
Improving the Energy and Execution

Efficiency of a Small Instruction Cache

by Using an Instruction Register File

Stephen Hines, Gary Tyson, David Whalley

Computer Science Dept.
Florida State University

September 30, 2005

➊ Introduction

• Embedded Processor Design Constraints
– Power Consumption
– Static Code Size
– Execution Time

• Fetch logic consumes 36% of total processor power on StrongARM
– Instruction Cache (IC) and/or ROM — Lower power than a large

memory store, but still a fairly large, flat storage method.
• Instruction encodings can be wasteful with bits

– Nowhere near theoretical compression limits.
– Maximize functionality, but simplify decoding (fixed length).
– Most applications only apply a subset of available instructions.

slide 1

◆ Access of Data & Instructions

Main Memory

L2 Cache

L1 Data Cache L1 Instruction Cache

Data Register File g???g

• Each lower layer is designed to improve accessibility of current/frequent
items, albeit at a reduction in number of available items.

• Caching is beneficial, but compilers can do better for the “most
frequently” accessed data items (e.g. Register Allocation).

• Instructions have no analogue to the Data Register File (RF).

slide 2

◆ Instruction Register File — IRF

Instruction
Cache

(L0 or L1)

IRF

IMM

PC

IF Stage

IF/ID

First Half of ID Stage

• Stores frequently occurring instructions as specified by the compiler
(potentially in a partially decoded state).

• Allows multiple instruction fetch with packed instructions.

slide 3

◆ L0 (Filter) Caches

• Small and usually direct-mapped

• Designed to reduce energy consumed during instruction fetch

• Performance penalties due to high miss rate (∼50%)

• Previous studies show 256B L0 cache can reduce fetch energy usage by
68% at the cost of a 46% increase in execution time.

slide 4

◆ Outline

➊ Introduction

➋ IRF Overview

➌ Integrating IRF with L0

➍ Experimental Results

➎ Related Work

➏ Future Work

➐ Conclusions

slide 5

➋ IRF Overview

• Previous work from ISCA 2005
• MIPS ISA — commonly known and provides simple encoding

– RISA (Register ISA) — instructions available via IRF access
– MISA (Memory ISA) — instructions available in memory

⋆ Create new instruction formats that can reference multiple RISA
instructions — Tightly Packed

⋆ Modify original instructions to be able to pack an additional RISA
instruction reference — Loosely Packed

• Increase packing abilities with Parameterization
• Register windowing hardware for IRF (MICRO 2005)
• Profiled applications are packed using a modified VPO compiler.

slide 6

◆ Tightly Packed Instruction Format

s inst5
param

5 bits15 bits5 bits5 bits5 bits6 bits

inst3inst2inst1opcode param
inst4

• New opcodes for this T-format of MISA instructions
• Supports sequential execution of up to 5 RISA instructions from the IRF

– Unnecessary fields are padded with nop.
• Supports up to 2 parameters replacing instruction slots

– Parameters can come from 32-entry Immediate Table (IMM).
– Each IRF entry retains a default immediate value as well.
– Branches use these 5-bits for displacements.

slide 7

Instruction Register File

Immediate Table

NA
1
None
NAaddu r[5], r[5], r[4]

nop0
#

1
2
3

...

DefaultInstruction

...

#
...
3

...

Value
...
32

lw r[3], 8(r[29])

addu r[5], r[5], r[4]
beq r[5], r[0], −8

Original Code Sequence

addiu r[5], r[3], 1
beq r[5], r[0], 0

addiu r[5], r[3], 32

andi r[3], r[3],634 63

andi r[3], r[3], 63

634

slide 8

Instruction Register File

Immediate Table

NA
1
None
NAaddu r[5], r[5], r[4]

nop0
#

1
2
3

...

DefaultInstruction

...

#
...
3

...

Value
...
32

lw r[3], 8(r[29])

IRF[1], param (3)
IRF[3]
IRF[2], param (branch −8)

Marked IRF Sequence

lw r[3], 8(r[29])

addu r[5], r[5], r[4]
beq r[5], r[0], −8

Original Code Sequence

addiu r[5], r[3], 1
beq r[5], r[0], 0

addiu r[5], r[3], 32
andi r[3], r[3], 63

andi r[3], r[3],63 634

IRF[4], default (4)

634

slide 8

Instruction Register File

Immediate Table

NA

None
NAaddu r[5], r[5], r[4]

nop0
#

2
3

...

DefaultInstruction

...

#
...

4
...

Value
...

63

lw r[3], 8(r[29])

IRF[3]
IRF[2], param (branch −8)

Marked IRF Sequence

lw r[3], 8(r[29])

addu r[5], r[5], r[4]
beq r[5], r[0], −8

Original Code Sequence

beq r[5], r[0], 0

IRF[1], param (3)
IRF[4], default (4)

andi r[3], r[3],63 634

andi r[3], r[3], 63
addiu r[5], r[3], 32addiu r[5], r[3], 11 1

323

slide 8

Instruction Register File

Immediate Table

NA

None

nop0
#

2

...

DefaultInstruction

...

#
...
3
4
...

Value
...
32
63

lw r[3], 8(r[29])

IRF[2], param (branch −8)

Marked IRF Sequence

lw r[3], 8(r[29])

beq r[5], r[0], −8

Original Code Sequence

beq r[5], r[0], 0

IRF[4], default (4)

andi r[3], r[3],63 634

andi r[3], r[3], 63

addu r[5], r[5], r[4]
addiu r[5], r[3], 32addiu r[5], r[3], 1 11

IRF[1], param (3)
IRF[3]

addu r[5], r[5], r[4]3 NA

slide 8

Instruction Register File

Immediate Table

NAnop0
#

...

DefaultInstruction

...

#
...
3
4
...

Value
...
32
63

lw r[3], 8(r[29])

Marked IRF Sequence

lw r[3], 8(r[29])

Original Code Sequence

IRF[4], default (4)

andi r[3], r[3],63 634

andi r[3], r[3], 63
addiu r[5], r[3], 1 11

IRF[1], param (3)

beq r[5], r[0], −8

addiu r[5], r[3], 32
addu r[5], r[5], r[4]

addu r[5], r[5], r[4] NA3

IRF[3]
IRF[2], param (branch −8)

beq r[5], r[0], 02 None

slide 8

Instruction Register File

Immediate Table

NA
1
None
NA
63

addu r[5], r[5], r[4]

nop0
#

1
2
3
4
...

DefaultInstruction

...

#
...
3
4
...

Value
...
32
63

Packed Code Sequence

IRF[1], param (3)
IRF[3]
IRF[2], param (branch −8)

Marked IRF Sequence

lw r[3], 8(r[29])
andi r[3], r[3], 63
addiu r[5], r[3], 32
addu r[5], r[5], r[4]
beq r[5], r[0], −8

Original Code Sequence

addiu r[5], r[3], 1
beq r[5], r[0], 0

andi r[3], r[3],63

lw r[3], 8(r[29])
IRF[4], default (4)

lw r[3], 8(r[29]) {4}

slide 8

Instruction Register File

Immediate Table

NA
1
None
NA
63

addu r[5], r[5], r[4]

nop0
#

1
2
3
4
...

DefaultInstruction

...

#
...
3
4
...

Value
...
32
63

lw r[3], 8(r[29]) {4}

Packed Code Sequence

lw r[3], 8(r[29])
IRF[4], default (4)

Marked IRF Sequence

lw r[3], 8(r[29])
andi r[3], r[3], 63
addiu r[5], r[3], 32
addu r[5], r[5], r[4]
beq r[5], r[0], −8

Original Code Sequence

addiu r[5], r[3], 1
beq r[5], r[0], 0

andi r[3], r[3],63

IRF[1], param (3)
IRF[3]
IRF[2], param (branch −8)

param3_AC {1,3,2} {3,−5}

slide 8

Instruction Register File

Immediate Table

Encoded Packed Sequence

NA
1
None
NA
63

addu r[5], r[5], r[4]

nop0
#

1
2
3
4
...

DefaultInstruction

...

#
...
3
4
...

Value
...
32
63

rs rt irfimmediate

opcode inst1 inst2 inst3 param s param lw r[3], 8(r[29]) {4}
param3_AC {1,3,2} {3,−5}

Packed Code Sequence

lw r[3], 8(r[29])
IRF[4], default (4)
IRF[1], param (3)
IRF[3]
IRF[2], param (branch −8)

Marked IRF Sequence

lw r[3], 8(r[29])
andi r[3], r[3], 63
addiu r[5], r[3], 32
addu r[5], r[5], r[4]
beq r[5], r[0], −8

Original Code Sequence

addiu r[5], r[3], 1
beq r[5], r[0], 0

andi r[3], r[3],63

lw

opcode

29 3 8 4

−513231param3_AC

slide 8

➌ Integrating IRF with L0

• IRF reduces code size, while L0 has no effect.

• Different granularity of fetch energy savings leads to improved energy
usage when combining IRF and L0.

• IRF can alleviate performance penalty of L0 instruction caches.

– 1 cycle stall when miss in L0 IC, but hit in L1 IC
– Overlapped fetch and decreased working set size create this opportunity

for IRF to improve instruction fetch.

slide 9

◆ Overlapping Fetch with an IRF

slide 10

➍ Experimental Results

• SimpleScalar PISA

– Embedded configuration
⋆ In order, 16KB 1-cycle 4-way L1 IC, 256B DM L0 IC

– High-end configuration
⋆ Out of order, 32KB 2-cycle 4-way L1 IC, 512B DM L0 IC

– 4-window 32-entry IRF with 32-entry IMM

• Fetch energy estimates constructed based on prior sim-panalyzer results.

• Evaluation with MiBench embedded benchmark suite

slide 11

◆ Embedded Execution Efficiency

• L1+IRF: 1.52% improvement
• L1+L0: 17.11% penalty
• L1+L0+IRF: 8.04% penalty

slide 12

◆ Embedded Fetch Energy Efficiency

• L1+IRF: 34.83% improvement
• L1+L0: 67.07% improvement
• L1+L0+IRF: 74.93% improvement

slide 13

◆ Embedded Total Energy Savings

• Assuming that non-fetch energy scales uniformly with execution time

• If fetch energy accounts for 25% of total processor energy:

– L1+L0: 4% energy savings
– L1+L0+IRF: 12.7% energy savings

• If fetch energy accounts for 33% of total processor energy:

– L1+L0: 10.7% energy savings
– L1+L0+IRF: 19.3% energy savings

slide 14

◆ Embedded Cache Access Frequencies

• IRF eliminates ∼35% of all IC accesses
• IRF + L0 accesses L1 IC only 16.27% of the time!!!

slide 15

◆ Reducing Static Code Size

slide 16

➎ Related Work

• L-Cache – separate frequently executed code segments and restructure
(Bellas et al.)

• Loop cache – detect short backward branches and buffer loops (Lee et
al.)

• Bypassing L0 using simple prediction (Tang et al.)

• Zero Overhead Loop Buffer (ZOLB) – low power execution of an
explicitly loaded inner loop (Eyre and Bier)

slide 17

➏ Future Work

• Improved selection of IRF instructions for areas of code that need to
tolerate increased fetch latency.

• Implementation with other techniques that impose a fetch bottleneck:

– Procedural abstraction and echo factoring
– Dictionary compression (decompressing into the IC)
– Encrypted executables (decryption into the IC or of a single IC line)

• Novel architectural designs with asymmetric instruction bandwidth:

– Reduced fetch width (1-2 instructions) + IRF
– Additional execution hardware (4+ instructions)

slide 18

➐ Conclusions

• Instruction packing with an IRF leads to reduced code size, energy
consumption and execution time.

• Combined with an L0 IC, an IRF can reduce the miss penalty and further
improve energy efficiency in both embedded and aggressively pipelined,
high-end processor designs.

• Lost performance due to fetch bottlenecks can be alleviated since the
IRF can essentially fetch and buffer several instructions at a time.

slide 19

◆ The End

Thank you!

Questions ???

slide 20

◆ High-end Execution Efficiency

• L1+IRF: 0.35% improvement
• L1+L0: 35.57% penalty
• L1+L0+IRF: 21.43% penalty

◆ High-end Fetch Energy Efficiency

• L1+IRF: 33.83% improvement
• L1+L0: 79.68% improvement
• L1+L0+IRF: 84.57% improvement

◆ High-end Cache Access Frequencies

• IRF eliminates ∼33% of all IC accesses
• IRF + L0 accesses L1 IC only 12.22% of the time!!!

◆ MIPS Instruction Format Modifications

5 bits 5 bits 5 bits 6 bits6 bits 5 bits

shamt functionrdrtrsopcode

Register Format: Arithmetic/Logical Instructions

immediate valuertrsopcode

 Immediate Format: Loads/Stores/Branches/ALU with Imm

6 bits 5 bits 5 bits 16 bits

26 bits6 bits

target addressopcode

Jump Format: Jumps and Calls

(a) Original MIPS Instruction Formats

Register Format with Index to Second Instruction in IRF

opcode rs rt rd function inst

5 bits6 bits5 bits5 bits5 bits6 bits

shamt

6 bits 5 bits 5 bits 11 bits 5 bits

opcode rs rt immediate value inst

Immediate Format with Index to Second Instruction in IRF

Jump Format

opcode target address

26 bits6 bits

(b) Loosely Packed MIPS Instruction Formats

• Creating Loosely Packed Instructions
– R-type: Removed shamt field and merged with rs
– I-type: Shortened immediate values (16-bit → 11-bit)

⋆ Lui now uses 21-bit immediate value, hence no loose packing
– J-type: Unchanged

◆ Compiler Modifications

C Source Files
Profiling

Executable
VPO

Compiler

Executable IRF Analyzer
VPO

Compiler

Profile
Data

Dynamic

Data
IRF/IMM

Profile
Data

Static

• VPO — Very Portable Optimizer targeted for SimpleScalar MIPS/Pisa
• IRF-resident instructions are selected by a greedy algorithm using profile

data including parameterization/positional hints
• Iterative packing process using a sliding window to allow branch

displacements to slip into (5-bit) range

◆ Selecting IRF-Resident Instructions

Read in instruction profile (static or dynamic);
Calculate the top 32 immediate values for I-type instructions;

Coalesce all I-type instructions that match based on parameterized immediates;
Construct positional and regular form lists from the instruction profile, along with conflict information;

IRF[0]← nop;
foreach i ∈ [1..31] do

Sort both lists by instruction frequency;
IRF[i]← highest freq instruction remaining in the two lists;

foreach conflict of IRF[i] do
Decrease the conflict instruction frequencies by the specified amounts;

• Greedy heuristic for selecting instructions to reside in IRF

• Can mix static and dynamic profiles together now to obtain good
compression and good local packing

◆ Coalescing Similar Instructions

Opcode rs rt immed prs prt Freq

addiu r[3] r[5] 1 s[0] NA 400
addiu r[3] r[5] 4 s[0] NA 300
addiu r[7] r[5] 1 s[0] NA 200
...

⇓ Coalescing Immediate Values ⇓

addiu r[3] r[5] 1 s[0] NA 700
addiu r[7] r[5] 1 s[0] NA 200
...

⇓ Grouping by Positional Form ⇓

addiu NA r[5] 1 s[0] NA 900
...

⇓ Actual RTL ⇓

r[5]=s[0]+1 900

• Semantically equivalent and commutative instructions are converted into
single recognizable forms to aid in detecting code redundancy

◆ Packing Instructions

Name Description

tight5 5 IRF instructions (no parameters)

tight4 4 IRF instructions (no parameters)
param4 4 IRF instructions (1 parameter)

tight3 3 IRF instructions (no parameters)
param3 3 IRF instructions (1 or 2 parameters)

tight2 2 IRF instructions (no parameters)
param2 2 IRF instructions (1 or 2 parameters)

loose Loosely packed format
none Not packed (or loose with nop)

• Instructions are packed only within a basic block
• A sliding window of instructions is examined to determine which packing

(if any) to apply
• Branches can move into range (5-bits) due to packing, so we repack

iteratively in an attempt to obtain greater packing density

