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Abstract

Looking at trends in recent publications on
computer architecture we find that there has
been a steep decline in the number of pub-
lished works relating to branch prediction.
Further inspection reveals that while older
trends include development of new predictor
designs [12][15][8][10], more modern trends
have been favoring the consumption of larger
history and storage to attain better hit rates
[4][3][14][11]. The few new developments
in new designs of branch predictors, exclud-
ing neural predictors[5][6], generally involve
slight modifications to the baseline predic-
tors (bimodal, gshare, and tournament pre-
dictors) and can be seen in works such as
[9][1][2][7][13]. In this work we present the
need for application specific branch prediction
in power constrained embedded systems, along
with an example demonstrating the perfor-
mance gains and power reduction for a frac-
tion of the cost paid in advanced predictors
mentioned above.

1 Evaluation of Branch

Behavior

Branch prediction is an important component
of the fetch stage in any processor. It pro-
vides the ability to continue instruction exe-
cution in a speculative mode as opposed to
stalling the processor for each branch execu-
tion (roughly 25%-30% of dynamic instruc-
tions). In some processors, such as the Alpha
EV8[14], the miss rate of the branch predic-
tor could indeed be the limiting factor of the

processor’s performance. The EV8 was de-
signed to allow up to 16 instructions to be
fetched per cycle, with the capability of mak-
ing 16 branch predictions per cycle. With
increasing penalties for misprediction (mini-
mum of 14 cycles in the EV8) and high clock
frequency limiting the number of the table
accesses of the predictor, the EV8 processors
are designed with 352K bits allocated for its
branch predictor.

The initial advancements in branch pre-
dictor performance can be summorized by the
development of the Bimodal, GShare, Local,
and Tournament predictors from which most
designs are derived. These predictors can
be classified into PC based (Bimodal), his-
tory based (GShare and Local), and combi-
nation (Tournament). The trend in improve-
ment for such predictors follows from the ad-
ditional information used to index the Pat-
tern History Table (PHT); in most predictors
the PHT is a table of 2 bit saturating counters
with ‘00’ and ‘01’ translating to Not Taken,
and ‘10’ and ‘11’ translating to a Taken pre-
diction. The Bimodal predictor simply uses
some of the PC bits to index into the PHT.
Next, a single global history register is main-
tained and XOr’ed with the PC to produce
the GShare predictor. The Local predictor is
similar, but maintains local history by first
indexing into a table of history registers us-
ing the PC, then using the local history as an
index into the PHT. Finally, the Tournament
predictor will access a Bimodal or Local pre-
dictor at the same time as GShare and a meta
predictor in the form of a Bimodal predictor.
The meta predictor is simply used to decide
which prediction is best for the given PC and
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is updated in the direction of the correct pre-
dictor.

Similar to caches, as transistor size be-
came smaller, larger PHTs were built and
were able to be accessed in a single clock cy-
cle. A simple trend was then followed where
a larger table allowed for less conflicts and
thus more accurate predictions. Many de-
signs preferred to leverage off this property
to the point where a single branch predic-
tion could no longer be made in a single clock
cycle. To combat these latencies several at-
tempts have been made to quicken the ac-
cess to larger predictive structures. (1) Us-
ing a large GShare, a single cycle access is
made possible by caching the more recent N

PHT accesses[4]. (2) Pipelined designs have
been migrated to branch predictors to allow
multiple successive accesses[3]. (3) An over-
riding design was made such that a quick, 1
cycle, prediction can be made and later over-
ridden by a longer (3 cycle) prediction if it
differed[14].

Finally, new predictors have been made
but can be easily traced to one of the base
predictors mentioned above. These predic-
tors include the Bi-Mode predictor[7] and the
(M,N) Correlating predictor[9]. Other pre-
dictors have been known to detect correla-
tions on data[2] or memory addresses[1] but
are not currently implemented in processors
due to design complexity or power overhead.
The most relevant to embedded systems is
the Agree predictor[13]. The Agree predic-
tor appends a single bit to the Branch Tar-
get Buffer (BTB) to decide if the processor
should go with the predictor’s result or invert
it for the given branch address. This became
a powerful tool for benchmarks that include
a few branches with > 50% miss rate, thus
hurting performance but not quite justifying
adding another predictor and meta predictor.
This approach works very well if a branch has
a very high miss rate, but works poorly for
branches with roughly 50% miss rate. The

initial runs of the Agree predictor set the bit
to ‘0’ if the first prediction was wrong and
‘1’ if it was accurate creating a large depen-
dency on the first execution of the branch.
Later, better results were attained by setting
the bit according to later executions or (for
the best results) according to profiling data
and an additional bit encoded in the branch
instruction.

2 Limitations of Embed-

ded Systems on Branch

Prediction

Since current trends in improving branch pre-
diction require larger tables and longer access
times, they do not quite fit the model set
forth by embedded systems. Such systems
often have between 2-5 stage pipelines, and
very tight space and power constraints. Con-
versely, the traditional predictors are a great
fit for such constraints and using a simple
model run of the benchmarks the best per-
forming one can be selected for the type of
applications executed. While the Agree pre-
dictor provides a good solution for embed-
ded systems in dealing with branches hav-
ing a very high miss rate with the selected
simple branch predictor, there is no equally
elegant approach for frequent branches with
near 50%.

Execution of benchmarks from the Media-
Bench benchmark set was used to collect
per branch data providing the per-branch
miss rate, actual Taken/Not-Taken pattern,
and the predicted Taken/Not-Taken pattern.
Of the 20 benchmarks we started with, 8
were selected for their branch behavior as ex-
amples of application specific predictor de-
sign. The model used a 1k-entry Bimodal,
GShare, and Tournament predictors with av-
erage miss rates of 6.96%, 6.30%, 4.85% re-
spectively (Figure 4). Branches executing
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Figure 1: Static Branch Distribution in Easy/Local/Global/Data Classification.

more than 10,000 times and having a miss
rate between 30% and 70% were examined.
From these dumps, we were able to classify
branches, those that were able to be predicted
well by all the baseline predictors were classi-
fied as Easy branches. Those that were cap-
tured by the Bimodal and Tournament pre-
dictors but not the GShare predictor were
classified as Local. Similarly, branches that
did well with the GShare and Tournament
predictors exclusively were deemed Global.
Lastly, those branches that performed equally
poorly on all baseline predictors were con-
sidered Data Dependent. Over-all we found
that 99.53% of all static branches were Easy,
0.19% were Local, 0.11% were Global, and
0.17% were Data Dependent (Figure 1). Such
figures are not surprising considering we al-
ready get 93% of our success rate from the
simple Bimodal predictor and only an ad-
ditional 2% from the Tournament predictor
which encompasses local and global patterns
greater than one in length.

Due to the relatively higher percentage
of Local static branches in the selected ap-

plications, highly missed branches having
such patterns as ‘TNTN’, ‘TTNTTN’, or
‘NTTNTT’ were revealed in the execution
dumps. Such patterns would normally be
easy to capture using a GShare or Local pre-
dictor, but the tight constraints of an embed-
ded device do not allow for the implementa-
tion of the Tournament predictor. Alterna-
tively, the use of GShare instead of the Bi-
modal predictor would eliminate the oppor-
tunities to capture such easy patterns in a
Finite Sate Machine (FSM) and introduces
misses in branches that were easy to predict
using the Bimodal predictor. Such misses
are accounted for by additional conflicts to
simple branches and is the driving force that
pushed computer design to use the Tourna-
ment predictor capturing the best of both
predictor styles.

Our first intent was to append the GShare
predictor with a FSM, but found that the ad-
ditional misses are so sporadic and spread out
among many branches that it would be easier
to append a FSM to the Bimodal predictor.
The Bimodal predictor is capable of captur-
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ing all the branches categorized as Easy while
missing the simpler of the Local branches
captured by a Local predictor and GShare
predictor of long enough history. Such sim-
ple patterns are short, 2-3 branch, sequences
which can be captured as local patterns or
global patterns (See Figure 2 for code exam-
ple).

for (int i = 0; i < size; ++i)

if (i%3 == 0 || i%3 == 1)

...

Figure 2: The above if statement has

‘NNT’ local pattern and a ‘NTNTTT’

global pattern requiring only 6 bits of

global history to be captured.

True global patterns do exist and can be
found on branches with high correlation such
as in Figure 2. In that figure, data depen-
dency will increase the miss rate of the loop,
but some global history can provide a guar-
anteed 50% prediction rate on the second
branch. In this case, the first if statement
will be dependent on data being fetched from
an array; if that data is ‘0’ we set it to ‘1’ so as
to not divide by ‘0’. We then compare num

dnum

and num

2
, it is easy to see in this situation that

in every instance where the first branch exe-
cuted “dnum[i] = 1;” the second if statement
will pass and execute its code, thus demon-
strating global dependency and data depen-
dency for the initial if statement.

for (int i = 0; i < size; ++i) {

if (dnum[i] == 0) {

dnum[i] = 1;

}

if (num / dnum[i] >= num / 2) {

...

}

...

}

Figure 3: The above compound if...else

statement is an example of global patterns

due to the dependency between the con-

ditional statement.

The initial design of a FSM would nat-
urally approach the most common branches,
in this case the Local branches which encom-
pass 0.19% of static branches as oppose to the
Global branches encompassing 0.11%. It is
important to note that FSMs can be designed
for either Local or Global branches using sim-
ilar signals to update: correct/incorrect pre-
diction, taken/not-taken prediction, and the
PC. While we currently do not address Data
Dependent branches, one could design a FSM
that probes the contents of registers for infor-
mation regarding the future of a branch in a
similar, but in a statically determined, fash-
ion to the Data Correlating Predictor[2] and
the Address Correlating Predictor[1].

3 Designing an Applica-

tion Specific Branch

Predictor

Our goal is to provide the best prediction
rate similar to that exhibited by the Tourna-
ment predictor without the additional cost of
2 PHT accesses on every cycle. We already
know that the Bimodal predictor can pro-
vide a great baseline miss rate of 6.96% and
cover all of the branches classified as Easy.
More importantly, a significant number of the
branches that are still missed by the Bimodal
predictor include ones that can be easily cap-
tured by both a GShare/Local predictor or
a FSM. Using profiling data we can identify
such branches having the simple alternating
pattern ‘TNTNTN’ and route them to the
FSM and away from the Bimodal predictor.

With the above in mind we can see how
it can be possible to mimic the Tournament
predictor by simply capturing those patterns
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that GShare easily captures while ignoring
the complex patterns that require the ad-
ditional PHT. Using M5, we profiled each
branch finding its taken/not-taken pattern.
From these patterns we were able to decide if
the branch would benefit from being mapped
to a simple FSM or not. Branches that fit
such criteria were flagged in the binary so
that the M5 simulator can route the predic-
tion of those branches to the FSM instead
of the PHT. It is important to note that
not every benchmark contained branches that
needed improving. In some cases, such as gsm
untoast, we find an average miss rate of < 1%
and no branches with local patterns that were
not already captured by the simple Bimodal
predictor, thus having little to no room for
improvement. Other benchmarks, while hav-
ing a higher miss rate, also contain data de-
pendent branches as well as complex global
patterns making a simple FSM impossible to
design. Alternatively, the selected 8 bench-
marks made for good examples where simple
patterns can be captured and used as exam-
ples for our ability to improve embedded ap-
plication execution at little to no cost.

A FSM was designed to capture the sim-
ple case of ‘TNTNTN’ branches and the
addresses of said branches were flagged for
future executions. The following run of
M5 (Denoted as Bimodal+FSMs for Bimodal
predictor with static FSM) used a single bit
in the instruction, labeling branches which
should use the FSM to route the prediction
away from the PHT. On average, the addi-
tional FSM provided a miss rate of 4.91%
translating to a miss rate reduction of 29.36%
and 22.04% from the Bimodal and GShare
predictors, respectively (specific results can
be seen in Figure 4). As expected, the
FSM enhanced Bimodal predictor did not
out-perform the Tournament predictor (av-
erage miss rate 4.85%). While a large por-
tion of that reduction comes from the adpcm
benchmarks, the average miss rate excluding

those benchmarks still shows a miss rate re-
duction when compared to the Bimodal pre-
dictor and equivalent miss rate when com-
pared with the GShare predictor. We ex-
pect that with an additional FSM (one that
captures the ‘TNNTNN’ and ‘NTTNTT’ pat-
terns), the FSM enhanced Bimodal predictor
will be able to beat the GShare predictor for
every benchmark.

The FSM itself is very simple. A sin-
gle bit is initially set to ‘0’ and is used to
make the prediction. When a branch instruc-
tion is fetched, having the FSM bit set, the
FSM prediction is used instead of the PHT
access. Updates to the FSM bit occur only on
a branch hit for a branch that used the FSM.
When an update signal reaches the branch
predictor carrying a correct prediction sig-
nal, the FSM bit is simply inverted. More
complex updates, including speculative up-
dates, were attempted but found to be either
unnecessary or poorly performing. This el-
egant solution fits well in embedded systems
since an update signal will reach the FSM be-
fore the next execution of the same branch in
all tested cases and likely in all cases imple-
mented on short pipelines. Due to the repeat
length of the pattern (2 branch executions),
an update on a miss is unnecessary since the
next prediction being predicted the same as
the missed prediction is likely to be a success.

Some benchmarks did not have branches
that fit our previous criteria and thus exhibit
no performance improvement from the addi-
tional FSM. Curiosity led us to make an at-
tempt at capturing branch execution phases
which may exhibit patterns similar to that
which is captured by the FSM. The final de-
sign step allows for dynamic mapping to the
FSM of any branch with no compiler sup-
port or profiling. To make the decision, the
use of the PHT saturating counters was al-
tered. Traditionally, if the counter value is
<

1

2
of the maximum value, then the branch

is simply predicted as not taken. This trans-
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Figure 4: Miss rates for varying FSM approaches in Media-Bench bench suite.

lates to ‘0’ and ‘1’ being not taken, while
‘2’ and ‘3’ being taken values. Most of the
time, a saturating counter exists in its ex-
treme values ‘0’ and ‘3’ (in a 2-bit counter),
while extended durations in the middle val-
ues will hint toward a 50% miss rate phase
cause by a ‘TNTNTN’ pattern. Using a 2,
3, and 4 bit saturating counter model for the
PHT, benchmarks were run having the ad-
ditional condition that if the value fetched
from the PHT is 1

2
of the maximum value,

then the branch prediction will be routed to
the FSM. This model turned out to fail due
to phase transitions leading to the use of the
FSM and throwing other branch predictions
off. To make the model successful, a more
clever method of keeping track of individual
miss rates or global/local patterns needs to be
developed and it would likely rival the Tour-
nament predictor in power/size.

Alternatively, an attempt was made to
add a FSM which captures patterns of length
4 or less. Such patterns were hand picked
from the profiling data described earlier, and
include ‘NTT’, ‘TNN‘, ‘NTTT’, ‘TNNN’, and

‘NNTT’. Each pattern was hard coded as a
looping register, meaning that on a bit shift,
the discarded bit is appended to the other end
so that prediction can be made from the first
bit followed by a bit shift moving that bit to
the end of the pattern. Branch instructions
were then mapped to these pattern registers.
While most benchmarks have already gained
all they could from the simple FSM described
earlier, 6 of the 20 did find benefits. Of those
6, 4 belong to the original 8 that were se-
lected for the study. Some benchmarks (di-
jkstra and jpeg compress) were able to beat
the Tournament predictor. Overall, the miss
rate reduction brought the average down to
4.81% from the original 4.91%, now beating
the Tournament predictor by 0.06%. Such
reduction, in our opinion, is not worth the
additional hardware space or the additional
flagging bits per branch instruction. Further,
these reductions only took place in a limited
number of benchmarks, far less than the orig-
inal FSM.

The current design requires the processor
to perform a partial decode of the instruc-
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tion at the fetch cycle. While most embed-
ded systems will have no problem doing so,
an alternative method exists. Since a branch
can never be predicted as taken the first time,
due to the target not existing in the BTB, we
can send a signal along with the update to
flag the BTB entry for a FSM use decoded
after fetch from the instruction. This system
would remove the pressure from the fetch cy-
cle at the cost of an additional bit to each
entry in the BTB. This modification would
especially be beneficial when multiple FSMs
are present and the partial decode becomes
more complex.

4 Conclusion

The development of branch predictors has fol-
lowed trends similar to those of the processor
leaving it with larger structures, pipelined ac-
cesses, and parallel redundancy for the sake
of slight performance gains. Very few devel-
opments have been made toward a branch
predictor for smaller embedded systems, with
the exception of the Agree predictor. Our
work has shown that the Tournament pre-
dictor’s ability to utilize the simple Bimodal
predictor along with the GShare ability to
capture simple patterns can be emulated uti-
lizing a FSM. Combined, the Bimodal predic-
tor and FSM are able to out perform both the
Bimodal and GShare predictors, just like the
Tournament predictor.

The statically assigned FSM was able to
attain great performance with the use of only
a single bit added to the branch predictor, re-
ducing the average miss rate by 29.36% and
22.04% when compared to the Bimodal and
GShare predictors and nearing that of the
Tournament predictor. A second trial us-
ing captured patterns of 3 or 4 proved the
additional simple patterns were able to close
the gap between the modified Bimodal pre-
dictor and the traditional Tournament pre-

dictor. This second trial demonstrated that
additional, more specific FSMs were able to
be designed and implemented at low cost.

It is important to keep in mind that the
goal of the work was to approach the miss rate
of the Tournament predictor via simple and
low power devices. We believe that for most
applications, complex FSMs are unnecessary.
As for the cost of the Bimodal + FSM, the
ability to perform near the Tournament pre-
dictor miss rates is achieved by the addition
of a single bit to the processor and a single
flag bit in the branch instructions added by
identifying a branch fitting into a category
pattern. The ability to perform beyond that
of the Tournament predictor came at the cost
of a few 3 and 4 bit registers. A second de-
sign alternative was proposed to remove pres-
sure from the fetch stage by adding a bit to
the BTB to be marked by the update signal
sent back after decoding and calculating the
branch target.

The above work is an example of a sin-
gle FSM capturing some behavior in 8 of
20 benchmarks. Each benchmark was pro-
filed and its static branches flagged as to be
mapped to a standard Bimodal branch pre-
dictor or a FSM designed to capture simple
patterns. Improvements in branch prediction
are used to demonstrate the gains made from
the addition of such FSMs and the potential
of creating more application specific predic-
tors to rival the performance of complex and
power hungry predictors such as the Tour-
nament design. It would not be far fetched
to assume that application and branch spe-
cific designs for Global and Data Dependent
branches could provide further benefits in the
applications studied and other applications as
well.
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[5] Daniel A. Jiménez and Calvin Lin. Dy-
namic branch prediction with percep-
trons. In HPCA ’01: Proceedings
of the 7th International Symposium on
High-Performance Computer Architec-
ture, page 197, Washington, DC, USA,
2001. IEEE Computer Society.
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