
Enhancing the Effectiveness of Utilizing an Instruction Register File

David Whalley, Gary Tyson
Computer Science Dept., Florida State Univ., Tallahassee, FL 32306-4530

e-mail: {whalley,tyson}@cs.fsu.edu

Abstract

This paper describes the outcomes of the NSF Grant
CNS-0615085: CSR-EHS: Enhancing the Effec-
tiveness of Utilizing an Instruction Register File. We
improved promoting instructions to reside in the IRF
and adapted compiler optimizations to better utilize an
IRF. We show that an IRF can decrease the execution
time penalty of using an L0/filter cache while further
reducing energy consumption. Finally, we introduce a
tagless hit instruction cache that significantly reduces
energy consumption without increasing execution time.

1. Introduction

New processors, embedded and general purpose,
often have to meet conflicting design requirements
involving area, power, and performance. While a
compiler optimization and/or an architectural feature
may be developed to improve one design goal of a pro-
cessor, it often comes at the detriment of another. An
instruction register file (IRF), unlike most architectural
and compiler enhancements, has been shown to simul-
taneously reduce power requirements, decrease code
size, and improve performance [1]. This paper
describes the progress and outcomes of the NSF Grant
CNS-0615085, whose main goal is to enhance the
effectiveness of utilizing an IRF. We also introduce a
tagless hit instruction cache (IC) that reduces energy
consumption without increasing execution time by
guaranteeing hits in this small IC.

2. Background

Figure 1 illustrates that fields within an instruction
fetched from ROM or an L1 IC can be referenced and
used as indices to fetch multiple instructions from the
IRF. Consider a classical five stage statically sched-
uled pipeline (IF→ID→EX→MEM→WB). Integra-
tion of an IRF occurs in the instruction decode (ID)
stage of the pipeline. Pack ed instructions that refer-
ence the IRF specify one or more IRF indices. The
IRF entries can be accessed during the first half of the

ID stage, with a referenced instruction selected at the
end of decode. If the instruction fetched does not
specify IRF entries, then it is decoded as normal.

IF Stage

Instruction
CachePC

(ROM or L1)

IF/ID

First Half of ID Stage

IRF

IMM

Figure 1: Accessing the IRF

We hav e extended the SimpleScalar PISA target
[2] and the VPO (Very Portable Optimizer) compiler
[3] to support packing instructions into an IRF [1].
We chose the MIPS ISA since it is commonly known
and has a simple encoding. Instructions stored in
memory are referred to as the Memory ISA or MISA.
Instructions we place in the IRF are referred to as the
Register ISA or RISA. MISA instructions that refer-
ence the RISA are designated as being packed.

We support two varieties of packed MISA instruc-
tions. Figure 2 shows the format for tightly packed
instructions, allowing up to five RISA instructions to
be accessed from a single MISA instruction. Our ini-
tial experiments were with a 32 entry IRF. Thus, five
bits were reserved in each field of the tightly packed
instructions to reference a single IRF entry. One IRF
entry is reserved as a nop to indicate that no RISA
instruction is to be executed. Hardware support halts
execution of the packed instruction when a nop is
encountered so there is no performance degradation.

6 bits 5 bits 5 bits 5 bits 5 bits

opcode inst1 inst2 inst3 inst4 s inst5
paramparam

1 5 bits

Figure 2: Tightly Packed Format

The last two 5-bit fields in the tightly packed for-
mat can also be used to refer to immediate values. We
keep the 32 most frequently referenced values within
an application in an immediate table, depicted in Fig-
ure 1 by IMM. This feature allows different

instructions that vary only by the value in the immedi-
ate field to be represented by the same IRF entry.
There are eight different possible uses of the last two
5-bit fields (no parameterization, four different instruc-
tions referencing one parameter, three different combi-
nations of three instructions referencing two parame-
ters). These eight different operations are represented
using four opcodes and the S bit.

Parameters are also used to pack branch instruc-
tions. Rather than referring to a value in the IMM ta-
ble, these instructions instead treat the 5-bit parameter
as a sign-extended target address displacement since
the target distance may change after packing. Fortu-
nately, most branch target distances are short. These
distances are reduced even further after packing
instructions into registers.

We refer to the other type of packed MISA
instruction as loosely packed since it only references a
single RISA instruction. The standard MIPS instruc-
tion R and I formats are modified to contain an index
into the IRF, as shown in Figure 3. The standard
instruction is first executed followed by the execution
of the referenced RISA instruction. Some modifica-
tions to the MIPS instruction format were required,
including reducing the size of immediate values from
16 bits to 11 bits. The vast majority of MIPS instruc-
tions in the R and I formats can be loosely packed.

opcode rs
shamt rt rd function inst

opcode rs rt immediate value inst

Immediate (I) Format with Index to Second Instruction in IRF

Register (R) Format with Index to Second Instruction in IRF

6 bits 5 bits 5 bits 11 bits 5 bits

5 bits6 bits5 bits5 bits5 bits6 bits

Figure 3: Loosely Packed Formats

Dynamic and static instruction profiles are used to
select instructions to reduce energy consumption and
decrease code size, respectively. Thus, a two pass
compilation is required to reduce the dynamic number
of instructions fetched from the memory system.
Instructions are placed in the IRF at load time and are
reloaded after each context switch.

3. Progress and Outcomes

There have been a number of enhancements that
we have made to more effectively utilize an IRF.
These enhancements include improving instruction
promotion to the IRF, changing instruction selection
and performing register re-assignment to increase
instruction redundancy, and scheduling of instructions

to address packing constraints [4]. We also have
shown that an IRF can be used to reduce the execution
penalty of an L0/filter IC while further reducing
energy consumption [5].

Our initial strategy for selecting instructions to
reside in the IRF was to simply choose the most fre-
quently accessed instructions [1]. We now distinguish
instructions by how many of the five RISA slots are
consumed. These different classes of instructions are
depicted in Figure 4. Non-packable refers to instruc-
tions that cannot support a loosely packed RISA refer-
ence, are not available via the IRF, and occupy all 5
RISA slots. Loosely packable refers to an instruction
that is not available via the IRF, but has additional
room for a RISA reference. The parameterized tightly
packable instruction is one that is available via a com-
bination of the IRF and parameterization. Due to ref-
erencing an IRF entry and specifying one parameter,
two slots are occupied, and thus there is space for up
to 3 additional RISA references. Tightly packable
refers to an instruction that is available in the IRF, and
does not require any parameterization. These instruc-
tions will occupy only a single slot, and thus have
room for up to 4 more RISA references. With more
accurate modeling we now find that is it sometimes
beneficial to have multiple frequently accessed I-type
instructions that differ in only their immediate value to
reside in the IRF simultaneously.

�����
�����
�����

�����
�����
�����

�������
�������
�������

�������
�������
�������

�����������������������������������

�����������������������������������

���
���
���

	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	

(In IRF with parameter)
Parameterized Packable

(In IRF)
Tightly Packable

(Not in IRF)
Loosely Packable

Non−packable

Legend

Figure 4: Different Instructions Classes

In prior IRF research, instructions were promoted
to the IRF based purely on static or dynamic profile
data. Dynamic profiling was used to increase IRF
fetched instructions and static profiling was used to
decrease code size. We now use both the dynamic and
static profiles simultaneously. An embedded applica-
tion developer can indicate the importance of energy
consumption and code size and both profiles can be
used in an attempt to meet the developer’s goals.

We also enhanced instruction selection to increase
the redundancy of instructions and the level of instruc-
tion packing. We now encode short jumps as branches
that compare the same register for equality. Note
jumps are not directly packed since they use a J format
and the absolute address is unknown at compile time.

We chose equivalent parameterizable instructions over
other operations. For instance, move operations were
encoded as an R-type add instruction that references
the hard-wired r0. We now encode these operations
as an I-type add instruction that references an immedi-
ate value of zero, which can be a parameterizable IRF
instruction. We also consistently order register
operands for commutative operations.

During the second compilation pass after instruc-
tions have been promoted to the IRF, we applied a reg-
ister re-assignment phase in an attempt to transform
instructions to match ones that were promoted to the
IRF. This optimization is accomplished by calculating
the interference graph of the live ranges of registers
and reassigning registers when possible and beneficial.

The final enhancement is to schedule instructions
both within and across basic blocks to address packing
constraints. One interesting phenomenon is that dupli-
cating instructions across basic blocks can sometimes
result in a code size decrease. Figure 5(a) shows such
an example on an if-then-else code segment. Basic
blocks W, X, and Y have been scheduled, and block Z
is about to be scheduled. Notice that X and Y both
have Z as their unconditional successor (fall-through
or jump target). There are available RISA slots at the
end of both basic blocks (slots a, b, c). Figure 5(b)
shows instruction 1 after it has been duplicated in both
predecessors of Z and is able to be combined in two
separate tight packs. Block X shows that the moved
instruction is actually placed before instruction 5, an
unconditional jump, in order to maintain correctness.
After performing intra-block scheduling on block Z,
the parameterized instruction 4 is packed with instruc-
tions 2 and 3. Block Z now can be represented with a
single tightly packed instruction.

... ...

������������������������������

������������������������������

��

������������������������������

�����
�����
�����

�����
�����
�����

� �
� �
� �

� �
� �
� �

	�	�	
	�	�	
	�	�	

�
�

�
�

�
�

�����
�����
�����

�����
�����
�����

������������������

������������������������������ ������������������������������

������������������������������

�����������������������������������

�����������������������������������

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
����������

�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����������������������������������

�����������������������������������

�����
�����
�����

�����
�����
�����

��

 � � � � � � � � � � � �

!�!�!!�!�!!�!�!!�!�!!�!�!!�!�!

"�"�""�"�""�"�""�"�""�"�""�"�"

#�#�#�#
#�#�#�#
#�#�#�#

$�$�$�$
$�$�$�$
$�$�$�$

%�%�%�%
%�%�%�%
%�%�%�%

&�&�&�&
&�&�&�&
&�&�&�&

'�'�'�''�'�'�''�'�'�''�'�'�''�'�'�''�'�'�'

(�(�((�(�((�(�((�(�((�(�((�(�(

))
))
))

* *
* *
* *

+�+�+�+
+�+�+�+
+�+�+�+

,�,�,
,�,�,
,�,�,

-�-�-�-
-�-�-�-
-�-�-�-

.�.�.�.
.�.�.�.
.�.�.�.

/�/�//�/�//�/�//�/�//�/�//�/�/

0�0�00�0�00�0�00�0�00�0�00�0�0 1�1�1�11�1�1�11�1�1�11�1�1�11�1�1�11�1�1�1

2�2�2�22�2�2�22�2�2�22�2�2�22�2�2�22�2�2�2

3�3�3�33�3�3�33�3�3�33�3�3�33�3�3�33�3�3�3

4�4�44�4�44�4�44�4�44�4�44�4�4

5�5�5�55�5�5�55�5�5�55�5�5�55�5�5�55�5�5�55�5�5�5

6�6�66�6�66�6�66�6�66�6�66�6�66�6�6

7�7�7
7�7�7
7�7�7
7�7�7

8�8�8
8�8�8
8�8�8
8�8�8

9�9�9�9
9�9�9�9
9�9�9�9
9�9�9�9

:�:�:
:�:�:
:�:�:
:�:�:

;�;�;�;
;�;�;�;
;�;�;�;
;�;�;�;

<�<�<�<
<�<�<�<
<�<�<�<
<�<�<�<

=�=�=�=
=�=�=�=
=�=�=�=
=�=�=�=

>�>�>�>
>�>�>�>
>�>�>�>
>�>�>�>

Y Y

(a) Before Scheduling Z

4 4’
3’3

2
1

Z

b c

5’a5
X

W W

X
1 5 5’

c1

Z
2 3 4 3’ 4’

(b) After Duplication & Scheduling Z

Figure 5: Duplicating Code to Reduce Code Size

Figures 6 and 7 show the results of applying these
enhancements on processor energy consumption and
code size, respectively. We compiled the MiBench
benchmarks with the VPO compiler [3] and used Sim-
pleScalar [2] with the Wattch extensions [6] for all
results presented in this paper. The original promotion
of instructions was based on a dynamic profile. Now
we use a combined 50/50 dynamic and static profile.
While energy consumption was not significantly
altered, there is about a 6% reduction in code size.
Applying the compiler optimizations significantly
impacted both energy consumption and code size.

Figure 6: Enhancements on Energy Consumption

Figure 7: Enhancements on Code Size

We hav e also discovered that an IRF can interact
effectively with other instruction fetch energy saving
architectural features. For instance, we studied how an
IRF interacts with an L0/filter IC [5]. Figure 8 shows
pipeline diagrams for two equivalent instruction
streams. In Figure 8(a), an L0 IC is being used with
no IRF. The third instruction misses in the L0 cache,
leading to a pipeline stall at cycle 4. Figure 8(b)
shows the same L0 IC being used with an IRF. In this
stream the second and third instructions are packed
together into a single MISA instruction. The fourth
instruction now is at the address that misses in the L0
cache. The packed instruction is fetched in cycle 2.
We start the fetch of instruction 4 in cycle 3. The
cache miss penalty in cycle 4 is overlapped with the

decode of the second RISA reference. The stall is
avoided and the stream completes in one less cycle.

L0 Cache Miss at Instruction 3

Cycle 1 2 3 4 5 6 7 8 9

Inst1

Inst2

Inst3

Inst4

WB

WB

WBIF ID EX M

IF ID EX M

IF ID EX M

IF ID EX M WB

Cycle 1 2 3 4 5 6 7 8 9

Inst1

Pack2a

Pack2b

Inst4

WB

WBIF ID EX M

EX MIFab IDa

EX M WB

IF ID EX M WB

IDb

L0 Cache Miss at Instruction 4 with IRF

Figure 8: Overlapping Fetch with an IRF

Figure 9 shows the effect on execution time from
integrating an L1 IC with an L0 IC and an IRF. An
IRF decreases execution time by about 1%, mostly by
reducing the working set size of applications, which
decreases the number of L1 IC misses. An L0 IC
increases execution time by about 16% due to the 1
cycle miss penalty for each L0 IC miss. Adding an
IRF eliminates about one half of the L0 IC execution
time increase. We also showed that an IRF can be
used to supply additional instructions to an aggressive
execution engine.

Figure 9: Execution Time with an L0 and/or IRF

Figure 10 shows the fetch energy consumption
effect of integrating an L1 IC with an L1 IC and an
IRF. An IRF reduces fetch energy consumption about
34% since accessing the IRF is much less expensive
than accessing a much larger L1 IC. An L0 IC reduces
fetch energy by about 66% since a larger percentage of
instructions can be fetched from an L0 IC than an IRF.
However, adding an IRF along with an L0 IC is the
most effective, reducing energy consumption by about
73%.

Figure 10: Fetch Energy with an L0 and/or IRF

An L0 cache can reduce energy, but can increase
execution time due to its high miss rate. Any miss in
the L0 IC incurs a 1-cycle miss penalty prior to fetch-
ing the appropriate line from the L1 IC. We evaluated
an alternative configuration shown in Figure 11 that
we call a tagless hit instruction cache (TH IC) to be
used with an L1 IC [7]. Using just a few specialized
metadata bits, the TH IC supplies a fetched instruction
only when the instruction is guaranteed to reside in it.
Therefore, we no longer require tag comparisons on
hits, hence the term tagless hit. When a non-guaran-
teed hit is found to be in the TH IC, we refer to the
access as a false miss and the TH IC metadata is pre-
served. Since the TH IC and the L1 IC are simultane-
ously accessed on a non-guaranteed hit, many redun-
dant bits in the TH IC tags were able to be eliminated.

I−Cache CPU
Tagless Hit

L1 I−Cache

Figure 11: Tagless Hit I-Cache Configuration

In essence, the TH IC acts as a filter cache for
those instructions that can be determined to be hits in
the TH IC, while all instructions that cannot be guar-
anteed to reside in the TH IC access the L1 IC without
delay. Additionally, the energy savings is greater than
using a L0 IC due to the faster execution time (the TH
IC has no miss penalty), the reduction in ITLB
accesses (the TH IC can be accessed using bits from
the portion of the virtual address that is unaffected by
the translation to a physical address), as well as the
elimination of tag comparisons on cache hits (since we
do not need tags to verify a hit).

Figure 12 shows the hit rates of 32, 64, and 128
instruction L0 IC and TH IC configurations with four
instruction lines. Note a very high percentage of TH
IC hits can be guaranteed. The sum of the TH IC
guaranteed hits and false misses is the same for the

equivalently sized L0 IC configurations since the TH
IC really applies a different access strategy.

Figure 12: Hit Rates of L0 and TH IC Configurations

Figure 13 shows the processor energy consump-
tion of the various configurations. Note that each of
the TH IC configurations consume significantly less
energy than its comparably sized L0 configuration.
These savings are due to both more efficient access on
hits and elimination of the L0 execution time penalty.

Figure 13: Energy Consumption of L0 ICs and TH ICs

4. Conclusions

In this paper we have described a number of
enhancements to more effectively utilize an IRF. We
applied a more accurate model and used both dynamic
and static profiles to improve how instructions are
selected to reside in an IRF. We adapted instruction
selection and register re-assignment to increase
instruction redundancy. We also perform instruction
scheduling to address instruction packing constraints.
These enhancements significantly reduced energy con-
sumption and decreased code size.

We also showed that an IRF can be effectively
integrated with an L0 IC. The IRF can often supply an
instruction to be decoded during the extra cycle caused
by an L0 IC miss. An IRF effectively cuts the execu-
tion time penalty for utilizing an L0 IC in half. Using
an IRF further reduces total fetch energy since fewer
instructions access the more expensive L1 IC.

Finally we introduced the TH IC organization,
which serves as a filter cache for instructions that are
guaranteed to be hits. This approach completely elim-
inates the execution time penalty incurred by a con-
ventional L0/filter cache. Due to the high percentage
of instructions that can be accessed from the TH IC,
the savings in energy consumption are significant.

Lowering energy consumption and/or reducing
power requirements are increasingly more important
design constraints for embedded and general-purpose
processors. Instruction fetch is prime area for
improvement since fetches occur frequently and con-
sume a significant portion of a processor’s energy. An
IRF exploits instruction redundancy and a TH IC
exploits the regularity in instruction fetch behavior.

5. References

[1] S. Hines, J. Green, G. Tyson, and D. Whalley,
“Improving Program Efficiency by Packing Instruc-
tions into Registers,” Proceedings of the ACM
SIGARCH International Symposium on Computer
Architecture, pp. 260-271 (June 2005).

[2] T. Austin, E. Larson, and D. Ernst, “SimpleScalar:
An Infrastructure for Computer System Modeling,”
IEEE Computer 35 pp. 59-67 (February 2002).

[3] M. E. Benitez and J. W. Davidson, “A Portable
Global Optimizer and Linker,” Proceedings of the
SIGPLAN ’88 Symposium on Programming Lan-
guage Design and Implementation, pp. 329-338
(June 1988).

[4] S. Hines, D. Whalley, and G. Tyson, “Adapting Com-
pilation Techniques to Enhance the Packing of
Instructions into Registers,” ACM/IEEE Conference
on Compilers, Architecture, and Synthesis for
Embedded Systems, pp. 43-53 (October 2006).

[5] S. Hines, G. Tyson, and D. Whalley, “Addressing
Instruction Fetch Bottlenecks by Using an Instruction
Register File,” ACM Conference on Languages, Com-
pilers, and Tools for Embedded Systems, pp.
165-174 (June 2007).

[6] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A
Framework for Architectural-Level Power Analysis
and Optimizations,” Proceedings of the International
Symposium on Computer Architecture, pp. 83-94
(2000).

[7] S. Hines, D. Whalley, and G. Tyson, “Guaranteeing
Hits to Improve the Efficiency of a Small Instruction
Cache,” Proceedings of the ACM SIGMICRO Inter-
national Symposium on Microarchitecture, pp.
433-444 (December 2007).

