
THIC and OpenSPARC: Reducing Instruction
Fetch Power in a Multithreading Processor

Peter B. Gavin, Stephen R. Hines, Gary S. Tyson, and David B. Whalley

Abstract—The OpenSPARC T1 is a multithreading pro-
cessor developed and open sourced by Sun Microsystems
(now Oracle) [1]. We have added an implementation of our
low-power Tagless-Hit Instruction Cache (TH-IC) [2] to
the T1, after adapting it to the multithreading architecture
found in that processor. The TH-IC eliminates the need for
many instruction cache and ITLB accesses, by guaranteeing
that accesses within a much smaller L0-style cache will
hit. OpenSPARC T1 uses a 16KB, 4-way set associative
instruction, and a 64-entry fully associative ITLB. The
addition of the TH-IC eliminates approximately 75% of
accesses to these structures, instead processing the fetch
directly from a much smaller 128 byte data array. Adding
the TH-ICto the T1 also demonstrates that even processors
designed for high-throughput workloads can be suitable for
use in embedded systems.

I. INTRODUCTION

In modern embedded and low-power designs, instruc-
tion fetch has been found to be a major component
of processor energy consumption–up to 27% of the
total processor power requirements on a StrongARM
SA110 [3]. Instruction fetch typically involves many
large data structures that require substantial energy to
access, and must take advantage of speculation in order
to provide acceptable performance. Such speculative
operation can be quite explicit, as is the case with a
branch predictor, which makes outright guesses as to
conditional branch outcomes. Implicit speculation also
exists, as is the case with the instruction cache–local
copies of recently executed instructions are kept with the
hope that they will be used multiple times before being
discarded. The trouble with speculation, in the context
of embedded processor design, is that it typically results
in the duplication (or obsolescence) of computational
effort. This extra effort manifests itself as additional
processor power usage, by way of increased circuit size
and additional transistor switching events per cycle. As
a result, many embedded systems’ designers are hesi-
tant to include too many speculative features, lest they
exceed power constraints. On the other hand, reduced
performance leads to increased energy consumed per
task, so it may in fact be detrimental that many designs

S. R. Hines is with NVIDIA Corporation, Santa Clara, CA.
P. B. Gavin, G. S. Tyson, and D. B. Whalley are with the Department

of Computer Science at Florida State University, Tallahassee, FL.

have left speculation out, depending on the workload.
Consequently, the extent of the speculation to be used in
a system must be carefully chosen by the architect.

Speculation in instruction fetch primarily occurs in the
prediction of the answer of a question based only on
the program counter (PC) and static properties of the
instructions themselves. The tag-checking mechanism
within the instruction cache provides an example of
such a question: “Will this instruction fetch hit in the
cache?” (The speculation here is that the answer is
usually predicted to be yes.) It turns out that we can
cache the answers of many of these questions, and reuse
them later on, just as we do for other forms of data.
As we shall see, this is especially effective when done
for the instruction fetch mechanism, since instructions
are nearly always fetched in a regular, repetetive, and
predictable order. Most instructions that are executed
occur over multiple passes through the same sequences
of addresses. If we execute the first pass through a
sequence of instructions with speculation enabled (as
normal), but also cache the important results, we can
disable speculation on subsequent passes since we will
already know the answers! An important property such a
system must have is that switching between speculative
and non-speculative modes must never introduce latency;
doing so would negate nearly any benefit in using
speculation in the first place.

Enterprise computing is another area in which power
consumption is of concern. In an effort to maximize
operations per watt (as opposed to operations per sec-
ond), Sun Microsystems has developed a line of 64-
bit UltraSPARC chip multithreaded multiprocessors [1].
These processors have multiple cores per die, connected
to an on-die L2 cache via a crossbar. Each core is
capable of executing multiple threads simultaneously, by
interleaving their execution across pipeline stages. This
allows cycles that typically would be lost due to pipeline
bubbles to be filled by other threads running on the same
core. Since fewer cycles are lost, total throughput (in
instructions commited per cycle) increases. As a direct
consequence, power is saved as well.

This paper presents and examines our newly com-
pleted implementation of our Tagless-Hit Instruction
Cache (TH-IC) [2], [4] for the OpenSPARC T1 micro-
processor. We first provide background by describing



Fig. 1. Traditional L0/Filter and Tagless Hit Instruction Cache
Layouts

the operation of the TH-IC, which functions similarly
to an L0 instruction cache, but introduces no latencies
and requires no tag check or address translation. We
will also discuss methods for disabling several optional
instruction fetch related structures. Finally, we provide
some preliminary results showing the expected power
saved by this integration.

II. THE TAGLESS HIT INSTRUCTION CACHE

The Tagless Hit Instruction Cache (TH-IC), is a small,
modified direct mapped instruction cache that is meant
to be used in conjunction with a standard L1 instruction
cache (L1-IC). The small size of the TH-IC is intended
to allow energy-efficient accesses, when compared to
the typically much larger and set-associative L1-IC.
Although similar in concept to an L0 or filter instruction
cache [5], [6] as shown in Figure 1, these caches incur a
1-cycle miss penalty prior to fetching the appropriate line
from the L1-IC. These miss penalties can accumulate
result in significant performance degradation for some
applications. It is important to note that this performance
loss will indeed reduce the energy benefit gained by
adding the L0-IC due to having to actively run the
processor for a longer period of time. The inclusion of
an L0-IC into a memory system design is essentially
a tradeoff providing a savings in fetch energy at the
expense of longer execution times. A TH-IC of similar
size to an L0-IC has nearly the same hit rate, but does
not suffer a miss penalty, alleviating the concerns of
performance minded architects.

A second (though no less substantial) benefit of the
TH-IC is that it frequently eliminates the required L1-
ICtag array and ITLB accesses required when fetching
instructions. Since these structures are only used to
check for a hit in the L1-IC, guaranteed hits make

them superfluous. The combination of these two benefits
provides savings in instruction fetch energy consumption
that exceed that of a standard L0-IC, at performance
equal to a machine using only an L1-IC. Our work is
similar in concept to the loop cache [7], but is more
general, and handles a wider range of code behavior such
as forward branches. The TH-IC requires more complex
logic than any of the mentioned caches, however.

A. Using Caching to Provide Guarantees
When sequentially fetching from one line of instruc-

tions to the next, a tag check will be required when
fetching the first instruction of the second line. However,
by fetching the second line from the L1-IC and writing
it to the TH-IC, we will have ensured that subsequent
fetches hit, provided no evictions occur. We can cache
the fact that we’ve created such a sequential pair with
a single bit per line (which we call the NS bit). We set
the NS bit for the first line of a sequential pair after we
have ensured that the pair is actually sequential in the
TH-IC. We associate this bit with the first line, and not
the second, because typically when SRAM read data is
required for a given cycle, the address and enable signals
must be provided sometime during the previous cycle.
Assuming no evictions occur, the next time we reach
the end of the first line, its NS bit will be true, and
so we know we can sequentially access the following
line without checking its tag. The NS bit corresponding
to a line will need to be reset whenever the line or its
successor are evicted or invalidated.

We can distinguish three types of control transfers.
Most control transfers are caused by direct branches. A
direct branch is a branch that transfers control to the
same location every time it is executed. This location is
typically encoded in the instruction itself, as an offset
from the instruction’s PC. Since it may take several
cycles to determine the target under normal execution,
it is frequently cached in a branch target buffer (BTB),
allowing the target to be used the following cycle. The
second type of control transfers are caused by indirect
branches. Indirect branches typically set the PC to an
offset from the value stored in some architected register.
Since the resulting branch target PC has no relation
to its PPC, there is no question whose answer can be
cached that will guarantee the target PC’s presence on
subsequent traversals. The final type of non-sequential
flows are traps. A trap is an event, possibly unrelated to
the instruction(s) being executed, that causes the PC to
be set to a predetermined value. Each trap event type
is generally associated with a corresponding numeric
identifier, which is used to index into an array of PC
values (possibly stored in main memory). Since the
trap PC holds no relation to its PPC, there again exists
no question whose answer can be cached to guarantee



presence on subsequent traversals. Traps are relatively
infrequent, and often cause pipeline flushes and other
latencies to occur, so little is lost by not handling them.

Logic similar to that used to derive the NS bit can
be used to handle direct branches, since the targets of
these branches never change. Once we’ve fetched the
target of a given branch from the L1-IC and stored it
within the TH-IC, we will have ensured that subsequent
fetches of the target through that branch will hit in the
TH-IC, assuming no evictions occur. We can cache this
result, but we need to keep one bit per instruction, instead
of per line as was the case for the NS bits. We call
these bits the NT bits. We set the NT bit for a branch
once we’ve ensured its target is present in the TH-IC.
Each subsequent fetch of a taken branch’s target can thus
be completed without performing a tag check, as long
the NT bit for the branch is true. We associate the NT
bit with the branch, and not the target, because a given
target may be associated with multiple branches, and (if
that’s not enough) because the branch’s target usually
isn’t determined with enough time left in the cycle to
access its NT bit. There are multiple ways to decide
when to invalidate this bit, but generally, the NT bit for
a given branch instruction needs to be cleared whenever
the branch’s line is evicted, or when the line containing
the branch’s target is evicted.

Now we have eliminated accessing the tag array for
the most prevalent types of instruction fetch sequences,
by caching results collected during initial passes to
provide guarantees for later passes. It is still unclear
what should be done when a TH-IC hit is not guaranteed,
however. We can’t just check the tag in the TH-IC, and
then process the fetch with the L1-IC on a miss, as that
would introduce (at minimum) a 1-cycle latency. Since
we know before hand that we need to check the tag, we’ll
just let the L1-IC process the fetch in place of the TH-IC.
There will be times when a hit is not guaranteed, but a hit
would have ocurred in a traditional L0-IC–a false miss.
We cannot treat false misses the same as true misses or
evictions, and clear any affected NS and NT bits, as that
would unnecessarily prevent hits from being guaranteed
further along in the program. Instead, we’ll do a tag
check in the TH-IC and the L1-IC every fetch that is
not guaranteed to hit in the TH-IC, and only clear the
NS and NT bits when the TH-IC tag doesn’t match or the
L1-IC misses. Although we miss some opportunities to
disable the L1-IC with this solution, any power savings
lost are mitigated by avoiding the cache-miss penalty.

B. Other Concerns
In order to reduce the effective tag size of the TH-IC,

we can employ a subtle approach based on Ghose and
Kamble’s work with multiple line buffers [8]. Instead of
storing a large tag for the remainder of the address in the

Fig. 2. Fetch Address Breakdown

TH-IC, it is sufficient to identify the corresponding line
in the L1-IC by storing the set index and the location
of the line in the set. Not storing the entire tag in the
TH-IC is possible since the L1-IC is being accessed
simultaneously and we can force a true miss in the
TH-IC whenever the L1-IC misses. The cache inclusion
principle guarantees that any line in the TH-IC must also
reside in the L1-IC. Thus by detecting an L1-IC hit and
verifying that the precise L1-IC line corresponds to our
TH-IC line, we can effectively determine whether we
have a false miss.

Note that whenever the tag check is avoided due to a
guaranteed hit in the TH-IC, we usually are also able to
avoid an ITLB access. Since the total size of the TH-IC
is assumed to be smaller than the memory page size,
the TH-IC line index will not be affected by virtual to
physical address translation. The higher order bits that
are translated are only used to verify the L1-IC tag, and
so translation is not needed.

C. A Sample Organization

In order to better understand the operation of the TH-
IC, it is helpful to consider concrete cache sizes. For
this example, we use a 16 KB, 256 line, 16 byte (4
instruction) line size, 4-way set associative L1-IC. We
also use a 256 B, 16 line, 16-byte line size, direct-
mapped TH-IC.

A breakdown of fetch addresses into their separate
bitwise components for properly accessing the various
arrays present in our memory hierarchy is shown in
Figure 2. Instructions are word-aligned, so the low-order
two bits of any fetch address can be safely ignored. Two
bits are used to determine the L1-IC line offset, while
8 bits are necessary for the set index, leaving 20 bits
for the tag. Two bits are again used to determine the
TH-IC line offset, while 4 bits are used for the TH-IC
line index. As described earlier, the TH-IC ID is derived



Fig. 3. Tagless Hit Instruction Cache

from the L1-IC “way” (2 bits) and enough higher-order
bits of the L1-IC set index to uniquely identify the line
(4 bits).

Figure 3 shows a detailed view of the organization of
the TH-IC and its position within the fetch datapath.
As described earlier, we have annotated each line in
the TH-IC with an NS bit, and each instruction with
an NT bit. Additionally, each line has an TH-IC ID,
and a bitfield named TX, which is used for invalidation,
and will explained further in the next section. Finally,
included within the TH-IC is the guaranteed hit (GH)
bit. When GH is true, the current instruction fetch was
determined to be a guaranteed hit while fetching the
previous instruction. When GH is false (a potential miss),
the fetch is processed by the L1-IC, and data within the
TH-IC are updated. The desired instruction may actually
be present in the TH-IC; this is a false miss. The case
where the instruction is not present in the TH-IC is called
a true miss.

The TH-IC ID field is made up of the additional high-
order bits from the L1-IC index, and two bits for speci-
fying which line within an associative set corresponds to
a particular address. When we are updating the TH-IC
(on a potential miss), we are already accessing the L1-
IC, so we only need to compare whether we have the
appropriate set and way from the L1-IC already in the
TH-IC. The miss check can be done by concatenating the
two-bit way information for the currently accessed line
in the L1-IC and the five high-order bits of the address
corresponding to the L1-IC set index, and comparing this
result to the stored TH-IC ID of the given set. If these
seven bits match, then the TH-IC currently contains the
same line from the L1-IC and we indeed have a false
miss. If these bits do not match, or the L1-IC cache
access is also a miss, then we have a TH-IC true miss
and must update the line data as well as the TH-IC ID
with the appropriate way and high index information.
The ID field can be viewed as a line pointer into the L1-
IC that is made up of way information plus a small slice

L1/ITLB?

Steady

State

Loop

Behavior

fetched

inst 1

inst 5

insts 6,7

inst 2

insts 3,4

inst 5

insts 6,7

insts 3,4

inst 5

insts 6,7

inst 8

false miss

false miss

miss

miss

hits

hits

hits

hit

hits

hits

hit

hit

set inst 1 NT bit

result

set inst 7 NT bit

set line 1 NS bit

inst 1

inst 2

inst 3

inst 4

inst 5

inst 6

inst 7

inst 8

...

...

li
n
e 

1
li

n
e 

2

metadata set

set line 0 NS bit

inst 2

Fig. 4. Example TH-IC Instruction Flow

of what would have otherwise been the TH-IC tag. If
the L1-IC were direct-mapped, the ID field would only
consist of the extra bits that are part of the L1-IC set
index but not the TH-IC set index. The cache inclusion
property thus allows us to significantly reduce the cost of
a tag/ID check even when the TH-IC cannot guarantee
a “tagless” hit.

D. An Example Instruction Fetch Sequence
Figure 4 shows an example that illustrates how in-

structions can be guaranteed to reside in the TH-IC.
The example in the figure contains eight instructions
spanning four basic blocks and two lines within the TH-
IC. Instruction 1 is fetched and is a miss. The previous
line’s NS bit within the TH-IC is set since there was a
sequential transition from line 0 to line 1. Instruction 5 is
fetched after the transfer of control and it is also a miss.
Instruction 1’s NT bit is set to reflect that the target of
instruction 1 resides in the TH-IC. Instructions 6 and 7
are fetched and are guaranteed to be hits since they are
sequential references within the same line. Instruction 2
is fetched and it resides in the TH-IC, but it is a false
miss since it was not guaranteed to hit in the TH-IC
(instruction 7’s NT bit is initially false). At this point, the
NT bit for instruction 7 is set to indicate its target now
is in the TH-IC. Instructions 3 and 4 are fetched and are
hits due to the intra-line access. Instruction 5 is fetched
and is a false miss (line 1’s NS bit is false). Line 1’s NS
bit is set at this point indicating that the next sequential
line now resides in the TH-IC. The instructions fetched
in the remaining iterations of the loop are guaranteed
to be hits since the TH-IC metadata indicates that the
transitions between lines (line 1’s NS bit and instruction
7’s NT bit) will be hits. Finally, instruction 8 is fetched
and will be a hit since it is a sequential reference within
the same line.

E. TH-IC Line Eviction and Invalidation
There are two events that can require that a line be

removed from the TH-IC. The first of these is a conflict



eviction. In the TH-IC, a conflict eviction can only occur
as a result of true miss, and always causes the line to
be replaced by a new line. The other type of event
is an external invalidation. External invalidations are
caused by an non-fetch-related event, and do not replace
removed line with a new one. Events that can cause
an external invalidation include writes to the instruction
stream by store instructions, and invalidations required
to maintain cache coherency between processor cores.

Whenever either of these events occur, NS and NT
bits must be reset to maintain correct operation. For
example, the NS bit for a line must be cleared when
the sequential line in the TH-IC is replaced by a line
that is not sequential in memory. Clearing NT bits is
more difficult, since multiple instructions may branch
into a given line. When the line is evicted, the NT bits
for all of these instructions will have to be reset. We
present a number of related methods for determining
which NT bits to clear that vary in complexity, from
conservative approximations, to more precise tracking of
the relations between the transfers of control and their
target instructions. Most of these methods involve adding
a bit field to each line, which we call, in general, the TX
field. We have studied several specific configurations for
the TX field, including an “oblivious” mode where no
TX bits are allocated, and all NT bits are reset for any
line replacement. Other modes include TI (one TX bit
for each potential branch instruction per line) and TL
(one TX bit for each potential branch line per line).

Bits within the TX field for a given line can be
cleared whenever the lines (instructions) that branch
to that line are invalidated. This prevents an NT bit
from being cleared due to TX bits that were set for
branches no longer present within the TH-IC. The logic
required to clear TL/TI bits can be quite complex, and
neglecting to clear them may lead to false positives.
Fortunately, whenever the TX bits are used to clear NT
bits, the TX bits themselves are cleared, so at most
one dynamic guarantee will be lost per affected branch
instruction. Since branches constitute only a fraction of
all instructions executed, a false positive is more likely
to clear the NT bit for a non-branch (having no effect),
than to clear the NT bit for an actual branch (causing
unnecessary potential misses). In the interest of power
savings, we can thus choose not to attempt to clear
individual TX bits.

Since we have decided that false positives are accep-
tible, and not attempt to clear individual bits, we can
generalize the TX field to an arbitrary Bloom filter. Using
a Bloom filter allows us to “compress” the TX field to
a smaller number of bits. Alternatively, we can reduce
the granularity of the relationships remembered without
increasing the number of bits needed. The generalized
Bloom filter technique allows the TX field to occupy an

Fig. 5. The UltraSPARC T1 Die.

arbitrary number of bits, and can be optimized for the
expected workload.

For example, suppose we would like to determine
the branches that target a given line at the granularity
of an individual instruction. Additionally, suppose our
TH-IC contains 8 lines of 4 instructions each. The TI
configuration described earlier would require 32 bits per
line, for a total of 256 bits. If instead we choose to use
a 12-bit Bloom filter per line with 4 hash functions,
assuming no more than 2 branches target a given line
gives a false positive rate of approximately 6.3%.

III. THE OPENSPARC T1

The OpenSPARC T1 is a multicore, multithreading
processor developed by Sun Microsystems. It consists of
8 identical cores, each of which is capable of interleaving
the execution streams of up to 4 hardware threads simul-
taneously. The hardware threads all share the execution
resources of the core they reside on, including the caches,
TLBs, and functional units. The architectural state for
each thread, such as the values of the register file, PC,
and so on, is tracked independently, however. Other than
the stages related to fetch, each stage can be occupied
by at most one thread.

The architectural philosophy behind the T1 is to prefer
thread level parallelism over instruction level parallelism
at every opportunity. For example, the core has no
branch predictor, and once the delay slot of a branch
has been fetched, the thread will be stalled until the
branch has fully resolved. In order to reduce the need
for pipeline flushes, long latency operations such as
branches are detected in the instruction cache line fill
pipeline. A “long-latency instruction” bit is appended to
each instruction prior to being stored in the cache. This



Fig. 6. OpenSPARC T1 Fetch Datapath. Registers are identified by
blocks with heavy outlines. Registers that divide pipeline stages are
group together and labeled with the previous and following stages.
Some details are necessarily omitted.

is what allows to quickly set aside a thread that will have
to stall, even before the instruction has been decoded.

The T1 fetch unit operates across 4 pipeline stages:
Before Fetch (BF), Fetch (F), Switch (S), and Decode
(D). The BF stage is responsible for tracking each
thread’s fetch address. Instruction data is fetched from
the cache during the F stage. The next thread to be
executed by the remainder of the pipeline is selected
in the S stage. Finally, instructions are decoded and the
register file is read in the D stage.

In the BF stage, the next PC to be fetched for each
thread is selected from either the sequentially following
PC, the branch PC from the excution unit, or the trap
PC provided by the trap logic unit (TLU). Of these PCs,
one is selected to actually be fetched, and flopped into
a register at the end of the stage.

Figure 6 illustrates the OpenSPARC T1 fetch datapath.
In the F stage, the PC previously selected by the BF
stage is sent to the instruction cache data array, tag
array, valid bit array, and the TLB. The L1 instruction
cache SRAM is 4-way set associative, with 128 entries
of 8 instructions per way (plus parity), for a total of
17 kilobytes of instruction data. The tag SRAM holds
128 entries of 4 ways of 33-bit tags, for a total of 2112
bytes. The 64-entry, fully associative TLB is accessed

Fig. 7. OpenSPARC T1 Fetch Datapath with THICs.

Fig. 8. T1 Branch Flow, Case 1 . B represents a branch instruction,
D the delay slot instruction, and T the branch’s target.

in parallel to the cache, in order to provide the physical
address needed for the tag match. All 4 ways of data and
tags are pulled from the arrays, so that the tag match can
proceed after the fetch has completed. Each fetch cycle,
up to 2 sequential instructions are fetched from a line.
When two instruction are fetched, the second instruction
is always at an odd address, and is buffered in a “next
instruction register” in the S stage.

Due to the intricacies in inverleaving multiple threads
of execution within a single pipeline, the way that branch
instructions are handled bears discussion. Since there are



Fig. 9. T1 Branch Flow, Case 2

an unmanageable number of combinations of instructions
from different threads in the pipeline, we will only
discuss two cases, as shown in Figures 8 and 9.

The first case shows the flow of a branch instruction
when no other threads are ready to run. This will only
occur when either there is only one thread active, or
when the other threads are stalled due, e.g., to an IC miss.
In this case, the delay slot instruction is fetched the cycle
after the branch instruction is fetched. In the same cycle
the delay slot is fetched, the branch has completely been
fetched, and the pipeline detects that it is a long latency
operation. At that point the thread is put in a waiting
state, and after the delay slot, no further fetches (for that
thread) will be initiated until the wait is cancelled. When
the branch reaches D, the pipeline cancels the wait, and
the thread can fetch again the following cycle. When the
branch arrives at E, the branch target PC is ready, and
can be sent to the IC immediately.

The second case shows the flow for a thread when all
other threads fetch an instruction before the delay slot
can be fetched. The pipeline’s LRU mechanism ensures
that a ready thread will wait no more than three cycles
between issued instructions. The delay slot PC is stored
in the IC PC register at the BF stage at the cycle the
branch is in E. The target is written to the threads PC
register for the following cycle.

In any case, ignoring exceptions, cache misses, and
so on, every instruction that is fetched is eventually
committed, regardless of the code’s branching behavior.

IV. INTEGRATING THE TH-IC
The most significant design decision concerning this

integration is whether to use a single TH-IC data struc-
ture per core, or to use a copy of the TH-IC for each
thread. Prior work has shown that a direct-mapped TH-
IC provides better power savings than an associative
one. A shared, direct mapped TH-IC is likely to have
a significant number of conflict misses, due to the
likelyhood that the multiple fetch sequences traversing
the cache will intersect at some point. Even if we were
to use a shared, associative TH-IC, a single, large SRAM
would be needed, which would work against our power
savings goals. However, independent per-thread TH-ICs

can be much smaller, and the logic can be made to
operate similarly to that of a single-threaded core. It was
thus decided to use a small, direct-mapped TH-IC for
each thread. The resulting fetch architecture is shown in
Figure 7.

Timing requirements are tightest in the path through
the TLB. The L1 tags are available sooner than the TLB
result, and so at the end of F, they are sent directly from
the tag array to the TLB. The match is then performed
at the beginning of S. Since the TH-IC uses a much
smaller (and thus faster) SRAM than the L1-IC, we can
use the first phase of S to send the data from the L1-IC
to the TH-IC for writing, and perform the actual write in
the second phase of S. When a TH-IC hit is guaranteed,
the instruction comes directly from one of four small
data arrays. Now instead of way selection, we need to
perform thread selection. The thread is always known
immediately, unlike the way, and so this will complete
quickly. Thus the timing impact for this integration on
existing critical paths is minimal.

The existing design was largely unmodified. Most of
the changes made were in the form of additional logic.
Logic was added to consolidate and sanitize the signals
within the fetch control module that determine the type
of fetch being initiated. Logic and registers were added
to track whether each thread is fetching sequentially,
or the target of a direct branch, or otherwise. Other
logic was added to disable the L1-IC and ITLB when
a guaranteed hit is detected. Additional modules were
added for the global and per-thread TH-IC datapaths.
The global TH-IC datapath is responsible for muxing
the data read from the TH-IC, and for tracking the in
flight fetch (partial) PC. The per-thread modules track
the valid, NS, NT, TL and ID bits for each thread, as
well as (part of) the PCs of previous fetches.

A few small operational changes in the TH-IC were
required due to branch delay slots, which were not
considered in earlier work. On a SPARC processor, when
fetching the target of a branch, the branch itself must
have been fetched at least two instructions prior to the
target. (On the T1, the pipeline only allows the delay slot
to be fetched, and no other instructions, so this is always
exactly two.) This means we must track two previous
instructions; one is not enough.

The T1 has a single cycle latency between the ini-
tiation of a fetch, and the availability of the fetched
instruction. In certain cases, we cannot guarantee a hit
when we otherwise might have. For example, suppose
the target of a branch instruction is at the end of a line,
and the line containing the target is not in the TH-IC,
but whatever line actually is present has its NS bit set.
Since the branch target access is a miss, it cannot be (and
should not be) a guaranteed hit. Without the single cycle
latency, we would have detected the miss soon enough



Fig. 10. TH-IC Guaranteed Hit Rate for Mibench Small Set. L0
indicates a standard L0 cache. TN indicates the oblivious configuration;
TT indicates a single transfer bit; TL and TI indicate per line and per
instruction transfer bits. TH-LB refers to the Tagless-Hit line buffer (a
single-line TH-IC). NxM indicates N lines of M instructions.

to know we should ignore the NS bit when fetching the
instruction after the target. If we add in the single cycle
latency, however, we need to ignore the NS bit unless
one of the following is true: the current thread has no
instruction in the F stage; or the previous fetch was also
sequential; or the previous fetch was a guaranteed hit.
Since the latency for branches is longer than the fetch
latency, no additional logic is needed for NT bits.

Invalidations of TH-IC data come from one of two
places. The first is due to invalidations requests on the
L1-IC. Whenever a line in the L1-IC is invalidated, it
must also be invalidated in any TH-IC that holds it. The
other source of invalidations is due to L1-IC fills from
the L2 cache. When a miss on the L1-IC occurs, no
lines are invalidated in either the L1-IC or the TH-IC.
Instead, the core sets the thread aside until the miss fill is
returned from the L2. After the returned line is written
to the L1, any line that was overwritten gets removed
from the TH-ICs for that core.

In the RTL for our design, we allowed for the selection
of both an 8-line and 16-line TH-IC for each thread. Both
configurations use a 4 byte line size, as opposed to the
8 byte line size in the T1 L1-IC. We chose to use the
shorter line size, again in the interest of power savings,
and also due to the difficulty in routing a 256-bit bus to
4 different places. Altering the pipeline to move the 256
bits via a 128-bit bus over 2 cycles is also likely to be
difficult.

V. RESULTS

Figure 10 shows the hit rate in the TH-IC for the
“small” set of benchmarks running on a SimpleScalar
single-threaded, out-of-order simulator that was extended
to simulate the TH-IC. These results were collected in
our ealier work on the TH-IC, and are included for
comparison. Various configurations are shown, including

TABLE I
TH-IC GUARANTEED HIT RATE ON OPENSPARC T1

Benchmark Threads 8 Lines 16 Lines
Quicksort 1 69.3% 72.5%
Quicksort 4 77.3% 80.2%

TABLE II
FETCH SRAM POWER ON OPENSPARC T1

Dynamic power Leakage power
L1-IC data: 3.10e-1 W 1.41e-3 W
L1-IC tags: 1.17e-2 W 1.48e-5 W
TH-IC data: 3.02e-3 W 1.88e-6 W

a standard L0 cache (with a traditional tag check),
the “oblivious” configuration (TN), a single “transfer”
bit (TT), the “transfer line” configuration (TL), and
the “transfer instruction” configuration (TI). We would
expect similar hit rates for a single thread executing
on a T1 core. For multiple threads executing on the
same core, we would expect the TH-IC guaranteed hit
rate to scale with the L1-IC hit rate. (Suppose a single
thread is running on a core, and has TH-IC hit rate of
t and an L1-IC hit rate of n. When other threads are
introduced to the core, the former thread’s L1-IC hit rate
may change to n′. We would expect the resulting TH-
IC hit rate to change to tn′/n.) This is because every
TH-IC hit is an L1-IC hit, and we don’t expect conflicts
between threads to erase vital metadata very often. The
4-way set associativity of the L1-IC effectively reduces
the chance that destructive interference on the TH-IC
metadata occurs among the 4 threads to zero.

We have run a limited set of benchmarks within a
simulator compiled from the T1 Verilog source code. We
tested both the original T1 design, and with two config-
urations of TH-ICs. The percent of accesses that were
guaranteed hits in the TH-IC for the tested configurations
are listed in Table I.

The data collected thus far are consistent with our
expectations.

Cacti version 5.3 [9], [10] provides the estimates of
power usage for the SRAMs used by the T1 instruction
fetch architecture as shown in Table II. We do not
provide performance data, as cycle counts were identical
in all cases (as expected).

We used a 16-line THIC for these estimates. The
data indicate power per SRAM instance, so the total
power for all TH-IC data SRAMs is 4 times the value
listed. So the approximate power for a standard L1-IC
without TH-IC is 3.23e-1 W. Adding a 16 line TH-IC,
and assuming a TH-IC hit rate of 75% gives 8.40e-2 W.
Since these SRAMs tend to dominate instruction fetch
power, this gives a fetch power savings of approximately
74%. Note that this is in a processor that was designed



from the start to be included in a high-efficiency, high-
throughput system, making liberal use of clock-gating
and other power-efficient techniques. In addition, we
have not measured the energy savings from eliminated
ITLB accesses, as an adequate power model for that
structure could not be obtained.

VI. FUTURE WORK

We have developed a set of extensions to TH-IC
[4] which allow the branch predictor, BTB, RAS, and
other branch related structures to be disabled for in-
structions known not to be branches. While the T1 does
not use a branch predictor, integrating one may justify
its power consumption, simply by improving single-
threaded performance. Such a branch predictor may in
fact be integrated with the TH-IC to take advantage of
data it already stores.

VII. CONCLUSIONS

We have presented an implementation of our low-
power Tagless-Hit Instruction Cache. The implementa-
tion shows that, even in designs that are power-concious,
there is still room for improvement, especially in in-
struction fetch. Though these processors are designed to
efficiently provide high throughput for enterprise tasks,
with additional power savings such as those provided
by the TH-IC, these processors may become suitable for
high-throughput embedded tasks as well.

Our design also shows the ease with which are tech-
nique is adapted to modern CPU designs. We have found
that the theoretical benefits predicted from in higher level
simulations will bear out when implemented in silicon.
Since power is a concern in nearly every modern pro-
cessing application, and performance is always desirable,
a technique such as the TH-IC, which reduces power
without impacting performance, is justified in nearly
every design.

VIII. ACKNOWLEDGEMENTS

This research was supported in part by NSF grants
CNS-0615085 and CNS-0915926.

REFERENCES

[1] S. Microsystems, “An Open Source Processor used in Sun
SPARC Servers: OpenSPARC,” February 2010, http://www.
opensparc.net/.

[2] S. Hines, D. Whalley, and G. Tyson, “Guaranteeing hits to
improve the efficiency of a small instruction cache,” in Proceed-
ings of the 40th annual ACM/IEEE International Symposium on
Microarchitecture. IEEE Computer Society, December 2007,
pp. 433–444.

[3] J. Montanaro, R. T. Witek, K. Anne, A. J. Black, E. M. Cooper,
D. W. Dobberpuhl, P. M. Donahue, J. Eno, G. W. Hoeppner,
D. Kruckemyer, T. H. Lee, P. C. M. Lin, L. Madden, D. Murray,
M. H. Pearce, S. Santhanam, K. J. Snyder, R. Stephany, and S. C.
Thierauf, “A 160-mhz, 32-b, 0.5-W CMOS RISC microproces-
sor,” Digital Tech. J., vol. 9, no. 1, pp. 49–62, 1997.

[4] S. Hines, Y. Peress, P. Gavin, D. Whalley, and G. Tyson, “Guar-
anteeing instruction fetch behavior with a lookahead instruction
fetch engine (LIFE),” Submitted to the ACM/IEEE International
Symposium on Microarchitecture, December 2008.

[5] J. Kin, M. Gupta, and W. H. Mangione-Smith, “The filter cache:
An energy efficient memory structure,” in Proceedings of the
1997 International Symposium on Microarchitecture, 1997, pp.
184–193.

[6] Johnson Kin and Munish Gupta and William H. Mangione-Smith,
“Filtering memory references to increase energy efficiency,”
IEEE Transactions on Computers, vol. 49, no. 1, pp. 1–15, 2000.

[7] L. Lee, B. Moyer, and J. Arends, “Instruction fetch energy
reduction using loop caches for embedded applications with small
tight loops,” in Proceedings of the International Symposium on
Low Power Electronics and Design, 1999, pp. 267–269.

[8] K. Ghose and M. B. Kamble, “Reducing power in superscalar
processor caches using subbanking, multiple line buffers and
bit-line segmentation,” in Proceedings of the 1999 International
Symposium on Low Power Electronics and Design. New York,
NY, USA: ACM Press, 1999, pp. 70–75.

[9] S. J. Wilton and N. P. Jouppi, “CACTI: An enhanced cache access
and cycle time model,” IEEE Journal of Solid State Circuits,
vol. 31, no. 5, pp. 677–688, May 1996.

[10] H.-P. Corporation, “CACTI 5.3 (rev 174),” February 2010, http:
//quid.hpl.hp.com:9081/cacti/sram.y.


