
FLORIDA STATE UNIVERSITY

COLLEGE OF ARTS AND SCIENCES

DEEP:

DEPENDENCY ELIMINATION USING EARLY PREDICTIONS

By

LUIS G. PENAGOS

A Thesis submitted to the
Department of Computer Science

in partial fulfillment of the
requirements for the degree of

Master of Science

2018

Copyright c© 2018 Luis G. Penagos. All Rights Reserved.

Luis G. Penagos defended this thesis on July 20, 2018.
The members of the supervisory committee were:

David Whalley

Professor Directing Thesis

Xin Yuan

Committee Member

Weikuan Yu

Committee Member

The Graduate School has verified and approved the above-named committee members, and certifies
that the thesis has been approved in accordance with university requirements.

ii

ACKNOWLEDGMENTS

I would like to thank Dr. Whalley for his help, guidance and time. I would not have been able

to complete this project without his open-door policy, constant input and guidance throughout

the project, even on holidays and weekends. I would also like to extend my gratitude to Ryan

Baird, Zhaoxiang Jin and Gorkem Asilioglu at Florida State University and Michigan Technological

University for their constant aid and insight on the VPO compiler and FAST superscalar simulator

respectively. Lastly, I would like to thank my family for their continued support throughout the

project. I could not have accomplished this endeavor without them.

iii

TABLE OF CONTENTS

List of Tables . vi

List of Figures . vii

Abstract . viii

1 Introduction 1

2 Dependency Elimination using Early Predictions (DEEP) 2
2.1 Background . 2
2.2 Explicitly Decoupling Branches . 3
2.3 Code Sinking . 4
2.4 Delayed Branch Verification . 5
2.5 Instruction Hoisting . 5

3 Generating DEEPer Paths 7
3.1 Motivation . 7
3.2 The DEEPify Algorithm . 8

4 Hardware Support for DEEP 10
4.1 MIPS ISA Extensions . 10

4.1.1 The pb Instruction . 10
4.1.2 The tv and tvf Instructions . 10

4.2 Superscalar Extensions . 12
4.2.1 Hardware Queues . 12
4.2.2 Instruction Decode (ID) Stage . 13
4.2.3 Retire (RFU) Stage . 14

5 Evaluation 15
5.1 Experimental Setup . 15
5.2 Results . 16

5.2.1 No Consecutive pb Instructions . 16
5.2.2 Up to 3 Consecutive pb Instructions . 20

6 Related Work 24

7 Future Work 26
7.1 Path Arrays . 26

7.1.1 Overview . 26
7.1.2 MIPS ISA Extensions . 27
7.1.3 Superscalar Extensions . 28

iv

8 Conclusions 30

Bibliography . 31

Biographical Sketch . 32

v

LIST OF TABLES

4.1 tv Condition Codes . 11

4.2 tvf Condition Codes . 11

5.1 17 MiBench Benchmarks . 15

vi

LIST OF FIGURES

2.1 Explicitly Decoupling Branches into Prediction and Verification Instructions 3

2.2 Promoting IF-only Constructs to IF-ELSE Constructs 4

3.1 Code Generation with Multiple Consecutive pb Instructions 7

4.1 pb and tv Instruction Encodings . 10

4.2 Hardware Queues . 13

5.1 Cycles Without Consecutive pb Instructions . 16

5.2 Number of Unconditional Jumps Executed Without Consecutive pb Instructions . . . 17

5.3 Overall Branch Prediction Rates Without Consecutive pb Instructions 18

5.4 Cycles Lost Without Consecutive pb Instructions . 19

5.5 Static Code Size Without Consecutive pb Instructions 20

5.6 Cycles with Consecutive pb Instructions . 21

5.7 Number of Unconditional Jumps Executed with Consecutive pb Instructions 21

5.8 Overall Branch Prediction Rates with Consecutive pb Instructions 22

5.9 Cycles Lost with Consecutive pb Instructions . 23

5.10 Static Code Size with Consecutive pb Instructions . 23

7.1 Fractions of Branchs Executing in Innermost Loops 26

7.2 Potential pm, bpm, tvc and ap Instruction Encodings 27

7.3 Hardware Support for Path Selection . 28

vii

ABSTRACT

Conditional branches have traditionally been a performance bottleneck for most processors. The

high frequency of branches in code coupled with expensive pipeline flushes on mispredictions make

branches expensive instructions worth optimizing. Conditional branches have historically inhibited

compilers from applying optimizations across basic block boundaries due to the forks in control flow

that they introduce. This thesis describes a systematic way of generating paths (traces) of branch-

free code at compile time by decomposing branching and verification operations to eliminate the

dependence of a branch on its preceding compare instruction. This explicit decomposition allows

us to merge pre and post branch code. These paths generated at compile time can potentially

provide additional opportunities for conventional optimizations such as common subexpression

elimination, dead assignment elimination and instruction selection. Moreover, this thesis describes

a way of coalescing multiple branch instructions inside innermost loops to produce longer basic

blocks to provide additional optimization opportunities.

viii

CHAPTER 1

INTRODUCTION

Conditional branches have traditionally been a performance bottleneck for most processors. De-

spite advances in branch prediction techniques, conditional branches still constitute a large portion

of programs, comprising a disproportionate number of execution cycles. Branches introduce dis-

continuities in program control flows, introducing control dependences at the instruction level, a

problem which disrupts sequential instruction fetching by the instruction fetch unit and limits the

effectiveness of hardware-based trace caches [3]. Additionally, conditional branches have the poten-

tial to trigger expensive pipeline flushes on mispredictions, a problem which is further exacerbated

by increasingly deeply pipelined superscalar processors [1].

Extensive work has been conducted to reduce the control hazards introduced by conditional

branches. Techniques such as reordering branches using profile data and estimated branch execution

costs and branch condition merging are among such techniques [1, 2]. Conditional branch reordering

however oftentimes introduces additional branches into the control flow of the most beneficial

ordering in addition to relying on profile data. Similarly, branch condition merging also relies on

profile data to optimize branches in the most frequently executed paths.

There has been prior work on decomposing branches into prediction and resolution instructions.

However, this thesis proposes an implicit branch misprediction recovery system, eliminating the

need for explicit recovery code and limiting the adverse effects of additional code size increases.

Our technique minimizes the code size increase and does not require profile data, unlike previous

efforts. Further, we propose coalescing multiple explicit predict and branch instructions to yield

larger superblocks with may enable other compiler optimizations such as common subexpression

elimination, dead assignment elimination and instruction selection. This novel method of creating

and optimizing traces at compile time has been largely unexplored. Lastly, we propose a way to

collapse consecutive explicit predict and branch instructions into 1 instruction within innermost

loops to reduce the number of instructions executed by the processor.

1

CHAPTER 2

DEPENDENCY ELIMINATION USING EARLY

PREDICTIONS (DEEP)

The benefits made possible by the DEEP optimization are best understood by first examining how

traditional branches are executed on today’s OoO superscalar processors.

2.1 Background

In most processors, traditional branch instructions access the branch predictor (BP) in the

instruction fetch (IF) stage to begin speculatively fetching instructions at the branch target. Addi-

tionally, all instructions simultaneously access the branch target buffer (BTB) during the IF stage

to potentially obtain a branch target in the case that the processor finds this to be a branch instruc-

tion during the instruction decode (ID) stage and the BP predicted the branch to be taken. If an

instruction hits in the BTB and there is an associated branch target set, the BP can either predict

taken or not taken, depending on the global branch history register, to set the PC to the address

where the next instruction should be fetched. In the case of a BTB miss, a branch instruction will

be predicted as not taken and must wait until the ID stage to calculate its taken branch target as

both the instruction type and jump offset are not known to the processor during the IF stage. The

actual branch comparison will not occur until the instruction executes.

There are many cases where the branch’s corresponding comparison instruction can be delayed

due to unavailable register operands or lack of reservation stations in hardware. It is not until the

retire (RFU) stage that the processor verifies the branch’s prediction with the result calculated

by its corresponding comparison instruction when it attempts to commit the branch instruction.

If the branch was mispredicted, the prediction is corrected and is then used to update the global

branch history register. The branch then signals an exception to flush the pipeline of all instructions

which have not yet been committed and to begin fetching instructions at the branch’s alternate

target. Out-of-order processors wait until the retire stage to handle rollbacks caused by branch

mispredictions to support precise, in order exceptions. In the case of a correct prediction, the

2

global branch history register is updated, the BTB is updated with the branch’s PC and jump

offset and the branch is allowed to commit. Hence, processors are already implicitly decomposing

branch instructions into (1) a branch operation and (2) a verification operation over multiple cycles.

2.2 Explicitly Decoupling Branches

In light of what current processors implicitly do with traditional branch instructions, we propose

that the compiler explicitly decompose a branch into 2 instructions: a predict and branch (pb)

instruction and a test and verify (tv) instruction. Unlike a traditional branch instruction, the pb

instruction does not contain the branching condition. A pb instruction only contains the label to

which it should jump to when it is predicted as taken. In contrast, the tv instruction will contain

the corresponding branching condition, but no label. The tv instruction will verify the branch

prediction made by its corresponding pb instruction. By reversing the order of the comparison and

branch operations, we eliminate the branch’s dependence on a preceding cmp instruction. Hence,

the processor no longer needs to implicitly decompose the branch instruction at runtime.

(b) Conventional
Assembly

Translation (d) Code SinkingInstructions

Segment

a;

if (...)

 b;

else

 c;

(a) C Code

a;

cmp cond

branch L1

b;

j L2

c;

...

a;

pb L1

tv !cond

b;

j L2

tv cond

c;

...

pb L1

a;

tv !cond

b;

j L2

a;

tv cond

c;

...

L1:

L2:

L1:

L2:

L1:

L2:

(c) Using pb/tv

Figure 2.1: Explicitly Decoupling Branches into Prediction and Verification Instructions

Let us call a sequence of straightline code a DEEP block. Each branch can then be said to have

a pair of associated DEEP blocks, one for the branch not taken case and one for the branch taken

case. We propose to sink a pb instruction’s corresponding tv instruction to both DEEP blocks to

verify the branch as shown in Figure 2.1(c). By pushing down the branch’s verification instruction

into both paths, we need to issue two different verification instructions: one to verify the original

branch condition along the taken path and an inverted comparison for the branch fall thru (not

taken) case. Note that because mutually exclusive test and verify conditions are placed in both

immediate successors of a branch, we must convert IF only branches to IF-ELSE constructs by

3

introducing an additional unconditional jump to avoid executing two test and verify instructions

for the same branch as shown in Figure 2.2(b). We believe that the potential to apply further

compiler optimizations within these DEEP blocks can outweigh the negligible code size increase

and low cost of the additional unconditional jump.

unconditional jump (c) After adding
unconditional jump

(a) C Code
Segment

(b) Before adding

a;

if (...)

 b;

c;

a;

pb L1

tv !cond

b;

tv cond

c

a;

pb L1

tv !cond

b;

j L2

tv cond

c

L1:

L2:

L1:

Figure 2.2: Promoting IF-only Constructs to IF-ELSE Constructs

2.3 Code Sinking

As a direct result, the new branch instruction, pb, no longer relies on a preceding comparison

as in Figure 2.1(b). We can then sink the code preceding the pb instruction, namely a; into both

successor blocks as shown in Figure 2.1(d) to create longer paths of straightline code. Note that

the semantic meaning of the code in 2.1(d) is equivalent to that which would have been otherwise

produced using traditional branches as shown in Figure 2.1(b). However, there are no longer any

control dependences between the code executed before the branch (a;) and the code executed

after the branch (b; or c;). Instead, both of the branch’s immediate successors now consist of

longer straightline paths of code which can potentially allow other compiler optimizations such

as common subexpression elimination, dead assignment elimination and instruction selection to

be applied. These branch free paths can achieve similar performance benefits to those which are

inherent to trace caches. However, unlike trace caches, the DEEP technique makes these paths

explicitly known to the compiler at compile time and does not restrict their length to a pre-set

value. As a result, the compiler knows the exact beginning and end location of these paths so they

can be efficiently fetched using a sequential hardware prefetcher.

4

2.4 Delayed Branch Verification

Traditionally, a branch instruction is not allowed to commit until its prediction has been verified

by its corresponding preceding cmp instruction at the retire stage. Note however that in the

generated DEEP code in Figure 2.1(c) and in Figure 2.1(d), the verification instruction no longer

precedes the branch instruction. Instead, it is placed into both of the branch’s immediate successors.

In order to preserve program semantics, we cannot commit a pb instruction until its corrsponding

tv instruction has executed and verified the branch prediction, regardless of whether or not the

prediction was correct or incorrect. This forward data dependence on the tv instruction is handled

with dedicated hardware prediction and verification queues detailed in the following chapter. We

handle this explicit branch prediction verification at the retire phase, similar to traditional branch

instructions, to support precise, in order exceptions on OoO processors. All interleaving instructions

between a pb instruction and its corresponding tv instruction will be executed speculatively by the

processor and hence have the possibility of being rolled back on erroneous predictions issued by pb

instructions. This important implication suggests that we should limit the length of DEEP blocks

and that we should not push expensive operations such as div instructions between a pb instruction

and its corresponding tv instruction.

When the processor enters this speculative state, the compiler must not sink any function calls

between a pb instruction and its corresponding tv instruction. Since both pb and tv instructions

update special hardware queues, a function call may also update these hardware structures and

invalidate assumptions about these hardware structures made by the function caller. The compiler

must also not sink any partial word stores into this speculative execution state if a processor does

not fully support partial load/store forwarding as this can lead to a potential deadlock situation

where a test and verify instruction depends on a memory access after a partial word store.

2.5 Instruction Hoisting

In an attempt to mitigate increased misprediction recovery time and limit speculative execu-

tion, we can hoist identical instructions up from both immediate successors of a pb instruction

into non-speculative execution. In the DEEP optimization, we attempt to make longer paths of

straighline code by sinking pre-branch code into both immediate successors of a conditional branch

to potentially be able to apply other optimizations. If we are unable to successfully apply other

5

code improving optimizations on these straightline code paths such as common subexpression elim-

ination, dead assignment elimination or instruction selection, we can effectively undo the DEEP

transformation. This will yield 3 benefits: (1) it will potentially enable additional compiler opti-

mization opportunities with the DEEP technique and (2) in the case where no additional compiler

optimizations could be applied, we can effectively reduce the misprediction penalty by reducing the

number of instructions which are speculatively executed before a pb instruction is verified by its

corresponding tv instruction and (3) we can limit the static code size increase.

6

CHAPTER 3

GENERATING DEEPER PATHS

3.1 Motivation

The potential performance benefit which can be availed by increased straightline code can be

further exploited if we emit multiple, consecutive pb instructions at compile time. In doing so, we

can generate longer paths of code that are branch-free and hence, not subject to control depen-

dences. At the expense of additional code duplication, we can eliminate unconditional jumps to

further increase basic block sizes. These longer paths will allow the sequential hardware prefetcher

to more efficiently fetch instructions. Although the potential for increased optimization opportu-

nities and runtime performance exists, the processor will remain in a speculative state for a longer

time and may experience an increased misprediction penalty. Therefore, we limit this technique to

loops only as (1) branches in loops have a tendancy to be more predictable and (2) we hypothesize

that most of the instructions executed in programs are within loops.

L1:

L2:

L3:

L4:

if (...)

 b;

a;

c;

if (...)

 d;

 e;

else

f;

 g;

if (...)

(a) C Code

Segment

L000:

pb L1

pb L01

pb L001

a;

v !cond1

b;

c;

v !cond2

d;

f;

v !cond3

g;

L001:

a;

v !cond1

b;

c;

v !cond2

d;

v cond3

f;

L01:

pb L011

L011:

a;

v !cond1

b;

c;

v cond2

e;

L1:

pb L11

pb L101

L100:

a;

v cond1

c;

v !cond2

d;

v !cond3

L101:

a;

c;

v cond1

v !cond2

d;

f;

v cond3

L11:

L110:

pb L111

a;

v cond1

c;

v cond2

e;

v !cond3

f;

L111:

a;

v cond1

c;

v cond2

e;

f;

v cond3

f;

g;

g;

f;

v cond3

L010:

a;

v !cond1

b;

v cond2

c;

e;

v !cond3

g;

f;

c;

a;

cmp cond1

branch L1

b;

cmp cond2

branch L2

d;

j L3

e;

f;

cmp cond3

branch L4

g;

... (c) Code with 3 pb Instructions Executed before 3 v Instructions

...

...

...

...

...

...

...

...

(b) Regular Code

Figure 3.1: Code Generation with Multiple Consecutive pb Instructions

A compiler would have traditionally compiled the C code segment in Figure 3.1(a) into some-

thing similar to Figure 3.1(b). We propose to identify all possible paths by sinking the code between

two consecutive pb instructions to the beginning of both immediate successor basic blocks of the

second pb instruction. Although this idea could be exploited across multiple pb instructions, we

7

presently limit it to 3 consecutive explicit predict and branch instructions so as to prevent ex-

ponential code growth and to limit increased misprediction recovery times. In Figure 3.1(c) we

identify all 8 possible paths through the program. Each path is preceded by a label in bold italics,

indicative of the branch prediction bits required to reach the path where a 0 indicates not taken

and a 1 indicates taken. The branch prediction bits are read from left to right, where the first bit

corresponds to the first pb instruction and the last bit corresponds to the last pb instruction. For

example, the path starting with label L000 can only be reached when all 3 branches are predicted

as not taken (000). Similarly, the path starting with label L101 can only be reached when the 3

branches are predicted as taken, not taken and taken respectively.

3.2 The DEEPify Algorithm

We achieve this extended path selection through the DEEPify routine within VPO. The DEEP-

ify routine must meet certain algorithmic requirements, namely (1) it cannot cross loop boundaries,

(2) it cannot push down function calls into speculative execution, (3) it cannot place an direct or

indirect unconditional jump between interleaving tv instructions, (4) it cannot push a partial word

store into speculative execution if a tv instruction relies on a memory access and (5) it should not

place more than 25 instructions between interleaving tv instructions. The recursive algorithm relies

on loop control flow information to properly execute. Given a set of up to 3 pb instructions, the

algorithm identifies all possible paths between them by following the control flow graph for both

fall thru and taken successors of each branch.

The DEEPify algorithm is invoked after all traditional branches have been converted to explicit

predict and branch instructions, but before any additional compiler optimizations are attempted.

This maximizes the chance of creating longer straightline paths of code. To simplify the algorithm,

branches which have negative offsets (such as loop backedges) are not considered. To prevent

machine deadlocks, we do not allow more than 25 instructions to be placed between consecutive

tv instructions. Depending on the reorder buffer (ROB) size of an OoO processor, there may not

be enough slots to fetch and execute the next tv instruction if there are too many interleaving

instructions, leading to a deadlock. The algorithm may can be further tweaked depending on the

benchmarks being simulated. For example, benchmarks with highly predictable branches may be

8

able to chain up to 4 consecutive pb instructions at the expense of additional code size whereas

benchmarks with low prediction rates may not want to invoke the DEEPify routine at all.

9

CHAPTER 4

HARDWARE SUPPORT FOR DEEP

In order to support the DEEP execution paradigm, we had to introduce both changes to the out-of-

order (OoO) superscalar machine description and to the MIPS instruction set architecture (ISA).

All hardware changes were made in ADL, the programming language used to write the simulators

which is then compiled into C++ [5].

4.1 MIPS ISA Extensions

31 26 25 21 20 16 15 0

Opcode Unused Space Unused Space Branch Target Labelpb:

31 26 25 21 20 16 15 11 10 0

Opcode RS Register Comparison Code Unused Encoding Spacetv: RT Register

Figure 4.1: pb and tv Instruction Encodings

4.1.1 The pb Instruction

The predict and branch (pb) instruction is encoded as an I-Type instruction as shown in Figure

4.1(a). Note that since we have decoupled the branch prediction from verification, we no longer have

a need to encode the rs and rd registers as the corresponding branch comparison will be performed

by the tv instruction. This leaves 10 encoding bits free for future instruction annotations, if needed.

Presently, they are all set to be 0.

4.1.2 The tv and tvf Instructions

It was necessary to introduce two different types of test and verify instructions: tv and tvf.

The tv instruction operates on integer register operands and uses the integer unit whereas the

tvf instruction operates on double and single precision floating point register operands and uses

the floating point coprocessor. Both of these instructions will be collectively referred to as the

10

tv instruction throughout this thesis. The test and verify (tv) instruction is encoded as R-Type

type instruction as shown in Figure 4.1(b). Note that because the test and verify instruction

implicitly updates the verification hardware queue, there is no need to encode an rd register, which

a traditional compare instruction would have encoded using bits 11-15. Instead, the tv instruction

uses these same 5 bits to encode the type of comparison which it must perform. Tables 4.1 and

4.2 show the different types of comparisons which can be performed by the tv and tvf instructions

respectively. Note that because there are never more than 32 such comparison types, 5 bits suffices

to encode this field. We do not emit instructions for the > or >= operators as they can be derived

by switching the register operands and by using the < or <= operators.

tv instruction

Mnemonic Operation Comparison Code

tveq == 1
tvne != 2
tvlt < 3
tvle <= 4
tvlu < (unsigned) 5
tvleu <= (unsigned) 6

Table 4.1: tv Condition Codes

tvf instruction

Mnemonic Operation Precision Comparison Code

tveqs == single 7
tvnes != single 8
tlts < single 9
tles <= single 10
tveqd == double 11
tvltd < double 13
tvned != double 12
tvled <= double 14

Table 4.2: tvf Condition Codes

The modified VPO compiler emits the mnemonics in Tables 4.1 and 4.2 in its MIPS assembly

output. However, these mnemonics are implemented as macro expansions to the base tv and tvf

instructions using the Condition Code field in hardware. In doing so, we can avoid utilizing 20

different opcodes and instead only use 2.

11

4.2 Superscalar Extensions

4.2.1 Hardware Queues

The implicit recovery mechanism proposed in DEEP makes use of 3 special hardware queues.

These queues are the mechanism used to communicate between pb instruction contexts and their

corresponding tv instruction contexts. The queues required are:

• A prediction queue

• An alternate target queue

• A verification queue

The prediction queue is only ever accessed by the pb instruction and stores a 1 for a taken

prediction or a 0 for a not taken prediction. The verification queue is only updated by the tv

instruction, however it is the pb instruction which initially pushes a 0 verification bit onto the

verification queue during the ID stage to indicate that it has not had its corresponding tv instruction

executed. When a test and verify instruction finishes execution, it will update the verification queue

with either a 1 to signal the prediction was correct or a -1 to signal that the prediction was incorrect.

Since instructions are fetched and decoded in order, we can always guarantee that the same queue

index is used to access the prediction queue and its corresponding verification bit in the verification

queue. Note that we can easily support OoO execution by letting tv instructions index into the

verification queue and update their associated verification bit.

Due to the large instruction window size of modern day OoO superscalar processors, these

hardware queues need to be sufficiently large to accommodate multiple fetches of tv and pb in-

structions. This is especially important when the OoO superscalar processor encounters a tight

loop and continues fetching multiple loop bodies worth of instructions. We used a circular buffer

with a maximum size of 256 elements in our hardware implementation, a parameter which may

vary with a processor’s instruction window size. Although we used a queue of integers, we could

have compressed our data structure to use 2 bits per entry as we only need to store 3 states: (1)

unverified, (2) incorrect and (3) correct.

When a pb instruction is decoded by the processor, its prediction is pushed onto the prediction

queue, the alternate branch target is pushed onto the alternate target queue and a 0 bit is pushed

onto the verification queue. To accommodate the speculative instruction fetching nature of today’s

12

pb L1

pb L01

pb L001

...

v !cond1

...

v !cond2

...

v !cond3

...

pb L01

pb L001

...

v !cond1

...

v !cond2

...

v !cond3

...

reorder buffer

pb L011

...

v !cond1

...

v cond2

...

v !cond3

...

...

v !cond1

...

v cond2

...

v !cond3

...

reorder buffer R A

0 0

......

0 0

0 1

NT

...

NT

NT

...

pred R A

1 0

......

0 0

0 1

NT

...

NT

NT

...

pred reorder buffer reorder bufferR A

1 0

......

1 0

0 1

NT

...

T

NT

...

pred R A

............

pred

pb queue pb queue pb queue pb queue

(a) After 3 pb and 3 v

Instructions Have Issued

(b) After 2nd v Indicates

2nd pb Mispredicted

(c) After Recovery from

2nd pb Misprediction

(d) After 3rd pb Commits

and pb Queue Is Advanced

Figure 4.2: Hardware Queues

superscalar processors, all three hardware queues need to support both a speculative and non-

speculative state. This allows the processor to easily rollback to its previous correct state in the

case of an exception. Exceptions can arise when an unconditional jump misses in the BTB or an

indirect unconditional jump modifies the instruction fetch pointer where subsequent instructions

would have been erroneously fetched past either transfer of control instruction. Both the pb and tv

instructions can only ever transition into their respective non-speculative queue state at the retire

stage, as instructions commit in order. In addition to marking itself as being non-speculative,

a test and verify instruction proceeds to remove itself and its corresponding pb instruction from

all hardware queues as there is no longer a need to communicate across both of these instruction

contexts.

4.2.2 Instruction Decode (ID) Stage

When a traditional conditional branch is fetched by a processor, it simultaneously accesses the

BP and BTB in the IF stage. If the instruction misses in the BTB, then the BP is forced to

issue a not taken prediction as the processor will not know if this is a branch instruction until the

instruction decode stage in addition to not knowing the branch target. Today’s OoO superscalar

processors have very high branch prediction rates [6]. Consequently, we believe it is more beneficial

to force every pb instruction to hit in the BTB to prevent issuing a not taken prediction when a

taken prediction would have otherwise been issued by the BP. To this end, on a BTB miss, the pb

instruction updates the BTB at the earliest stage possible, the ID stage. By updating the BTB at

13

the ID stage instead of the RFU stage, we can issue an exception much quicker to flush the pipeline

and to begin fetching instructions beginning at the same pb instruction so that we can now predict

taken.

4.2.3 Retire (RFU) Stage

In addition to the 3 specialized hardware queues, we had to modify the retire stage of the

OoO superscalar processor. We cannot allow a pb instruction to commit without having executed

its corresponding tv instruction. Since instructions are fetched, decoded and retired in order,

regardless of execution order, it suffices to check the head of the verification queue to see if the first

tv instruction has verified the branch prediction. In the case that the corresponding tv instruction

has not marked the prediction as being verified, we do not commit the pb instruction and stall in

the retire stage. Conversely, if the corresponding tv instruction has executed, we can mark the pb

instruction as complete and allow it to retire. Note that even if the tv instruction has identified a

misprediction, we can still allow the pb instruction to retire as a branch can only have one of two

outcomes (so the opposite of the initial prediction value must be true).

In the case of a misprediction, the tv instruction will signal the pb instruction to raise an

exception through the hardware verification queue akin to that which would have been raised

by a traditional branch instruction on a misprediction. While we intend to convert all traditional

branches to pb instructions, the proposed hardware and compiler modifications allow pb instructions

to coexist with traditional branches. This may be advantageous in the case where some functions of

benchmark code consist of highly unpredictable branches, such as regions which are heavily reliant

on user input. Such functions can be compiled without the DEEP optimization.

14

CHAPTER 5

EVALUATION

5.1 Experimental Setup

To gather results, we ran 17 benchmarks from the MiBench benchmark suite, all of which are

written in C. These benchmarks are representative of a wide variety of embedded applications as

shown in Table 5.1. To gather baseline statistics, all 17 benchmarks were compiled using the Very

Portable Optimizer (VPO) compiler with all optimizations enabled, without the DEEP optimiza-

tion. The compiler’s backend was configured to target the MIPS ISA. Similarly, all 17 benchmarks

were recompiled with VPO, using the same optimizations as the baseline compilation, in addition

to enabling the DEEP optimization. The VPO compiler operates on an intermediate code repre-

sentation format known as register transfer lists (RTLS). It takes a C input file to the frontend and

emits RTLs to the backend, where all optimizations are performed. Finally, the backend emits, in

this case, MIPS instructions. All statistics were gathered with a simulated MIPS OoO superscalar

processor (FAST) [5].

Domain Benchmarks

automotive bitcount, qsort, susan
consumer jpeg, tiff
network dijkistra, patricia
office ispell, stringsearch
security blowfish, rijndael, php, sha
telecom adpcm, CRC32, FFT, GSM

Table 5.1: 17 MiBench Benchmarks

Only the benchmarks in Table 5.1 were compiled with the DEEP optimization. The standard

library was only compiled with all of VPO’s optimizations enabled, except DEEP. We believe that

most performance benefits are to be found within actual benchmark code as opposed to standard

library. We did not run a larger set of benchmarks, such as SPECINT, for the results presented in

the following section. All graphs in the following section were normalized as ratios.

15

5.2 Results

5.2.1 No Consecutive pb Instructions

We were able to achieve a decrease in the total number of cycles executed in 10 of the 17 MiBench

benchmarks simulated after applying the DEEP optimization. Figure 5.1 shows the total number of

cycles executed as a normalized ratio where a ratio of less than 1.0 indicates a performance benefit

and a ratio of greater than 1.0 indicates a performance degradation. The ratios in Figure 5.1 were

obtained without issuing multiple, consecutive pb instructions at compile time. On average, we

observed an increase of 0.40% in the total number of cycles executed. In the case of the bitcount

benchmark, we were able to achieve a decrease of 4.385% in the total number of cycles executed.

The susan benchmark however witnessed a 9.828% increase in the total number of cycles executed.

We believe this performance decrease can be attributed to a doubly nested for loop which contains

text and verify instructions which are reliant on a couple of memory accesses, executed within the

susan smoothing function in the susan benchmark.

Benchmarks

a
d

p
c
m

b
it
c
o

u
n

t

b
lo

w
fi
s
h

c
rc

d
ijk

s
tr

a ff
t

g
s
m

is
p

e
ll

jp
e

g

p
a

tr
ic

ia

p
g

p

q
s
o

rt

ri
jn

d
a

e
l

s
h

a

s
tr

in
g

s
e

a
rc

h

s
u

s
a

n

ti
ff

a
ri
th

 m
e

a
n

T
o
ta

l
C

y
c
le

s
 a

s
 a

 R
a
ti
o

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

Baseline DEEP (no consecutive pb instructions)

Figure 5.1: Cycles Without Consecutive pb Instructions

The limited performance benefit availed by the DEEP optimization can be attributed to multiple

reasons, namely: (1) an increase in the number of unconditional jumps introduced as a direct result

16

of promoting IF-only constructs to IF-ELSE constructs, (2) not collapsing beq and bne instructions

at the ISA level like a MIPS processor would with cmp, beq and bne instructions and (3) increased

instruction cache (icache) misses as a direct result of static code size increase. We do not believe

that the number of increased icache misses is a major contributing reason due to the size of today’s

large cache sizes. Similarly, we believe that the number of additional execution cycles caused by

not collapsing beq and bne instructions to be responsible for a negligible performance decrease.

R
a

ti
o

 o
f

U
n

c
o

n
d

it
io

n
a

l
J
u

m
p

s
 E

x
e

c
u

te
d

0.8

2.8

4.8

6.8

8.8

Benchmarks

a
d
p
c
m

b
it
c
o
u
n
t

b
lo

w
fi
s
h

c
rc

d
ijk

s
tr

a ff
t

g
s
m

is
p
e
ll

jp
e
g

p
a
tr

ic
ia

p
g
p

q
s
o
rt

ri
jn

d
a
e
l

s
h
a

s
tr

in
g
s
e
a
rc

h

s
u
s
a
n

ti
ff

a
ri
th

 m
e
a
n

10

70

130

Baseline DEEP DEEP

Figure 5.2: Number of Unconditional Jumps Executed Without Consecutive pb Instructions

Figure 5.2 shows the the normalized ratio of unconditional jumps executed for all 17 simulated

MiBench benchmarks without issuing multiple, consecutive pb instructions at compile time. The

graph’s y-axis breaks at 10 to accomodate the large increases in unconditional jumps within several

benchmarks (including the arithmetic mean). As hypothesized, the number of unconditional jumps

drastically increased across all benchmarks as a direct result of promoting IF-only constructs to

IF-ELSE constructs. In some cases, the number of unconditional jumps executed increased by a

factor of over 150 as in the case of the dijkstra benchmark. We believe that this large increase

in unconditional jumps is a direct result of many benchmarks executing IF-only statements within

loops. Despite an average increase by a factor of 22.8 in unconditional jumps, we were still able to

obtain a decrease in total cycle counts on some benchmarks. This is most evident in the bitcount

17

benchmark where we were able to achieve a 4.385% decrease in the total number of cycles executed

but increased the number of unconditional jumps by a factor of 9.93.

Benchmarks

a
d

p
c
m

b
it
c
o

u
n

t

b
lo

w
fi
s
h

c
rc

d
ijk

s
tr

a ff
t

g
s
m

is
p

e
ll

jp
e

g

p
a

tr
ic

ia

p
g

p

q
s
o

rt

ri
jn

d
a

e
l

s
h

a

s
tr

in
g

s
e

a
rc

h

s
u

s
a

n

ti
ff

a
ri
th

 m
e

a
n

O
v
e
ra

ll
B

ra
n
c
h
 P

re
d
ic

ti
o
n
 R

a
te

0.8

0.85

0.9

0.95

1

Baseline DEEP (up to 3 consecutive pb instructions)

Figure 5.3: Overall Branch Prediction Rates Without Consecutive pb Instructions

We observed that overall branch prediction rates increased as a direct result of the number

of additional unconditional jumps introduced. Figure 5.3 shows the overall branch prediction

rates without issuing multiple, consecutive pb instructions at compile time. The average overall

branch prediction rate increased by 0.115%. With the exception of the crc, patricia and susan

benchmarks, all benchmarks saw an increase in overall branch prediction rates. Note that we

consider both conditional and unconditional jumps when calculating the overall branch prediction

rate. Simulation results showed that overall conditional branch prediction rates slightly decreased.

In comparing overall branch prediction rates to the total number of cycles lost, we observed an

inverse relationship between better prediction rates and total number of cycles executed.

18

Benchmarks

a
d

p
c
m

b
it
c
o

u
n

t

b
lo

w
fi
s
h

c
rc

d
ijk

s
tr

a ff
t

g
s
m

is
p

e
ll

jp
e

g

p
a

tr
ic

ia

p
g

p

q
s
o

rt

ri
jn

d
a

e
l

s
h

a

s
tr

in
g

s
e

a
rc

h

s
u

s
a

n

ti
ff

a
ri
th

 m
e

a
n

T
o
ta

l
C

y
c
le

s
 L

o
s
t
a
s
 a

 R
a
ti
o

0.6

0.7

0.8

0.9

1

1.1

Baseline DEEP (up to 3 consecutive pb instructions)

Figure 5.4: Cycles Lost Without Consecutive pb Instructions

As a direct result of increased overall branch prediction rates, we observed that most benchmarks

saw a decrease in the total number of cycles lost. We define cycles lost as the number of cycles

spent performing useless operations, such as stalls or recovering from exceptions. Figure 5.4 shows

the number of cycles lost as a normalized ratio. On average, we were able to achieve a decrease

in the number of lost cycles by 3.814%. In the case of the bitcount and patricia benchmarks,

we witnessed a decrease of 29.704% and 26.904% in the total number of cycles lost respectively.

The significant decrease in the bitcount benchmark helps to explain its overall decrease in total

cycle counts. However, the ispell, susan, fft, jpeg and sha benchmarks witnessed an increase in the

number of cycles lost by up to 7.303%.

The increase in static code size is shown in Figure 5.5. The increase in code size is expressed

as a ratio of the number of RTLS in benchmarks after applying the DEEP optimization (without

consecutive pb instructions) to the number of RTLS in benchmarks before applying the DEEP

optimization. These statistics were gathered at compile time and do not account for pseudo in-

struction macro expansions (such as expanding the la instruction into the ori and lui instructions).

On average, the static code size increased by 18.105%. Interestingly, there does not appear to be a

direct correlation between the total number of execution cycles avoided and static code size increase

19

as both the bitcount and susan benchmarks saw a similar static code size increase (12.864% and

13.469%) yet exhibited a performance benefit and degradation respectively.

Benchmarks

a
d

p
c
m

b
it
c
o

u
n

t

b
lo

w
fi
s
h

c
rc

d
ijk

s
tr

a ff
t

g
s
m

is
p

e
ll

jp
e

g

p
a

tr
ic

ia

p
g

p

q
s
o

rt

ri
jn

d
a

e
l

s
h

a

s
tr

in
g

s
e

a
rc

h

s
u

s
a

n

ti
ff

a
ri
th

 m
e

a
n

S
ta

ti
c
 C

o
d
e
 S

iz
e
 R

a
ti
o

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

Baseline DEEP (no consecutive pb instructions)

Figure 5.5: Static Code Size Without Consecutive pb Instructions

5.2.2 Up to 3 Consecutive pb Instructions

We observed that when we allowed the compiler to schedule multiple, consecutive pb instruc-

tions, nearly all performance benefits were diminished. Figure 5.6 shows the total number of cycles

executed as a normalized ratio. On average, the total number of cycles executed increased by a

factor of 0.570%. Only the gsm and patricia benchmarks saw a reduction in the total number of

cycles executed over the case of issuing non consecutive pb instructions. The remaining 15 bench-

marks witnessed minor performance decreases. We believe that these performance decreases can

be resolved by collapsing multiple explicit predict and branch instructions into a single instruction

and through the use of a dedicated hardware paths array discussed in Chapter 7.

20

Benchmarks

a
d

p
c
m

b
it
c
o

u
n

t

b
lo

w
fi
s
h

c
rc

d
ijk

s
tr

a ff
t

g
s
m

is
p

e
ll

jp
e

g

p
a

tr
ic

ia

p
g

p

q
s
o

rt

ri
jn

d
a

e
l

s
h

a

s
tr

in
g

s
e

a
rc

h

s
u

s
a

n

ti
ff

a
ri
th

 m
e

a
n

T
o
ta

l
C

y
c
le

s
 a

s
 a

 R
a
ti
o

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

Baseline DEEP (up to 3 consecutive pb instructions)

Figure 5.6: Cycles with Consecutive pb Instructions

R
a

ti
o

 o
f

U
n

c
o

n
d

it
io

n
a

l
J
u

m
p

s
 E

x
e

c
u

te
d

0.8

2.8

4.8

6.8

8.8

Benchmarks

a
d
p
c
m

b
it
c
o
u
n
t

b
lo

w
fi
s
h

c
rc

d
ijk

s
tr

a ff
t

g
s
m

is
p
e
ll

jp
e
g

p
a
tr

ic
ia

p
g
p

q
s
o
rt

ri
jn

d
a
e
l

s
h
a

s
tr

in
g
s
e
a
rc

h

s
u
s
a
n

ti
ff

a
ri
th

 m
e
a
n

10

70

130

Baseline DEEP DEEP

Figure 5.7: Number of Unconditional Jumps Executed with Consecutive pb Instructions

Figure 5.7 shows the number of unconditional jumps executed with up to 3 consecutive pb

instructions. These measurements are similar to those obtained for benchmarks compiled without

21

consecutive pb instructions. We believe that the additional costs associated with these unconditional

jumps can be mitigated by the dedicated hardware paths array discussed in Chapter 7. Figure 5.8

shows the overall branch prediction rates for executions with up to 3 consecutive pb instructions.

These measurements closely resemble those obtained without consecutive pb instructions.

Figure 5.10 shows the increase in static code size after applying the DEEP optimization with

up to 3 consecutive pb insturctions. The average static code size increased by 44.453%, whereas the

increase was only 18.105% without consecutive pb instructions as shown in Figure 5.5. Although we

did not apply the DEEP optimization a larger test suite such as SPECINT, we believe the potential

performance benefits can be much larger as there were not many opportunities within the MiBench

benchmark suite where we could apply the DEEPify algorithm to issue multiple, consecutive pb

instructions at compile time.

Benchmarks

a
d

p
c
m

b
it
c
o

u
n

t

b
lo

w
fi
s
h

c
rc

d
ijk

s
tr

a ff
t

g
s
m

is
p

e
ll

jp
e

g

p
a

tr
ic

ia

p
g

p

q
s
o

rt

ri
jn

d
a

e
l

s
h

a

s
tr

in
g

s
e

a
rc

h

s
u

s
a

n

ti
ff

a
ri
th

 m
e

a
n

O
v
e
ra

ll
B

ra
n
c
h
 P

re
d
ic

ti
o
n
 R

a
te

0.8

0.85

0.9

0.95

1

Baseline DEEP (up to 3 consecutive pb instructions)

Figure 5.8: Overall Branch Prediction Rates with Consecutive pb Instructions

22

Benchmarks

a
d

p
c
m

b
it
c
o

u
n

t

b
lo

w
fi
s
h

c
rc

d
ijk

s
tr

a ff
t

g
s
m

is
p

e
ll

jp
e

g

p
a

tr
ic

ia

p
g

p

q
s
o

rt

ri
jn

d
a

e
l

s
h

a

s
tr

in
g

s
e

a
rc

h

s
u

s
a

n

ti
ff

a
ri
th

 m
e

a
n

T
o
ta

l
C

y
c
le

s
 L

o
s
t
a
s
 a

 R
a
ti
o

0.6

0.7

0.8

0.9

1

1.1

Baseline DEEP (up to 3 consecutive pb instructions)

Figure 5.9: Cycles Lost with Consecutive pb Instructions

Benchmarks

a
d

p
c
m

b
it
c
o

u
n

t

b
lo

w
fi
s
h

c
rc

d
ijk

s
tr

a ff
t

g
s
m

is
p

e
ll

jp
e

g

p
a

tr
ic

ia

p
g

p

q
s
o

rt

ri
jn

d
a

e
l

s
h

a

s
tr

in
g

s
e

a
rc

h

s
u

s
a

n

ti
ff

a
ri
th

 m
e

a
n

S
ta

ti
c
 C

o
d
e
 S

iz
e
 R

a
ti
o

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Baseline DEEP (up to 3 consecutive pb instructions)

Figure 5.10: Static Code Size with Consecutive pb Instructions

23

CHAPTER 6

RELATED WORK

To the best of our knowledge, an extremely limited amount of work has been conducted into decom-

posing branch instructions to explicitly perform a predict and branch operation and to perform a

verification with a later instruction. One such work that we are aware of is Branch Vanguard. Mc-

Farlin et al. [4] propose a similar method to the DEEP technique to eliminate control dependences.

However, Branch Vanguard limits the code transformation to only highly predictable branches as

identified by profile data whereas we propose to apply the DEEP optimization to all branches as

we think the additional opportunities for optimizations will outweigh the slightly increased mis-

prediction recovery time. Further, in Branch Vanguard, the authors require the use of an in-order

processor and propose the generation of explicit recovery code, something which further increases

static code size. In contrast, our recovery mechanism seeks to emulate the implicit recovery mecha-

nism of traditional branches within an OoO processor. By using an implicit recovery scheme, we do

not need to generate additional recovery paths, further simplifying our optimization and limiting

code growth. Moreover, we propose the creation of paths with multiple consecutive pb instructions

to potentially give rise to additional opportunities to apply compiler optimizations within loops.

Branch Vanguard did not support this feature likely due to the complexity associated with their

explicit recovery code.

There have been other proposed approaches to decouple the prediction and verification opera-

tions of conditional branches. One approach uses a prepare-to-branch instruction in addition to a

conventional branch instruction that requires an extra instruction to be executed for each condi-

tional branch, which impacts code size and possibly performance [7]. Another approach proposed

to use a set of branch registers to hold branch target addresses and a set of instruction registers

to hold branch target instructions, allowing branch target address calculations to be hoisted out

of loops and to be eliminated by common subexpression elimination [8]. This approach requires a

delay slot that is hard to fill with multi-issue processors.

24

Multiple compiler optimizations which make use of code duplication to eliminate conditional

branches have also been explored in the past. Such compilation techniques include duplicating

code when there is a path to a nonloop branch where the branch result is known [9, 10]. These

techniques result in even greater code size increase for eliminating a small number of branches. Our

explicit branch prediction approach limits code size increase by hoisting identical instructions from

both successors of a conditional branch after applying the DEEP optimization, CSE and instruction

scheduling. In hoisting identical instructions from speculative execution to non-speculative execu-

tion, we effectively reduce static code size increase and decrease the branch misprediction recovery

time.

25

CHAPTER 7

FUTURE WORK

7.1 Path Arrays

7.1.1 Overview

We can further increase the potential performance benefits availed by consecutive pb instructions

inside innermost loops by collapsing consecutive pb instructions into a singular branch instruction

and by making use of a hardware paths array. The paths array is a special hardware queue to

associate path predictions with target path addresses. Prior to entering a loop, we propose to

populate the paths array queue with all of its potential target path addresses through a loop. We

can then perform an efficient indirect jump to addresses stored in the paths array each loop iteration

based on the predictions issued by a multibit branch predictor.

Due to the associated overhead with creating and populating the paths array hardware structure,

we only propose that this method be applied on innermost loops as the preloop overhead will be far

outweighed by the loop body execution. We believe this technique has the potential to significantly

increase performance as a significant portion of branches execute within innermost loops as Figure

7.1 shows. We anticipate the most performance benefit will be seen by paths which contain multiple

taken branches such as path L111 in figure 3.1. Instead of requiring two jumps before reaching

the desired path, we can immediately jump to the beginning of this path with the paths array

approach.

adpcm

bitcount

blowfish

crc32

dijkstra

fft gsm
ispell

jpeg
patricia

pgp
qsort

rijndael

sha
stringsearch

susan

tiff
m

ibench avg

bzip2
gcc

gobm
k

h264ref

hm
m

er

lbm
m

cf
m

ilc
perlbench

sjeng
sphinx3

SPEC avg

in
n
e
rm

o
s
t

lo
o
p
 b

ra
n
c
h
e
s

0

0.2

0.4

0.6

0.8

1one branch

with calls

one branch

no calls

multibranch

with calls

multibranch

no calls

Figure 7.1: Fractions of Branchs Executing in Innermost Loops

26

7.1.2 MIPS ISA Extensions

31 26 25 21 20 16 15 0

Opcode Unused Space Unused Space Number of Consecutive Predictionspm:

31 26 25 21 20 16 15 0

Opcode Unused Space Unused Space Number of Consecutive Predictionsbpm:

31 26 25 21 20 16 15 0

Opcode

31 26 25 21 20 16 15 0

Opcode Unused Space

tvc:

ap:

RS Register RD Register Comparison Code Unused Encoding Space

1011

Path Beginning Offset DisplacementPath Number

Figure 7.2: Potential pm, bpm, tvc and ap Instruction Encodings

We propose some new instructions to support this approach: (1) the branch and predict multiple

(bpm) instruction, (2) the predict multiple (pm) instruction, (3) the test and verify clear (tvc)

instruction and (4) the assign path (ap) instruction. Unlike the pb instruction, the bpm instruction

does not need to store a target label, freeing up additional encoding bits for future instruction

annotations. Potential encodings of these instructions are shown in Figure 7.2. The difference

between the bpm and pm instruction is that a bpm instruction will first branch based on the value

stored in the prediction register, access the BP and finally update the prediction register, whereas

the pm instruction will only access the BP and update the prediction register. Since both of these

instructions only need to store a prediction count, they can be encoded as I-Type instructions. Note

that since we limit the amount of consecutive branch predictions which a pm or bpm instruction can

make to be a small number, these instructions could also use an R-Type instruction encoding and

encode the number of consecutive predictions where the RS, RT or RD register index would have

been traditionally encoded. However, we think it would make most sense to use an I-type encoding

to simplify instruction decoding in hardware.

The test and verify clear (tvc) instruction is needed to support cases where there are a variable

amount of pb instructions amongst the identified paths. This case can arise when there are inter-

leaving function calls within one path but not among another path. Much like the tv instruction,

the tvc instruction will verify the first bit in the prediction register but it will also mark the re-

maining prediction bits as being valid, effectively nullifying any outstanding prediction bits. This

27

allows us to issue a pm 3 instruction and support a path with only 1 verification instruction. The

ap instruction will be used to associate path indexes with target path addresses and will be inserted

into the preheader basic block of innermost loops. Loop invariant code motion can hoist these ap

instructions out of an entire loop nest.

7.1.3 Superscalar Extensions

prediction
register

0
pa

7
... target address

Figure 7.3: Hardware Support for Path Selection

The paths array hardware structure is implemented as a simple queue in hardware where the

queue index is the path index and the value is the PC displacement of the beginning of the path

relative to the ap instruction as shown in Figure 7.3. Since we apply this transformation after the

DEEPify routine, we are guaranteed that there are at most 3 consecutive pb instructions in any

given path. If we then interpret the path prediction bits as a binary number (i.e. the path where

all 3 predictions are taken would be 111 or 7), we will at most need 8 entries in the paths array

hardware structure. Whenever a bpm instruction is encountered, it uses the prediction register to

index into the paths array to jump to the appropriate path address target as indicated by the last

multibit prediction issued by the BP. The bpm instruction then proceeds to shift in a new set of

prediction bits into the prediction register.

Since both the bpm and pm instructions signal hardware mechanisms (i.e. branch and set the

new instruction fetch pointer or issue multiple branch predictions), they need not perform any

calculations during the EX stage. Instead, once they are decoded, they can be marked as complete,

contingent on the their multiple issued predictions being verified by their corresponding test and

verify instructions.

To our knowledge, the proper implementation of a single cycle, multibit branch predictor re-

quires complicated hardware support. Rather than relying on additional hardware support, we

propose to issue branch predictions over multiple cycles. For example, if a pm 3 or bpm 3 instruc-

tion is fetched at cycle x, we can access the BP for the first prediction at cycle x, at cycle x+1 for the

second prediction with the instruction fetched at PC+4 and at cycle x+2 for the last prediction with

28

the instruction fetched at PC+8. This approach then allows us to use the conventional BP without

introducing additional hardware complexities at the expense of a couple of additional cycles. The

predictions can be made as long as the target paths are at least two instructions, a requirement

which the compiler can satisfy at compile time.

29

CHAPTER 8

CONCLUSIONS

Conditional branches can cause expensive pipeline flushes and occur with high frequency in pro-

grams. Hence, they are expensive instructions worth optimizing. The DEEP optimization elimi-

nates control dependences in programs by decomposing branch instructions into an explicit predict

and branch instruction and a test and verify instruction at compile time. This explicit branch

decomposition eliminates the dependence between a branch instruction and its preceding com-

pare instruction and allows instructions preceding branches to be sunk into both successors of

conditional branches creating longer straighline blocks of code. In addition, longer paths can be

generated within innermost loops by issuing multiple, consecutive explicit predict and branch in-

structions before multiple test and verify instructions at compile time. In some cases we were able

to successfully apply additional compiler optimizations on these straightline paths of code. In the

case where no additional compiler optimizations can be applied, identical instructions from both

branch successor basic blocks can be hoisted before an explicit predict and branch instruction to

limit the mispredeiction recovery penalty and limit static code size increases. In this thesis, we have

shown that we can achieve up to a 4.385% decrease in total cycle counts by applying the DEEP

optimization.

30

BIBLIOGRAPHY

[1] Kreahling W., Whalley D., Bailey M., Yuan X., Uh GR., van Engelen R. (2003) Branch Elimi-
nation via Multi-variable Condition Merging. In: Kosch H., Bszrmnyi L., Hellwagner H. (eds)
Euro-Par 2003 Parallel Processing. Euro-Par 2003. Lecture Notes in Computer Science, vol
2790. Springer, Berlin, Heidelberg.

[2] Minghui Yang, Gang-Ryung Uh, and David B. Whalley. 2002. Efficient and effective branch
reordering using profile data. ACM Trans. Program. Lang. Syst. 24, 6 (November 2002), 667-
697.

[3] B. Black, B. Rychlik and J. P. Shen, ”The block-based trace cache,” Proceedings of the 26th
International Symposium on Computer Architecture (Cat. No.99CB36367), Atlanta, GA, 1999,
pp. 196-207.

[4] D. S. McFarlin and C. Zilles, ”Branch vanguard: Decomposing branch functionality into pre-
diction and resolution instructions,” 2015 ACM/IEEE 42nd Annual International Symposium
on Computer Architecture (ISCA), Portland, OR, 2015, pp. 323-335.

[5] S. Onder. An introduction to Flexible Architecture Simulation Tool (FAST) and Architecture
Description Language ADL. Technical report, Michigan Technological University Department
of Computer Science, Michigan.

[6] J. Hennessy and D. Patterson. Computer Architecture A Quantitative Approach. Fifth Edition.

[7] A. Bright, J. Fritts, and M. Gschwind. Decoupled fetch-execute engine with static branch pre-
diction support. Technical Report RC23261, IBM Research Report, 1999.

[8] Jack W. Davidson and David B. Whalley. Reducing the cost of branches by using registers.
In Proceedings of the 17th Annual International Symposium on Computer Architecture, pages
182-191, Seattle, Washington, May 28-31, 1990.

[9] Frank Mueller and David B. Whalley. Avoiding conditional branches by code replication. In
Proceedings of the ACM SIGPLAN ’95 Conference on Programming Language Design and Im-
plementation, pages 56-66, La Jolla, California, June 18-21, 1995. SIGPLAN Notices, 30(6),
June 1995.

[10] Rastislav Bodik, Rajiv Gupta, and Mary Lou Soffa. Interprocedural conditional branch elimi-
nation. In Proceedings of the ACM SIGPLAN ’97 Conference on Programming Language Design
and Implementation, pages 146-158, Las Vegas, Nevada, June 15-18, 1997. SIGPLAN Notices,
32(6), June 1997.

31

BIOGRAPHICAL SKETCH

Luis Penagos was born in Bucaramanga, Colombia on September 2, 1994. He received a B.S.

in Computer Science from Florida State University (FSU) in May of 2017, graduating with the

summa cum laude honors. As an undergraduate student, Luis worked under Dr. Whalley as

an undergraduate research assistant gathering statistics for effective memoization opportunities

within the VPO compiler and the FAST functional simulator. Additionally, Luis worked as a web

technician for Florida State University for 4 years designing multiple departmental websites and

applications. Luis briefly worked with Dr. Zhenghao Zhang in the Department of Computer Science

to help translate a MATLAB active RFID identification algorithm to an equivalent C program to

run on embedded systems.

He then proceeded to continue his education by pursuing an M.S. in Computer Science at

Florida State University in May of 2017. Luis spent the summer of 2017 working under Dr.

Whalley as a graduate research assistant and assisted a 10 week research trip to Gothenburg,

Sweden to collaborate with Chalmers University of Technology faculty on compiler optimization

research. In the summer of 2018, Luis was employed as a graduate teaching assistant, leading a

recitation for Computer Organization II (CDA3101) and grading course projects. His research dealt

with eliminating control dependences in code through explicit branch predictions and verifications.

Luis maintains an active interest in the areas of compiler optimizations, computer architecture and

wireless networks.

32

