Florida State University Computer Science

Fast Searches for Effective
Optimization Phase Sequences

Prasad Kulkarnl Stephen Hlnes ® Jason Hlser“

David Whalley Jack Davidson', Douglas Jones "

@ Computer Science Department, Florida State University, Tallahassee, Florida

€ Computer Science Department, University of Virginia, Charlottesville, Virginia

it Electrical and Computer Eng. Department, University of Illinois, Urbana, lllinois

@ ACM SIGPLAN 2004 Conference on Programming Language Design and Implementation (PLDDY 1



:-s'.'iél;: :1.2 . . . 5
ﬁg Florida State University Computer Science

Phase Ordering Problem

® A single ordering of optimization phases
will not always produce the best code

— different applications
— different compilers
— different target machines
® Example
— register allocation and instruction selection

@ ACM SIGPLAN 2004 Conference on Programming Language _ 2



Florida State University Computer Science

M'Approaches to Addressing the

Phase Ordering Problem
® Framework for formally specifying compiler
optimizations.
® Single intermediate language representation
— repeated applications of optimization phases
® Exhaustive search?

® Our approach

— Intelligent search of the optimization space using
genetic algorithm

@ ACM SIGPLAN 2004 Conference on Programming Language D_ 3




Florida State University Computer Science -

Genetic Algorithm

@ A biased sampling search method
— evolves solutions by merging parts of different

solutions
Create ir)itial Evaluate fitness of | Output the
population —  each sequence Terminate best
of optimization in the population cond. ? sequence
sequences found

Perform crossover/
mutation to create <
new generation

@ ACM SIGPLAN 2004 Conference on Programming Language Design and Implementation (PLD)Y 4




Florida State University Computer Science -

Genetic Algorithm

@ A biased sampling search method
— evolves solutions by merging parts of different

solutions
Create ipitial Evaluate fithess of | Output the
population | each sequence Terminate best
of optimization in the population cond. ? sequence
sequences found

Perform crossover/
mutation to create <
new generation

@ ACM SIGPLAN 2004 Conference on Programming Language Design and Implementation (PLDDY 5




Florida State University Computer Science -

Genetic Algorithm

@ A biased sampling search method
— evolves solutions by merging parts of different

solutions
Create ipitial Evaluate fitness of | Output the
population — | each sequence Terminate best
of optimization in the population cond. ? sequence
sequences found

Perform crossover/
mutation to create <
new generation

@ ACM SIGPLAN 2004 Conference on Programming Language Design and Implementation (PLDD| 6




Florida State University Computer Science -

Genetic Algorithm

@ A biased sampling search method
— evolves solutions by merging parts of different

solutions
Create ipitial Evaluate fitness of | Output the
population |  each sequence Terminate best
of optimization in the population cond. ? sequence
sequences found

Perform crossover/
mutation to create <
new generation

@ ACM SIGPLAN 2004 Conference on Programming Language Design and Implementation (PLDY 7




Florida State University Computer Science -

Genetic Algorithm

@ A biased sampling search method
— evolves solutions by merging parts of different

solutions
Create ipitial Evaluate fitness of | Output the
population |  each sequence Terminate best
of optimization in the population cond. ? sequence
sequences found

Perform crossover/
mutation to create <
new generation

@ ACM SIGPLAN 2004 Conference on Programming Language Design and Implementation (PLDD 5




Genetic Algorithm (cont...)

® Crossover
— 20% sequences in each generation replaced

Population 1 Population 2

@ Mutation
— phases in each sequence replaced with a low probability

@ ACM SIGPLAN 2004 Conference on Programming _ 9



Florida State University Computer S_
Genetic Algorithm (cont...)

C Source R : Assembly
: > Compiler > :
Function Function
candidate best
phases sequence
Genetic
Algorithm

@ ACM SIGPLAN 2004 Conference on Programming _ 10



:-s'.'iél;: :1.2 . . . 5
ﬁg Florida State University Computer Science

Experiments

@ Performed on six mibench benchmarks, which
contained a total of 106 functions.

@ Used 15 candidate optimization phases.

@ Seqguence length set to 1.25 times the number of
successful batch phases.

@ Population size set to 20.
Performed 100 generations.
@ Fitness value was 50% speed and 50% size.

&

@ ACM SIGPLAN 2004 Conference on Programming Language _ 11



A

=$a Florida State University Computer Scz_

Genetic Algorithm — Results

bit count -——I

dijkstra
= F

IPeg # [ Size

] B Speed

stringsearch ]

AxElass I
0 S 10 15
percentage improvement compared to the batch compiler

@ ACM SIGPLAN 2004 Conference on Programming Language Design and Implementation (PLDY 12




Florida State University Computer Science

Our Earlier Work

@® Published in LCTES '03

— complete compiler framework
— detailed description of the genetic algorithm

— Improvements given by the genetic algorithm for
code-size, speed, and 50% of both factors

— optimization sequences found by the genetic
algorithm for each function

— Finding Effective Optimization Phase Sequences —
http://www.cs.fsu.edu/~whalley/papers/ictes03.ps

@ ACM SIGPLAN 2004 Conference on Programming Language _ 13



Florida State University Computer Science

Genetic Algorithm — Issues

@ Very long search times

— evaluating each sequence involves compiling,
assembling, linking, execution and verification

— simulation / execution on embedded processors Is
generally slower than general-purpose processors

@ Reducing the search overhead
— avoiding redundant executions of the application.

— modifying the search to obtain comparable results in
fewer generations.

@ ACM SIGPLAN 2004 Conference on Programming Language D_ 14



:-s'.'iél;: :1.2 . . . 5
ﬁg Florida State University Computer Science

Methods for Avoiding Redundant Executions

@ Detect sequences that have already been
attempted.

@ Detect sequences of phases that have been
successfully applied.

@ Check If an Iinstance of this function has
already been generated.

@ Check if an equivalent function has already
been generated.

@ ACM SIGPLAN 2004 Conference on Programming Language D_ 15



Reducing the Search Overhead

® Avoiding redundant executions.

® ODbtaining similar results in fewer
generations.

@ ACM SIGPLAN 2004 Conference on Programming L_ 16



RALE
-’ 1
f )
= i
Eﬁ%iﬂi
G &

e

&

Florida State University Computer Science

Overview of Avoiding Redundant
Executions

candidate
phases

best
sequence

@ ACM SIGPLAN 2004 Conference on Programming Language _ 17

Genetic
Algorithm

]JI'EViﬂl]S measure

Execute

Application

new measuare

found found
Check Check
next apply .
Attempted Active
sequence phases
Sequences Sequences
calculate unmapped checksum
Check for Check for
generate . calculate .
Equivalent Identical
executable . map ped .
Function checksum | Function
found found




:é'iél;: :1.2 . . . 5
1}5 Florida State University Computer Science

Finding Redundant Attempted
Sequences

® Same optimization phase sequence may
be reattempted

— Crossover operation producing a previously
attempted sequence

— Mutation not occurring on any of the phases
In the sequence

— Mutation changing phases, but producing a
previously attempted sequence

@ ACM SIGPLAN 2004 Conference on Programming Language D_ 18



Florida State University Computer Science

“ Finding Redundant Attempted
Sequences (cont...)

Before mutation After mutation
seqi: |d|aje|d|c]|f seqi: |d|laje|d|c|f
seqj: |fla|c]|b]c|d seqj: |flalclalc|d
segk: | flelc|b|b]|d segk: | flalc|b]c]|d

@ ACM SIGPLAN 2004 Conference on Programming Languag_ 19



:é'iél;: :1.2 . . . 5
1}5 Florida State University Computer Science

N85\ B

Finding Redundant Active Sequences

@ An active optimization phase is one that Is
able to complete one or more transformations.

® Dormant phases do not affect the compilation.
@ Compiler must indicate If phase was active.

Attempted : segi: |d|bleld]c]f seqj: |dlajle|b]|c]f

Active : seqi: dlelc|f seqj: dlelc]f

@ ACM SIGPLAN 2004 Conference on Programming Language D_ 20



:-s'.'iél;: :1.2 . . . 5
ﬁg Florida State University Computer Science

Detecting ldentical Code

@ Sometimes identical code for a function
can be generated from different active
seguences.

® Some phases are essentially independent
— branch chaining and register allocation

® Sometimes more than one way to produce
the same code.

@ ACM SIGPLAN 2004 Conference on Programming Language D_ 21



&

aTE

ky ad 4':}
e &
ﬁqﬂ S
0 735'- 7 ]

Florida State University Computer Science

Detecting Identical Code (cont...)

@ Example:
2] = 1; 2] = 1,
r[3] = r[4] + r[2]; r[3] = r[4] + r[2];
=Instruction selection =constant propagation
(3] =r[4] + 1; 2] = 1;

3] =r[4] + 1;

—=dead assignment elimination
r[3] =r[4] + 1;

® Used CRC checksums to compare function
Instances.

@ ACM SIGPLAN 2004 Conference on Programming Language Design and Implementation (PLDY 22



:é'iél;: :1.2 . . . 5
1}5 Florida State University Computer Science

Detecting Equivalent Code

® Code generated by different optimization
seguences may be equivalent, but not

identical.

® Some o

ptimization phases consume

registers.
® Different ordering of such phases may

result In

equivalent instructions, but

different registers being used.
@ ACM SIGPLAN 2004 Conference on Programming Language D_ 23



sum = 0O;
for (1 = 0; 1 < 1000; 1++ )
sum +=a [ 1 ];

Source Code
r{11]=0;

r[10]=HI[a];
r[10]=r[10]+LO[a];

r[10]=0;
ri12]=HI[a];
ri12]=r[12]+LO[a];
r11=r[12]; r[11=r[10];
r[9]=4000+r[12]; r[9]=4000+r[10];
L3 L3 L3
r[81=MLr[111: r[81=MLr[111:
r[10]=r[10]+r[8]; ril1l]=r[11]+r[8];
r1l=r[1]+4; rfll=r[1]+4;
IC=r[1]?r[9]:; IC=r[1]?r[9];
PC=1C<0,L3; PC=1C<0,L3;

r[32]=0;
r[33]=HI[a];
r[33]=r[33]+L0[a];
r[34]=r[33];
r[35]=4000+r[33];

r[36]=M[r[34]];
r[32]=r[32]+r[36];
r[34]=r[34]+4;
1IC=r[34]?r[35];
PC=1C<0,L3;

Register Allocation
before Code Motion

Code Motion before
Register Allocation

After Mapping
Registers

@ ACM SIGPLAN 2004 Conference on Programming Language Design and Implementation (PLDY 24




Florida State University Computer Science

Number of Avoided Executions

bit count I
dijkstra -
fit |
jpeg . I Equivalent
[ ] Identical
shig . I [] Active
[ ] Attempted
stringsearch | _ I
average I

0 200 400 o600 800 1000 1200 1400 1600 1800 2000

@ ACM SIGPLAN 2004 Conference on Programming Language Design and Implementation (PLDY 25



Florida State University Computer S_

Relative Total Search Time

bit COUHT- 3.32 hours to 0.42 hours
dijkstra _ 2.50 hours to 0.63 houyrs

fft __ 3.24 hours to 1.73 hours
jpeg __ 20.45 hours to 9.29 hours

sha __ 1.73 hours to 0.35 hours
stringsearch __ 2.16 hours to 1.15 hours

average NI

0 0.2 0.4 0.6 0.8 1

@ ACM SIGPLAN 2004 Conference on Programming _ 26



Florida State University Computer S_
Reducing the Search Overhead

® Avoiding redundant executions.

® ODbtaining similar results in fewer
generations.

@ ACM SIGPLAN 2004 Conference on Programming Language Design and Implementation (PLDY 27



Florida State University Computer Science

Producing Similar Results In
Fewer Generations

® Can reduce search time by running the
genetic algorithm for fewer generations.

® Can obtain better results in the same
number of generations.

®\We evaluate four methods for reducing the
number of required generations to find the
best sequence In the search.

@ ACM SIGPLAN 2004 Conference on Programming Language D_ 28



:-s'.'iél;: :1.2 . . . 5
ﬁg Florida State University Computer Science

Using the Batch Sequence

® Capture the active sequence of phases
applied by the batch compiler.

@ Place this sequence in the Initial
population.

® May allow the genetic algorithm to
converge faster to the best sequence it can
find.

@ ACM SIGPLAN 2004 Conference on Programming Language D_ 29



Florida State University Computer Science

Number of Generations When Using
the Batch Sequence

bit count

dijkstra

i [ | Baseline
fft
E [ ] Using the Batch

| Sequence

jpeg |

sha |

stringsearch |

average |

0 10 20 30 40 50 60
number of generations

@ ACM SIGPLAN 2004 Conference on Programming Languag_ 30



:-5‘ I-.' a%r . . . 5
ﬁg Florida State University Computer Science

B
& 185\ 7 ]

Prohibiting Specific Phases

® Perform static analysis on the function.
— No loops, then no loop optimizations.
— No scalar variables, then no register allocation.

— Only one basic block, then no unreachable code
elimination and no branch optimizations.

— Etc.

® Such phases are prohibited from being
attempted for the entire search for that function.

@ ACM SIGPLAN 2004 Conference on Programming Language D_ 31



Number of Generations When
Prohibiting Specific Phases

] | |
bitcount i
dijkstra -—4
fft_ | | Baseline
# [ Prohibiting Specif-
. ic Phases
jpeg
sha
sirngseRmch #
AVSAYS “J
0 10 20 30 40 50 60

number of generations

G rcusicPLAN 2004 Conference ot T -



:g-.;au&: a?r . n N )
Qipi Florida State University Computer Science

Prohibiting Prior Dormant Phases

@ Some phases will be found to be dormant given a
specific prefix of active phases.

@ If encounter the same prefix, then do not allow
these prior dormant phases to be reattempted.

@ Keep a tree of active prefixes and store the
dormant phases with each node in the tree.

@ Changed the genetic algorithm by forcing a prior
dormant phase to mutate until finding a phase
that has been active or not yet attempted with the
prefix.

@ ACM SIGPLAN 2004 Conference on Programming Language De_ 33



Nl § Florida State University Computer Science
Prohibiting Prior Dormant Phases

(cont...)

@ a and f are dormant phases given the
active prefix of bac In the tree.

b

@ ACM SIGPLAN 2004 Conference on Programming Language Design and Implementation (PLDY 34



Number of Generations When
Prohibiting Prior Dormant Phases

bit count

dijkstra

[ ] Baseline

B Prohibiting Prior
Dormant Phases

fft

jpeg

sha

stringsearch

|

average

! I JH

0 10 20 30 40 50 60
number of generations

@ ACM SIGPLAN 2004 Conference on Programming _ 35



:-s'.'iél;: :1.2 . . . 5
ﬁg Florida State University Computer Science

Prohibiting Un-enabled Phases

® Most optimization phases when performed
cannot be applied again until enabled.

— ex: Register allocation will not be enabled by
most branch optimizations

c enables a b and d do not enable a

...|a blclal... ...|a bld]|a

@ ACM SIGPLAN 2004 Conference on Programming Language D_ 36



&

Florida State University Computer Science

Prohibiting Unenabled Phases (cont.)

@ Assume b can be enabled by a, but cannot be
enabled by c. Given the prefix bac, then b
cannot be active at this point.

b

a e| | C| a el b | d

{ d | o f

@ ACM SIGPLAN 2004 Conference on Programming Language Design and Implementation (PLDY 37

-
N




Florida State University Computer Science -

Number of Generations When
Prohibiting Unenabled Phases

bit count__ | |
dijkstra __ |
i Baseline
fft_Fl E Prohibiting Un-
ineg ] enabled Phases
sha _- |
stringsearch *
average _ |

0 10 20 30 40 50 60
number of generations

@ ACM SIGPLAN 2004 Conference on Programming Lang_ 38



Florida State University Computer Science

Number of Generations When
Applying All Technigues

bit count ] |
dijkstra __
fft_.il E Elzilseline
ipeo. pm—
sha _- |
stringsearch —
average _ |

0 10 20 30 40 50 60
number of generations

@ ACM SIGPLAN 2004 Conference on Programming Language _ 39



bit count

dijkstra

fft

ipeg

sha

stringsearch

average

@ ACM SIGPLAN 2004 Conference on Programming Language D_ 40

B Equivalent
[ ] Identical
[ ] Active

[ ] Attempted

200 400 600 800 1000 1200 1400 1600 1800 2000




&7

o

=,
o

Florida State University Comput_

Relative Search Time before Finding
the Best Sequence

bit count 1.73|min to 0.54 min

dijkstra to 12.00 min

fft

jpeg 190.05 fnin to 163.82 min

sha 9.13 min to 3.26 min

stringsearch 12.29 min t0|6.99 min

average

0 0.2 0.4 0.6 0.8 1



Florida State University Computer Science

Related Work

@ Superoptimizers
— Instruction selection: Massalin
— branch elimination: Granlund, Kenner

@ lterative compilation techniques using performance
feedback information.
— loop unrolling, software pipelining, blocking

@ Using genetic algorithms to improve compiler
optimizations
— Parallelizing loop nests: Nisbet
— Improving compiler heuristics: Stephenson et al.
— Optimization sequences: Cooper et al.

@ ACM SIGPLAN 2004 Conference on Programming Language D_ 42




&

Florida State University Computer Science

aTE
ky ad 4':}
e &
ﬁqﬂ S
0 735'- 7 ]

Future Work

® Detecting likely active phases given active
phases that precede lIt.

®Varying the characteristics of the search.
@ Parallelize the genetic algorithm.

@ ACM SIGPLAN 2004 Conference on Programming Languag_ 43



Florida State University Computer Science

Conclusions

® Avoiding executions:

— Important for genetic algorithm to know if attempted
phases were active or dormant to avoid redundant active
sequences.

— Same code Is often generated by different active
sequences.
® Reducing the number of generations required to
find the best sequence in the search:

— Inserting the batch compilation active sequence is simple
and effective.

— Can use static analysis and empirical data to often detect
when phases cannot be active.

@ ACM SIGPLAN 2004 Conference on Programming Language D_ 44




	Fast Searches for Effective Optimization Phase Sequences
	Phase Ordering Problem
	Approaches to Addressing the Phase Ordering Problem
	Genetic Algorithm
	Genetic Algorithm
	Genetic Algorithm
	Genetic Algorithm
	Genetic Algorithm
	Genetic Algorithm (cont…)
	Genetic Algorithm (cont…)
	Experiments
	Genetic Algorithm    Results
	Our Earlier Work
	Genetic Algorithm    Issues
	Methods for Avoiding Redundant Executions
	Reducing the Search Overhead
	Overview of Avoiding Redundant Executions
	Finding Redundant Attempted Sequences
	Finding Redundant Attempted Sequences (cont…)
	Finding Redundant Active Sequences
	Detecting Identical Code
	Detecting Identical Code (cont…)
	Detecting Equivalent Code
	Detecting Equivalent Code (cont…)
	Number of Avoided Executions
	Relative Total Search Time
	Reducing the Search Overhead
	Producing Similar Results in Fewer Generations
	Using the Batch Sequence
	Number of Generations When Using the Batch Sequence
	Prohibiting Specific Phases
	Number of Generations When Prohibiting Specific Phases
	Prohibiting Prior Dormant Phases
	Prohibiting Prior Dormant Phases (cont…)
	Number of Generations When Prohibiting Prior Dormant Phases
	Prohibiting Un-enabled Phases
	Prohibiting Unenabled Phases (cont.)
	Number of Generations When Prohibiting Unenabled Phases
	Number of Generations When Applying All Techniques
	Number of Avoided Executions When Reducing the Number of Generations
	Relative Search Time before Finding the Best Sequence
	Related Work
	Future Work
	Conclusions

