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ABSTRACT 1. INTRODUCTION
It has long been kmen that a fixed ordering of optimization  The phase ordering problem has long been known to béiculdif
phases will not produce the best code fare application. One dilemma for compiler writers [17, 19]. One sequence of optimiza-

approach for addressing this phase ordering problem is to use afion phases is highly unlikely to be the modeetive ssquence for
evdutionary algorithm to search for a specific sequence of phaseseveay application (or een for each function within a single appli-

for each module or function. While such searchegehkeen cation) on a gien machine. Whetheor not a particular optimiza-
shawvn to produce more efficient code, the approach can betion enables or disables opportunities for subsequent optimiza-
extremely slov because the application is compiled améceted tions is difficult to predict since it depends on the application
to evaluate each sequensedfectveness. Consequentlgvolu- being compiled, the pvéously applied optimizations, and the-tar

tionary or iteratvte cmpilation schemes ka keen promoted for get architecture [19].
compilation systems tgeting embedded applications where
longer compilation times may be tolerated in the final stage of
development. Inthis paper we describe twcomplementary gen-
eral approaches for achieving faster searches fectefe ti-
mization sequences when using a genetic algoritfiime first
approach reduces the search time ‘giding unnecessaryxecu-

One approach to deal with this problem is to search fecef
tive gotimization phase sequences using genetic algorithms [5,
11]. Whenthe fitness criteria for such searcheglne dynamic
measures (e.g., cycle counts or power consumption), thousands of
direct executions of an application may be required. The search
time can be significant, often needing hours or days when finding

tions of the application when possibl&esults indicate search oo ctive equences for a single application, making it less attrac-
time reductions of 65% orverage, often reducing searches from tive for developers.

hours to minutes. The second approach modifies the search so
fewer generations are required to askighe same resultsMea-
surements sho that the serage number of required generations
decreased by 68%. These impements hae te potential for
making eolutionary compilation a viable choice for tuning
embedded applications.

There are application areas where long compilation times are
acceptable. & example, long compilation times may be tolerated
in application areas where the problem size is directly related to
the eecution time to solg the problem. In fact, the size of man
computational chemistry and high-energy physics problems is
limited by the elapsed time to reach a solution (typicallyva fe

Categories and Subject Descriptors days or a week)Long compilation times may be acceptable if the
D.3.4 [Programming Language§ Processors- compilers, opti- resulting code allows lger problem instances to be solved in the
mization D.4.7 Qperating System§ Organization and Desigr same amount of time.

real-time systems and embedded systems. Evolutionary compilation systems V& dso been proposed

for compilation systems tgeting embedded systems where meet-
General Terms ing strict constraints orxecution time, code size, and power con-
Measurement, Performance, Experimentation, Algorithms. sumption is paramountHere long compilation times are accept-
Ke able because in the final stages ofellepment an application is
ywords , . o )
Phase ordering, interag#i compilation, genetic algorithms. comp!led and embedded in a product where m|I|_|ons of units may
be shipped.For embedded systems, the problem is furthexcer-
bated because the softwares@epment emironment is often dif-
ferent from the target @itonment. Obtainingperformance mea-
sures on cross-platform @@opment environments often requires
simulation which can be orders of magnitude slower thawvenati
execution. Even when it is possible to use the target machine to
not made or distributed for profit or commercial advantage and that copiesg_ah_e.r performance data directtpe embedded processor may be
bear this notice and the full citation on the first pagecdpy otherwise, 5|gn|f|cantly slower (slower clock rate, less memaetg.) than
or republish, to post on servers or to redistribute to lists, requires prior spe-2vailable general-purpose processov¥e havefound that search-

Permission to makdgital or hard copies of all or part of this work for
personal or classroom use is granted without fegiged that copies are

cific permission and/or a fee. ing for an efective gptimization sequence can easily require hours
PLDI'04, June 9-11, 2004, Washington, DC, USA. or days gen when using directecution on a general-purpose
Copyright 2004 ACM 1-58113-807-5/04/0006...$5.00. processar For example, using a ceentional genetic algorithm to

search for déctive gtimization sequences for thpeg applica-
tion on an Ultra SPARC Il processor requireeen20 hours to



complete. Thusfinding efective :quences to tune an embedded 3. THE VISTA FRAMEWORK

application may result in an intolerably long search time. This section provides a briet/erview of the framevork used for

In this paper we describe approaches for abie faster the experiments reported in this papé more detailed descrip-
searches for &ctive timization sequences using a genetic algo- tion of VISTA's architecture can be found in prior publications
rithm. We performed our experiments using the VISTVPO [20, 11]. Figure 1 illustrates the floof information in VISH,
Interactive §/stem for Tuning Applications) framerk [20]. One which consists of a compiler and awi. The programmer ini-
feature of VISR is that it can automatically obtain performance tially indicates a file to be compiled and then specifies requests
feedback information which can be presented to the user and camhrough the vieer, which include sequences of optimization

be used to makphase ordering decisions [11}Ve wse this per phases, manually specified transformations, and quefié
formance information to dré the genetic algorithm searches for compiler performs the specified actions and sends program repre-
effective gtimization sequences. sentation information back to the wier. Each time an optimiza-

The remainder of the paper is structured as floFirst,we tion sequence is selected for the function being tuned, the com-
reviev other aggresse mmpilation techniques that ve been piler instruments the code, produces assembly code, links and
used to tune applications. Second, weegin overview of the executes the program, and gets performance measures from the

VISTA framavork in which our experiments are performed. execution. Whenthe user chooses to terminate the session,
Third, we describe methods for reducing theerbead of the VISTA writes the sequence of transformations to a file sptae
searches for &dctive ®quences. @urth, we discuss techniques be reapplied at a later time, enabling future updates.

for finding efective squences in fewer generations. Fifth, we

show results that indicate thefettiveness of using our techniques Measure Linked
to perform faster searches for optimization sequenEeslly, we EASE | Request File
outline future work and present the conclusions of the paper. New Instrictions ’\P/leegt;:?:snce

2. RELATED WORK Source Compiler Assembly
Prior work has used aggressicompilation techniques to impve File File
performance. Superoptimizetsve been deeloped that use an Program Representation Info. Jransformation Info.
exhaustve warch for instruction selection [12] or to eliminate Selections Requests

branches [7]. Selecting the best combination of optimizations by _ Saved
turning on or of optimization flags, as opposed to varying the User Display Viewer State

order of optimizations, has also beewestigated [4].

Some systems perform transformations and use performance
feedback information to tune applicationfierative techniques
using performance feedback information after each compilation The compiler used in VISNis based on VPO (Very Portable
have keen applied to determine good optimization parameters Optimizer), which is a compiler back end that performs all of its
(e.g., blocking sizes) for specific programs or library routines [10, optimizations on a single Ualevel representation called TRs
18]. Anothertechnique uses compile-time performance estima- (register transfer lists) [1, 2]Because VPO uses a single repre-
tion [16]. All of these systems are limited in the set of optimiza- sentation, it can apply most analyses and optimization phases

Figure 1: Interactive Code Improvement Process

tions the apply. repeatedly and in an arbitrary ordéFhis feature facilitates find-
Specifications of code-improving transformationseh&een ing more effectie quences of optimization phases.
automatically analyzed to determine if one type of transformation Figure 2 shows a snapshot of the viewer with the history of a

can enable or disable another [19]. This information cawigeo sequence of optimization phases displayed. Note that not only is
insight into hav to specify an efiective gptimization phase order the number of transformations associated with each optimization
ing for a comentional optimizing compiler. phase displayed, but also the impmments in instructions

A number of systems ke been deeloped that usevelu- executed and code size are siio Thisinformation allows a user
tionary algorithms to impnee cmpiler optimizations.A neural to quickly gauge the progress that has been made in improving the
network has been used to tune static branch predictions [3]. function. Thefrequeng of each basic block relat © the func-
Genetic algorithms e been used to better parallelize loop nests tion is also shown in each block header line, whichnalla user

[13]. Anothersystem used genetic algorithms to derimproved to identify the critical regions of a function.

compiler heuristics for hyperblock formation, register allocation, VISTA allows a user to specify a set of distinct optimization
and data prefetching [15}A low-level compilation system del- phases and ka the compiler attempt to find the best sequence for
oped at Rice Unkrsity uses a genetic algorithm to reduce code applying these phases. Figure 3 shows the different options that
size by finding efficient optimization phase sequences [5T6¢ we provide the user to control the search. The user specifies the
Rice system uses a similar genetic algorithm as in Xi®F find- sequence lengttwhich is the total number of phases applied in

ing phase sequenceblowever, the Rice system is batch oriented each sequencelur experiments used théased sampling seeln,
instead of interacte and applies the same optimization phase which applies a genetic algorithm in an attempt to find the most
order for all of the functions within a file. Some aspects of the effective quence within a limited amount of time since in ynan
approaches described in our paper may be useful for obtainingcases the search space is too large vauate all possible
faster searches in all of these systems. sequences [9]A population is the set of solutions (sequences)
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Figure 2: Main Window of VISTA Showing History of Optimization Phases

that are under consideration. The number of generations indicates__________

how mary sets of populations are to beauated. Thepopulation | Percent Camplete:

size and the number of generations limits the total number of ' =

sequences veluated. VISR also allovs the user to choose  |combinations campietec

dynamic and static weight factors, where the redatnprovement R | ot [284/2000
of each is used to determine thesall fitness.

Best Sequence: snksnhe Seq. Num: 133
[ Sel....Comb Query Current Sequence: innsnchs Improvement: 45.5
No. of Phases: 5 Search Option:
Sequence Length: |7 (2 Exhaustive Search Itzl;:;:e.lﬁ:;:r:vements: vnliD .
(@ Biased Sampling Search . ,—
Stop
Weight Factors: ) Permutation Search
Speed [50 Core Siee 50 T — o Figure 4: Window Showing the Search Status
e : S e T VISTA performs the foll«wmg_ tasks to obtain dynamic per _
formance measurements for a single sequence. (1) The compiler
o Ea Thew |- applies the optimization phases in the order specified by the

sequence. (2Jhe generated code for the function is instrumented
Figure 3: Slecting Options to Search for Possible Sequences  if required to obtain performance measurements and the assembly
code for that function and the remaining assembly code for the
functions in the current source file are written to a file. (3) The
newly generated assembly file is assembled. (4) The object files

Performing these searches is time consuming, typically
requiring tens of minutes for a single function, and hours or days
for an entire applicationven when using directx@cution. Thus, comprising the entire program are letk together into an

VIS-ZA ﬁ)]rowdes a Wlﬂd:ﬂ ?Emn? tthe le”tfnt searf]h stlatL:élg-_ Fi executable by a command supplied in a configuration file. (5) The
ure 4 shwis a snapshot ot the status ot the search selected in Figy rogram is recuted using a command in a configuration file,

ure 3. The percentage of sequences completed, the best sequen hich may ivolve drect ececution or simulation. As a side

?hnd its effﬁctton pgr{orngjance atr?r\:mk; Ttheuser canf terrglnat;e effect of the &ecution, performance measurements are produced.
€ search at grpoint and accept the best sequence found so far. (6) The output of thexecution is compared to the desired output

to provide assurance that thenngequence did not cause the gen-
4. REDUCING THE SEARCH OVERHEAD erated code to becomevalid. Tasks 2-6 often dominate the
Performing a search for anfeftive gotimization phase sequence search time, which is probably due to these tasks requiring 1/0
can be quite xpensve, perhaps requiring hours or days for an and task 1 being performed in memory.

entire applicationeen when using directxecution. Oneobvious The folloving subsections describe methods to reduce the
benefit for speeding up these searches is that the technique is Moigarch verhead by inferring the outcome of a sequeniigure 5
likely to be used. Another benefit is that the search can be mad@|ystrates the order in which the different methods are attempted.

more aggresse, such as increasing the number of generations, in The methods are ordered according to cost. Each method handles
an attempt to produce a better tuned application.



a wperset of the sequences handled by the methods applied beforghases and the nonbold boxes represent dormant phases-
it, but the later methods are more expeasi ond hash table is used to record sequences where only the acti
phases are represented.

previous measure found found 1
candidate attempted:  seq : mmﬂm seq . EEEE
phases . Check Check
—— = Genetic next apply .
R - Attempted - Active
W Algorithm | sequence Sequences phases Sequences
sequence active: seq i: mﬂ seq j: EE
calculate unmapped checksul
new measure

Figure 7: Example of a Redundant Actve Sequence

Execute Check for calculate Check for
o enerate Equivalent Identical
Application | executable| mapped

Function checksum| Function

o yound 4.3 Detecting ldentical Code

Sometimesdentical code can be generated fromfeient actie
Figure 5: Methods for Reducing Search Overhead sequences. Oftedifferent optimization phases can be applied
and can hee the same ééct. Considerthe two different ways
that the pair of instructions in Figure 8 can be geertogether
4.1 Finding Redundant Attempted Sequences Instruction selection symbolically merges the instructions and

Sometimes the same optimization phase sequence is reattemptethecks to see if the resulting instruction igale The same ect
during the searchConsider Figure 6, where each optimization 1N this case can be produced by constant propagation followed by
phase in a sequence is represented by a. Ifiter same sequence dead assignment eliminationWe dso found that performing

can be reattempted due to mutation not occurring gnofithe some optimization phases in afeient order will hae ro efect
phases in the sequence (e.g. sequera®aining the same in Fig- N the final code that is generatdebr instance, consider apply-
ure 6). Likewise, a crossger operation or mutation changing ing branch chaining before and after register allocatiBoth
some indvidual phases can produce a previously attempted branch chaining and register allocation will neither inhibit nor
sequence (e.g. sequericenutates to be the same as sequgnce €nable the other phase.

before mutation in Figure 6)A hash table of attempted sequences

along with the performance result for each sequence is main-| original code segment original code segment

tained. Ifa quence is found to be previously attempted, then the r[2]=1; r[2]=1;

evduation of the sequence is not performed and theique r[3]=r[4]+r[2]; r(3]=r[4]+r[2];

result is used. This technique of using a hash table to capture pre

viously attempted solutions has beenvipesly used to reduce after instruction selection | after constant propagation

search time [5, 15, 11]. r[3]=r[4] +1; r[2] =1;
r[3]=r[4]+1;

before mutation after mutation
seqi: ma seq i: mﬁ afte[ g]ead [a‘sl]sig;-\ment elimination

r =r +1;

seqj: [flafc[b]c[d]  seqj [flalc[a]c[d Figure 8: Different Optimizations Having the Same Effect
seqk: [f[e]c]b[b]d]  seqk: [f[a]c]b[c]d] VISTA has to efficiently detect when téfent actie

. . sequences generate identical code to be able to reduce the search
Figure 6: Example of Redundant Attempted Sequences overhead. Asearch may result in thousands of unique function
instances, which may be too large to store in memory ang v
expensve o access on disk. Theel realization in addressing this

4.2 Finding Redundant Actve Sequences issue vas that while we need to detect when function instances are

S identical, we can tolerate occasionally treatindedént instances
A transformation is a sequence of changes to the program repre-

sentation, where the semantic behavior is presenA phase is a as being identical since the sequences within a population are

: - - .__sorted and the best sequence found by the genetic algorithm must
sequence of transformations caused by a single type of optimizas

. . . . . . . be completelywaluated. Thuswe calculate a CRC (cyclic redun-
tion. Borranving from biological terminologyan active optimiza-
. . . . . dangy code) checksum on the bytes of thELR and keep a hash
tion phase (gene) is one that applies transformations, whlite-a

LAY . . table of these checksum&RCs are commonly used to check the
mantoptimization phase (gene) is one that has fecef Anopti-

o . . L validity of data transmitted\@r a retwork and hae an advantage
mization phase is dormant when the enabling conditions for the . .
N . o over corventional checksums in that the order of the bytes of data
optimization to be applied are not satisfied. As ooeld expect,

only a subset of the attempted phases in a sequence will typicallydoes affect the result [14]f the checksum has been generated for

: ; a previous function instance, then we use the performance results
be actve. It is common that a dormant phase may be mutated to . A
. ... of that instance.We have verified it is rare that we generate the
another dormant phase, but it would not affect the compilation.

. . . same checksum for different function instances and that the best
Figure 7 illustrates he different attempted sequences can map to . . . :
. . fitness value found is mer affected in our experiments.
the same acte ®quence, where the bold boxes representecti

-4-



4.4 Detecting Equvalent Code 5. PRODUCING SIMILAR RESULTS IN
Sometimes the code generated by different optimization FEWER GENERATIONS

sequences amjuivalentin regad to speed and sizeytnot iden- Another approach that can be used to reduce the search time for
tical. Considertwo function instances that V& the same finding efective gptimization sequences is to produce the same
sequence of instruction types, but use differegisters. Thisan results in fewer generations of the genetic algorithm. If this
occur since different optimization phases compete fgisters. approach is feasible, then users can either specify fewer genera-
For instance, consider the source code in Figure ¥aures 9(b) tions to be performed in their searches oytben stop the search

and 9(c) shw two possible translations ggn two dfferent order sooner once the desired resultséhdieen achieed. Thefollow-

ings of optimization phases that consume registers. ing subsections describe the different techniques that we use to

To detect this situation, we identify thevdi ranges of all of ~ obtain efective quences of optimization phases iwée genera-
the registers in the function and map eauh fange to a distinct ~ tions. All of these techniques identify phases that argliko be
pseudo rgister Equivalent function instances become identical active a dormant at a gien point in the compilation process.
after mapping, which is illustrated for the example in Figure 9(d).

We mmpute the CRC checksum for the mapped function |nstance5_1 Using the Batch Sequence

and check in a separate hash table of CRC checksums to see if the i ) )
mapped function had been previously generated. The traditional omatchvgr§|on. of our compiler alays attempts
the same order of optimization phases for each functide.

obtain the sequence of aaiphases (those phases that were able

sum = 0;

for (i =0; i < 1000; i++) to apply one or more transformations) from the batch compilation
sum += a[i]; of the function. We have used the length of the aoti batch
(a) Source Code sequence to establish the length of the sequences attempted by the
r[ 10]=0; r[11]=0; genetic algorithm in previous experiments [11].
r{12]=H[a]; r{10]=Hi[a]; We propose to use the aeti batch sequence for the function
r(12]=r{12]+L] a]; r(10]=r[10]+L] a]; as one of the sequences in the initial populatibhe premise is
r{i]=r[12]; r[1]=r[10]; that if we initialize a sequence in the population with optimization
L3r [ 9] =4000+r [12]; L?’r [ 9]=4000+r [ 10]; phases that are by to be actie, then this may allw the genetic
_ . _ i algorithm to cowmerge faster on the best sequence it can fiflis
r(8l=Mr[1]]; res8=Mrl1]]; o ) L _
r[10]=r[ 10]+r[8] ; r[11]=r[11]+r[ 8] ; a_pproagh is similar to |ncIU(_j|_ng in _thg initial populatlon the com-
r[1] =r[ 1] +4; r[1] =r[ 1] +4; piler writer's manually specified priority function when attempt-
IC=r[1]2r[9]; IC=r[1]?r[9]; ing to tune a compiler heuristic [15].
PC=1 C<0, L3; PC=I C<0, L3;
etk | ke Rionen 5.2 Prohibiting Specific Phases
While mauy different optimization phases can be specified as can-
r(32]=0; didate phases for the genetic algorithm, sometimes specific phases
r[33]=H[a]; . . . ! . .
r[33]=r[33]+Ld a] ; can neer be ative for a given function. Ift_he genetic a_lgorlthm
r[34] =r[ 33]: only attempts phases thatveaa opportunity to be acte, then
r [ 35] =4000+r [ 33]; the algorithm may corerge on the best sequence it can find in
L3 fewer attempts. There arevseal situations when specific opti-
r[36]=Mr[34]]; mizations should not be attemptetioop optimization phases
r{32]=r[32]+r[36]; cannot be acte for a function that does not containydioops.
r[34] =r[34] +4; Register allocation in VPO cannot be aetifor a function that
'Pglr [cig] E;[ 35]; does not contain griocal variables or parameters. Branch opti-
T mizations and unreachable code elimination cannot beedoti a
(d) After Mapping Registers function that contains a single basic blodketecting that a spe-
cific set of optimization phases canvaebe ative for a gven
Figure 9: Different Functions with Equivalent Code function requires simple analysis that only needs to be performed

. . . . once at the beginning of the genetic algorithm.
On most machines there is a uniform access time for each 9 9 g 9

register in the rgister file. Likewise, most statically scheduled

processors do not generate stalls due to anti (write after read) and.3 Prohibiting Prior Dormant Phases
output (write after write) dependenceblowever, these depen-
dences could inhibit future optimization$hus, comparing gs-

ter mapped functions tosaid executions in the search should only
be performed after all remaining optimizations (e.g. filling delay
slots) hae keen applied.Given that these assumptions are true, if jn the same situation since it will remain dormafio avoid

we find that the current mapped function is ggent to a prei- repeating these dormant phases, we represent te gatises as
ous mapped instance of the function, then we can assumeahe tWy,g4es in a tree, where each child corresponds to tiephase in
are equialent and will produce the same result aftegoeition. an actve :quence. W dso store at each node the set of phases

When compiling a function, we find certain optimization phases
will be dormant gien that a specific prefix of agg phases has
been performedGiven that the same prefix of phases is attempted
again, there is no benefit from attempting the same dormant phase



that were found to be dormant for that prefix of \actphases. 6. EXPERIMENTS

Figure 10 shows an example tree where the bold portions repre-riq gection describes the results of a set of experiments to illus-
sent actie pefixes and the nonbold boxes represent dormant e the dictiveness of the previously described techniques for
phases gien that prefix. For instancea andf are dormant phases  qyqining fast searches forfettive gptimization phase sequences.
for the prefixbac. To prohibit applying a prior dormant phase, We -\ first perform aperiments on a Ultra SPARC Il processor so
force a phase to change during mutation until we find a phase thaf, .+ the results could be obtained in a reasonable tifvfeer

has either been aeé with the specified prefix or has not yet been  oqring ourselves that the techniques were sound, we use these
attempted. techniques when obtaining results for the Intel StrongARM
SA-110 processowhich has a clock rate that is more than 5 times
slower than the Ultra SPARC IlI.

We wsed a subset of thmibenchbenchmarks, which are C
applications targeting specific areas of the embeddedemggk
We wsed one benchmark from each of the six categories of appli-
cations. Wherexecuting each of the benchmarks, we used the
Figure 10: A Tree Representing Active Prefixes sample input data that was provided with the benchmtakle 1
contains descriptions of these programs.

5.4 Prohibiting Unenabled Phases Catgory Program Description
Certai timizati h h f d t b auto/industrial |  bitcount test bit manipulation abilities

ertain optimization phases when periormed cannot DECOME| napork dijkstra calculates shortest path between
actve aan until enabled. For instance, register allocation nodes using Dijkstra’dgorithm
replaces references to variables welianges with rgisters. A telecomm it performs fast fourier transform
live mnge is assigned to agister when a register is/alable at consumer g image compression & decompressipn
h int in th lori After th i i security sha secure hash algorithm
_t at point 'n_t e C(_:’ 0””9 Proc_es er the c.:ompl er applies g2 office stringsearch| searches for words in phrases
ister allocation, this optimization phase will notveaan opportu-
nity to be actie ayan until the register pressure has changed.  Table 1: MiBench Benchmarks Used in the Experiments
Unreachable code elimination and ariety of branch optimiza- . . .
tions will not afect the register pressure and thus will not enable Table 2 shavs each of the candidate code-improving phases

register allocation. Figure 11 illustrates that a specific phase, thethat we used in the experiments when compiling each funclion.
nonbold box of the sequence on the right, will at times be unen-addition, rgjister assignment, which is a compulsory phase that
abled and cannot be aai Agan the premise is that if the  @ssigns pseudo registers to hardware registers, has to be per

genetic algorithm concentrates on the phases thatdieopportu- ~ formed. VIS implicitly performs rgister assignment before
nity to be actie, then it will be able to apply more agtithasesin ~ the first code-improving phase in a sequence that requires it.
a equence and coarge to he best sequence it can find iwée After applying the last code-improving phase in a sequence, we

attempts. Notehat determining which optimization phases can Perform another compulsory phase which inserts instructions at
enable another phase requires careful consideration by the comthe entry and»t of the function to manage the aetion record

piler writer. on the run-time stackFinally, we dso perform additional code-
improving phases afterwards, such as filling delay slots.
c enables a b and d do not enable & Our genetic algorithm search for obtaining the baseline mea-
[..[alo]clal.] [..[alb]d] aD surements was accomplished in the felllg manner Unlike
past studies using genetic algorithms to generate better code [13,
Figure 11: Enabling Previously Applied Phases 5, 15], we perform a search on each function (a total of 106 func-

We implemented this technique by forcing a phase to mutate thI’lSl n Ol;)r test sunltle_), which reqwrii Iolng?r compllatlc;ul; b
if the same phase has already been performed and there are r{gsﬁ t_s In better w‘; m_nprweml((ajnlt)s [11]. hT acf';tmostifo the
intervening phases that can enableWe realized that a specific techniques we arevauating would be much less fettive it we

phase can become unenabled after an attempted phase is found &?arched for a single sequence to be applied on an entire applica-
be acte a dormant. & first follow the tree of actie refixes, tion. We st the sequence (chromosome) length to be 1.25 times

which was described in the previous subsection, to determinethe number of a}ote rhases t.hat were applied for the fun.ctllon by
which phases are currently enablébr example, consider ain the batch compllerWe felt this length was a reasonable limit and
Figure 10. Assume thdi can be enabled bg, but cannot be gives us an pportunity to apply more aot thases than what the
enabled byc. Given the prefixbac, we know tﬁatb cannot be batch compiler could accomplish, which is much less than the
active & this point sinceb was dormant after the prefika andc number of phases attempted during t_he batch gompﬂafl’dne
cannot reenable it. After reaching a leaf of the tree we track sequence lengths used in these experiments varied between 4 and

which phases cannot be enabled by just examining the subsef18 V\gth an; merage of 14.15.hWe t the pot)ulfltlontsmed(md h of
quently attempted phases. number of sequences or chromosomes) to twenty and each o

these initial sequences is randomly initialized with candidate opti-
mization phasesWe performed 100 generations when searching
for the best sequence for each functidde rt the sequences in



Optimization Phase Description

branch chaining Replaces a branch or jump target with the target of the last jump in a jump chain.

common subexpression eliminatign  Eliminates fully redundant calculations, which also includes constant progoagption.

remove wnreachable code Remws basic blocks that cannot be reached from the entry block of the function.

remove wseless blocks Rermes empty blocks from the control-fle graph.

dead assignment elimination Rewves assignments when the assigned value vemnagsed.

block reordering Remes a ump by reordering basic blocks when the target of the jump has only a single predecessor.
minimize loop jumps Remas a ump associated with a loop by duplicating a portion of the loop.

register allocation Replaces references to a variable within a spa@fiartige with a register.

loop transformations Performs loop-imariant code motion, recurrence elimination, loop strength reduction, and induetiiatle

elimination on each loop ordered by loop nestinglleEachof these transformations can also be\idlially
selected by the user.

merge basic blocks Mergesdwonsecutie kasic blocksa andb whena is only followed byb andb is only preceded bg.
evduation order determination Reorders RTLs in an attempt to use fewer registers.

strength reduction Replaces an expemsistruction with one or more cheaper ones.

reverse jumps Eliminates an unconditional jump byersing a conditional branch when it brancheerghe jump.
instruction selection Combine instructions together and perform constant folding when the combined effgdtiissariestion.
remove wseless jumps Remes jumps and branches whose target is the following block.

Table 2: Candidate Optimization Phases in the Genetic Algorithm Experiments

the population by ditness valuealculated using 50% weight on  sequence of phases [11]. Thexage benefits shown in the figure
speed and 50% weight on code size. The speeidrf we used are slightly impreed from previously published results [11] since
was the number of instructionscecuted since this was a measure the searches moinclude additional optimization phases that were
that could be consistently obtained, it has been used in similarnot previously exploited by the genetic algorithm. Note that the
studies [5, 11], and allowed us to obtain baseline measurementgontribution of our paper is that the search for these benefits is
within a reasonable period of tim&Ve muld obtain a more accu-  more efficient, rather than the actual benefits obtained.

rate measure of speed by using a cycle-accurate simutdoov-

eva, the main point of our experiments was t@leate the dec-
tiveness of techniques for obtaining faster searches, which can be
applied with ag type of fitnesseluation criteria. At each gener dikstra
ation (time step) we reme the worst sequence and three others
from the lower (poorer performing) half of the population chosen
at random. Each of the remml sequences are replaced by ran- Ipeg |
domly selecting a pair of the remaining sequences from the uppel sha
half of the population and performing a crossqmating) opera-
tion to create a pair of mesequences. Therossw@er operation
combines the lower half of one sequence with the upper half of average
the other sequence and vice versa to createnew fquences. 0 5 10 15
Fifteen sequences are then changed (mutated) by considering eac percentage Improvemenkicompared to theibatcfcomplies
optimization phase (gene) in the sequence. Mutation of each Figure 12: Speed Only Improvements for the SPARC
phase in a sequence occurs with a probability of 10% and 5% for
the lower and upper halves of the population, resgagti When

bit count

fft

stringsearch

an optimization phase is mutated, it is randomly replaced with bit count [ ]

another phase. The four sequences subjected to eeossal the dijkstra

best performing sequence are not mutatéthally, if we find

identical sequences in the same population, then we replace th b

redundant sequences with ones that are randomly generated. jeg [
Figures 12, 13, and 14 skighe percentage impvement that sha

we obtained for the $#RC when optimizing for speed onlsize —

only, and 50% for eachafctor respectiely. Performance results

for the ARM, a widely used embedded process presented average ::

later in this section. The baseline measures were obtained using 0 5 10 15

the batch VPO compilewhich iteratively applies optimization persentags improvement:compared 2 theibabchcemplen

phases until no more imprements can be obtained. This base- Figure 13: Size Only Improvements for the SPARC

line is much more aggressi than alvays using a fixed length

-7-



2.27 hours. The reduction appears to Hectaéd not only by the

bit COWF percentage of thevaided executions, but also by the size of the
functions. Thelarger functions tended to Y& fewer avoided
= executions and also had longer compilatiowhile the aerage
fit search time was significantly reduced for these experiments using
, direct execution on a SPARC processadhe savings would only
Ipeg ] [ Size increase when using simulation since tkecations of the appli-
sha B Speed cation would comprise a larger portion of the search time.
4
stringsearch
averageE":l bit count 3.3 hours to 0.42 hours
0 5 10 15 dijkstra 2.50 hours to 0.63 hoyrs
percentage improvement compared to the batch compiler fft 3.4 hours to 1.5 hours
Figure 14: Size and Speed Impovements for the SPARC Ipeg 2045 hpurs to 9.29 hours
Figure 15 shas the aerage number of sequences whose ‘ e Oomm
executions were woided for each benchmark using the methods stingesareh B
described in Section 4These results do not include the functions Svergs
in the benchmarks that were nokeuted when using the sample 0 02 0.4 06 08 !

ratio to search time without using methods in Section 4

input data since these functions wevelgated on code size only
and did not requirexecution of the applicationConsider for nes
only the top bar for each benchmark, which represents the results Figures 17-21 shw the aerage number of generations that
without applying ap of the techniques in Section s men- were @auated for each of the functions before finding the best fit-
tioned preiously, each method in Section 4 is able to find a super ness wlue in the searchThe baselineresult is without using an
set of the sequences handled by methods applied befo@nit.  of the techniques described in Section 5. The other results indi-
avaage 41.3% of the sequences were detected as redundantlygtie the generation when the first sequenas found whose per
attempted, 27.0% were caught as redundanveacBquences,  formance equaled the best sequence found in the baseline search.
14.9% were disaeered to produce identical code as generated by To ensure adir comparison, we did not include the results for the
a previous sequence, and 1.0% were found to produce unigtie, b fynctions when the best fitness value fouraswot identical to
equialent code. Thus,\@r 84% of the &ecutions were wided. the best fitness value in the baseline, which occurred on about
We found that we couldvaid a higher percentage of theeeu- 18% of the functions. This caused the baseline resultzatp v
tions when tuning smaller functions since we used shorter gjightly since the functions with different fitness values were not
sequence lengths that were established by the batch compilatioryyays the same when applying each of the techniqédmut
due to fewer optimization phases being\actiA shorter sequence 11 39 of the functions had impred fitness values and about
length results in more redundant sequenceer instance, the 669 of the functions had asse fitness values wheail of the
likelihood of mutation is less when there are fewer phases in 3echniques were applied. Orvesage the best fitnessalues
sequence to mutate. Also, identical or eglgint code is more improved by 024% (by 1.33% for only the differing functions).
likely when fewer phases could be applied. The maximum number of generations before finding the best fit-
ness value for anfunction was 91 out of a possible 100 when not

Figure 16: Relative Total Search Time

it count applying an of the four techniques. The maximum was 56 when
dikstra all four techniques were used. The techniques occasionally
caused the best fitness value to be found, latdaich we belige is
1t due to the inherent randomness of using a genetic algorithm.
e However, dl of the techniques were beneficial oreage.
=qul:1'::;?”t Figure 17 shows thefett ofusing the batie sequencen the
S [ Active initial population, which in general a8 quite beneficial.We
stringsearch | ] Attempted found that this techniqueasked well for the smaller functions in
the applications since itas often the case that the batch compiler
average produced code thatag as good as the code generated by the best
0 200 400 600 800 1000 1200 1400 1600 1800 2000 sequence found in the searchlowever, the smaller functions
# of sequences with avoided executions; bottom bars show results when using Section 5 techniques . .
tended to coverge on he best sequence in the search inefe
Figure 15: Number of Avoided Executions generations away since the sequence lengths were typically

shorter In fact, it is likely that performing a search for arfesf

Figure 16 shows the relaei @arch time required when tive gptimization sequence is in general less beneficial for smaller
applying the methods described in Section 4 to not applying these @® d 9

methods. Thaveage search time required 0.35 of the time when functions since there is less |nterplay between phases. _Us_lng_ the
. ; . batch sequence for the larger functions often resulted in finding

no executions were wided and 0.51 of the time when redundant the best in i ahouah the batch

attempted sequences wemdided. Theaveage time required to € Dest sequence In Tewer generationen enoug ¢ batkc

. : compiler typically did not produce code thaasvas good as pro-
evduate each of the six benchmarks impa from 5.57 hours to duced by the best sequence found in the baseline redits,



simply initializing the population with one sequence containing
phases that are likely to be aetis quite beneficial.

bit count
dijkstra
. [l Prohibiting Prior
st ‘ ) Dormant Phases
P []Baseline Ipeg
I [[]Using the Batch
. Sequence sha
Jpeg
stringsearch
sha
average
stringsearch
0 10 20 30 40 50 60
average number of generations
0 10 20 30 40 50 60 Figure 19: Number of Generations befoe Finding the Best
number of generations Fitness Value When Prohibiting Prior Dormant Phases

Figure 17: Number of Generations befoe Finding
the Best Fitness Value When Using the Batch Sequence

bit count
The effect of prohibiting specific phaseshroughout the

search was less beneficial, aswshdn Figure 18. Specific phases
can only be safely prohibited when the function is redtisim- ff
ple and a specific condition (such as no loops,ar@bles, or no -
unconditional jumps) can be detecteSlereral applications, such
asstringseach, had no or very fe functions that met these crite- sha
ria. Thesimpler functions also tended to @erge faster to the
best sequence found in the search since the sequence length este
lished by the length of the batch compilation was typically shorter average
Likewise, the simpler functions alsouealittle impact on the size
of the entire application and V&little impact on speed when the
are not frequently>ecuted. Figure 20: Number of Generations befoe Finding the

Best Fitness Value When Prohibiting Unenabled Phases

dijkstra

[]Baseline
[l Prohibiting Un-
enabled Phases

stringsearch

I

o

10 20 30 40 50 60
number of generations

bit count
dijkstra bit countF%:’
fft [[]Baseline dijkstra
[E Prohibiting Specif-
o ic Phases [ ]Baseline
ipeg m’lj| WAl
sha ipeg
stringsearch | sha
|
average %’ stringsearch
0 10 20 30 40 50 60 average
number of generations [
. . . 0 10 20 30 40 50 60
Figure 18: Number of Generations befoe Finding the number of generations

Best Fitness Value When Prohibiting Specific Phases Figure 21: Number of Generations befoe Finding

In contrastprohibiting prior dormantandunenabled phases the Best Fitness Value When Applying All Techniques
which are depicted in Figures 19 and 20, had a more significant Consider agin Figure 15, which depicts the number of
impact since these techniques could be applied to all functions.;,,Gded eecutions. Thebottom, bar for each benchmark sho

Without using these vtechniques, it was often the case that e number of xecutions that arewmided when all of the tech-
mary phases were reattempted when there was no opportunity foriqes described in Section 5 are appli€he can see that while

them to be acte. the number of redundantly attempted sequences decrease, the
Applying all the techniques produced the begrall results, number of sequences caught by the three other techniques
as shown in Figure 21. Iraét, only about 32% of the generations increase. Theemaining redundantly attempted sequences were
on average (from 25.74 to 8.24) were required to find the best the sequences created by the creesmperation and the best
sequence in the search as compared to the baselinexpAsted, sequence in the population, which were not subject to mutation,
applying all of the techniques did not result in the sum of the ben-and the redundant sequences with onlyaqthases. Thavaage
efits of the individual techniques since some of the phases thathumber of soided eecutions decreases by about 10%, which
were prohibited would be caught by multiple techniques. means a greater number of functions with unique code were



generated. Hwever, the decrease invaided executions is much
less than thewverage decrease in generations required to reach the
best sequence found in the search, as shown in Figure 21.

Figure 22 shows the relad ime for finding the best fitness

bit count

value when all of the techniques in Section 5 were applEte dikstra

actual times are sha in minutes since finding the best sequence fft

is accomplished in a fraction of the total generations performed in .

the search.Note the baseline for finding the best fithestug e
includes all of the methods described in Section 4/¢aaunnec- sha

essary recutions. Thebest fitness value was found in 53.0% of sHifigsaarch
the time on @erage as compared to the baseline.

average

o -

5 10 15
percentage improvement compared to the batch compiler

Figure 23: Speed Only Impovements for the ARM

19.26 minjto 12.00 min

190.05 min to 163.82 min
bit count

sha (26 min

dijkstra

stringsearch 6.99 min

average fft

0 0.2 0.4 0.6 0.8 1 jpeg

I

ratio to time for finding the best sequence without using techniques in Section 5
Figure 22: Relative Search Time . ‘
before Finding the Best Fitness Value stringsearch |
After ensuring that the techniques wevéleped to impree average
the search time for fefctive £quences were sound, we obtained 0 5 10 15

percentage improvement compared to the batch compiler

results on the Intel StrongARM SA-110 processbigures 23,
24, and 25 she the percentage impvement when optimizing for Figure 24: Size Only Improvements for the ARM
speed onlysize only and 50% for eachdtctor respectiely. The
avaage time required to obtain results for each of the benchmarks
when optimizing for both speed and size on the ARM required
12.67 hours. Using theverage ratio shan in Figure 16, we esti- dijkstra
mate it would hee taken over 36.19 hours without applying the fft
techniques in Section 4.

bit count

Ipeg [ size

] M Speed
7. IMPLEMENT ATION ISSUES she i \
During the process of this\estigation, we encountered \seal stringsearch :
implementation issues that made thisrkv challenging. First, ave,age_i“:
producing code thatabys generates the correct output forfelif 0 p 10 s
ent optimization phase sequences ifidift. Even implementing percentage [mprovement compared to'the:batch compiler
a onventional compiler that alays generates code that produces Figure 25: Size and Speed Impovements for the ARM

correct output when applying one predefined sequence of opti-

mization phases is not an easy task. In contrast, generating codgptimization phaseThese side effects can affect the results of the
that alvays correctly &ecutes for thousands of tfent optimiza-  methods described in Sections 4.2, 5.3, and B/é.dso inserted

tion phase sequences is avese stress testEnsuring that all  sanjty checks to ensure that different dormant phases did not
sequences in the experiments produced valid code required trackzz,se diierent effects on subsequent phaséée cetected when

ing down mag errors that had not yet been disered in the these situations occurred, properly set the information about what

VISTA system. Secondhe techniques presented in Sections 5.2 analysis is required andvidated by each optimization phase,
and 5.4 required analysis and judgement by the compiler writer togng ngy rarely encounter these problems.

determine when optimization phases will be enabl&@. inserted
sanity checks when runningxgeriments without using these ? FUTURE WORK
0

methods to ensure that our assertions concerning the enabling ] )
optimization phases were accurawfe found seeral cases where There is much future research that can be accomplished on pro-

our reasoning @s faulty after inspecting the situations weed viding fast searches for fettive gtimization sequencesWe

by these sanity checks and we were able to correct our enabling'@€ $1own that detecting when a particular optimization phase
assertions. Thirdye sometimes found that dormant optimization Will be dormant can result inveer generations to coerge on he
phases did he wnexpected side effects by changing the analysis best sequence in the seardhe kelieve it is possible to estimate
information, which could enable or disable a subsequent the likelihood that a particular optimization phase will bevacti
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given the actve phases that precede it by empirically collecting ACKNOWLEDGEMENTS
this information. This information could beqdoited by adjust-

ing the mutation operation to more likely mutate to phases that
have a letter chance of being aeti with the goal of coverging to

a better fitness value in fewer generations.

Clark Coleman and the anonymouwiea/ers provided helpful
suggestions that impved the quality of the paperThis research
was apported in part by National Science Foundation grants
EIA-0072043, ACI-0203956, CCR-0208892, ACI-0305144, and

Another area of future work is to vary the characteristics of CCR-0312493.

the search. It would be interesting to see tifiecefon a search as

one changes aspects of genetic algorithm, such as the sequencg().

length, population size, number of generations, &te. may find
that certain search characteristics may be better for one class OP]
functions, while other characteristics may be better for other func-
tions. In addition, it would be interesting to perform searches
involving more compiler optimizations and benchmarks. 2]

Finally, the use of a cluster of processors can reduce the
search time. Certainly ddrent sequences within a population
can be eduated in parallel [15].Likewise, functions within the
same application can b&auated independentlyEven with the
use of a clusterthe techniques we te presented in our paper
would still be useful since tlyewill further enhance the search
time. Inaddition, not eery developer has access to a cluster.

(3]

9. CONCLUSIONS [4]

There are seeral contributions that we ka pesented in this
paper First, we hae shown there are éctive methods to reduce
the search werhead for finding déctive @timization phase
sequences by vaiding expensve ex&utions or simulations.
Detecting when a phase was et dormant by instrumenting
the compiler was very useful since rgasequences can be
detected as redundant by memoizing the results ofeagtiase
sequences. @dso discaered that the same code is often gener
ated by different sequence®/e cemonstrated that usingfiefent
mechanisms, such as a CRC checksum, to check for identical of’]
equivaent functions can also significantly reduce the number of
required e&ecutions of an applicationSecond, we heae $own

that on &erage the number of generations required to find the best
sequence can be reduced byerotwo thirds. Onesimple, lut
effective echnique is to insert the aati £quence of phases from
the batch compilation as one of the sequences in the initial popu-
lation. We dso found that we could often use analysis and empiri-
cal data to determine when phases could not beeactihese
techniques result in faster amngence to more &ctive
sequences, which can allequally efective ®arches to be per
formed with fewer generations of the genetic algorithm.

An environment to tune the sequence of optimization phases
for each function in an embedded application can be very benefi-
cial. However, the overhead of performing searches fofesfive
sequences using a genetic algorithm can be quite significant and11]
this problem is exacerbated when performance measurements for
an application are obtained by simulation or on svefoembed-
ded processorMary devdopers are willing to wait for tasks to
run overnight to imprave a poduct, but are unwilling to ait

(5]

(6]

(8]

E)

(10]

longer We have shown that the searchverhead can be signifi- [12]
cantly reduced, perhaps to a tolerablelleby using methods to
avad redundant eecutions and techniques to a@rge to he best
sequence it can find in fewer generations.

(13]
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