet attempted with the
prefix.
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Prohibiting Prior Dormant Phases

(cont...)

@ a and f are dormant phases given the
active prefix of bac In the tree.

b
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Number of Generations When
Prohibiting Prior Dormant Phases
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Prohibiting Un-enabled Phases

® Most optimization phases when performed
cannot be applied again until enabled.

— ex: Register allocation will not be enabled by
most branch optimizations

c enables a b and d do not enable a

...|a blclal... ...|a bld]|a
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Prohibiting Unenabled Phases (cont.)

@ Assume b can be enabled by a, but cannot be
enabled by c. Given the prefix bac, then b
cannot be active at this point.

b

a e| | C| a el b | d

{ d | o f
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Number of Generations When
Prohibiting Unenabled Phases
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Number of Generations When
Applying All Technigues
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Relative Search Time before Finding
the Best Sequence

bit count 1.73|min to 0.54 min

dijkstra to 12.00 min

fft

jpeg 190.05 fnin to 163.82 min

sha 9.13 min to 3.26 min

stringsearch 12.29 min t0|6.99 min

average
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Related Work

@ Superoptimizers
— Instruction selection: Massalin
— branch elimination: Granlund, Kenner

@ lterative compilation techniques using performance
feedback information.
— loop unrolling, software pipelining, blocking

@ Using genetic algorithms to improve compiler
optimizations
— Parallelizing loop nests: Nisbet
— Improving compiler heuristics: Stephenson et al.
— Optimization sequences: Cooper et al.

@ ACM SIGPLAN 2004 Conference on Programming Language D_ 42




&

Florida State University Computer Science

aTE
ky ad 4':}
e &
ﬁqﬂ S
0 735'- 7 ]

Future Work

® Detecting likely active phases given active
phases that precede lIt.

®Varying the characteristics of the search.
@ Parallelize the genetic algorithm.
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Conclusions

® Avoiding executions:

— Important for genetic algorithm to know if attempted
phases were active or dormant to avoid redundant active
sequences.

— Same code Is often generated by different active
sequences.
® Reducing the number of generations required to
find the best sequence in the search:

— Inserting the batch compilation active sequence is simple
and effective.

— Can use static analysis and empirical data to often detect
when phases cannot be active.
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