Towards a Performance- and Energy-Efficient
Data Filter Cache

Alen Bardizbanyan
Chalmers University of
Technology
alenb@chalmers.se

David Whalley
Florida State University
whalley@cs.fsu.edu

ABSTRACT

As CPU data requests to the level-one (L1) data cache (DC)
can represent as much as 25% of an embedded processor’s
total power dissipation, techniques that decrease L.1 DC ac-
cesses can significantly enhance processor energy efficiency.
Filter caches are known to efficiently decrease the number of
accesses to instruction caches. However, due to the irregu-
lar access pattern of data accesses, a conventional data filter
cache (DFC) has a high miss rate, which degrades processor
performance. We propose to integrate a DFC with a fast
address calculation technique to significantly reduce the im-
pact of misses and to improve performance by enabling one-
cycle loads. Furthermore, we show that DFC stalls can be
eliminated even after unsuccessful fast address calculations
by simultaneously accessing the DFC and L1 DC on the
following cycle. We quantitatively evaluate different DFC
configurations, with and without the fast address calcula-
tion technique, using different write allocation policies, and
qualitatively describe their impact on energy efficiency. The
proposed design provides an efficient DFC that yields both
energy and performance improvements.

Categories and Subject Descriptors

B.3.2 [Hardware]: Memory structures—Design styles, Cache

memories

General Terms
Hardware design, execution time improvement, energy effi-
ciency

Keywords
Execution time, energy, memory hierarchy, data cache, spec-
ulation

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
ODES’13, February 23 - 24 2013, Shenzhen, China

Copyright 2013 ACM 978-1-4503-1905-8/13/02...$15.00

Magnus Sjalander
Florida State University

sjalande@cs.fsu.edu

Per Larsson-Edefors
Chalmers University of
Technology

perla@chalmers.se

1. INTRODUCTION

Mobile phones and tablets are examples of battery-powered
devices that are always on. These devices not only need to
be able to deliver high performance when the user actively
performs tasks—such as watching a high-definition movie—
but they must also support long standby time, during which
the operating system performs maintenance tasks like check-
ing for incoming messages.

A trend in mobile devices is to employ a diversity of pro-
cessor cores with a few high-performance cores in combina-
tion with a supporting low-power core. The performance-
oriented cores are enabled only when the user actively per-
forms tasks on the device, while the low-power core handles
background tasks during long idle periods. NVIDIA employs
this concept in their Tegra 3 devices, in which they use two
different implementations of a Cortex A9 [24]. ARM use
a combination of an in-order Cortex A7 and out-of-order
Cortex A15 cores in their big. LITTLE [13] systems.

Energy efficiency is a very important feature for the always-
on cores. Recent studies have shown that the power con-
sumed by data requests to the level-one (L1) data cache
(DC) constitutes up to 25% of the total power of an embed-
ded processor [11, 15]. Much of the data request power is
due to accessing large tag and data arrays in the L1 DC.
If we can avoid accessing the L1 DC by accessing a smaller
structure that is located closer to the CPU, it is possible
to reduce total processor power. However, since these cores
often have high performance requirements, such power re-
ductions must not come at the expense of performance.

A considerable amount of research have been conducted to
improve the energy efficiency of L1 caches in general. Kin et
al. proposed the filter cache scheme [21] to reduce the power
dissipation of instruction and data caches in an in-order
pipeline. The filter cache, which is significantly smaller than
an L1 cache, is located between the L1 cache and the CPU
pipeline. With a filter cache many memory references are
captured in the smaller structure, which saves power as the
number of L1 cache accesses is reduced. However, the power
and energy reduction of the proposed scheme comes with a
significant performance degradation. Due to high miss rates
in the filter cache—with each miss causing a one-cycle delay

penalty—the performance loss can be substantial. In fact,
the performance loss can cancel much of the energy benefits,
because of the energy dissipated by the system during the
additional execution time.

We propose a new use of the fast address calculation tech-
nique [4], to create an access scheme that eliminates the
performance penalty previously associated with a data fil-
ter cache (DFC). The principal behind our design approach
is that the fast address calculation, which has a delay of a
single OR-gate, can be performed in the same clock cycle
as the DFC access. This enables data accesses to be ser-
viced in the first, address-calculation stage of a conventional
two-cycle load/store pipeline. On a DFC miss the L1 DC
is accessed as normal in the second stage, thus, eliminat-
ing any performance penalties associated with conventional
DFCs.

This paper makes the following contributions. (1) We pro-
pose a DFC cache design that can completely eliminate the
one-cycle miss penalty of conventional data filter caches.
(2) We capture a large percentage of the data accesses in
a smaller DFC. In addition, we reduce the total execution
time, which together can lead to significant energy savings.
(3) We evaluate two different allocation policies during write
misses and qualitatively describe their impact on energy ef-
ficiency.

2. BACKGROUND

In this section we review the filter cache and some of its ben-
efits and disadvantages, and then describe the fast address
calculation technique and the problems this solves. We will
throughout this paper use a conventional five-stage pipeline
to illustrate the proposed techniques. The presented tech-
niques are, however, not limited to this classical pipeline,
but they can be used for any pipeline where the address
calculation occurs in the cycle before the data access. One
example of such an architecture is the ARM Cortex A7 that
has an in-order, eight-stage pipeline, where the loads and
stores are performed across two pipeline stages [18].

2.1 Filter Cache

The DFC has the structure of a conventional cache, however,
the number of cache lines that can be stored is significantly
smaller. The DFC is inserted into the memory hierarchy
between the CPU and the L1 cache, as shown in Fig. 1b.
When a request is made, the DFC is accessed and upon a
DFC hit, the L1 cache access is avoided. The smaller size of
the DFC makes it more power efficient as the memory arrays
for storing tags and data are smaller. On a DFC miss, an
additional cycle is required to fetch the cache line from the
L1 cache into the DFC, while at the same time providing
the requested data (or instruction) to the CPU.

Introducing a conventional DFC to an in-order pipeline leads
to a performance degradation. Compared to a conventional
pipeline with only an L1 DC, a DFC will cause an additional
stall cycle for each DFC miss. As the conventional DFC has
a high miss rate (as high as 35%), the impact on performance
is significant.

CPU CPU

Filter Cache

L1 Cache L1 Cache

(b) Filter cache

(a) Conventional

Figure 1: Memory hierarchy with (a) and without
(b) filter cache.

Fig. 2 shows the average miss and the write-back® rates of
different DFC configurations for the MiBench benchmark
suite [14] (for benchmark and compilation details, see Sec. 5).
The tree-based pseudo least recently used (PLRU) replace-
ment scheme is used for the fully-associative cache and is
practical to implement for higher number of ways [1]. While
full associativity might not be practically feasible for the
larger cache sizes in Fig. 2, it can be suitable for small
cache sizes, for which the overhead is modest [7]. Asso-
ciative filter caches outperform direct-mapped filter caches
when employed for data accesses. For example, a 512-byte
fully-associative cache has a miss rate of 8.7%, while a 2,048-
byte direct-mapped cache has an 8.0% miss rate. Thus, a
direct-mapped cache would have to be four times larger in
terms of capacity to have a similar miss rate. This result is
in contrast to the original study on instruction and data fil-
ter caches, which suggested that a direct-mapped filter cache
has better performance than an associative filter cache [21],
but is consistent with a more recent study [12].

Line size: 32 Bytes

36
33 N
30
27

24 AN
=21 N
18

15 \
12 ¢ \\

9 " N — \
61 - e \\\'
A L L — e, =

Rate(%

F w— S
0 S Al [P ?:

T T T T 1
128B 256B 512B 1024B 2048B 4096B

Size
-—=@ Direct Mapped (miss)
-®--® Direct Mapped (writeback)

-—= Fully Associative (miss)
-4---+ Fully Associative (writeback)

Figure 2: Miss and write-back rates.

!The number of write-back operations initiated by the re-
placement of a dirty line, normalized to the total number of
load/store operations.

2.2 Fast Address Calculation

Fast address calculation was proposed as a technique to re-
duce stall cycles caused by load hazards [4]. Fig. 3 illustrates
data memory accesses in a five-stage pipeline. A load oper-
ation effectively takes two cycles with the memory address
being calculated in the execute (EXE) stage and the mem-
ory access being performed in the memory (MEM) stage.
In case the instruction following the load depends on the
loaded value, as illustrated in Fig. 4, we have what is called
a load hazard. The add instruction will be stalled in the
execute stage, until the load is completed in the memory
stage, at which point the loaded value is forwarded to the
add instruction in the execute stage. Load hazards are not
infrequent and cause the execution time to increase.

IF ID EXE MEM | | WB

Base Address

Offset
L1 Data

Cache

>
Speculative Address

Figure 3: Fast address calculation in a five-stage
pipeline.

1w $2,10($15)
add $7,%$2,$3

Figure 4: Instruction sequence that causes a load
hazard.

The memory address is commonly calculated by adding an
offset (the immediate) to a register value (the base address).
An example is shown in Fig. 4, where the offset 10 is added
to register $15 for the load operation.

31 16 15 0

Sign Extension | Immediate ‘
31 0
| Basé Address ‘
32-bits %32-bits
ADD
31 V 0
| Tag | Index Offset |

(a) Conventional address calculation

31 16 15 0
Sign Extension | Immediate

31 0

| Base Address

32-(n+m)-bits #n-bits m-bits ¢m-bits

U ; ADD ;
; m m-1 * 0

| Offset

31 y m+n_m+n-1 v

Tag | Index

(b) Fast address calculation

Figure 5: Conventional (a) and fast (b) address cal-
culation.

Fig. ba shows the details of the addition operation for the
memory address calculation. It was observed that for most
operations, there is no carry out from the line-offset part to
the index part of the address, due to the immediate often
being a small positive value [4]. In addition, it was observed
that when the immediate width is larger than the line offset
width, it is still possible to correctly calculate the index for
a high percentage of accesses by OR’ing the index and the
corresponding part of the offset when there is no carry out in
any of the bit additions [4]. This also allows a very fast way
of calculating the index, since only one level of OR gates is
needed. This property of the address calculation operation
is used to exploit the SRAM access pattern, so that it is
possible to access the L1 DC in the same stage in which the
address calculation takes place. The index drives the row
decoder that selects the word line, which is on the critical
path. The byte offset drives the column multiplexer, which
needs to be driven after the word-line selection, hence, the
small addition of the byte offset can be tolerated.

3. FILTER CACHE WITH FAST ADDRESS
CALCULATION

In this section we describe our design approach, which en-
tails integrating a DFC between the pipeline of the CPU
and the L1 DC and using fast address calculation to avoid
any performance degradation. The idea is that the DFC
performance penalty due to misses can be reduced, or even
eliminated, if there is a way to detect a DFC miss in the
execute stage. In case a miss is detected, the conventional
L1 DC can then be accessed on the following cycle, hence
eliminating the stall cycle. The fast address calculation tech-
nique makes it possible to speculatively calculate the index
and tag with only a single OR-gate delay. The index and the
tag can therefore be used to access a DFC directly in the ex-
ecute stage of the pipeline. At the end of the execute stage,
the index and the tag are verified by detecting that no carry
into the index portion of the address was created during the
conventional address calculation performed by the address
generator unit (AGU) [4]. Fig. 6 shows the DFC in the ex-
ecute stage. It should be noted that for a fully associative
cache there is no line index, but the bits after the line offset
belong to the tag.

Base Address
A Address
G
u
Offset
> Line Offset
(5-bit Add)
L3 Tag & Index Data
Filter Cache
L—
N N

Figure 6: A filter cache with fast address calculation
in the execute stage and a cache line size of 32 bytes.

We analyzed the fast address calculation technique on the
MiBench benchmark suite (see Sec. 5). Fig. 7 shows the
analysis results, assuming a 32-byte line size. On average,

for 69% of the store operations and for 74.9% of the load
operations, the line index or tag does not change after the
address calculation, due to very small immediates. In ad-
dition, on average, for 3.1% of the store operations and for
2.4% of the load operations the remaining address after the
line offset can be calculated with a single level of OR-gates.

0.7
0.6
0.5
0.4
0.3
0.2 1
0.1 +

o
L
ispell —— |
average ——————— |

ELSELO®EE D0 8 QT gE ®E CSE
6 ® 32 G % @ Q E 0 DO @ EL QTS
o3 SIS] o) Qg 2280 >?g Q8
1S = ~ =08 = o >

° s} = I=S7) i}

c Q = O) © £ 2 S @
2835 Q = 2]
Q =

=
(2]

W Speculation correct (store) @ Speculation correct (load)
8 Speculation correct with OR op. (store) m Speculation correct with OR op. (load)

Figure 7: The proportion of correct speculations out
of all speculative address calculations.

When the speculation is not successful, that is, when a carry
into the index occurred or a carry propagation happened
after the line offset, it is not possible to determine if the
data resides in the DFC during the execute stage. If the
DFC would be accessed in the following cycle to determine
if the data resides in the DFC, then there would be a one-
cycle penalty if there is a DFC miss. In order to avoid a DFC
miss cycle due to a speculation failure, the L1 DC must be
accessed on the next cycle after the speculation failure. In
addition, if the DFC uses a write-back policy, then both the
L1 DC and the DFC must be accessed in parallel because
up-to-date data might reside in the DFC only. While this
speculation scheme can entirely eliminate the conventional
DFC miss penalty, it may not be energy efficient since we
will access the L1 DC when there is a possibility that the
memory access in fact can be a hit in the DFC. It should
also be noted that on a speculation failure or a DFC miss,
the one-cycle load cannot be exploited. The impact of all
these aspects are evaluated in Sec. 6.

The DFC is virtually tagged to not require data transla-
tion lookaside buffer (DTLB) lookups. This reduces data
access power and removes the DTLB lookup from the criti-
cal path when accessing the DFC. The DFC therefore needs
to be flushed on a context switch. The overhead of hav-
ing to flush the DFC is negligible, due to the infrequency
of context switches and the small size of the DFC. On ker-
nel interrupts, the DFC is disabled and all data accesses are
serviced directly from the L1 DC. If the interrupt routine ac-
cesses data that might be used by the interrupted process,
the DFC has to be flushed before accessing this data.

The virtually addressed DFC complicates cache coherency.
To efficiently support cache coherency, the L1 DC is inclusive
of the DFC contents and the DFC stores the L1 DC set index
and way for each of the DFC lines. When an L1 DC line
is evicted, the set index and way are checked against those
stored in the DFC and if there is a match the corresponding
line is also evicted from the DFC. The set index and way are
also used when a dirty cache line is evicted from the DFC, to
directly write the line back to the L1 DC without requiring
a tag check. Storing the L1 DC set index and way for each
DFC line is feasible as there are few DFC lines.

4. IMPACT OF WRITE ALLOCATION POLI-
CIES

The choice of the write allocation policy for a cache can have
an impact on the expended energy. In fact, the policy choice
is even more important in DFCs, because the miss rate is
much higher compared to an L1 DC.

Store operations constitute on average 30% of the total mem-
ory (load/store) operations across the 20 MiBench bench-
marks (Sec. 5). The load operations will constitute a higher
percentage of the data cache energy because the rate is sub-
stantially higher. As a result, it is desirable to capture most
of the load accesses in the DFC. Hence it is preferred to
always allocate the line on a miss caused by the load oper-
ation. Different allocation policies can be used for the store
operations, to handle store misses. These policies are called
write-allocate, in which a store miss causes a new line to
be allocated on the currently accessed cache level, and no-
write-allocate, in which a store miss does not cause a new
line to be allocated, but the write operation is performed at
the next level in the memory hierarchy [20].

It is a challenge to reduce store energy when using a DFC;
especially if the data cache uses a two-cycle write operation
in which the tag match is performed during the first cycle
and the data is written during the second cycle. The write
power will be less compared to the read power because only
one data bank is activated. A DFC can save write power
in two ways. First it can gather many write operations into
one line, and thus reduce the write operations to the next
memory level. In addition, if the DFC is inclusive to the
next level, there is no need for a tag check operation during
write back, because the way information and line number
can be saved during the allocation and these can be used to
directly write the data to the data arrays during write back.

Fig. 8 presents the miss rates when the two different allo-
cation policies are used. Here the miss rate directly cor-
responds to the number of cache lines that needs to be
fetched from L1 DC to the DFC normalized to the total
number of load/store operations. Hence when the no-write-
allocate policy is used, the store misses are not really con-
sidered as misses because they will not cause any allocation
in the DFC. Thus, the no-write-allocate policy reduces the
miss rate. The impact is much higher on the direct-mapped
cache. The reason is that the chosen write allocation pol-
icy reduces the DFC contention, which improves the direct-
mapped cache that is known to suffer from high contention.
Reduced miss rates mean less energy dissipation, because
there will be less lines fetched from the next memory level.
But, It should also be noted that with the no-write-allocate

Line size: 32 Bytes

Rate(%

T T T T 1
128B 256B 512B 1024B 2048B 4096B
Size

-—@ direct mapped (write-allocate) -4 fully associative (write—allocate)
-®--® direct mapped (no-write—allocate) -4---4" fully associative (no—write—-allocate)

Figure 8: Miss rates depending on the allocation
policy.

policy there will be extra direct store operations to the L1
DC for each store miss. As a result the possibility of energy
savings depends on the cost of doing a regular store access
to the L1 DC and the cost of a line fetch and line writeback
opeartions in which the line operations are expected to be
more costly.

Fig. 9 shows an interesting trade-off for the store operations
when the no-write-allocate policy is used. Fig. 9a shows the
number of store operations that miss in the DFC and Fig. 9b
shows the write-back rate. For example, in a 512-byte fully-
associative cache, 40% of the store operations cause a miss
in the DFC and are directly written to the L1 cache. How-
ever, the write-back rate decreases from 2.3% for the write-
allocate policy to 1.2% for no-write-allocate, which is a 48%
decrease. This means more writes are gathered in the DFC
before write-back operations, hence more power can be saved
in the data bank of the L1 DC for the store operations that
have a hit in the DFC. This is even more apparent on direct-
mapped DFCs. For example, in a 512-byte direct-mapped
cache, 44.3% of the store operations cause a miss the DFC.
Here, the write-back rate decreases from 5.4% for the write-
allocate policy to 1.9% for no-write-allocate, which is a 65%
decrease. Although it takes a detailed power analysis to as-
certain which allocation policy is the most energy efficient,
this basic analysis shows that the no-write-allocate policy
mitigates the disadvantages of using DFCs with lower asso-
ciativity.

S. EVALUATION FRAMEWORK

In order to evaluate performance, we use 20 different bench-
marks (see Table 1) across six different categories in the
MiBench benchmark suite [14]. Using the large dataset
option, the benchmarks are compiled with the VPO com-
piler [9]. The SimpleScalar simulator [3] is modified to sim-
ulate a time-accurate five-stage in-order pipeline. The con-
figuration of the simulator is given in Table 2. It is assumed
that the pipeline stalls on data cache misses, although a
store buffer might tolerate some of the miss cycles caused
by store misses.

Line size: 32 Bytes

61 4
53

45 < \
41 M

u... \
37

» . I \\
29

Stores missed in the filter cache, Rate(%)

25 T T T T 1
128B 256B 512B 1024B 2048B 4096B
Size

-—=@ direct mapped (no-write-allocate) -4---4 fully associative (no-write-allocate)
(a) Store misses

Line size: 32 Bytes
12

[
11 N
10

a o N ©

N

Write-back Rate(%)

3
2
1
0 T T T T $
128B 256B 512B Sive 1024B 2048B 4096B

-—= direct mapped (write—allocate)
-®---® direct mapped (no-write-allocate)

(b) Write-back rate

—+—=* fully associative (write-allocate)
-A---4& fully associative (no-write-allocate)

Figure 9: The impact of write allocation policy on
(a) store misses and (b) write-back rate in the filter
cache.

Previous research showed that a 512-byte fully-associative
(FA) cache with a 16-byte line size, implemented in a 45-
nm CMOS process tailored to low-standby power (LSTP),
dissipates 40% more power compared to a 512-byte direct
mapped (DM) cache with the same line size [7]. Since the
DFC size is much smaller compared to an L1 DC, also the
access power is expected to be much smaller. Hence, the
40% overhead can still make the FA cache an energy-efficient
candidate, since it has lower miss rates compared to a DM
cache with the same size. However, since the access time will
be higher compared to the DM cache, we limit the evaluation
of the FA caches to 512 bytes at maximum, using only 16
tags with a 32-byte line size.

6. EXECUTION TIME EVALUATION

In this section we describe the results of our performance
evaluations on DFCs. We especially focus on the results of
the 512-byte fully-associative (FA) cache and the 2,048-byte
direct-mapped (DM) cache, since these have similar miss
rates.

Table 1: MiBench benchmarks

| Category | Applications |
Automotive | Basicmath, Bitcount, Qsort, Susan
Consumer | JPEG, Lame, TIFF
Network Dijkstra, Patricia
Office Ispell, Rsynth, Stringsearch
Security Blowfish, Rijndael, SHA, PGP
Telecomm | ADPCM, CRC32, FFT, GSM

Table 2: Processor Configuration

BPB, BTB Bimodal, 128 entries

Branch Penalty 2 cycles

Integer & FP ALUs,

MUL/DIV 1

Fetch, Decode,

Issue Width 1

DFC 128B-512B (FA), 128B-4096B (DM)

32-B line, 1 cycle hit, write-allocate

L1 DC & L1 IC 16 kB, 4-way assoc, 32-B line,

1 cycle hit
L2U 64 kB, 8-way assoc, 32-B line,
8 cycle hit
DTLB & ITLB 32-entry fully assoc, 1 cycle hit
Memory Latency 120 cycles

Fig. 10 shows the execution time for the conventional DFC
and for our proposed DFC with fast address calculation. The
execution time is normalized to a conventional five-stage, in-
order pipeline without a DFC, where the L1 DC is accessed
in the memory stage. As expected, the use of the conven-
tional DFC has an adverse impact on execution time. For a
512-byte FA cache this performance penalty is 1.8%, while
a four times bigger 2,048-byte DM cache has an execution
time penalty of 1.6%.

When fast address calculation is employed, there is a signif-
icant gain in execution time due to the avoidance of most of
the DFC miss penalties and many load hazards. If we use
the scheme where we access the DFC and L1 DC in sequence
instead of in parallel on a speculation failure (Sec. 3), then a
number of cycles are wasted since we are not able to detect
some of the DFC misses early in the pipeline. This over-
head is explicitly annotated in Fig. 10. Our further anal-
ysis showed that most of the speculation failures happen
when the memory operation is in fact a DFC hit. This phe-
nomenon becomes more dominant as the DFC size increases
because the miss rate is reduced, which can be observed from
Fig. 10. For example, the overhead of accessing them in se-
quence for a 128-byte DM cache is 1.3%, while it is 0.2%
for the 2,048-byte DM cache. In order to reduce this small
overhead, the L1 DC needs to be accessed on each specula-
tion failure, which can be very inefficient in terms of energy.
Hence it will likely be more energy efficient to only access
the DFC again on a speculation failure.

The execution time improvement increases when the DFC
size is increased. The reason for this is that more one-cycle
loads can be exploited, which is not the case if there is a

s
<)
m
©
(o2}
o
<

Size (Associativity)

m Conventional usage of m Fast address calculation and speculation fail opt.
filter cache o Overhead of speculation fail on a filter cache miss

Figure 10: Execution time normalized to a pipeline
with conventional L1 DC usage.

high miss rate.

When the fast address calculation technique is employed, a
512-byte FA cache provides a 4% execution time improve-
ment when including the speculation failure overhead, while
a 2,048-byte DM cache (four times as large) provides a com-
parable (4.3%) execution time improvement.

We also evaluated the original fast address calculation ap-
proach that was used with an L1 DC to eliminate load haz-
ards [4]. This technique can provide a 5.1% execution-time
improvement when applied to the reference L1 DC used in
this work. The original approach provides a larger execution
time benefit due to avoiding more load hazards. The tech-
nique reduces the miss penalty by one cycle when the specu-
lation succeeds, as a miss is detected one cycle earlier. How-
ever, the original approach is mainly intended for improving
performance, as each speculation failure will cause an ad-
ditional L1 DC access. These extra accesses will increase
the L1 DC energy. In contrast, due to the relatively high
miss rate of the DFC, the fast address calculation technique
provides a greater benefit in combination with a DFC as it
eliminates the one-cycle stall penalty on DFC misses and
the speculation failures cause an extra access to a smaller
structure than the L1 DC.

7. RELATED WORK

Duong et al. propose to perform the tag check for the DFC
in the same stage as the address calculation happens so that
the miss can be detected earlier, as in the case of the fast
address calculation [12]. But the tag check takes place im-
mediately after the address calculation and, hence, the criti-
cal path includes both the address calculation and tag check.
Thus, under a strict timing constraint, the address generator
and the tag comparison units will require fast and power-
hungry circuits, leading to increasing power dissipation for
load/store accesses. In contrast, our approach using fast
address calculation gives both the address generator unit

and the tag comparison unit a full clock cycle to complete,
leading to power overhead only during speculation failures.
Furthermore, the data array of Duong’s DFC is accessed
in the next stage after address generation stage [12], which
prevents their approach from exploiting early load accesses.

It is possible to distinguish between different data cache ac-
cess types and implement specific caches for each type [22],
however, this complicates resource utilization as the total
storage of the cache is split between separate entities. An-
other approach is to use a predictive technique to read the
value from the store queue instead of from the L1 cache [10],
leading to a 32% data cache power reduction at a 0.1% per-
formance penalty. One proposed scheme, which claims to
eliminate about 20% of the cache accesses, always reads the
maximum word size even though the load is only for a byte;
the additional data that was read can then be used in a later
access [19]. In the vertical cache partitioning scheme [26],
a line buffer stores the last read line and is checked before
accessing the L1 DC cache. This additional check is on the
critical path of the cache and can have a negative impact
on both performance and energy. Nicolaescu et al. pro-
posed a power-saving scheme for associative data caches [23].
The way information of the last N cache accesses is saved
in a table, and each access makes a tag search on this ta-
ble. If there is a match, the way information is used to
activate only the corresponding way. This table needs to
be checked before the cache is accessed, hence it can im-
pact the critical path and the memory access latency. In
order to eliminate this, Nicolaescu et al. propose to use
a fast address calculation method to get the way informa-
tion early in the pipeline stage and eliminate the overhead
for the way-table access. Scratchpad memories [5, 25] of-
fer small, energy-efficient memories, however, they have to
be explicitly controlled by software. Thus, scratchpads are
challenging to manage, as extra code is required to explic-
itly move data to and from the main memory. Furthermore,
they pose challenges when performing context switches.

Instruction accesses have a more regular access pattern and
higher locality than data accesses. The regular access pat-
tern of instructions allows special energy saving techniques
to be applied to instruction caches. Take, for example, loops
where instructions are accessed in consecutive order followed
by a backward branch. These regular access patterns have
been extensively exploited to improve the hit rate of small
structures similar to the filter cache [28, 6, 16, 8]. Also,
the regular access pattern has been a key property for way
prediction [17] and way selection [2] to make the instruction
cache more energy efficient.

8. CONCLUSION AND FUTURE WORK

We presented an approach to designing performance- and
energy-efficient DFCs. The impact of miss penalties of a
conventional DFC can be reduced by integrating a spec-
ulation technique based on fast address calculation to en-
able one-cycle loads. As a result, for example, a 512-byte
fully-associative DFC with a 32-byte line size yields an over-
all performance gain of 4%. The remaining impact of miss
penalties can be eliminated by always accessing the L1 DC
on an address speculation failure. In addition, a 512-byte
fully-associative DFC can filter 89% of the L1 DC accesses,
while the remaining 8.7% are line fetch operations from the

L1 DC and 2.3% are write-back operations to the L1 DC.

As far as future work, an energy evaluation using a placed
and routed design would reveal the most energy-efficient
DFC configuration(s). In addition, optimizing the L1 DC
for line fetch operations might improve the energy efficiency
when a DFC is employed. DFCs can in particular provide
benefits on designs optimized for low standby power (that is,
low leakage power) [27], for which the energy will be domi-
nated by the dynamic switching activity. In these designs,
one design dimension that can be explored to reduce en-
ergy would be the circuits that have substantial switching
activities during the stall cycles caused by the DFCs.

9. REFERENCES

[1] H. Al-Zoubi, A. Milenkovic, and M. Milenkovic.
Performance evaluation of cache replacement policies
for the SPEC CPU2000 benchmark suite. In Proc.
42nd Annual Southeast Regional Conf., pages 267272,
2004.

[2] D. Albonesi. Selective cache ways: On-demand cache
resource allocation. In Proc. 32nd Annual ACM/IEEE
Int. Symp. on Microarchitecture, pages 248-259, Nov.
1999.

[3] T. Austin, E. Larson, and D. Ernst. SimpleScalar: An
infrastructure for computer system modeling.
Computer, 35(2):59-67, Feb. 2002.

[4] T. Austin, D. Pnevmatikatos, and G. Sohi.
Streamlining data cache access with fast address
calculation. In Proc. 22nd Annual Int. Symp. on
Computer Architecture, pages 369-380, June 1995.

[5] O. Avissar, R. Barua, and D. Stewart. An optimal
memory allocation scheme for scratch-pad-based
embedded systems. ACM Trans. Embedded Computing
Systems, 1(1):6-26, Nov. 2002.

[6] R. Bajwa, M. Hiraki, H. Kojima, D. Gorny, K. Nitta,
A. Shridhar, K. Seki, and K. Sasaki. Instruction
buffering to reduce power in processors for signal
processing. IEEE Trans. Very Large Scale Integration
(VLSI) Systems, 5(4):417-424, Dec. 1997.

[7] J. D. Balfour. Efficient embedded computing. PhD
thesis, Stanford University, 2012.

[8] N. Bellas, I. Hajj, C. Polychronopoulos, and
G. Stamoulis. Architectural and compiler techniques
for energy reduction in high-performance
microprocessors. IEEE Trans. Very Large Scale
Integration (VLSI) Systems, 8(3):317-326, June 2000.

[9] M. E. Benitez and J. W. Davidson. A portable global
optimizer and linker. In ACM SIGPLAN Conf. on
Programming Language Design and Implementation,
pages 329-338, June 1988.

[10] P. Carazo, R. Apolloni, F. Castro, D. Chaver,
L. Pinuel, and F. Tirado. LL1 data cache power
reduction using a forwarding predictor. In Integrated
Circuit and System Design, Power and Timing
Modeling, Optimization, and Simulation, volume 6448
of Lecture Notes in Computer Science, pages 116—125.
Sept. 2011.

[11] W. J. Dally, J. Balfour, D. Black-Shaffer, J. Chen,
R. C. Harting, V. Parikh, J. Park, and D. Sheffield.
Efficient embedded computing. IEEE Computer,
41(7):27-32, July 2008.

[12]

[13]

[14]

N. Duong, T. Kim, D. Zhao, and A. V. Veidenbaum.
Revisiting level-0 caches in embedded processors. In
Int. Conf. on Compilers, Architecture and Synthesis
for Embedded Systems, pages 171-180, 2012.

P. Greenhalgh. Big. LITTLE Processing with ARM
Cortex™-A15 & Cortex-A7 — Improving Energy
Efficiency in High-Performance Mobile Platforms.
ARM Limited, Oct. 2011.

M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M.
Austin, T. Mudge, and R. B. Brown. MiBench: A free,
commercially representative embedded benchmark
suite. In Proc. Int. Workshop on Workload
Characterization, pages 3—14, Dec. 2001.

R. Hameed, W. Qadeer, M. Wachs, O. Azizi,

A. Solomatnikov, B. C. Lee, S. Richardson,

C. Kozyrakis, and M. Horowitz. Understanding
sources of inefficiency in general-purpose chips. In
Proc. 37th Annual Int. Symp. on Computer
Architecture, pages 37-47, June 2010.

S. Hines, D. Whalley, and G. Tyson. Guaranteeing
hits to improve the efficiency of a small instruction
cache. In Proc. 40th Annual IEEE/ACM Int. Symp.
on Microarchitecture, pages 433-444, Dec. 2007.

K. Inoue, T. Ishihara, and K. Murakami.
Way-predicting set-associative cache for high
performance and low energy consumption. In Proc.
Int. Symp. on Low Power Electronics and Design,
pages 273-275, Aug. 1999.

B. Jeff. Enabling Mobile Innovation with the
Cortex™-A7 Processor. ARM Limited, Oct. 2011.
L. Jin and S. Cho. Macro data load: An efficient
mechanism for enhancing loaded data reuse. IEEE
Trans. on Computers, 60(4):526-537, Apr. 2011.

N. P. Jouppi. Cache write policies and performance. In
Proc. 20th Annual Int. Symp. on Computer
Architecture, pages 191-201, 1993.

(21]

22]

23]

(24]

(25]

[26]

27]

(28]

J. Kin, M. Gupta, and W. Mangione-Smith. The filter
cache: An energy efficient memory structure. In Proc.
30th Annual ACM/IEEE Int. Symp. on
Microarchitecture, pages 184-193, Dec. 1997.

H.-S. Lee, M. Smelyanskiy, C. Newburn, and

G. Tyson. Stack value file: Custom microarchitecture
for the stack. In Proc. Int. Symp. on
High-Performance Computer Architecture, pages 5—14,
Jan. 2001.

D. Nicolaescu, B. Salamat, A. Veidenbaum, and

M. Valero. Fast speculative address generation and
way caching for reducing L1 data cache energy. In
Proc. Int. Conf. on Computer Design, pages 101-107,
Oct. 2006.

NVIDIA Corporation. Variable SMP (4-PLUS-1™)
— A Multi-Core CPU Architecture for Low Power and
High Performance, 2011.

P. R. Panda, N. D. Dutt, and A. Nicolau. On-chip vs.
off-chip memory: the data partitioning problem in
embedded processor-based systems. ACM Trans.
Design Automation of Electronic Systems,
5(3):682-704, July 2000.

C.-L. Su and A. Despain. Cache design trade-offs for
power and performance optimization: A case study. In
Proc. Int. Symp. on Low Power Design, pages 63—68,
Apr. 1995.

S. Thoziyoor, J. H. Ahn, M. Monchiero, J. B.
Brockman, and N. P. Jouppi. A comprehensive
memory modeling tool and its application to the
design and analysis of future memory hierarchies. In
Proc. 35th Annual Int. Symp. on Computer
Architecture, pages 51-62, 2008.

T. Weiyu, R. Gupta, and A. Nicolau. Design of a
predictive filter cache for energy savings in high
performance processor architectures. In Proc. Int.
Conf. on Computer Design, pages 68-73, Sept. 2001.

