
Improving the Energy and Execution Efficiency of a Small Instruction
Cache by Using an Instruction Register File

Stephen Hines, Gary Tyson, David Whalley
Computer Science Dept.
Florida State University

Tallahassee, FL 32306-4530
{hines,tyson,whalley}@cs.fsu.edu

Abstract

Small filter caches (L0 caches) can be used to obtain
significantly reduced energy consumption for embedded
systems, but this benefit comes at the cost of increased
execution time due to frequent L0 cache misses. The In-
struction Register File (IRF) is an architectural exten-
sion for providing improved access to frequently occur-
ring instructions. An optimizing compiler can exploit
an IRF by packing an application’s instructions, result-
ing in decreased code size, reduced energy consumption
and improved execution time primarily due to a smaller
footprint in the instruction cache. The nature of the IRF
also allows the execution of packed instructions to over-
lap with instruction fetch, thus providing a means for
tolerating increased fetch latencies. This paper explores
the use of an L0 cache enhanced with an IRF to pro-
vide even further reduced energy consumption with im-
proved execution time. The results indicate that the IRF
is an effective means for offsetting execution time penal-
ties due to pipeline frontend bottlenecks. We also show
that by combining an IRF and an L0 cache, we are able
to achieve reductions in fetch energy that is greater than
using either feature in isolation.

KEYWORDS: Instruction Register File, Instruction
Packing, Filter (L0) Instruction Caches

1 Introduction

Recent processor design enhancements have increased
demands on the instruction fetch portion of the proces-
sor pipeline. Code compression, encryption, and a va-
riety of power-saving cache strategies can each impose
performance penalties in order to obtain their benefits.
These penalties are often significant, limiting the appli-

cability of each technique to only those systems in which
they are deemed critically necessary.

One important area of study, particularly for embedded
systems is reducing the power and energy consumption
of instruction fetch logic. This area is also becoming in-
creasingly important for general-purpose processor de-
sign as well. It has been shown that the L1 instruction
fetch logic alone can consume nearly one third of the
total processor power on the StrongARM SA110 [19].
One simple technique for reducing the overall fetch
power consumption is the use of a small, direct mapped
filter or L0 cache [13]. The L0 cache is placed before the
L1 instruction cache in such a memory hierarchy. Since
the L0 cache is small and direct mapped, it can provide
lower-power access to instructions at the expense of a
higher miss rate. The L0 cache also imposes an extra
execution penalty for accessing the L1 cache, as the L0
cache must be checked first to avoid the higher cost of
accessing the L1 cache. Previous studies have shown
that the fetch energy savings of a 256-byte L0 cache
with 8-byte line size is approximately 68%, but the ex-
ecution time is increased by approximately 46% due to
miss overhead [13].

Our prior research in instruction packing can be used to
diminish these performance penalties. Instruction pack-
ing is a compiler/architectural technique that seeks to
improve the traditional instruction fetch mechanism by
placing the frequently accessed instructions into an in-
struction register file (IRF) [11]. Several of these in-
struction registers are then able to be referenced by a
single packed memory instruction. Such packed instruc-
tions not only reduce the code size of an application,
improving spatial locality, but also allow for reduced en-
ergy consumption, since the instruction cache does not
need to be accessed as frequently. The combination of
reduced code size and improved fetch access can also
translate into reductions in execution time.



In this paper, we explore the possibility of integrating an
instruction register file into an architecture possessing
a small L0 instruction cache. The nature of the IRF al-
lows for an improved overlap between the execution and
fetch of instructions, since each packed instruction es-
sentially translates into several lower-cost fetches from
the IRF. While the fetch stage of the pipeline is servicing
an L0 instruction cache miss, the processor can continue
fetching and executing instructions from the IRF. In this
way, the IRF can potentially mask a portion of the addi-
tional latency due to a small instruction cache. Although
each technique attempts to reduce overall fetch energy,
we show that the approaches are orthogonal and able to
be combined for improved fetch energy consumption as
well as reduced performance penalties due to L0 cache
misses. We believe that the IRF can be similarly applied
to instruction encryption and/or code compression tech-
niques that also affect the instruction fetch rate, in an
effort to reduce the associated performance penalties.

The remainder of this paper has the following organi-
zation. First, we review the prior work on packing in-
structions into registers. Second, we describe how to
integrate an instruction register file into a pipeline de-
sign with a small L0 instruction cache. Third, we show
that combining an L0 cache with an IRF allows for even
further reduced fetch energy consumption, as well as
diminished execution overhead due to fetch penalties.
Fourth, we examine some related work on improving
the energy and execution efficiency of instruction fetch.
Fifth, we outline some potential topics for future work.
Finally, we present our conclusions for the paper.

2 Prior Work on Using an IRF

The work in this paper builds upon prior work on pack-
ing instructions into registers [11]. The general idea
is to keep frequently accessed instructions in registers,
just as frequently used data values are kept in registers
by the compiler through register allocation. Placing in-
structions into a register file is a logical extension for ex-
ploiting two forms of locality in the instruction reference
stream. It is well known that typically much of the exe-
cution time is spent in a small portion of the executable
code. An IRF can contain these active regions of the pro-
gram, reducing the frequency of accessing an instruction
cache to fetch instructions and saving power. However,
there is another type of locality that can also be exploited
with an IRF. The unique number of instructions used in
an application is much smaller than the possible combi-
nations available in a 32-bit instruction set. We find that
often there is a significant duplication of instructions,
even for small executables. Lefurgy found that 1% of

Instruction
Cache

(L0 or L1)

IRF

IMM

PC

IF Stage

IF/ID

First Half of ID Stage

Figure 1. Decoding a Packed Instruction

6 bits 5 bits 5 bits 5 bits 5 bits

opcode inst1 inst2 inst3 inst4

5 bits
inst5

1

s paramparam

Figure 2. Packed Instruction Format

the most frequent instruction words account for 30% of
program size across a variety of SPEC CINT95 bench-
marks [18]. This shows that conventional instruction en-
coding is less efficient than it could be, which is a result
of maximizing functionality of the instruction format,
while retaining fixed instruction size and simple formats
to ease decode. An IRF provides a second method to
specify instructions, with the most common instructions
having the tightest encoding. These instructions are ref-
erenced by a small index, multiples of which can easily
be specified in a fixed 32-bit instruction format.

We use two new terms to help differentiate instruc-
tions in our discussion of the IRF. Instructions refer-
enced from memory are referred to as the memory ISA
or MISA instructions. Likewise, instructions referenced
from the IRF are referred to as the register ISA or RISA
instructions. MISA instructions that reference RISA in-
structions are referred to as packed instructions. Our
ISA is based on the traditional MIPS instruction set,
specifically the PISA target of SimpleScalar [1]. Fig-
ure 1 shows the use of an IRF at the start of the instruc-
tion decode stage. It is also possible to place the IRF
at the end of instruction fetch or store partially decoded
instructions in the IRF should the decode stage be on the
critical path of the processor implementation.

Figure 2 shows the special MISA instruction format
used to reference multiple RISA instructions from the
IRF. These instructions are called tightly packed since
multiple RISA instructions are referenced by a single
MISA instruction. Up to five instructions from the IRF
can be referenced using this format. Along with the IRF
is an immediate table (IMM), as shown in Figure 1 that
contains the 32 most commonly used immediate values
in the program. Thus, the last two fields that could refer-
ence RISA instructions can instead be used to reference
immediate values. The number of parameterized im-
mediate values used and which RISA instructions will
use them is indicated through the use of four opcodes



5 bits 5 bits 5 bits 6 bits6 bits 5 bits

shamt functionrdrtrsopcode

Register Format: Arithmetic/Logical Instructions

immediate valuertrsopcode

 Immediate Format: Loads/Stores/Branches/ALU with Imm

6 bits 5 bits 5 bits 16 bits

26 bits6 bits

target addressopcode

Jump Format: Jumps and Calls

(a) Original MIPS Instruction Formats

Register Format with Index to Second Instruction in IRF

opcode rs rt rd function inst

5 bits6 bits5 bits5 bits5 bits6 bits

shamt

6 bits 5 bits 5 bits 11 bits 5 bits

opcode rs rt immediate value inst

Immediate Format with Index to Second Instruction in IRF

Jump Format 

opcode target address

26 bits6 bits

(b) Loosely Packed MIPS Instruction Formats

Figure 3. MIPS Instruction Format Modifications

and the 1-bit S field. The compiler uses a profiling pass
to determine the most frequently referenced instructions
that should be placed in the IRF. The 31 most commonly
used instructions are placed in the IRF. One instruction
is reserved to indicate a no-operation (nop) so that fewer
than five RISA instructions can be packed together. Ac-
cess of the RISA nop terminates execution of the packed
MISA instruction so no performance penalty is incurred.
The compiler uses a second pass to pack MISA instruc-
tions into the tightly packed format shown in Figure 2.

In addition to tightly packed instructions, the instruc-
tion set is also extended to support a loosely packed in-
struction format. Each standard MIPS instruction (with
some exceptions) has 5 bits made available for an ad-
ditional RISA reference. This RISA instruction is exe-
cuted following the original MISA instruction. If there
is no meaningful RISA instruction that can be executed,
then IRF entry 0, which corresponds to a nop, is used.
There is no performance penalty if the RISA reference
is 0, since no instruction will be executed from the IRF
and fetching will continue as normal. While the goal of
tightly packed instructions is improved fetching of fre-
quently executed instruction streams, the loosely packed
format helps in capturing the same common instructions
when they are on infrequently executed paths and not
surrounded by other packable instructions. Loose packs
are responsible for a significant portion of the code size
reduction when profiling an application statically.

Figure 3 shows the differences between the traditional
MIPS instruction formats and our loosely packed MISA
extension. With R-type instructions, the shamt (shift
amount) field can be used for a RISA reference and the
various shifts can be given new function codes or op-
codes. Immediate values in I-type instructions are re-
duced from 16 bits to 11 bits to make room for a RISA
reference. The lui (load upper immediate) instruction
is the only I-type that is adjusted differently, in that it
now uses only a single register reference and the remain-
ing 21 bits of the instruction for the upper immediate
portion. This is necessary since we still want a simple
method for creating 32 bit constants using the lui with

21 bits for an immediate and another I-type instruction
containing an 11 bit immediate value. J-type instruc-
tions are modified slightly with regards to addresses in
order to support a partitioning of the IRF.

For this study, we have extended the IRF to support 4
hardware windows [12], much in the same way that the
SPARC data register file is organized [22]. This means
that instead of using only 32 instruction registers, there
are a total of 128 available physical instruction regis-
ters. Only 32 of these registers are accessible at any sin-
gle point in time however, so the remaining 96 registers
can be kept in a low-power mode in which they retain
their values, but cannot be accessed. On a function call
and/or return, the target address uses 2 bits to distinguish
which instruction window we are accessing. The return
address stack and all function call address pointers are
updated at link-time according to which window of the
IRF they will access. The IMM for each window is the
same, since previous results have shown that 32 immedi-
ate values are sufficient for parameterizing most instruc-
tions that will exist in an IRF. Using two bits to specify
the instruction window in an address pointer limits the
effective address space available for an application, but
we feel that 16 million instruction words is large enough
for any reasonable embedded application.

3 Integrating an IRF with an
L0 Instruction Cache

There are several intuitive ways in which an IRF and
an L0 instruction cache can interact effectively. First,
the overlapped fetch of packed instructions can help in
alleviating the performance penalties of L0 instruction
cache misses by giving the later pipeline stages mean-
ingful work to do while servicing the miss. Second, the
very nature of instruction packing focuses on the fre-
quent access of instructions via the IRF, leading to an
overall reduction in the number of instruction cache ac-
cesses. Third, the packing of instructions reduces the
static code size of portions of the working set of an ap-



plication, leading to potentially fewer overall instruction
cache misses.

Figure 4 shows the pipeline diagrams for two equivalent
instruction streams. Both diagrams use a traditional five
stage pipeline model with the following stages: IF —
instruction fetch, ID — instruction decode, EX — exe-
cute, M — memory access, and WB — writeback. In
Figure 4(a), an L0 instruction cache is being used with
no IRF. The first two instructions (Insn1 and Insn2) ex-
ecute normally with no stalls in the pipeline. The third
instruction is a miss in the L0 cache, leading to the bub-
ble at cycle 4. The fourth instruction is unable to start
fetching until cycle 5, when Insn3 has finally finished
fetching and made it to the decode stage of the pipeline.
This entire sequence takes 9 cycles to finish executing.

Figure 4(b) shows the same L0 instruction cache being
used with an IRF. In this stream, however, the second
and third instructions (previously Insn2 and Insn3) are
packed together into a single MISA instruction, and the
fourth instruction (third MISA instruction) is now at the
address that will miss in the L0 cache. We see that the
packed instruction is fetched in cycle 2. The packed in-
struction decodes its first RISA reference (Pack2a) in cy-
cle 3, while simultaneously we are able to start fetching
instruction 4. The cache miss bubble in cycle 4 is over-
lapped with the decode of the second RISA instruction
(Pack2b). After the cache miss is serviced, Insn4 is now
ready to decode in cycle 5. In this way, sequences of
instructions with IRF references can alleviate stalls due
to L0 instruction cache misses. This stream finishes the
same amount of work as the first stream in only 8 cycles,
1 less cycle than the version without IRF. Denser se-
quences of instructions (with more packed instructions)
allow for even greater cache latency tolerance, and can
potentially alleviate a significant portion of the latency
of accessing main memory on an L1 instruction cache
miss.

In previous studies, it was shown that a single 32-entry
IRF can be responsible for approximately 55% of the
non-library instructions fetched in an application [11].
This amounts to a significant fetch energy savings due
to not having to access the L1 instruction cache as fre-
quently. Although the L0 cache has a much lower energy
cost per access than an L1 instruction cache, the IRF will
still reduce the overall traffic to the entire memory hier-
archy. Fewer accesses that reach into the memory hier-
archy can be beneficial as energy can be conserved by
not accessing the TLB or even the L0 cache tag array.

Instruction packing is inherently a code compression
technique, allowing some additional benefits to be ex-
tracted from it as well. As instructions are packed to-
gether, the L0 instruction cache can potentially handle

Figure 4. Overlapping Fetch with an IRF

larger working sets at no additional cost. Being that the
L0 cache is fairly small and direct mapped, the com-
pressed instruction stream may be extremely beneficial
in some cases, allowing for fewer L0 cache misses,
which translates into performance improvements and re-
duced overall fetch energy consumption.

4 Experimental Evaluation

In order to evaluate the effectiveness of an IRF in elimi-
nating the execution overhead of small caches, we fo-
cused on two main configurations. The first configu-
ration models an embedded processor, and the second
models a more advanced machine with out-of-order ex-
ecution. The purpose of the second model was to see the
effects that a more aggressive pipeline backend has on
the small instruction cache. Our modeling environment
is an extension of the SimpleScalar PISA target support-
ing IRF instructions [1]. Each simulator is instrumented
to collect the relevant data involving instruction cache
and IRF access during program execution. The Sim-
pleScalar configuration data for each of these models is
shown in Table 1.

Note that for both of these models, the L0 cache and/or
the IRF/IMM are only configured if they are being eval-
uated. It is also important to remember that the L0 cache
is not able to be bypassed in this pipeline structure, so an
instruction that misses in the L0 cache but hits in the L1
cache will require 2 cycles for fetch in the embedded
processor and 3 cycles in the high-end processor.

We selected a subset of the MiBench embedded bench-
mark suite [10] for use in each of our experiments. The
MiBench suite consists of six categories, each designed



Table 1. Experimental Configurations

Parameter Embedded High-end

I-Fetch Queue 4 entries 8 entries
Branch Predictor Bimodal – 128 Bimodal – 1024
Branch Penalty 3 cycles
Fetch Width 1 2
Decode Width 1 2
Issue Style In order Out of order
Issue Width 1 2
Commit Width 1 2
RUU size 8 entries 16 entries
LSQ size 8 entries

16 KB 32 KB
256 lines 512 lines

L1 D-Cache 16 B line 16 B line
4-way assoc. 4-way assoc.

1 cycle hit 2 cycle hit
16 KB 32 KB

256 lines 512 lines
L1 I-Cache 16 B line 16 B line

4-way assoc. 4-way assoc.
1 cycle hit 2 cycle hit

256 B 512 B
32 lines 64 lines

L0 I-Cache 8 B line 8 B line
direct mapped direct mapped

1 cycle hit 1 cycle hit
Memory Latency 32 cycles
Integer ALUs 1 4
Integer MUL/DIV 1 1
Memory Ports 1 2
FP ALUs 1 4
FP MUL/DIV 1 1

4 windows
32-entry IRF (128 total)IRF/IMM

32-entry Immediate Table
1 Branch/pack

to exhibit application characteristics representative of a
typical embedded workload in that particular domain.
Several of these benchmarks (Jpeg, Ghostscript, Gsm,
Pgp, Adpcm) are similar benchmarks to those found in
the MediaBench suite [15] used in the original evalua-
tion of L0 caches. Table 2 shows the exact benchmarks
that were used in our evaluations. For each benchmark
with multiple data sets, we chose the small inputs to
keep the running time of the simulations manageable.

Optimized code is generated using a modified port of
the VPO compiler for the MIPS [4]. Each benchmark
is profiled dynamically for instruction frequency counts
and instruction packing is performed using a greedy al-
gorithm for 4 partitions where necessary. The actual in-
structions available to the IRF are selected by irfprof,

Table 2. MiBench Benchmarks
Category Applications

Automotive Basicmath, Bitcount, Qsort, Susan
Consumer Jpeg, Lame, Tiff
Network Dijkstra, Patricia
Office Ghostscript, Ispell, Rsynth, Stringsearch
Security Blowfish, Pgp, Rijndael, Sha
Telecomm Adpcm, CRC32, FFT, Gsm

our profile-driven IRF selection and layout tool. In pre-
vious studies [11], the library code was removed from
the experiments to provide a fairer evaluation of the IRF
mechanism. In these experiments, library code is not
subject to instruction packing, however, it is modeled
accurately in both the cycle time execution and fetch en-
ergy calculations. The benchmarks Basicmath, Qsort,
Patricia, Stringsearch, and FFT are all dominated by li-
brary code, with more than 50% of each application exe-
cuting standard C library functions. If instruction pack-
ing was performed on library code, the overall results
when using the IRF should improve.

Each of the graphs in this section use the following con-
ventions. All results are normalized to the baseline case
for the particular processor model, which uses an L1 in-
struction cache with no L0 instruction cache or IRF. The
label L1+IRF corresponds to adding an IRF but no L0
cache. The label L1+L0 corresponds to adding an L0
instruction cache, but no IRF, and finally L1+L0+IRF
corresponds to the addition of an L0 instruction cache
along with an IRF. Execution results are measured in
the cycles returned from SimpleScalar. The fetch en-
ergy is estimated according to the following equation,
for which the accuracy has been tuned using results from
sim-panalyzer [20]:

Efetch = 10000 × Accessesmemory + 100 × AccessesL1
+ 2 × AccessesL0 + AccessesIRF

These scaling factors are conservative and in line with
previous work regarding instruction caches, L0 caches,
and the IRF. The L0 cache requires slightly more energy
to operate than the IRF due to the cache tag comparison.
The IRF is only updated when the application loads, and
from then on it need only be available for reading. Addi-
tionally, the inactive windows of the IRF can be kept in
a lower-power state, yielding a smaller overall structure
to be accessed (128 bytes).

Figure 5 shows the execution efficiency of the embedded
processor. Adding an IRF to the baseline processor with
no L0 cache yields only a minor performance improve-
ment of 1.52%, mainly due to the code fitting better into



Figure 5. Embedded Execution Efficiency

the L1 instruction cache. An L0 cache degrades perfor-
mance by 17.11% on average, while adding an IRF cuts
this penalty to 8.04%. The overlapped fetch interaction
allows the IRF to not only obtain its initial performance
improvement due to a smaller footprint in the L1 instruc-
tion cache, but to also surpass it by reclaiming some of
the performance penalty of the L0 instruction cache.

The fetch energy efficiency of the embedded processor
is shown in Figure 6. An L1 cache with IRF yields an
average fetch energy reduction of 34.83%. The L0 cache
obtains reductions of 67.07%, while adding the IRF im-
proves the energy reduction to 74.93%. The additional
energy savings is a bonus, since the IRF is also used to
tolerate the latency of L0 cache misses.

Conservatively assuming that fetch energy accounts for
25% of the overall processor energy, and that the non-
fetch energy scales uniformly for the increased execu-
tion time, an L0 instruction cache reduces the overall
energy consumption by 4%. Adding an IRF in addition
to the L0 cache yields an overall energy reduction of
12.7%. If the fetch energy accounts for one third of the
total processor energy, as is more likely the case for em-
bedded systems, the overall energy savings with an L0
instruction cache is approximately 10.7%, while adding
an IRF increases the savings to 19.3%.

The execution efficiency of the high-end processor is
shown in Figure 7. The pipeline backend of the high-end
processor is very demanding, however the L1 caches for
this machine have also been modified to have a 2 cy-
cle baseline hit time since both the fetch width and the
cache sizes have been increased. An IRF can reduce
the execution cycles by only 0.35%, however the per-
formance penalty of adding an L0 cache is substantial at
35.57%. Clearly, the miss penalty of the L0 cache causes
greater deterioration of performance when coupled with

Figure 6. Embedded Fetch Energy Effi-
ciency

Figure 7. High-end Execution Efficiency

an aggressive pipeline backend. This phenomenon oc-
curs since there are fewer stalls in the pipeline backend
that can be overlapped with L0 instruction cache miss
stalls in the pipeline frontend. The addition of an IRF
and an L0 instruction cache reduces the overall perfor-
mance penalty to 21.43%, showing that an even larger
portion of the execution cycles can be overlapped with
all associated fetch misses.

Figure 8 shows the fetch energy efficiency of the high-
end processor. The addition of an IRF to the processor
reduces fetch energy consumption by 33.83%. An L0
instruction cache can lower the fetch energy by 79.68%
alone, or 84.57% in conjunction with an IRF. These
numbers are greater than the results from the embed-
ded system model due to the aggressive nature of this
high-end processor design. In this model, the number of
misfetches is greatly increased due to its highly specula-
tive pipeline configuration, and thus the IRF and L0 can



Figure 8. High-end Fetch Energy Effi-
ciency

Figure 9. Embedded Cache Access Fre-
quency

reduce the chances of having to access the L1 instruction
cache and/or memory.

Figure 9 shows the frequencies at which various portions
of the memory hierarchy are accessed for instructions in
the embedded processor. The number of accesses are
shown by category and normalized to the case where
only an L1 instruction cache is in use. With just an L1
cache, these benchmarks can fetch instructions immedi-
ately from the L1 cache 99.55% of the time, yielding a
very low 0.45% miss rate. In a design with an L0 cache,
approximately 76.67% of the instructions fetched hit in
the L0 cache, and an additional 20.87% hit in the L1
cache. The frequency of having to access main memory
with an L0 cache is reduced slightly to 0.44%. The L0
instruction cache experiences a slight reduction in over-

Figure 10. High-end Cache Access Fre-
quency

all accesses due to being less aggressive on mispredic-
tions with cache misses on some benchmarks, hence the
total access frequency does not sum to exactly 100%.
When adding just an IRF, the frequency of L1 cache
hits is reduced to 65.05% and the frequency of misses
is reduced to 0.38%, showing that greater than 34% of
instructions do not need to access an instruction cache
at all. Combining an L0 instruction cache with an IRF
yields approximately 47.61% L0 cache hits, 15.9% L1
cache hits, and 0.37% L1 cache misses. Whereas the
L0 cache converts more expensive L1 cache accesses to
cheaper L0 cache accesses, the IRF is responsible for the
conversion of both types of instruction cache accesses to
cheaper register file accesses.

The cache access frequencies of the high-end processor
are shown in Figure 10. The larger L1 instruction cache
hits 99.97% of the time, missing on only 0.03% of ac-
cesses in the baseline architecture. With the use of an L0
instruction cache, there is an L0 hit 80.50% of the time,
an L1 hit 16.03% of the time, and an L1 miss 0.03%
of the time. The use of an IRF with just an L1 instruc-
tion cache allows for the L1 cache to hit on 66.18% of
instruction fetches, and miss on only 0.02% of fetches.
All other fetches are handled by the IRF. Combining the
L0 instruction cache with an IRF reduces the L0 cache
hits to 50.64%, the L1 cache hits to 12.20%, and the L1
cache misses to 0.02%.

Instruction packing can also reduce the static code size
of an application. Figure 11 shows the normalized code
size for each of the packed executables. Since we do not
pack instructions in library routines, we have removed
their impact on the static code size results. Overall,
however we are able to reduce the actual compiled ex-



Figure 11. Reducing Static Code Size

ecutable size by 15% on average. Many of the security
benchmarks experience significant reductions in static
code size, since the majority of their code is dominated
by similar encryption and decryption routines composed
of the same fundamental instruction building blocks.
These instructions can then be placed in the IRF and ref-
erenced in various combinations to construct the neces-
sary functionality for each similar routine.

5 Related Work

Instruction and data caches are often separated for per-
formance reasons, particularly with respect to handling
the diverse behavior and request patterns for each. An-
other approach to reducing cache energy requirements
is to further subdivide the instruction cache into cate-
gories based on execution frequency [2, 3]. Frequently
executed sections of code are placed into a smaller, low-
power L-cache that is similar in structure to the L0 cache
discussed in this paper. The bulk of the remaining code
is only accessible through the standard L1 instruction
cache. Code segments for each cache are separated
in the executable, and a hardware register denotes the
boundary between addresses that are serviced by the L-
cache and addresses that are serviced by the L1 cache.
The splitting of these lookups provides a substantial re-
duction in the L-cache miss rate. A 512-byte L1 cache
provides a 15.5% reduction in fetch energy, while also
obtaining a small reduction in execution time due to im-
proved hit rate. However, the L-cache scheme is lim-
ited in that it cannot easily scale to support longer access
times from an L1 instruction cache.

Lee et al. proposed using a small cache for execut-
ing small loops with no additional transfers of control
other than the loop branch [16]. Instruction are normally

fetched from the L1 cache, but a short backward branch
(sbb) triggers the loop cache to begin filling. If the same
sbb is then taken on the next loop iteration, instructions
can be fetched from the small loop cache structure in-
stead of the L1 cache. When there is a different taken
transfer of control, or the loop branch is not taken, the
loop cache returns to its inactive state and resumes fetch-
ing normally from the L1 instruction cache. Since the
loop cache is tagless and small (usually 8-32 instruc-
tions), the total fetch energy can be reduced by approxi-
mately 15%. The loop cache was later extended to sup-
port longer loops by adding the ability to partially store
and fetch portions of a loop [17]. Another improvement
to the loop cache is the use of preloading and hybridiza-
tion [9]. Preloading allows the loop cache to contain the
same instructions for the life of the application, while
hybridization refers to a loop cache that can operate in
a dynamic mode as well as preloaded. A hybrid loop
cache can reduce the total instruction fetch energy by
60-70%.

An alternate method for mitigating the performance
penalty of L0 caches is to provide a bypass that allows
direct reading from the L1 cache in some cases. It has
been shown that with a simple predictor, the L0 cache
performance penalty can be dropped to 0.7% on a 4-way
superscalar machine with only a small increase in fetch
energy [21]. However, L0 caches are primarily used for
reducing the fetch energy of embedded systems, which
fetch and execute no more than one instruction per cycle.

The zero overhead loop buffer (ZOLB) is another hard-
ware technique for reducing instruction fetch energy for
small loops [7]. The main difference between a ZOLB
and a loop cache is that a ZOLB is explicitly loaded us-
ing special instructions regarding the number of instruc-
tions in the loop and the number of iterations to exe-
cute. Similar to the loop cache, the ZOLB is limited
in size, and can have no other transfers of control be-
yond the loop branch. Additionally, information regard-
ing the number of iterations executed by the loop must
be known at the time the loop is entered. Although the
primary benefit of the ZOLB is fetch energy reduction, it
can also provide small improvements in execution time,
since loop variable increment and compare instructions
are no longer necessary.

6 Future Work

There exist many areas for exploration in the design
of high-performance, low-power instruction fetch mech-
anisms. Tolerating increased fetch latencies is one
strength of the IRF, however, the instruction selection
and packing algorithms have not been tuned specifically



to focus on reducing L0 cache misses. Various heuris-
tics can be used to select IRF candidates in the areas of a
program where an L0 cache miss is likely to occur. Sim-
ilar heuristics can be developed to support IRF packing
combined with other architectural techniques that affect
fetch latency.

There are also several popular techniques that incur per-
formance penalties due to reduced spatial locality, which
may be able to be offset by the addition of an IRF. Tech-
niques such as procedural abstraction [8, 6, 5], and echo
factoring [14] seek to reduce the code size of an appli-
cation by replacing common sequences of instructions
with calls to extracted subroutines. However, the added
function calls and returns can greatly impact the spa-
tial locality of an application, in addition to requiring
more instructions to execute normally. The IRF can be
applied similarly in these cases, to reduce the impact
that the cache misses and additionally executed instruc-
tions have on a compressed executable’s performance.
Tamper-proofed and encrypted executables experience
similar performance penalties when moving code into
private caches, and as such might also be able to reduce
the performance impact with the addition of an IRF.

7 Conclusions

In this paper we have evaluated the interactions between
a small low-power L0 instruction cache and an IRF. Our
experiments focused on embedded systems for which
code size, power and performance design constraints are
often very stringent. We also looked at the effects of
an IRF in offsetting similar performance penalties due
to an L0 cache for a very aggressive pipeline backend.
The use of an IRF and associated packed instructions
allows a portion of the fetch miss latency of an L0 in-
struction cache to be tolerated. Additionally, both the
L0 cache and the IRF can interact such that the fetch en-
ergy consumption is further reduced. Finally, the use of
instruction packing, which is a fundamental component
of the IRF microarchitecture, allows for significant re-
ductions in the overall static code size of an application.
The combination of these three improvements in stan-
dard design criteria makes an L0 cache with an IRF very
attractive for use in embedded systems.

8 Acknowledgments

We thank the anonymous reviewers for their construc-
tive comments and suggestions. This research was
supported in part by NSF grants EIA-0072043, CCR-
0208892, CCR-0312493, and CCF-0444207.

References

[1] AUSTIN, T., LARSON, E., AND ERNST, D. Sim-
pleScalar: An infrastructure for computer system mod-
eling. IEEE Computer 35 (February 2002), 59–67.

[2] BELLAS, N., HAJJ, I., POLYCHRONOPOULOS, C., AND

STAMOULIS, G. Energy and performance improvements
in a microprocessor design using a loop cache. In Pro-
ceedings of the 1999 International Conference on Com-
puter Design (October 1999), pp. 378–383.

[3] BELLAS, N. E., HAJJ, I. N., AND POLYCHRONOPOU-
LOS, C. D. Using dynamic cache management tech-
niques to reduce energy in general purpose processors.
IEEE Transactions on Very Large Scale Integrated Sys-
tems 8, 6 (2000), 693–708.

[4] BENITEZ, M. E., AND DAVIDSON, J. W. A portable
global optimizer and linker. In Proceedings of the SIG-
PLAN’88 conference on Programming Language Design
and Implementation (1988), ACM Press, pp. 329–338.

[5] COOPER, K., AND MCINTOSH, N. Enhanced code com-
pression for embedded risc processors. In Proceedings of
the ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (May 1999), pp. 139–
149.

[6] DEBRAY, S. K., EVANS, W., MUTH, R., AND DESUT-
TER, B. Compiler techniques for code compaction. ACM
Transactions on Programming Languages and Systems
22, 2 (March 2000), 378–415.

[7] EYRE, J., AND BIER, J. DSP processors hit the main-
stream. IEEE Computer 31, 8 (August 1998), 51–59.

[8] FRASER, C. W., MYERS, E. W., AND WENDT, A. L.
Analyzing and compressing assembly code. In Proceed-
ings of the SIGPLAN ’84 Symposium on Compiler Con-
struction (June 1984), pp. 117–121.

[9] GORDON-ROSS, A., COTTERELL, S., AND VAHID, F.
Tiny instruction caches for low power embedded sys-
tems. Trans. on Embedded Computing Sys. 2, 4 (2003),
449–481.

[10] GUTHAUS, M. R., RINGENBERG, J. S., ERNST, D.,
AUSTIN, T. M., MUDGE, T., AND BROWN, R. B.
MiBench: A free, commercially representative embed-
ded benchmark suite. IEEE 4th Annual Workshop on
Workload Characterization (December 2001).

[11] HINES, S., GREEN, J., TYSON, G., AND WHAL-
LEY, D. Improving program efficiency by packing in-
structions into registers. In Proceedings of the 2005
ACM/IEEE International Symposium on Computer Ar-
chitecture (2005), IEEE Computer Society, pp. 260–271.

[12] HINES, S., TYSON, G., AND WHALLEY, D. Reducing
instruction fetch cost by packing instructions into register
windows. In Proceedings of the 38th annual ACM/IEEE
International Symposium on Microarchitecture (2005),
IEEE Computer Society.



[13] KIN, J., GUPTA, M., AND MANGIONE-SMITH, W. H.
The filter cache: An energy efficient memory structure.
In Proceedings of the 1997 International Symposium on
Microarchitecture (1997), pp. 184–193.

[14] LAU, J., SCHOENMACKERS, S., SHERWOOD, T., AND

CALDER, B. Reducing code size with echo instructions.
In Proceedings of the 2003 International Conference on
Compilers, Architectures and Synthesis for Embedded
Systems (2003), ACM Press, pp. 84–94.

[15] LEE, C., POTKONJAK, M., AND MANGIONE-SMITH,
W. H. MediaBench: A tool for evaluating and synthesiz-
ing multimedia and communicatons systems. In MICRO
30: Proceedings of the 30th annual ACM/IEEE Inter-
national Symposium on Microarchitecture (Washington,
DC, USA, 1997), IEEE Computer Society, pp. 330–335.

[16] LEE, L., MOYER, B., AND ARENDS, J. Instruction
fetch energy reduction using loop caches for embedded
applications with small tight loops. In Proceedings of the
International Symposium on Low Power Electronics and
Design (1999), pp. 267–269.

[17] LEE, L., MOYER, B., AND ARENDS, J. Low-cost em-
bedded program loop caching — revisited. Tech. Rep.
CSE-TR-411-99, University of Michigan, 1999.

[18] LEFURGY, C. R. Efficient execution of compressed pro-
grams. PhD thesis, University of Michigan, 2000.

[19] MONTANARO, J., WITEK, R. T., ANNE, K., BLACK,
A. J., COOPER, E. M., DOBBERPUHL, D. W., DON-
AHUE, P. M., ENO, J., HOEPPNER, G. W., KRUCK-
EMYER, D., LEE, T. H., LIN, P. C. M., MADDEN,
L., MURRAY, D., PEARCE, M. H., SANTHANAM, S.,
SNYDER, K. J., STEPHANY, R., AND THIERAUF, S. C.
A 160-mhz, 32-b, 0.5-W CMOS RISC microprocessor.
Digital Tech. J. 9, 1 (1997), 49–62.

[20] SIMPLESCALAR-ARM POWER MODELING PROJECT.
http://www.eecs.umich.edu/∼panalyzer.

[21] TANG, W., VEIDENBAUM, A. V., AND GUPTA, R. Ar-
chitectural adaptation for power and performance. In
Proceedings of the 2001 International Conference on
ASIC (October 2001), pp. 530–534.

[22] WEAVER, D., AND GERMOND, T. The SPARC Archi-
tecture Manual, 1994.


