
Real-Time Debuggingby Minimal Hardware Simulation ?Frank Mueller1;2, David B. Whalley1 and Marion Harmon21 Dept. of Computer Science, Florida State University,Tallahassee, FL 32306-4019 (U.S.A.)2 Dept. of Computer and Information Systems, Florida A&M University,Tallahassee, FL 32307 (U.S.A.)e-mail: whalley@cs.fsu.edu phone: (904) 644-3506Abstract. This paper describes a debugging environment for real-timeapplications that supports the querying of the elapsed time at break-points. The environment employs hardware simulation at the level ofprocessor cycles. The hardware simulation is limited only to the aspectsrelevant to processor cycle accounting and includes instruction caching,instruction frequency accounting, and instruction pipelining. This sim-ulation is performed by program instrumentation to minimize the per-formance impact. Thus, the environment provides the means to debug areal-time application for an embedded system on a regular workstationin an e�cient manner.1 IntroductionLittle attention has been paid to the speci�c needs of debugging real-time sys-tems, although debugging is a central part of the software development cycleand may account for up to 50% of the development time. When debugging real-time applications, it is often necessary to relate the value of a variable to theelapsed time.Time distortion, due to the interference of a debugging tool, has tobe minimized. Deadline monitoring should be supported to detect missed dead-lines. External events need to be simulated and deadlines should be monitoredduring debugging.In the absence of dedicated real-time debuggers, developers often fall back tohardware monitoring (e.g. logic analyzers) with limited capabilities or to hard-ware simulators, which degrades the application performance by about threeorders of a magnitude. The simulation overhead of conventional hardware simu-lators is due to the necessity to capture the entire logic of a microprocessor andthe interpretive nature of the simulation process.We are proposing a framework for a debugger that permits debugging of real-time applications through non-interpretive, minimal hardware simulation. Theenvironment addresses the issues of time distortion, deadline monitoring, and? This work was supported in part by the O�ce of Naval Research under contract #N00014-94-1-0006In Proceedings of the PEARL Workshop �uber Realzeitsysteme, Sep 1994 1

external events. The hardware simulation is limited to the aspects relevant toprocessor cycle accounting. These aspects include cache simulation, instructionfrequency accounting, and processor pipeline simulation.2 Related WorkMost commonly used debugging tools do not address the speci�c demands ofreal-time debugging. A few debugging tools speci�cally designed for real-timeapplications have been described in the literature, some of which focus on multi-processor debugging. For example, Remedy provides the ability to suspend theexecution on all processors when a breakpoint is reached [13]. The DCT tool al-lows practically non-intrusive monitoring but requires special hardware for busaccess [3]. Both RED [6] and ART [18] provide monitoring and debugging facil-ities at the price of software instrumentation. RED dedicates a co-processor tocollect trace data and send it to the host system. The instrumentation is removedfor production code. In ART, a special reporting task sends trace data to a hostsystem for further processing. The instrumentation code is a permanent part ofthe application. It will never be removed to prevent alteration of the timing.Debugging is limited to forced suspension and resumption of entities, viewingand alteration of variables, and monitoring of communication messages. DARTSprovides remote debugging by replaying portions of a time-stamped programtrace, which is produced during program execution [17]. The debugging is lim-ited to a restricted set of events and only supports a subset of the functionalityof common debuggers, e.g. excluding data queries. The high volume of traceinformation and the associated overhead of trace generation may also limit itsapplication to programs with short execution times.In the absence of real-time debuggers, hardware simulators are often used,which run about three orders of a magnitude slower than the actual application[14]. This performance overhead commonly limits the feasibility of extensivesoftware testing and debugging.3 The Debugging EnvironmentThe debugging environment described in this paper di�ers from previous workby its close interaction with the back-end of an optimizing compiler VPO (veryportable optimizer) [2]. An overview of the environment is given in Figure 1. Theback-end of a compiler has been modi�ed to emit control-
ow and instructioninformation. This information is analyzed statically by a simulator. The simu-lator determines much of the caching and pipeline behavior statically, therebyreducing the overhead during program debugging. It then emits instrumentationcode that is incorporated into the executable. The instrumented program canthen be debugged by a regular debugger and the elapsed (virtual) execution timecan be queried at any point. The virtual execution time is calculated on-the-
yon request by calculating the elapsed number of processor cycles based on theIn Proceedings of the PEARL Workshop �uber Realzeitsysteme, Sep 1994 2

cache and pipelining simulation up to this point. The number of cycles can beinferred from a frequency counter for each basic block and simple state transi-tions simulating the remaining cache and pipelining behavior that could not bedetermined statically.
source

files

static

program

object

files
linkercompiler

time estimation routines

control

flow

debugger

source-

level
executable

simulatorinformation

instruction

annotation

hardware configuration

hardwareFig. 1. Overview of the Debugging Environment4 Instruction Cache SimulationOne part of tracking the elapsed number of cycles is the simulation of instructioncaches. We are assuming an on-chip instruction cache of a con�gurable size witha direct-mapped architecture. Recent results have shown that direct-mappedcaches have a faster access time for hits, which outweighs the bene�t of a higherhit ratio in set-associative caches for large cache sizes [7]. As a result, currentprocessor designs incorporate direct-mapped caches more frequently than set-associative caches.The static hardware simulator includes a static cache simulation that predictsthe caching behavior of instructions. Each instruction in a program is determinedto be in one of the following categories:{ An always hit denotes an instruction that always is in cache when referenced,thus resulting in a cache hit.{ An always miss denotes an instruction that never is in cache when referenced,thus resulting in a cache miss.{ A �rst miss denotes an instruction that is not in cache on its �rst reference(cache miss) but is in cache on any subsequent reference (cache hit).In Proceedings of the PEARL Workshop �uber Realzeitsysteme, Sep 1994 3

{ A con
ict denotes an instruction that may or may not be in cache on anyreference, i.e. the caching behavior cannot be determined statically.The categorization of each instruction is performed via data-
ow analysisbased on the control-
ow information and the cache con�guration. Once thestatic cache simulator has categorized all instructions, it can emit code to in-strument the program. The instrumentation includes simple frequency countingto track always hits, always misses, and �rst misses. It also includes local statetransitions similar to a �nite state automaton to determine at execution timewhether a con
ict results in a cache hit or a cache miss. The details of staticcache simulation can be found elsewhere [12, 10, 9].Our prior work dealt with an ideal RISC processor that exhibits a single cycleoverhead for an instruction execution on a cache hit and a constant overhead fora cache miss (estimated at 10 cycles). Our current work concentrates on applyingthe hardware simulation to an existing processor and enhance the simulation toinclude the e�ects of pipelining in a retargetable fashion.The chosen target processor is the MicroSPARC I [16], which is commonlyused in Sun SPARCclassic workstations. The processor has an on-chip direct-mapped instruction cache of 4kB with a line size of 8 instructions. Assuming theabsence of pipeline stalls (discussed in the next section), the following timingbehavior can be assumed for cache hits and misses. A cache hit will generally takeone cycle. A cache miss on a cache line causes the �rst and second instructionsof the line to become available after a 7 and 8 cycle delay, respectively, thena dead cycle occurs, and the process is repeated for the remaining instructionsof the line (with a repeated dead cycle). A cache miss results in bringing anentire program line into cache. This process cannot be interrupted, even if theinstructions in the program line do not coincide with the control
ow at somepoint.For example, consider a sequence of instructions in a program line containinga label L1 for instruction 3 and an unconditional jump instruction for instruction5 as depicted in Figure 2. Assume that the current instruction transfers controlto label L1 via a branch. Furthermore, assume that the depicted program lineis not in cache. The reference to instruction 3 at L1 will cause a cache miss.Thus, instruction 3 will be available after a 7 cycle delay, instruction 4 one cycleafterwards, followed by a dead cycle. The jump instruction 5 and instruction 6in the delay slot will be available after 10 and 11 cycles, respectively. At thispoint, control is transferred to L2 but the rest of the program line is broughtinto cache until cycle 17. The execution may continue in parallel at L2 if theinstruction reference at L2 results in a cache hit. Conversely, a cache miss atL2 cannot be resolved until the previous program line is cached. Thus, if a missoccurs for the instruction at L2, a memory fetch is requested only after cycle 17.The instruction at L2 becomes then available for the processor at cycle 24.The timing overhead of a cache miss depends on the taken control-
ow path,as illustrated by the example. The following cases have to be distinguished:{ If instruction i resulting in a cache miss is followed by 8 � i sequentialinstructions without any transfer of control, then the miss overhead canIn Proceedings of the PEARL Workshop �uber Realzeitsysteme, Sep 1994 4

L1:

inst1

inst2

inst3

inst4

inst7

inst8

jump L2

program line

dc

dc

dcinst3

inst4 inst5

inst6 inst7

inst8 inst1

inst2

dc: dead cycle

delay slot

miss on inst3

0 7 8 9 10 11 12 13 14 15 16 17

t [cycles]Fig. 2. Cache Missbe associated with the instruction causing the miss. This overhead would be10+(i-1) cycles since there is an initial delay of 7 cycles, 3 dead cycles occurduring the line fetch, and the �rst i � 1 instruction have to be fetched aswell.{ If a cache miss on instruction i is followed by a transfer of control in instruc-tion k to an instruction that already resides in cache, the overhead of themiss would be 7 cycles for the initial delay plus b(k + 2� i)=2c dead cyclesfor memory fetches up to the branch delay slot of instruction k + 1.{ If a cache miss on instruction i is followed by a transfer of control on instruc-tion k to another instruction that does not reside in cache, the overhead ofthe miss would be 17�k+i cycles to cache the entire program line (includingthe initial delay, 3 dead cycles, and the instruction fetches past instructionk to �ll the line).As mentioned earlier, the cycle accounting for con
ict instructions is per-formed via state transitions at execution time. These transitions have to re
ectall possible paths in the control
ow if a cache miss occurs. These details can beautomatically determined by the static cache simulator based on a con�guration�le containing the cache con�guration and a description of the memory accessprotocol on cache misses.5 Pipeline SimulationDuring cache hits, most instructions will account for one cycle execution over-head. For some instructions though, the execution takes multiple cycles. Sinceout-of-order execution is not permitted for the MicroSPARC I, the instructionpipeline will be stalled by such instructions. An instruction timing �le can beused to distinguish instructions with varying execution overhead.The main challenge of the simulation remains in capturing pipeline inter-locks. These situations occur when an instruction in the pipeline stalls due toeither a result that cannot yet be made available or to a resource con
ict withIn Proceedings of the PEARL Workshop �uber Realzeitsysteme, Sep 1994 5

another instruction in a later pipeline stage. For example, when a memory loadinto a register (assumed to be a cache hit) is followed by a reference to thesame register, the referencing instruction will stall for one cycle until the valuebecomes available. This scenario is often referred to as a load-use interlock [5].The MicroSPARC I interlocks the pipeline for a number of other instructioncombinations [8].The traditional approach to detect pipeline con
icts employs resource vectorsand reservation tables [5]. The resource vector for an instruction describes theprocessor resources during each pipeline stage of the instruction processing. Areservation table is a sequence of resource vectors whose interstruction processingis interleaved for as many pipeline stages as possible. The goal on a RISC pro-cessor is to process one instruction per cycle, unless two consecutive instructionstry to access the same processor resource during a cycle. The reservation tablecan be used to detect these resource con
icts. Unfortunately, this traditionalapproach requires an instruction analysis at the level of pipeline stages. If thisanalysis was performed statically, one would have to generate reservation tablesfor instruction sequences along the possible control-
ow paths. This approachwould possibly impose a considerable overhead.Our design involves a di�erent approach. Pattern matching (similar to peep-hole optimization) can be applied to instruction patterns that match speci�edpipeline interlocks. The current environment includes a modi�ed back-end of acompiler. The compiler back-end could be further modi�ed to recognize patternsof instructions that cause pipeline interlocks. This approach has the advantagethat instruction patterns can be determined once and for all for a given archi-tecture and stored in a �le. The size of the peephole window is bounded by themaximum delay possible for a pipeline con
ict. The window my span instruc-tions along the control-
ow paths of the program. Upon detecting a pipelinestall, a pattern of instructions would be annotated with the number of cyclesassociated with the pipeline stall. The stall cycles could then be reported to thestatic hardware simulator to include them in the cycle accounting. For example,the patterns to describe a load-use resource con
ict would be as follows.ld *,reg[i] | ld *,reg[i]* reg[i],*,* | * *,reg[i],*The patterns describe a load instruction for register i, followed by any instructionreferencing register i, either as the �rst or second operand.During static hardware simulation, the interaction between pipeline stalls andcaching for straight-line code (within a basic block) can be resolved staticallyas long as the caching behavior can also be determined statically. Pipeline stallsreaching across basic blocks or involving dynamically dependent caching behav-ior will have to be incorporated into the dynamic simulation process. This canbe accommodated by additional state transitions but will impact the dynamicexecution overhead.In Proceedings of the PEARL Workshop �uber Realzeitsysteme, Sep 1994 6

6 External EventsThe described environment provides debugging capabilities via simulation. Thus,external events have to be simulated as well. The current design assumes thatan event table of periodic and aperiodic requests is provided by the user. Thecorresponding event should be triggered by the simulation environment once thecalculated cycle time equals or exceeds the speci�ed event time.7 Using the EnvironmentThe output shown in Figure 3 depicts excerpts from a debugging session of aprogram performing fast fourier transformations within the environment usingthe unmodi�ed source-level debugger dbx [15].(dbx) stop at 123 if elapsed_cycles() > 4000000 /* set cond breakpoint */(dbx) display elapsed_cycles() /* show return value on breakpoint */(dbx) run /* start program execution */stopped in main at line 123 /* exec stopped on cond breakpoint */123 four(tdata,nn,isign);elapsed_cycles() = 4015629(dbx) contK = 100 Time = 0.290000 Seconds /* program output */elapsed cycles() = 4095351 /* total number of executed cycles */execution completed, exit code is 1program exited with 1Fig. 3. Annotated Excerpts from a Sample Debugging SessionFirst, a conditional breakpoint is set on a function call that checks for adeadline miss after 4 million cycles. The display command ensures that theelapsed time estimated in cycles is displayed at each breakpoint. The execution isstopped on line 123 after over 4 million cycles, which indicates that the task couldnot �nish within the given deadline. This conditional breakpoint was placed ona repeatedly executed function call to periodically check this condition. Thedeadline miss can be narrowed down to an even smaller code portion by settingfurther conditional breakpoints. At program termination, the �nal number ofprocessor cycles is displayed.The timing information can be used during debugging to locate portions ofcode that consume most of the execution time. This information can be used tohand-tune programs or redesign algorithms.When a set of real-time tasks is debugged, one can identify the task that ismissing a deadline, either by checking the elapsed time or by setting a conditionalbreakpoint dependent on the elapsed time. The schedule can then be �xed invarious ways. One can tune the task that missed the deadline. Alternatively, onecan tune any of the preceding tasks if this results in a feasible schedule. Thelatter may be a useful approach when a task overruns its estimated executionIn Proceedings of the PEARL Workshop �uber Realzeitsysteme, Sep 1994 7

time without violating a deadline, thereby causing subsequent tasks to miss theirdeadlines. The debugger will help to �nd the culprit in such situations. Anotheroption would be to redesign the task set and the schedule, for example by furtherpartitioning of the tasks [4].8 Current Status and Future WorkWe have implemented the debugging environment for an ideal processor witha cache hit time of one cycle and a cache miss time of ten cycles [11]. We areenhancing this implementation according to the design described in this paper tore
ect the speci�cs of the MicroSPARC I instruction cache and to take pipelin-ing into account. The correctness of resulting virtual time accounting duringdebugging will be veri�ed by comparison with the observed program timing ona stand-alone VME board with a MicroSPARC I under a non-preemptive embed-ded real-time operating system [1]. The operating system is designed to exhibitpredictable execution behavior and to provide more accurate timing than regularoperating systems, such as UNIX.At this point, an instrumented, optimized program runs at about 1-4 timesthe speed of the uninstrumented, unoptimized version that is typically used fordebugging [11]. The number varies according to the ratio of program size andcache size. The additional work due to minimal dynamic pipeline simulation isexpected to increase this overhead. Yet, the overhead should still be well belowthat of conventional hardware simulators.We are also working on the design of a simulator for data caching. Undercertain restrictions (e.g., absence of pointers and heap allocation)many addressesof data references can be calculated statically. This includes global data, localdata allocated on the stack (in the absence of recursion), and certain patterns ofarray references. The e�ect of data caching should be included into the hardwaresimulation in a manner similar to the handling of instruction caching.9 ConclusionWe believe that our work of a minimal hardware simulator for the purpose ofcycle accounting is unprecedented. The simulation framework is being designedand implemented for the MicroSPARC I architecture but should be retargetablefor other RISC architectures. The application to the debugging of real-time pro-grams provides the means to test an embedded system on a regular workstationusing simulation. This facilitates the process of debugging for the user. It sup-ports queries for the elapsed (virtual) time, which can be used to relate debuggingoutput to time information. Time distortion during debugging is minimized anddeadlines can be monitored. Thus, a deadline miss can be located and the cor-responding task may be tuned by determining where most of the time is spent.Alternatively, the task schedule can be redesigned to meet the deadline require-ments. The minimal hardware simulation accounts for the e�ects of instructioncaches and pipeline stalls. The e�ect of data caches is subject to future research.In Proceedings of the PEARL Workshop �uber Realzeitsysteme, Sep 1994 8

References1. T. P. Baker, F. Mueller, and Viresh Rustagi. Experience with a prototype of thePOSIX \minimal realtime system pro�le". In IEEE Workshop on Real-Time Op-erating Systems and Software, pages 12{16, 1994.2. M. E. Benitez and J. W. Davidson. A portable global optimizer and linker. InACM SIGPLAN Conference on Programming Language Design and Implementa-tion, pages 329{338, June 1988.3. D. Bhatt, A. Ghonami, and R. Ramanujan. An instrumented testbed for real-timedistributed systems development. In IEEE Symposium on Real-Time Systems,pages 241{250, December 1987.4. R. Gerber and S. Hong. Semantics-based compiler transformations for enhancedschedulability. In IEEE Symposium on Real-Time Systems, pages 232{242, De-cember 1993.5. J. Hennessy and D. Patterson. Computer Architecture: A Quantitative Approach.Morgan Kaufmann, 1990.6. C. R. Hill. A real-time microprocessor debugging technique. In ACM SIG-SOFT/SIGPLAN Software Engineering Symposium on High-Level Debugging,pages 145{148, 1983.7. M. Hill. A case for direct-mapped caches. IEEE Computer, 21(11):25{40, Decem-ber 1988.8. Adolf Leung. Personal communications. Sun Microsystems (Engineering), Febru-ary 1994.9. F. Mueller. Static Cache Simulation and its Applications. PhD thesis, Dept. ofCS, Florida State University, July 1994.10. F. Mueller and D. B. Whalley. E�cient on-the-
y analysis of program behaviorand static cache simulation. In Static Analysis Symposium, September 1994.11. F. Mueller and D. B. Whalley. On debugging real-time applications. In ACMSIGPLAN Workshop on Language, Compiler, and Tool Support for Real-TimeSystems, June 1994.12. F. Mueller, D. B. Whalley, and M. Harmon. Predicting instruction cache behavior.In ACM SIGPLAN Workshop on Language, Compiler, and Tool Support for Real-Time Systems, June 1994.13. P. Rowe and B. Pagurek. Remedy: A real-time, multiprocessor, system level de-bugger. In IEEE Symposium on Real-Time Systems, pages 230{239, December1987.14. K. So, F. Darema, D. A. George, V. A. Norton, and G. F. P�ster. PSIMUL {a system for parallel execution of parallel programs. Performance Evaluation ofSupercomputers, pages 187{213, 1988.15. Sun Microsystems, Inc. Programmer's Language Guide, March 1990. Part No.800-3844-10.16. Texas Instruments. TMS390S10 Integrated SPARC Processor, February 1993.17. M. Timmerman, F. Gielen, and P. Lambix. A knowledge-based approach for thedebugging of real-time multiprocessor systems. In IEEE Workshop on Real-TimeApplications, pages 23{28, 1993.18. H. Tokuda, M. Kotera, and C. W. Mercer. A real-time monitor for a distributedreal-time operating system. In ACM/ONR Workshop on Parallel and DistributedDebugging, pages 68{77, 1988.In Proceedings of the PEARL Workshop �uber Realzeitsysteme, Sep 1994 9

