
Bibliographical Sketch

Frank Mueller was born on March 24, 1966 in Berlin, Germany. He re-

ceived his Bachelor of Science, majoring in Computer Science from the

Technische Universit�at Berlin, Germany, in 1987. In 1991, he graduated

from Florida State University with a Master of Science in Computer Sci-

ence. He is currently seeking his Ph.D. at Florida State University. His

professional interests include the areas of compilers, real-time systems, and

neural networks. He is a member of the ACM.

71

70

[Go90] M. C. Golumbic, V. Rainish, Instruction Scheduling beyond Basic

Blocks, IBM Journal of Research Development, Vol. 34, No. 1, January

1990, pp. 93-97

[He90] J. L. Hennessy, D. A. Patterson, Computer Architecture: A Quantitative

Approach, Morgan Kaufmann, 1990

[Hw89] W. W. Hwu, P. P. Chang, Inlining Function Expansion for Compil-

ing C Programs, Proceedings of the ACM SIGPLAN 1989 Conference on

Programming Language Design and Implementation, Vol. 24, No. 5, June

1989, pp. 246-257

[Mc89] S. McFarling, Program Optimization for Instruction Caches, 3rd Inter-

national Conference on Architectural Support for Programming Languages

and Operating Systems, April 1989, pp. 183-191

[Mo85] Motorola, MC68020 32-Bit Microprocessor User's Manual, Prentice-

Hall Inc., 1985

[Pa85] D. A. Patterson, Reduced Instruction Set Computers, Communications

of the ACM, Vol. 28, No. 1, January 1985, pp. 8-21

[Pe77] B. L. Peuto, L. J. Shustek, An Instruction Timing Model of CPU Per-

formance, Proceedings of the 4th Annual Symposium on Computer Archi-

tecture, March 1977, pp. 165-178

[Pe90] K. Pettis, R. C. Hansen, Pro�le Guided Code Positioning, Proceedings

of the ACM SIGPLAN 1990 Conference on Programming Language Design

and Implementation, Vol. 25, No. 6, June 1990, pp. 16-27

[Ri72] E. M. Riseman, C. C. Foster, The Inhibition of Potential Parallelism

by Conditional Jumps, IEEE Transactions on Computers, Vol. 21, No. 12,

December 1972, pp. 1405-1411

[Sc77] C.-P. Schnorr, An Algorithm for Transitive Closure with Linear Expected

Time, Computer Science Lecture Series, Springer, 1977, pp. 329-338

[Sm82] A. J. Smith, Cache Memories, Computing Surveys, Vol. 14, No. 3,

September 1982, pp. 473-530

[Wa62] S. Warshall, A Theorem on Boolean Matrices, Journal of the ACM, No.

9, 1962, pp. 11-12

References

[Ah86] A. V. Aho, R. Sethi, J. D. Ullman, Compilers { Principles, Techniques,

and Tools, Addison-Wesley, 1986

[Be91] M. E. Benitez, Register Transfer Standard, Computer Science Report No.

RM-91-01, University of Virginia, Charlottesville, Virginia, March 1991

[Bl76] Bloniaz, Fischer, Meyer, A note on the average time to compute transitive

closures, Automata Languages and Programming, Editors: Michaelson,

Milner, Edinburgh University Press, 1976

[Br76] J. Bruno, R. Sethi, Code Generation for a One-Register Machine, Jour-

nal of the ACM, Vol. 23, No. 3, July 1976, pp. 502-510

[Cl82] D. W. Clark, H. M. Levy, Measurement and Analysis of Instruction Use

in the VAX-11/780, Proceedings of the 9th Annual Symposium on Com-

puter Architecture, April 1982, pp. 9-17

[Da88] J. W. Davidson, A. M. Holler, A Study of a C Function Inliner, Software,

Vol. 18, No. 8, August 1988, pp. 775-790

[Da90-1] J. W. Davidson, D. B. Whalley, Reducing the Cost of Branches by

Using Registers, 4th International Conference on Architectural Support for

Programming Languages and Operating Systems, April 1990, pp. 182-191

[Da90-2] J. W. Davidson, D. B. Whalley, Ease: An Environment for Architec-

ture Study and Experimentation, Proceedings of the SIGMETRICS 1990

Conference on Measurement and Modeling of Computer Systems, May

1990, pp. 259-260

[Di87] D. R. Ditzel, H. R. McLellan, Branch Folding in the CRISP Micropro-

cessor: Reducing Branch Delay to Zero, Proceedings of the 14th Annual

Symposium on Computer Architecture, 1987, pp. 2-9

[Fl62] R. W. Floyd, Algorithm 97: Shortest Path, Communications of the ACM,

Vol. 5, No. 6, June 1962, p. 345

[Fu89] Stephen B. Furber, VLSI RISC Architecture and Organization, Marcel

Dekker, 1989

69

Appendix C

Measurements to Evaluate Instruction Alignment

Table C.1: Additional Instruction Fetches for Unaligned Instructions for 1Kb Cache

without Context Switch

percent of all instructions di�erence to SIMPLE

program SIMPLE LOOPS ALL LOOPS ALL

cal +6.46 +7.69 +6.02 +1.23 �0.44

quicksort +3.97 +1.41 +7.00 �2.57 +3.03

wc +10.15 +10.15 +7.79 �0.00 �2.36

grep +3.34 +7.86 +5.05 +4.52 +1.70

sort +5.19 +4.30 +4.28 �0.89 �0.91

od +3.48 +6.65 +4.01 +3.17 +0.53

mincost +9.64 +9.17 +10.23 �0.47 +0.59

bubblesort +8.66 +0.03 +0.07 �8.63 �8.60

ackerman +0.02 +0.02 +3.86 +0.00 +3.83

matmult +7.85 +7.87 +7.87 +0.02 +0.02

banner +1.08 +1.90 +2.32 +0.82 +1.24

sieve +11.65 +8.53 +8.53 �3.12 �3.12

compact +3.32 +5.61 +9.71 +2.28 +6.38

queens +6.01 +6.01 +16.57 +0.00 +10.56

dero� +12.49 +10.06 +16.15 �2.42 +3.67

average +6.22 +5.82 +7.30 �0.40 +1.08

68

67

Table B.4: Percent Change of Instruction Fetch Cost (Context Switch, Aligned)

cache size 1Kb 2Kb 4Kb 8Kb

program LOOPS ALL LOOPS ALL LOOPS ALL LOOPS ALL

cal �2.72 �2.39 �2.72 �2.53 �2.72 �2.53 �2.72 �2.53

quicksort �0.37 �3.82 �0.37 �3.82 �0.37 �3.82 �0.37 �3.82

wc +0.01 �3.88 +0.01 �3.88 +0.01 �3.88 +0.01 �3.88

grep +0.02 +26.40 +0.01 �3.21 +0.01 �3.23 +0.01 �3.23

sort �21.55 �27.24 �3.93 �9.27 �3.93 �11.98 �3.93 �11.98

od �14.33 �29.33 �14.68 �35.64 �3.33 �8.27 �3.33 �10.47

mincost +2.90 +8.90 �0.03 +16.47 �1.58 �4.18 �1.58 �4.18

bubblesort �18.91 �18.91 �18.91 �18.91 �18.91 �18.91 �18.91 �18.91

ackerman +0.00 �3.77 +0.00 �3.77 +0.00 �3.77 +0.00 �3.77

matmult �0.21 �0.21 �0.21 �0.21 �0.21 �0.21 �0.21 �0.21

banner �1.18 �8.07 �1.18 �8.07 �1.18 �8.07 �1.18 �8.07

sieve �8.52 �8.52 �8.52 �8.52 �8.52 �8.52 �8.52 �8.52

compact �13.62 �8.58 �7.74 �13.59 �4.52 �13.05 �0.01 �3.16

queens +0.00 +0.20 +0.00 +0.20 +0.00 +0.20 +0.00 +0.20

dero� +0.71 �2.40 +1.29 �6.76 +1.32 �6.88 �0.11 �6.43

average �5.18 �5.44 �3.80 �6.77 �2.93 �6.47 �2.72 �5.93

Table B.5: Percent Change of Instruction Fetch Cost (No Context Switch, Aligned)

cache size 1Kb 2Kb 4Kb 8Kb

program LOOPS ALL LOOPS ALL LOOPS ALL LOOPS ALL

cal �2.97 �1.90 �2.97 �2.92 �2.97 �2.92 �2.97 �2.92

quicksort �0.38 �3.83 �0.38 �3.95 �0.38 �3.95 �0.38 �3.95

wc +0.01 �4.55 +0.01 �4.55 +0.01 �4.55 +0.01 �4.55

grep �0.02 +26.29 �0.02 �3.14 �0.02 �3.39 �0.02 �3.39

sort �21.69 �27.49 �4.05 �9.45 �4.05 �12.24 �4.05 �12.24

od �14.59 �29.19 �14.71 �35.87 �3.23 �7.77 �3.23 �10.31

mincost +3.13 +9.22 �0.11 +16.33 �1.76 �6.30 �1.76 �6.34

bubblesort �18.92 �18.92 �18.92 �18.92 �18.92 �18.92 �18.92 �18.92

ackerman +0.00 �3.86 +0.00 �3.86 +0.00 �3.86 +0.00 �3.86

matmult �0.21 �0.21 �0.21 �0.21 �0.21 �0.21 �0.21 �0.21

banner �1.18 �8.07 �1.18 �8.07 �1.18 �8.07 �1.18 �8.07

sieve �8.53 �8.53 �8.53 �8.53 �8.53 �8.53 �8.53 �8.53

compact �14.70 �8.84 �8.40 �16.03 �4.94 �15.67 �0.22 �5.13

queens +0.00 �0.03 +0.00 �0.03 +0.00 �0.03 +0.00 �0.03

dero� +0.30 �2.10 +1.13 �7.40 +1.17 �7.94 �0.87 �7.40

average �5.32 �5.47 �3.89 �7.11 �3.00 �6.95 �2.82 �6.39

66

Table B.2: Change of Miss Ratio (Context Switch, Aligned)

cache 1Kb 2Kb 4Kb 8Kb

program LOOPS ALL LOOPS ALL LOOPS ALL LOOPS ALL

cal +0.05 +0.09 +0.05 +0.07 +0.05 +0.07 +0.05 +0.07

quicksort +0.00 +0.02 +0.00 +0.02 +0.00 +0.02 +0.00 +0.02

wc +0.00 +0.08 +0.00 +0.08 +0.00 +0.08 +0.00 +0.08

grep +0.01 +3.54 +0.00 +0.02 +0.00 +0.02 +0.00 +0.02

sort �2.57 �2.40 +0.02 +0.39 +0.02 +0.04 +0.02 +0.04

od �2.47 �4.56 �2.43 �5.81 �0.01 +0.27 �0.01 �0.02

mincost +0.96 +3.31 +0.25 +3.39 +0.03 +0.31 +0.03 +0.31

bubblesort +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00

ackerman +0.00 +0.01 +0.00 +0.01 +0.00 +0.01 +0.00 +0.01

matmult �0.00 �0.00 �0.00 �0.00 �0.00 �0.00 �0.00 �0.00

banner +0.06 +0.21 +0.06 +0.21 +0.06 +0.21 +0.06 +0.21

sieve +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00

compact �2.36 �0.64 �1.17 �1.38 �0.58 �1.12 +0.02 +0.25

queens +0.00 +0.03 +0.00 +0.03 +0.00 +0.03 +0.00 +0.03

dero� +0.09 +0.62 +0.16 +0.05 +0.16 +0.03 �0.01 +0.09

average �0.42 +0.02 �0.20 �0.20 �0.02 �0.00 +0.01 +0.07

Table B.3: Change of Miss Ratio (No Context Switch, Aligned)

cache size 1Kb 2Kb 4Kb 8Kb

program LOOPS ALL LOOPS ALL LOOPS ALL LOOPS ALL

cal +0.01 +0.14 +0.01 +0.02 +0.01 +0.02 +0.01 +0.02

quicksort +0.00 +0.02 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00

wc +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00

grep +0.00 +3.46 +0.00 +0.03 +0.00 +0.00 +0.00 +0.00

sort �2.55 �2.41 +0.00 +0.36 +0.00 +0.01 +0.00 +0.01

od �2.45 �4.39 �2.34 �5.62 +0.00 +0.32 +0.00 +0.00

mincost +0.97 +3.27 +0.22 +3.11 +0.00 +0.03 +0.00 +0.02

bubblesort +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00

ackerman +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00

matmult +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00

banner +0.06 +0.21 +0.06 +0.21 +0.06 +0.21 +0.06 +0.21

sieve +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00

compact �2.45 �0.66 �1.21 �1.70 �0.60 �1.40 �0.00 +0.00

queens +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00

dero� +0.04 +0.64 +0.13 �0.04 +0.14 �0.10 �0.10 �0.04

average �0.42 +0.02 �0.21 �0.24 �0.03 �0.06 �0.00 +0.02

Appendix B

Cache Measurements for Aligned Instructions

Table B.1: Program Size in Bytes and Percent Change for Aligned Instructions

size in bytes change of size

program SIMPLE LOOPS ALL LOOPS ALL

cal 1,288 1,340 1,464 4.04% 13.66%

quicksort 976 1,012 1,156 3.69% 18.44%

wc 688 776 1,124 12.79% 63.37%

grep 3,068 3,204 5,388 4.43% 75.62%

sort 6,224 7,044 9,712 13.17% 56.04%

od 4,768 4,884 8,016 2.43% 68.12%

mincost 3,616 3,748 4,712 3.65% 30.31%

bubblesort 544 564 560 3.68% 2.94%

ackerman 284 284 292 0.00% 2.82%

matmult 580 600 600 3.45% 3.45%

banner 696 836 972 20.11% 39.66%

sieve 276 280 280 1.45% 1.45%

compact 4,536 4,668 8,040 2.91% 77.25%

queens 376 376 424 0.00% 12.77%

dero� 22,872 24,032 61,224 5.07% 167.68%

average 3,386 3,577 6,931 5.39% 42.24%

65

64

Table A.4: Percent Change of Instruction Fetch Cost (Context Switch, Unaligned)

cache size 1Kb 2Kb 4Kb 8Kb

program LOOPS ALL LOOPS ALL LOOPS ALL LOOPS ALL

cal �1.78 �3.26 �1.78 �3.26 �1.78 �3.26 �1.78 �3.26

quicksort �3.01 �0.75 �3.01 �0.75 �3.01 �0.75 �3.01 �0.75

wc +0.00 �6.38 +0.00 �6.38 +0.00 �6.38 +0.00 �6.38

grep +4.78 �1.00 +4.77 �1.51 +4.77 �1.51 +4.77 �1.51

sort +7.44 �12.67 �4.62 �9.94 �4.62 �12.68 �4.62 �12.68

od �3.89 +14.19 �5.57 +9.56 +0.14 �9.89 +0.14 �9.89

mincost +1.16 +13.89 +4.53 +14.99 �1.93 �3.31 �1.93 �3.31

bubblesort �25.98 �25.95 �25.98 �25.95 �25.98 �25.95 �25.98 �25.95

ackerman +0.00 �0.02 +0.00 �0.02 +0.00 �0.02 +0.00 �0.02

matmult �0.10 �0.10 �0.10 �0.10 �0.10 �0.10 �0.10 �0.10

banner �0.11 �6.22 �0.11 �6.22 �0.11 �6.22 �0.11 �6.22

sieve �11.64 �11.64 �11.64 �11.64 �11.64 �11.64 �11.64 �11.64

compact +2.21 +25.02 +13.79 +6.28 +17.76 +3.64 +2.56 +3.67

queens +0.00 +12.89 +0.00 +12.89 +0.00 +12.89 +0.00 +12.89

dero� �1.22 +2.67 �2.18 �2.28 �1.38 �2.08 �1.87 �2.87

average �2.14 +0.04 �2.13 �1.62 �1.86 �4.48 �2.90 �4.53

Table A.5: Percent Change of Instruction Fetch Cost (No Context Switch, Unaligned)

cache size 1Kb 2Kb 4Kb 8Kb

program LOOPS ALL LOOPS ALL LOOPS ALL LOOPS ALL

cal �1.72 �3.41 �1.72 �3.41 �1.72 �3.41 �1.72 �3.41

quicksort �2.98 �0.82 �2.98 �0.82 �2.98 �0.82 �2.98 �0.82

wc +0.00 �6.99 +0.00 �6.99 +0.00 �6.99 +0.00 �6.99

grep +4.86 �0.73 +4.88 �1.66 +4.87 �1.66 +4.87 �1.66

sort +7.05 �13.07 �4.95 �10.25 �4.95 �13.08 �4.95 �13.08

od �3.68 +15.34 �5.64 +9.48 +0.06 �9.81 +0.06 �9.81

mincost +1.14 +14.94 +4.67 +14.64 �2.28 �5.75 �2.28 �5.76

bubblesort �25.92 �25.89 �25.92 �25.89 �25.92 �25.89 �25.92 �25.89

ackerman +0.00 �0.02 +0.00 �0.02 +0.00 �0.02 +0.00 �0.02

matmult �0.19 �0.19 �0.19 �0.19 �0.19 �0.19 �0.19 �0.19

banner �0.11 �6.22 �0.11 �6.22 �0.11 �6.22 �0.11 �6.22

sieve �11.65 �11.65 �11.65 �11.65 �11.65 �11.65 �11.65 �11.65

compact +2.06 +25.51 +14.35 +4.78 +18.30 +1.53 +2.20 +1.58

queens +0.00 +12.60 +0.00 +12.60 +0.00 +12.60 +0.00 +12.60

dero� �0.88 +3.56 �2.08 �2.23 �0.73 �1.71 �1.18 �2.83

average �2.13 +0.20 �2.09 �1.85 �1.82 �4.87 �2.92 �4.94

63

Table A.2: Change of Miss Ratio (Context Switch, Unaligned)

cache size 1Kb 2Kb 4Kb 8Kb

program LOOPS ALL LOOPS ALL LOOPS ALL LOOPS ALL

cal +0.00 +0.04 +0.00 +0.04 +0.00 +0.04 +0.00 +0.04

quicksort �0.00 +0.01 �0.00 +0.01 �0.00 +0.01 �0.00 +0.01

wc +0.00 +0.08 +0.00 +0.08 +0.00 +0.08 +0.00 +0.08

grep �0.01 +0.08 �0.01 +0.02 �0.01 +0.02 �0.01 +0.02

sort +1.52 +0.06 +0.04 +0.41 +0.04 +0.06 +0.04 +0.06

od �0.60 +4.03 �0.84 +3.20 +0.01 �0.01 +0.01 �0.01

mincost +0.60 +3.56 +0.85 +2.69 +0.05 +0.33 +0.05 +0.33

bubblesort �0.01 �0.01 �0.01 �0.01 �0.01 �0.01 �0.01 �0.01

ackerman +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00

matmult +0.01 +0.01 +0.01 +0.01 +0.01 +0.01 +0.01 +0.01

banner +0.09 +0.29 +0.09 +0.29 +0.09 +0.29 +0.09 +0.29

sieve +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00

compact +0.00 +3.74 +1.57 +0.64 +1.80 +0.24 +0.04 +0.24

queens +0.00 +0.03 +0.00 +0.03 +0.00 +0.03 +0.00 +0.03

dero� +0.18 +0.71 +0.06 +0.09 +0.16 +0.12 +0.10 +0.02

average +0.12 +0.84 +0.12 +0.50 +0.14 +0.08 +0.02 +0.07

Table A.3: Change of Miss Ratio (No Context Switch, Unaligned)

cache size 1Kb 2Kb 4Kb 8Kb

program LOOPS ALL LOOPS ALL LOOPS ALL LOOPS ALL

cal +0.01 +0.02 +0.01 +0.02 +0.01 +0.02 +0.01 +0.02

quicksort +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00

wc +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00

grep �0.00 +0.11 +0.00 +0.00 �0.00 +0.00 �0.00 +0.00

sort +1.45 +0.01 +0.00 +0.37 +0.00 +0.01 +0.00 +0.01

od �0.55 +4.09 �0.82 +3.08 +0.00 +0.00 +0.00 +0.00

mincost +0.58 +3.61 +0.80 +2.44 +0.00 +0.02 +0.00 +0.02

bubblesort +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00

ackerman +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00

matmult +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00

banner +0.09 +0.29 +0.09 +0.29 +0.09 +0.29 +0.09 +0.29

sieve +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00

compact �0.02 +3.68 +1.57 +0.42 +1.75 �0.00 �0.00 +0.00

queens +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00

dero� +0.22 +0.79 +0.07 +0.10 +0.23 +0.15 +0.17 +0.02

average +0.12 +0.84 +0.11 +0.45 +0.14 +0.03 +0.02 +0.02

Appendix A

Cache Measurements for Unaligned Instructions

Table A.1: Program Size in Bytes and Percent Change for Unaligned Instructions

size in bytes change of size

program SIMPLE LOOPS ALL LOOPS ALL

cal 1,172 1,206 1,300 2.90% 10.92%

quicksort 824 848 964 2.91% 16.99%

wc 664 722 1,084 8.73% 63.25%

grep 2,532 2,668 4,674 5.37% 84.60%

sort 5,272 5,912 8,268 12.14% 56.83%

od 4,126 4,244 7,208 2.86% 74.70%

mincost 3,172 3,312 4,254 4.41% 34.11%

bubblesort 498 512 510 2.81% 2.41%

ackerman 284 284 288 0.00% 1.41%

matmult 558 570 570 2.15% 2.15%

banner 512 610 714 19.14% 39.45%

sieve 260 266 266 2.31% 2.31%

compact 4,216 4,338 7,574 2.89% 79.65%

queens 314 314 354 0.00% 12.74%

dero� 21,524 22,658 61,112 5.27% 183.92%

average 3,062 3,231 6,609 4.93% 44.36%

62

Chapter 9

Conclusions

A new global optimization method called code replication was developed which

can be applied to eliminate almost all unconditional branches in a program. The

resulting programs are executing 6.3% less instructions in average, thus gener-

alized replication outperforms replication techniques applied to loops only. The

number of instructions between branches is increased by 28.3% on the aver-

age, so that the opportunities for instruction scheduling in a RISC environment

are improved. The cache work decreases by 5-6% for aligned instructions but

actually increases slightly for unaligned instructions. The static number of in-

structions increases by an average of 42.5%. The direct compile time overhead

for the replication process itself was found to be minimal, but following opti-

mization stages must process more RTLs, which increases the overall compile

time of the optimizer by an average of 72.5% (depending on the number of

replicated RTLs).

The generalized technique of code replication should be applied in the back-

end of highly optimizing compilers if the execution time but not the program

size is the major concern. Even more gain is expected by the technique when

applied in conjunction with pro�ling data. The results of the test set also show

that the replication of the jump condition at natural loops on its own, commonly

performed in optimizing compilers, results in about 50% of the gains which can

be achieved by generalized code replication.

61

60

tures. Furthermore, the elimination of unconditional branches may improve the

schedulability of instructions. The execution of branch instructions introduces

problems with pipelines because the destination is not known at the time of

the fetch of the next instruction. This problem can be resolved by delaying the

e�ect of branches by one or two pipeline cycles and scheduling non-interfering

instructions to �ll the unused pipeline slots. Instruction scheduling can also be

used to handle delays of load and store instructions. For example, an attempt

is made to move a load instruction for a register away from the next use of the

same register to avoid interlocks caused by the delayed fetch. If no candidates

for instruction scheduling can be found, the advantages of pipelines cannot be

fully exploited. The average number of instructions between branches increases

with the use of code replication. Thus, it becomes easier to �ll delay slots for

certain reduced instructions which improves the utilization of an instruction

pipeline.

Lately, several attempts have been made to reorganize the positional order

of basic blocks based on pro�ling data [Mc89,Pe90]. Code replication could

take advantage of pro�ling data in two ways. First, the selection of basic blocks

for a replication sequence can be modi�ed to favor frequently executed blocks

rather than the shortest path. Second, pro�ling data can be used to decide

if a particular replication should not be performed because the unconditional

branch being eliminated is rarely executed.

Chapter 8

Future Work

Currently, indirect branches are excluded from replication. The algorithm for

code replication could be extended to copy indirect jumps, the associated jump

tables, and adjust the control
ow accordingly. But not only the branch table

would have to be replicated, all basic blocks which can be the destination of

the indirect branch would have to be copied. The e�ect of such a massive

replication has to be evaluated to determine if replication at indirect jumps is

really desirable.

The replication sequence for unconditional branches is determined by �nding

the shortest path with respect to the number of basic blocks in the current

implementation. Instead, the number of RTLs could be used as a cost function

to determine the shortest path. The e�ect of this approach should be compared

to the current results.

Invoking code replication at a later stage in the optimizing phase of the

compiler might reduce the compile-time overhead considerably. It should be de-

termined whether sources for other optimizations are reduced by such a change

and whether the taken measurements are a�ected.

The measurements presented in the last chapter show that the cache work

can be reduced on processors with a uniform instruction alignment. Thus, the

impact of code replication on reduced instruction sets should be evaluated to

get more information about the impact of code replication on RISC architec-

59

58

be executed sequentially as before but they now occupy adjacent memory loca-

tions. Thus, code replication places instructions together which are likely to be

executed in a sequence but increases the distance between conditional branch

instructions and their branch destinations. Nevertheless, the program's spatial

locality can be improved by replicating code.

As discussed earlier, the code replication technique increases the size of some

loop bodies so that more instructions can be found in a loop after code replica-

tion is applied. If a particular block inside a loop was duplicated, the execution

may alternate between the original block and its duplicate. Thus, the temporal

locality of a program can be degraded.

Nevertheless, code replication reduces the total number of instructions exe-

cuted such that the average fetch cost is actually reduced for aligned instructions

in particular.

57

This shows that even if the number of instructions executed decreases there can

be a negative impact on the cache performance mostly due to expanded loops.

The impact on context switching was minimal. Recall that each test set was

compared to the corresponding SIMPLE version with the same con�guration.

Comparable changes in the measurements were found with and without context

switching. In fact, the miss ratio only increased slightly with context switching

on.

The tables listing the cache miss ratio in the Appendices A and B show

that the misses increase by 0.02-0.84% in average for unaligned instructions de-

pending on the cache size. For replication at loops, the increase varies between

0.02% and 0.14%. When instructions are aligned, the miss ratio recorded for

code replication is almost the same as the miss ratio for the SIMPLE version.

For a 2Kb cache a 0.02-0.24% reduction in the ratio has even been found for

generalized code replication. If replication at loops is applied only, the reduc-

tion of the miss ratio varies between 0.42% and 0% for aligned instructions.

Recall that the miss ratio can be a misleading measurement when the number

of instructions changes. For example, for a 1Kb cache with context switching

and aligned instructions, the program \banner" has a 0.21% increase in the

miss ratio while the fetch cost decreases by 8.1% due to the reduced number of

instructions executed after code replication.

The technique of code replication causes instructions to be laid out di�er-

ently. Before replication, the instruction before an unconditional branch will be

executed shortly before the instruction at the target address of the jump but

their locations can be distant. After code replication, the two instructions will

56

one line. Table C.1 in the Appendix C illustrates that the percentage of in-

structions causing alignment problems increased by 6% for generalized code

replication compared to the SIMPLE version.

1

In fact, after aligning the in-

structions the fetch cost for the program \compact" is reduced by 8.5%. The

program \bubblesort" is an example for a drastically reduced fetch cost for un-

aligned instructions with JUMPS being applied, but at the same time 8.6% less

instructions caused alignment problems compared to SIMPLE. In this case, the

reduction in fetch cost for unaligned instructions is partially due to instructions

spanning more than one line. Overall, unaligned instructions can cause unpre-

dictable cache measurements because their impact can dominate the changes of

cache measurements caused by code replication.

For aligned instructions, both replication techniques (LOOPS and ALL)

reduce the instruction fetch cost by about 5%. The generalized replication

algorithm JUMPS performs slightly better than LOOPS. This result is more

conclusive since unpredictable side-e�ects of instructions spanning more than

one cache line cannot occur.

But not all programs improved with respect to the fetch cost: Although the

number of instructions executed for the program \grep" decreased by 3.4% after

applying JUMPS, the fetch cost increased by 26% for aligned instructions and

the static number of instructions increased by 75%. In this case, the cost of the

extra misses outweights the reduction in the number of instructions executed.

1

The values in Table C.1 are derived by calculating the di�erence between the number

of references of unaligned instructions and the number of references of aligned instructions.

Then, these additional references are related to the total number of references of unaligned

instructions resulting in the \percent of additional instructions." The last two columns rep-

resent the di�erence of columns 2, 3 and columns 2, 4 respectively.

55

Figure 7.1). Notice that some programs initially �t in the cache, but after code

replication is applied, they might not �t anymore. Therefore, capacity misses

can also be introduced.

cache boundary

: :

instr 1

instr 2 instr 1

cache boundary instr 3 instr 2

: :

: :

instr 4

instr 3

instr 4

instr 1'

cache boundary

: :

instr 2'

Without Replication With Replication

Figure 7.1: Instruction Alignment in a Cache

An unaligned instruction can also span a line boundary causing two cache

references, one for each line, whenever the instruction has to be fetched (see

instructions 2 and 2' in the replicated code of Figure 7.1). With instruction

alignment, an instruction spanning two adjacent lines can be avoided if the size

of all instructions are the same and if the line size is an integer multiple of the

instruction size. Therefore, aligned instructions were simulated by �xing the

instruction size to 4 bytes.

For example, the instruction fetch cost for the program \compact" increases

by 25% for unaligned instructions in a 1Kb cache. But 16% of the instruc-

tion fetches are due to alignment problems where instructions span more than

54

Table 7.5 shows the change of the fetch cost for a 1Kb direct-mapped cache.

The measurements of the SIMPLE version were related to the programs where

replication occurred only at loops and those where code replication was per-

formed. In other words, each set of measurements is compared to the corre-

sponding values of the SIMPLE version with the same con�guration.

Table 7.5: Percent Change in Instruction Fetch Cost for 1Kb Direct-Mapped Cache

unaligned instructions aligned instructions

context sw on o� on o�

program LOOPS ALL LOOPS ALL LOOPS ALL LOOPS ALL

cal �1.78 �3.26 �1.72 �3.41 �2.72 �2.39 �2.97 �1.90

quicksort �3.01 �0.75 �2.98 �0.82 �0.37 �3.82 �0.38 �3.83

wc +0.00 �6.38 +0.00 �6.99 +0.01 �3.88 +0.01 �4.55

grep +4.78 �1.00 +4.86 �0.73 +0.02 +26.40 �0.02 +26.29

sort +7.44 �12.67 +7.05 �13.07 �21.55 �27.24 �21.69 �27.49

od �3.89 +14.19 �3.68 +15.34 �14.33 �29.33 �14.59 �29.19

mincost +1.16 +13.89 +1.14 +14.94 +2.90 +8.90 +3.13 +9.22

bubblesort �25.98 �25.95 �25.92 �25.89 �18.91 �18.91 �18.92 �18.92

ackerman +0.00 �0.02 +0.00 �0.02 +0.00 �3.77 +0.00 �3.86

matmult �0.10 �0.10 �0.19 �0.19 �0.21 �0.21 �0.21 �0.21

banner �0.11 �6.22 �0.11 �6.22 �1.18 �8.07 �1.18 �8.07

sieve �11.64 �11.64 �11.65 �11.65 �8.52 �8.52 �8.53 �8.53

compact +2.21 +25.02 +2.06 +25.51 �13.62 �8.58 �14.70 �8.84

queens +0.00 +12.89 +0.00 +12.60 +0.00 +0.20 +0.00 �0.03

dero� �1.22 +2.67 �0.88 +3.56 +0.71 �2.40 +0.30 �2.10

average �2.14 +0.04 �2.13 +0.20 �5.18 �5.44 �5.32 �5.47

For unaligned instructions, code replication does not change the average in-

struction fetch cost signi�cantly while a reduction of 2.1% is found for LOOPS.

The �ndings for code replication can be explained by an increase in the size

of some loops such that a loop occupies more lines after applying code replica-

tion than before. Thus, each time the instructions of such a loop are fetched,

additional hits or misses will be caused by the replicated lines of the loop (see

53

The simulation of instruction caching required the insertion of trace code for

each program. Many instruction sets support di�erent branch instructions for

short jumps and for long jumps. Often, the selection of the branch instruction is

made by the assembler, and a compiler might not be able to analyze the actual

size of all instructions. To avoid inaccurate results, a two-pass compilation

was implemented for the cache analysis. In the �rst pass, the size of each

instruction is determined by the assembler without inserting trace code. Rather

than inspecting the object code and using a table lookup method, which may be

rather complicated for a highly encoded architecture, a label is inserted before

and after each instruction. The assembler is used to determine the size of each

instruction, the di�erence between each pair of labels. In the second pass, trace

instructions are inserted into the program code but the instruction sizes are

actually taken from a �le generated by the �rst pass.

A collection of tables showing the cache measurements and the program sizes

can be found in the Appendices A and B. The following cache con�gurations

were varied:

� size: Caches with sizes of 1Kb, 2Kb, 4Kb, and 8Kb were investigated.

� context switching: Measurements were taken with and without simulating

context switching to evaluate the impact on multi-tasking systems and

single-tasking system such as personal computers.

� alignment: Unaligned instructions and aligned instructions were simulated.

The size of aligned instructions was set to 4 bytes. Aligned instructions

simulate the impact of caching on reduced instruction sets.

52

7.2 Impact on Instruction Caching

The cache performance was tested for cache sizes of 1Kb, 2Kb, 4Kb, and 8Kb.

The number of lines were 64, 128, 256, and 512, respectively. For each di�erent

cache size a direct-mapped cache with 16 bytes per line was simulated. Both the

miss ratio and the fetch cost were measured in the experiment. The estimation of

the fetch cost is based on the assumption that misses are ten times as expensive

as hits when instruction prefetching is performed. Thus, fetch cost is calculated

as follows:

fetch cost = cache hits � cache access time+ cache misses �miss penalty

where the cache access time is 1 time unit and the miss penalty is 10 units of

time.

Context-switches were simulated, invalidating the entire cache every 10000

units of work with respect to the fetch cost. The estimates for the cache access

time, the miss penalty, and the context-switching interval were adopted from

Smith's cache studies [Sm82].

Notice that the overall cost of instruction fetching can decrease while the

miss ratio increases for the same program. Such a behavior can be explained by

the reduced number of instructions executed after replication and illustrates the

short-comings of the miss ratio as a measurement when the dynamic behavior

of a program changes.

The relatively small cache sizes were chosen to simulate a realistic environ-

ment where programs do not �t completely in the cache. Recall that library

routines were not measured so that the simulated cache sizes correspond to

larger caches as found in a realistic environment.

51

the generalized version of code replication is applied.

Table 7.4 indicates the average number of instructions executed between two

branch instructions in the �rst column (SIMPLE) and its change in percent for

LOOPS and ALL. A 28.3% increase in the number of instructions executed

between branches is measured so that an average of 6.5 instructions is found

between branches after code replication was applied. Thus, the opportunities

for instruction scheduling may improve if code replication is applied in a RISC

environment. Or, in a large instruction word (LIW) environment more potential

parallelism can be found due to the increase of the basic block size [Ri72]. Also,

instruction caches may perform more e�ciently when instructions are requested

from consecutive memory locations and branches occur less frequently.

Table 7.4: Total Number and Percent Change of Instructions between Branches

program SIMPLE LOOPS ALL

cal 5.90 �2.03% �13.56%

quicksort 5.47 +10.24% +7.13%

wc 4.35 +0.00% +173.79%

grep 5.50 +0.00% +29.64%

sort 4.90 �8.37% +46.33%

od 6.05 +9.42% +34.55%

mincost 5.23 +10.13% +19.31%

bubblesort 5.96 �21.64% �21.48%

ackerman 2.71 +0.00% +16.97%

matmult 9.71 +5.05% +5.05%

banner 5.23 +22.18% +33.65%

sieve 3.45 �6.67% �6.67%

compact 6.33 +10.90% +23.38%

queens 4.40 +0.00% +0.23%

dero� 2.93 +0.00% +76.11%

average 5.21 +1.95% +28.30%

50

Table 7.3: Total Number and Percent Change of Instructions

program static instructions dynamic instructions executed

SIMPLE LOOPS ALL SIMPLE LOOPS ALL

cal 323 +4.33% +13.93% 36,290 �3.09% �3.11%

quicksort 245 +3.67% +18.37% 536,566 �0.39% �3.96%

wc 173 +12.72% +63.01% 421,038 �0.00% �4.58%

grep 775 +4.39% +74.97% 1,309,586 �0.03% �3.41%

sort 1,558 +13.16% +56.35% 902,075 �8.94% �12.51%

od 1,198 +2.67% +71.45% 1,980,808 �2.59% �10.30%

mincost 906 +4.08% +31.13% 302,062 �1.53% �5.76%

bubblesort 137 +3.65% +2.92% 20,340,231 �18.92% �18.92%

ackerman 72 +0.00% +2.78% 2,239,579 �0.00% �3.86%

matmult 146 +3.42% +3.42% 4,891,507 �0.21% �0.21%

banner 177 +19.77% +38.98% 2,473 �1.66% �8.21%

sieve 70 +1.43% +1.43% 1,759,088 �8.53% �8.53%

compact 1,143 +2.89% +78.65% 10,602,159 �0.42% �4.16%

queens 94 +0.00% +12.77% 189,518 �0.00% �0.05%

dero� 5,730 +5.08% +167.61% 360,051 �0.42% �7.12%

average 850 +5.42% +42.52% 3,058,202 �3.12% �6.31%

ches are avoided by code replication. The result, however, was an increase of

the number of instructions by a factor of 2.7. Most of the unconditional jumps

in the program were not due to loops, and the resulting replication sequences

occasionally became lengthy.

The dynamic measurements in Table 7.3 show the change of the number of

instructions executed. There is a 6.3% dynamic decrease when code replication

is invoked, while LOOPS exceeds a 3.1% reduction. Compared with the simple

approach of eliminating unconditional branches in case of natural loops, the

number of instructions executed is reduced by another 3.2% in average. Thus,

only about half of the dynamic improvement is due to the traditional method

of removing unconditional branches at loops. The rest of the gain occurs when

49

Table 7.2: Percent of Unconditional Branches

program static dynamic

SIMPLE LOOPS ALL SIMPLE LOOPS ALL

cal 1.86 0.89 0.00 3.16 0.07 0.00

quicksort 3.67 1.18 0.00 1.14 0.11 0.00

wc 6.94 4.10 0.00 7.07 7.07 0.00

grep 8.39 7.29 0.59 3.40 3.38 1.69

sort 6.87 3.91 0.00 12.22 8.94 0.00

od 6.34 4.80 0.00 5.78 3.45 0.00

mincost 5.08 2.76 0.00 2.50 1.40 0.00

bubblesort 4.38 0.70 0.00 0.05 0.00 0.00

ackerman 2.78 2.78 0.00 3.86 3.86 0.00

matmult 4.11 0.00 0.00 0.21 0.00 0.00

banner 5.65 1.89 0.00 4.12 2.47 0.00

sieve 1.43 0.00 0.00 8.53 0.00 0.00

compact 5.42 4.51 0.00 2.53 1.21 0.00

queens 1.06 1.06 0.00 0.05 0.05 0.00

dero� 9.95 9.05 0.03 7.21 7.18 0.18

average 4.93 3.00 0.04 4.12 2.61 0.12

cation sequence can be found for the unconditional transfers to this basic block.

The columns SIMPLE in Table 7.3 indicate the total number of instructions

and the other columns represent the change in the number of instructions rela-

tive to the SIMPLE version of each program. The static change is proportional

to the growth of the code size. The code size in bytes is shown in Table A.1

in Appendix A. When LOOPS is applied, the number of instructions increases

by only 5.4%. With generalized code replication, on the other hand, about an

average of 42.5% more instructions are generated.

The change of the code size is directly related to the total number of un-

conditional branches and the cause of the unconditional branch. The program

\dero�" initially has 570 unconditional branches, and almost all of these bran-

48

Table 7.1: Test Set of C Programs

Class Name Description

banner banner generator

cal calendar generator

compact �le compression

dero� remove nro� constructs

Utilities grep pattern search

od octal dump

sort sort or merge �les

wc word count

ackerman ackerman function

bubblesort sort numbers

matmult matrix multiplication

Benchmarks sieve iteration

queens 8-queens problem

quicksort sort numbers (iterative)

User code mincost VLSI circuit partitioning

7.1 Static and Dynamic Behavior

Table 7.2 shows the number of unconditional branches relative to the total

number of instructions for the static and dynamic measurements. Only uncon-

ditional direct jumps to a designated label are counted while indirect branches,

call instructions, and return statements are excluded. The number of uncon-

ditional branches is reduced by about 36.9% dynamically when LOOPS was

applied, and with code replication practically no unconditional branches are

left. Thus, code replication results in a reduction of instructions executed by at

least the number of unconditional branches which could be avoided dynamically.

The unconditional branches of the program \grep" which could not be re-

moved by code replication are transfers to a basic block including an indirect

branch. Since indirect branches were excluded from being replicated, no repli-

Chapter 7

Measurements

Dynamic and static measurements were taken from a number of well-known

benchmarks, UNIX utilities, and one application (see Table 7.1). The code was

generated for the Motorola 68020 processor [Mo85]. Also, the impact of code

replication on instruction caching was investigated. All measurements include

the standard code optimization techniques such as branch chaining, instruction

selection, register coloring, common subexpression elimination, constant folding,

code motion, strength reduction, and constant folding at conditional branches

(algorithm CONSTS). Library routines could not be measured since the source

code was not available to be compiled by VPO.

Each program was tested with three di�erent sets of optimizations:

� SIMPLE: Only the standard optimizations were performed.

� LOOPS: Standard optimizations and replication within natural loops with

respect to the termination condition (algorithm LOOPS) were invoked.

� ALL: All possible replications (algorithm JUMPS) including the improve-

ments discussed in the last chapter were performed together with the stan-

dard optimizations.

47

46

branch chaining;

dead code elimination;

jump minimization by reordering basic blocks;

code replication (JUMPS or LOOPS alternatively);

dead code elimination;

instruction selection;

register assignment;

if (change)

instruction selection;

do f

register allocation by register coloring;

instruction selection;

common subexpression elimination;

dead variable elimination;

code motion;

strength reduction;

recurrences;

instruction selection;

branch chaining;

constant folding at conditional branches (CONSTS);

code replication (JUMPS or LOOPS alternatively);

dead code elimination;

g while (change);

Figure 6.5: Order of Optimizations

45

code replication, the compile time overhead for the replication process itself is

minimal, but the following optimization stages process more RTLs. The impact

of LOOPS on the compile time is minimal.

After most unconditional branches have been removed, instruction selection

is performed followed by the common optimization phases such as register col-

oring, common subexpression elimination, code motion, and strength reduction.

Then, CONSTS is invoked to replace or eliminate comparisons of constants

together with the associated branches.

In order to replace all unconditional branches generated by CONSTS or

introduced by remote preheaders, code replication is reinvoked. If any improve-

ments to the RTLs were applied since register coloring was performed, a set

of optimizations including register coloring, common subexpression elimination,

and code replication, will be reapplied.

The order in which the optimizations are applied is summarized in Figure

6.5.

44

1. Algorithm LOOPS: Unconditional jumps are often needed to either enter a

natural loop or jump back to the header of such a loop. This unconditional

branch is replaced by the termination condition of the loop. The replicated

condition has to be inverted if copied into the preheader of the loop. In

fact, by replicating the termination condition, the opportunities for other

optimizations such as common subexpression elimination are improved.

Depending on the original layout of the loop, either one unconditional

jump is removed at the entry point, or one unconditional branch is saved

per loop iteration. This algorithm also handles nested loops.

2. Algorithm JUMPS: This algorithm was discussed in the previous sections

of this chapter. It is a generalized approach which attempts to replace any

occurrences of unconditional branches by replicating code. Again, sources

for further optimizations such as common subexpression elimination and

register coloring are produced.

The traditional approach, algorithm LOOPS, was compared with the algo-

rithm JUMPS with respect to its impact on optimizing the code of programs.

In addition, an algorithm CONSTS to perform constant folding at condi-

tional branches was implemented. This algorithm may introduce unconditional

branches which then become a candidate for removal by the code replication

algorithm JUMPS.

The code replication algorithms are integrated into the optimizing back-end

of the VPO compiler in the following manner. After performing initial branch

optimizations such as branch chaining, code replication is performed to reduce

the remaining number of unconditional branches. When JUMPS is used for

43

The �rst conditional branch is moved into the preheader of the loop and, after

common subexpression elimination (CSE) is performed, can be eliminated since

the branch is never taken due to the comparison between the constants 100 and

1000.

Table 6.3: Excerpt from Function main() in quicksort.c.

without replication after JUMPS after CONSTS

d[2]=100; d[2]=100; d[2]=100;

...

L23 NZ=d[2]?1000;

NZ=d[2]?1000; PC=NZ>0,L02;

PC=NZ>0,L02; L00 L00

...(loop body) ...(loop body) ...(loop body)

d[2]=d[2]+100; d[2]=d[2]+100; d[2]=d[2]+100;

NZ=d[2]?1000; NZ=d[2]?1000;

PC=L23; PC=NZ<=0,L00; PC=NZ<=0,L00;

L02 L02

m[6]=UK; m[6]=UK; m[6]=UK;

PC=RT; PC=RT; PC=RT;

6.4 Integration into an Optimizing Compiler

This section summarizes the di�erent algorithms for code replication and their

relation to further opportunities for optimizations. Furthermore, the order of

the performed optimizations is given.

Two di�erent algorithms for code replication were implemented in the ex-

perimental environment. One handles replication for natural loops only. The

other, algorithm JUMPS, replicates code whenever an unconditional jump is

encountered which can be replaced.

42

is di�cult to represent accurately which can e�ect global register allocation.

Second, loop optimizations such as code motion and strength reduction are

generally implemented to work on one loop at a time. But overlapping loops

may have to be handled di�erently to take into account changes which a�ect

both loops. Since optimizing compilers may not optimize partially overlapping

loops well, it was decided to eliminate such loops by adjusting the control
ow

as discussed previously.

Notice that the improved version of the algorithm JUMPS requires complete

loops to be copied, which results in an additional increase of the code size by

about 3%. The results of the improved version of JUMPS are evaluated in the

next chapter.

6.3 Removal of Constant Comparisons

CONSTS is an algorithm eliminating the comparison of two constants. The list

of basic blocks is traversed in their positional order and searched for conditional

branches. If a conditional branch is encountered, the compiler checks if the

comparison instruction setting the condition codes was based on the compari-

son of two constants or on the comparison of the same two objects. If this is

the case, the compare instruction is eliminated and, depending on the branch

condition, the branch is either removed if it was never taken, or replaced by an

unconditional branch if the conditional branch was always taken. If an uncon-

ditional branch is introduced, it is subject for removal by a later iteration of

code replication.

The example shown in Table 6.3 illustrates the initial replication of the

conditional branch to replace the unconditional branch at the end of the loop.

41

%

$

�

'

&

-

%

$

�

"!

"!

"!

"!

"!

?

?

?

?

?

1

2

3

1'

4

'

&

-

%

$

�

'

&

-

"!

"!

"!

"!

"!

?

?

?

?

?

4

1'

3

2

1

%

$

%

$

�

'

&

-

"!

"!

"!

"!

?

?

?

4

3

2

1

Initial Control Flow After Replication Adjusted Control Flow

Figure 6.4: Partial Overlapping of Natural Loops

40

2. In addition, the adjustment of the control
ow is extended in two ways:

� When a replication is initiated from a block inside a loop, a portion

of the loop can be copied without introducing unnatural loops. In

addition, the control
ow of all blocks in the loop which were not copied

but branch conditionally to a block which was copied, is changed to

the copied block.

� If a block occurs twice in the replication sequence, forward branches

(positionally down) are favored over branches back to a previous block.

This distinction is needed to avoid the partial overlapping of natural

loops.

An example for partially overlapping loops is given in Figure 6.4. After

code replication, the unconditional jump at the end of block 3 is removed and a

fall-through transition to the copied block 1' is added. The control
ow of the

back-edges results in two natural loops, the �rst one consisting of blocks 1, 2, 3,

and 1', and the second loop including blocks 2, 3, and 1'. Block 2 is the header

of the second loop but has a back edge to the header of the �rst loop so that

the back edges are partially overlapping. After adjusting the control
ow, the

problem of overlapping loops is resolved. Then, there is only one loop (blocks 2,

3, and 1') since the former transition 2!1 was changed to the transition 2!1'.

Usually, partially overlapping loops do not occur in programs. With con-

ventional optimizations, partially overlapping loops can only be caused by goto

statements. Loop optimization methods cannot take complete advantage of

overlapping loops for various reasons. First, the nesting level of such loops

39

After replication, a copy of the loop is created below block 2. Block 6 was not

copied since only the blocks on the shortest path were collected for replication.

Thus, the original loop consisting of the blocks 4 to 7 is no longer a natural loop

since the loop can be entered either from block 4 or from block 6. Nevertheless,

the replicated blocks form a natural loop with block 4', 5', and 7'.

Since unnatural loops are not recognized as loops, some valuable optimiza-

tion techniques such as code motion and strength reduction cannot be applied.

Thus, it is undesirable to introduce unnatural loops. Furthermore, had block 6

been included in the replication sequence, two independent natural loops would

have resulted as illustrated in the second graph of Figure 6.3. The original loop

with blocks 4 to 6 would be preserved, and a one-to-one copy consisting of block

4' to 6' would be introduced as before.

This de�ciency motivated a variation on the implementation discussed in

the last section. When determining the replication sequence in the algorithm

for code replication, the blocks on the shortest path are collected. A variation

in the collection method resolves the above problem.

An informal description of the modi�cations to the algorithm JUMPS is

given below.

1. When traversing the shortest path, any block on this path is collected as

before (see algorithm JUMPS). If a collected block was detected to be the

header of a natural loop and the block collected previously was not inside

the same loop, then all blocks inside this loop are included in the replication

sequence in their positional order. Then, the process of collecting blocks

follows the original path again.

38

"!

"!

"!

A

A

A

A

AU

�

�

�

�

��

32

1

%

$

�

-

'

&

"!

"!

"!

"!

"!

"!

"!

?

A

A

A

A

AU?

??

A

A

A

AU

�

�

�

��

@

@

@

@

@R

? ?

�

�

�

�

��

77'

5'

4'

6

5

4

"!

"!

"!

A

A

A

A

AU

�

�

�

�

��

32

1

%

$

�

"!

"!

"!

"!

U

.

.

.

.

.

A

A

A

A

AU ?

?

�

�

�

�

��

?

�

�

�

�

��

7

6

5

4

Without Replication With Replication

Figure 6.3: Interference with Natural Loops

37

let A be a block in the original code;

let F be the block positionally following A (fall through);

let B be the destination block of a conditional branch in A;

let A', B', and F' be replications of A, B, and F respectively;

let N' be a copied block positionally following A';

if (basic block A' is terminated by an unconditional branch) f

remove the branch in A';

create a fall-through transition to the following block N';

g

if (the basic block A' ends with a conditional branch)

if (the next block N' is a copy of block B) f

reverse the branch condition in A';

if (block F was replicated)

change the branch destination in A' to block F';

else

change the branch destination in A' to block F;

g

else f

if (block B was replicated)

change the branch destination in A' to block B';

else

change the branch destination in A' to block B;

g

if (the basic block A' does not end with a branch instruction)

create a fall-through transition to the block N';

if (the A' is the last block in the replication sequence)

if (the last instruction in A' is a return statement)

do not create any transitions to other blocks;

else

fall through to the block positionally following;

Figure 6.2: Adjusting the Control Flow

36

certain blocks might not be reachable from the current block, and in a few

cases there might not be any replication possible at all.

3. Once a sequence of basic blocks is replicated, the control
ow is adjusted

accordingly. New labels are introduced, and the destinations of condi-

tional branches are modi�ed. In addition, all unconditional branches that

are found in the replicated code can be eliminated since the sequence of

blocks replicated had to follow the control
ow with fall-through transi-

tions. Recall that unconditional branches cannot occur in replicated code.

Figure 6.2 shows the pseudo-code for adjusting the control
ow.

4. As a result of the replication process, code which cannot be reached by

the control
ow anymore can be sometimes found. Therefore, dead code

elimination is invoked to delete all these blocks. An example was given

previously in Table 5.5.

6.2 Improvements

The method of strictly using the shortest path to �nd replication sequences dis-

cussed in the last section has the de�ciency that natural loops are not necessarily

preserved.

Figure 6.3 shows the control
ow graph of a program portion before and

after replication. An if-then-else statement consisting of blocks 1, 2, and 3, is

followed by a natural loop. An if-then statement (blocks 5 and 6) is embedded

in the loop. The dotted arc between block 2 and 4 indicates an unconditional

branch.

35

entry (1,5), block 2 is collected next. There is a direct connection between block

2 and block 5 since entry (2,5) indicated a remaining length of 0 so that the

sequence is complete with blocks 1 and 2.

The alternative replication sequence for block 4 favoring returns is found

similarly by examining the entries (4,6) and (1,6). The replication sequence

then consists of blocks 1 and 6. In this case, both replication sequences for

block 4 have a length of 2, and an empirical decision is made to favor loops.

This decision is based on the assumption that creating loops is more likely to

support the actual control
ow at execution time since back edges are very likely

to be taken.

The algorithm JUMPS is divided into di�erent phases:

1. Initially, the information required to �nd the shortest sequence of basic

blocks to replace an unconditional branch is set up.

2. In the second step, the basic blocks within a function are traversed sequen-

tially and unconditional branches are replaced as follows. Either a sequence

of blocks that ends with a return from the subroutine is replicated (favoring

returns), or a sequence of blocks is chosen linking the current block con-

taining the unconditional branch with the block positionally following the

unconditional jump (favoring loops). The sequence of blocks to be repli-

cated will fall through to the next block (see Table 6.1 and Table 6.2). At

this point, heuristics can be plugged in to make the choice between these

two options.

In some cases, only one possible path for replication can be found because

34

block traversals [Fl62]. In the end, the matrix can be used to look up the shortest

path between two arbitrary basic blocks in the table without recalculating the

control
ow after each replication.

For the example in Table 6.1, with the control
ow graph of Figure 6.1, the

resulting connections are shown in Table 6.2. Each entry indicates the next

block in the replication sequence and, in parentheses, the number of blocks left

in the replication sequence. The latter information can be used for heuristics

to decide which replication sequence should be preferred. The length of a path

has to be available when setting up the table in order to decide if a connection

is the shortest connection found up to this point and thus needs to be recorded.

Table 6.2: Connections between Basic Blocks

from/to 1 2 4 5 6

1 { 2 (0) 2 (1) 6 (0)

2 5 (1) { 5 (0) 5 (2)

4 1 (0) 1 (1) { 1 (2) 1 (2)

5 1 (0) 1 (1) { 1 (1)

6 { { { { {

The replication sequence resulting in a loop for the unconditional branch in

block 4 is found by examining the entry in row 4 and column 5. Informally, an

attempt is made to \�ll the gap" between the blocks 4 and 5. In other words,

the question \Is there a connection between block 4 and 5 which results in a

sequence of basic blocks with fall-through transitions?" can be answered by

examining entry (4,5). This entry indicates that block 1 is the �rst block in the

sequence and that the sequence will consist of 2 blocks. Having collected block

1, the new problem is to �nd a connection between block 1 and 5. By examing

33

sequence. This can be accomplished by algorithms such as depth-�rst search or

breadth-�rst search which have an exponential complexity.

In order to avoid algorithms with a high degree of complexity, it was decided

to use some initial assumptions. Only the shortest path between two basic

blocks is examined. This constraint is motivated by the goal of limiting the size

of code introduced by the replication process. The shortest path is determined

with respect to the number of basic blocks.

1

Finding the shortest path in a graph with n nodes can be accomplished

by using Warshall's algorithm for calculating the transitive closure of a graph

[Wa62] which has a complexity of O(n

3

) where n denotes the number of nodes.

2

First, all legal transitions between any two distinct basic blocks are collected

in a matrix. This initial pass creates a copy of the control
ow graph but it

excludes self-re
exive transitions and, optionally, other edges whose control
ow

is excluded explicitly. For example, the replication of indirect jumps together

with their jump tables has not yet been implemented at this point.

Then, the non-re
exive transitive closure is calculated for all nodes with

respect to the shortest path. The transitivity relation between two nodes is only

recorded if it is the shortest connection found so far in terms of the number of

1

In a future implementation, it is intended to use the number of RTLs rather than the

number of blocks to determine the shortest path

2

Several improvements to the algorithm have been suggested to cut down on the complex-

ity. Among the more recent e�orts, an algorithm with an average complexity of O(n

2

� lg(n))

has been proposed by Bloniaz, Fischer, and Meyer [Bl76], and Schnorr described an algorithm

running in O(n +m

�

) time where m

�

is the expected number of edges in the transitive clo-

sure [Sc77]. The latter approach is preferable for relatively sparse connections. The original

algorithm as suggested by Warshall was chosen for this thesis. For a depth-bounded search

with a small depth on the other hand, an exhaustive search in a breadth-�rst or depth-�rst

manner might be just as useful. But it was decided not to limit the work to a depth boundary

thereby missing some lengthy replication sequences.

32

If two replication sequences have the same length, as in this case, loops are

actually favored because back edges are more likely to be followed in the

control
ow.

� The second problem in this example is how the unconditional branch in

block 5 preceding label L02 can be replaced by replicating code.

Favoring returns: The replication sequence terminated by the return state-

ment consists of the basic blocks 1 and 6 again. Thus, the two blocks are

copied and the control
ow is adjusted as before. The old version of block

6 with label L02 is still the last block positionally.

Favoring loops: The replication sequence favoring loops includes block 1

only. After replicating block 1 and replacing the unconditional branch,

the control
ow is adjusted by inverting the conditional branch to create a

fall-through transition between blocks 5 and 6.

Notice that although the replication sequences di�er, the �nal replacement

for the second unconditional branch results in a loop starting at label L09

for both favoring loops and favoring returns. Nevertheless, the replication

sequence for loops is shorter in this example and is preferred over the se-

quence favoring returns. In fact, the block structure in Table 6.1 illustrates

the redundancy of creating a copy of block 6 (favoring returns) where a sim-

ple fall-through transition results in more compact code (favoring loops).

In general, the task of code replication is to �nd a sequence of basic blocks to

replace an unconditional branch. One would have to examine all paths between

any two blocks in order to determine which path results in the best replication

31

'

&

-

'

&

�

%

$

�

%

$

"!

"!

"!

"!

"!

?

?

?

6

1

2

4

5

...

Figure 6.1: Control Flow Graph for Excerpt from Function wcp() in wc.c.

30

Table 6.1: Excerpt from Function wcp() in wc.c.

without replication favor returns favor loops

1 L83

NZ=B[A[m[2]]]?0; NZ=B[A[m[2]]]?0; NZ=B[A[m[2]]]?0;

PC=NZ==0,L02; PC=NZ==0,L02; PC=NZ==0,L02;

2 L09 L09

b[0]=B[A[m[2]i]]; b[0]=B[A[m[2]i]]; b[0]=B[A[m[2]i]];

NZ=b[0]?99; NZ=b[0]?99; NZ=b[0]?99;

PC=NZ==0,L90; PC=NZ==0,L90; PC=NZ==0,L90;

... ... L08 ...

3

NZ=B[A[m[2]]]?0; NZ=B[A[m[2]]]?0;

PC=NZ!=0,L09; PC=NZ==0,L02;

4 b[0]=B[A[m[2]i]];

m[6]=UK; NZ=b[0]?99;

PC=L83; PC=RT; PC=NZ!=0,L08 ;

5 L90 L90 L90

L[A[dm[7]]]=d[4]; L[A[dm[7]]]=d[4]; L[A[dm[7]]]=d[4];

ST=A[ipr]; ST=A[ipr]; ST=A[ipr];

m[7]=m[7]+4; m[7]=m[7]+4; m[7]=m[7]+4;

NZ=B[A[m[2]]]?0; NZ=B[A[m[2]]]?0;

PC=L83; PC=NZ!=0,L09; PC=NZ!=0,L09;

6 L02 L02

m[6]=UK; m[6]=UK; m[6]=UK;

PC=RT; PC=RT; PC=RT;

L02

m[6]=UK;

PC=RT;

29

tween the blocks is adjusted. In other words, the jump condition for conditional

branches may have to be reversed and the label changed. Unconditional bran-

ches can be eliminated where the next block in the replication list is identical

to the branch destination. In fact, there are no unconditional branches allowed

in the replicated code after adjusting the control
ow.

The example in Table 6.1 illustrates the sources for the two distinct replica-

tion sequences. The basic block number is indicated in the �rst column of Table

6.1; the other columns show the sequence of RTLs before replication occurs, af-

ter replication towards the return statement is performed, and, alternatively,

after loop replication is attempted. The corresponding control
ow graph is

shown in Figure 6.1.

The replication for the two unconditional branches is performed as follows:

� The �rst problem in this example is how the unconditional branch in block

4 preceding label L90 can be replaced by replicating code.

Favoring returns: The �rst sequence, terminated by the return statement,

consists of the basic blocks 1 and 6. After replacing the unconditional

branch with the RTLs of blocks 1 and 6, the control
ow is adjusted in the

copied blocks 3 and 4: The jump condition of block 3 is inverted and the

label L09 is generated for block 2.

Favoring loops: The replication sequence resulting in a loop consists of

the basic blocks 1 and 2. The unconditional branch in block 4 is replaced

by a copy of the two blocks, and the control
ow is updated: The jump

condition in the new block 4 is reversed and the label L08 is generated for

the new block 3 to jump back to the top of the loop.

Chapter 6

Algorithms

Two algorithms have been developed to evaluate code replication for this thesis.

JUMPS is the algorithm for replacing unconditional branches by code replica-

tion. Occasionally, common subexpression elimination after code replication re-

sults in the comparison of two constants preceding a conditional branch. There-

fore, CONSTS, an algorithm for constant folding at conditional branches, was

also developed.

6.1 Code Replication

The algorithm JUMPS searches basic blocks for unconditional branches. Once

an unconditional branch is found, the control
ow of the program is traversed

to replicate either the termination condition of a loop or any other sequence

of basic blocks that includes no further unconditional branches. Thus, the

algorithm JUMPS is a generalized technique of code replication applicable at

any unconditional branch.

The traversal of basic blocks was chosen in order to detect all loops. When

an unconditional branch is encountered, a search process is initiated to �nd

either a return statement or a branch to the basic block positionally following

the unconditional branch. The basic blocks leading to the end of a replication

sequence are collected in a list if the search process was successful. The collected

blocks are then inserted in the order of the traversal, and the control
ow be-

28

27

%

$

�

%

$

�

'

&

-

'

&

-

'

&

-

"!

"!

"!

"!

"!

"!

"!

"!

"!

"!

"!

?

?

?

?

?

?

0

2

2

1

3

4

5

1

5

4

3

No Preheader Remote Preheader

Figure 5.1: Introducing a Remote Preheader

26

from repeated replication to avoid the situation where a loop is replicated and

a remote preheader is created which causes the same replication to be applied

ad in�nitum.

In Figure 5.1, an example of a loop is given without a preheader and after

a preheader has to be created in a remote position. Blocks 3 and 4 comprise

the loop. Also, block 3 falls through into block 4 and causes the preheader,

block 0, to be placed at a remote location. The last instruction in block 0 is

an unconditional branch to the header of the loop. Without the preheader, the

loop could be entered by taking the conditional branch from block 1.

There are other instances when an unconditional branch cannot be removed.

Indirect branches are explicitly excluded from being replicated at this implemen-

tation stage. Thus, any unconditional branch to the basic block containing the

indirect branch cannot be optimized. This de�ciency can be overcome by al-

lowing indirect jumps and their jump tables to be replicated and the branch

addresses to be recalculated.

In general, an unconditional branch cannot be replaced if a replication se-

quence does not exist. For endless loops for example, there is no transfer of

control to a return statement.

Finally, code replication is not applied to other types of unconditional trans-

fers of control such as function calls and return statements. Function calls and

return statements are beyond the range of global optimization methods which

operate across the basic block of a function but can be handled by inlining.

25

Table 5.6: Function BubbleSort() in bubblesort.c.

without replication with replication

1 m[6]=LK12; m[6]=LK12;

L[A[m[7]]]=MM7168; L[A[m[7]]]=MM7168;

d[4]=L[A[m[6]+Elements.]]; d[4]=L[A[m[6]+Elements.]];

m[0]=A[4+ Array]; NZ=d[4]?2;

PC=L56; PC=NZ<0,L07;

2 m[0]=A[4+ Array];

3 L57 L57

d[3]=1; d[3]=1;

d[2]=1; d[2]=1;

d[1]=d[4];

d[1]=d[1]-1;

m[1]=m[0]; NZ=d[3]?d[1];

PC=L60; PC=NZ>0,L59;

4 m[1]=m[0];

5 L61 L61

d[0]=L[A[m[1]]]; d[0]=L[A[m[1]]];

NZ=d[0]?L[A[m[1]+4]]; NZ=d[0]?L[A[m[1]+4]];

PC=NZ<=0,L58; PC=NZ<=0,L58;

6 L[A[m[1]]]=L[A[m[1]+4]]; L[A[m[1]]]=L[A[m[1]+4]];

L[A[m[1]+4]]=d[0]; L[A[m[1]+4]]=d[0];

d[3]=0; d[3]=0;

7 L58 L58

m[1]=m[1]+4; m[1]=m[1]+4;

d[2]=d[2]+1; d[2]=d[2]+1;

8 L60

d[1]=d[4];

d[1]=d[1]-1;

NZ=d[2]?d[1]; NZ=d[2]?d[1];

PC=NZ<=0,L61; PC=NZ<=0,L61;

9 L59

NZ=d[3]?0; NZ=d[3]?0;

PC=NZ!=0,L07; PC=NZ!=0,L07;

10 d[4]=d[1]; d[4]=d[1];

11 L56

NZ=d[4]?2; NZ=d[4]?2;

PC=NZ>=0,L57; PC=NZ>=0,L57;

12 L07 L07

NL=MM7168,L[A[m[7]]]; NL=MM7168,L[A[m[7]]];

m[6]=UK; m[6]=UK;

PC=RT; PC=RT;

24

not handle instances of multiple assignments to the same object.

5.3.3 Relocating the Preheader of Loops

The example shown in Table 5.6 also illustrates two instances where redundant

executions of instructions are avoided for an execution path. Code motion is

performed after code replication. This results in a new location of the prehead-

ers, blocks 2 and 4, for the two nested natural loops. The fall-through transition

from block 1 to the outer loop allows an RTL to be moved to basic block 2.

Similarly, block 4 contains an RTL which resides in block 3 without code repli-

cation. If a loop is never executed because the conditional jump preceding the

loop is taken, the RTL following that branch would not be executed, resulting

in an overall savings of the number of instructions executed. The Tables 5.1

and 5.2 include similar instances.

5.4 Unremovable Branches

A few instances of unconditional branches cannot be removed at all as the

following discussion illustrates.

Sometimes loop preheaders are introduced to move invariant instructions

out of the loop when code motion and strength reduction is applied. Whenever

the header of a natural loop is preceded by a fall-through transition of the

same loop, the preheader cannot be placed positionally in front of the header,

but rather has to be placed at a remote location. Thus, such a preheader is

called a remote preheader. The last instruction of a remote preheader is an

unconditional jump to the top of the loop. Such a branch is a candidate for

an initial pass of code replication. Remote preheaders are explicitly excluded

23

in the preheader, and the discussed variation on constant folding can be applied

as well. An example for such a case is discussed in the next chapter (see Table

6.3).

5.3.2 Common Subexpression Elimination

In conjunction with code replication, common subexpression elimination can

usually remove instructions when a value is assigned to a register, followed by

an unconditional branch. If the replication sequence uses the register, the use is

often replaced by the initial value so that the assignment to the register becomes

redundant if there are no further uses or sets of the register. The example in

Table 5.5 illustrates such a case. The assignment of the value zero to register

d[0] is only used to index the array b. After replication and constant folding,

the RTL initializing d[0] is simply removed and the index zero for array b is

omitted.

Another example is given in Table 5.6. The �rst column in the table indicates

the basic block number. In the example, block 8 is copied as a result of replacing

the unconditional branch in block 3. Since block 3 dominates block 8, common

subexpression elimination removes the RTLs in block 8 that modify the value

of d[1]. As the measurements in Chapter 7 show, this optimization results in

a tremendous improvement since there are two less instructions in the inner

loop, and the inner loop is executed very frequently. One should note that a

more sophisticated code motion algorithm could have moved up the the two

RTLs even without code replication. Code motion in VPO was designed to

implement the algorithm described by Aho, Sethi, and Ullman [Ah86] and does

22

Table 5.5: Constant Folding for If{Then{Else Statements

if (j==0)

i = 0;

else

i = 1;

if (i==0)

a=b[i];

else

a=c[j];

return(a);

1. before replication 2. after replication

d[0]=L[A[m[6]+j.]]; d[0]=L[A[m[6]+j.]];

NZ=d[0]?0; NZ=d[0]?0;

PC=NZ!=0,L17; PC=NZ!=0,L17;

d[0]=0; NZ=0?0;

PC=L18; PC=NZ!=0,L19;

b[0]=B[A[m[6]+b.]];

L17 m[6]=UK;

d[0]=1; PC=RT;

L18 L17

NZ=d[0]?0 NZ=1?0;

PC=NZ!=0,L19; PC=NZ!=0,L19;

b[0]=B[A[d[0]+m[6]+b.]]; b[0]=B[A[1+m[6]+b.]];

PC=L20; m[6]=UK;

L19 PC=RT;

m[0]=L[A[m[6]+j.]]; L19

m[1]=A[m[6]+c.]; b[0]=B[A[d[0]+m[6]+c.]];

m[0]=m[0]+m[1]; m[6]=UK;

b[0]=B[m[0]]]; PC=RT;

L20

m[6]=UK;

PC=RT;

3. after constant folding 4. after dead code elimination

d[0]=L[A[m[6]+j.]]; d[0]=L[A[m[6]+j.]];

NZ=d[0]?0; NZ=d[0]?0;

PC=NZ!=0,L17; PC=NZ!=0,L19;

b[0]=B[A[m[6]+b.]]; b[0]=B[A[m[6]+b.]];

m[6]=UK; m[6]=UK;

PC=RT; PC=RT;

L17 L19

PC=L19; b[0]=B[A[d[0]+m[6]+c.]];

b[0]=B[A[1+m[6]+b.]]; m[6]=UK;

m[6]=UK; PC=RT;

PC=RT;

L19

b[0]=B[A[d[0]+m[6]+c.]];

m[6]=UK;

PC=RT;

21

5.3 Sources for other Optimizations

Code replication creates new opportunities for global optimizations by modify-

ing the control
ow of a function. The examples given in the following para-

graphs cover instances of constant folding, common subexpression elimination,

and code motion.

5.3.1 Constant Folding of Comparisons and Conditional Branches

After applying code replication, sources for constant folding may be introduced

which did not exist before. The example in Table 5.5 illustrates a case of con-

stant folding. By performing code replication, the control
ow at two conditional

statements is reorganized. As a side-e�ect, two conditional jumps depend on the

comparison of two constants. After applying constant folding, one conditional

branch can be eliminated and the other one can be replaced by an unconditional

branch. Notice that after constant folding the code between the RTL PC=L19;

and label L19 cannot be reached anymore. Also, the conditional branch to

L17 can instead be chained to L19. After performing dead code elimination

and branch chaining, the unreachable code and the unconditional branch are

eliminated. Overall, three jump instructions and one test can be avoided.

This example may not seem to be realistic. Nevertheless, slightly more

complex cases can be caused by code replication when two execution paths are

joined. The if-condition is often used to check for special cases and collapses

after replication and constant folding as shown in Table 5.5, while the else-

part covers the general case limiting the sources for further optimization. In

addition, replicating code at loops sometimes results in constant comparisons

20

copied instructions. Table 5.4 shows how the two execution paths return from

the function separately.

Table 5.4: If{Then{Else Statement

if (i>5)

i = i / n;

else

i = i * n;

return(i);

without replication with replication

NZ=L[A[m[6]+i.]]?5; NZ=L[A[m[6]+i.]]?5;

PC=NZ<=0,L22; PC=NZ<=0,L22;

d[0]=L[A[m[6]+i.]]; d[0]=L[A[m[6]+i.]];

d[0]=d[0]/L[A[m[6]+n.]]; d[0]=d[0]/L[A[m[6]+n.]];

L[A[m[6]+i.]]=d[0]; L[A[m[6]+i.]]=d[0];

PC=L23; m[6]=UK;

L22 PC=RT;

d[0]=L[A[m[6]+i.]]; L22

d[0]=d[0]*L[A[m[6]+n.]]; d[0]=L[A[m[6]+i.]];

L[A[m[6]+i.]]=d[0]; d[0]=d[0]*L[A[m[6]+n.]];

L23 L[A[m[6]+i.]]=d[0];

m[6]=UK; m[6]=UK;

PC=RT; PC=RT;

Notice that nested if-then-else statements can cause code to be replicated

very often, thus resulting in an disproportional growth in code size relative to

the original code size.

The method of code replication used for conditional statements can also

be applied to break and goto statements, and conditional expressions in the C

language (expr?expr:expr).

19

In fact, one unconditional branch per loop iteration is saved in this particular

example.

Table 5.3: Exit Condition in the Middle of a Loop

i = 1;

while (i++<n)

a[i-1] = a[i];

without replication with replication

d[1]=1; d[0]=1;

m[0]=A[1+m[6]+a.-1]; d[1]=2;

L15 NZ=d[0]?L[A[n]];

d[0]=d[1]; PC=NZ>=0,L16;

m[0]=m[0]+1; m[0]=A[2+m[6]+a.-1];

d[1]=d[1]+1; L000

NZ=d[0]?L[A[n]]; B[A[m[0]]]=B[A[m[0]+1]];

PC=NZ>=0,L16; m[0]=m[0]+1;

B[A[m[0]]]=B[A[m[0]+1]]; d[0]=d[1];

PC=L15; d[1]=d[1]+1;

L16 ... NZ=d[0]?L[A[n]];

PC=NZ<0,L000;

L16 ...

5.2 Conditional Statements

The if-then-else construct imposes problems for code replication. Generally, an

unconditional branch is only generated at the end of the if-part to jump over

the else-part. There are two execution paths possible which are joined at the

end of the if-then-else construct. The two execution paths can be separated

completely or their joining can be at least deferred by replicating the code after

the if-then-else construct, so that the unconditional branch is replaced by the

18

termination condition, a portion of code placed at the end of the loop. This

unconditional jump can also be replaced by the code which tests for the inverse

termination condition. Thus, the replicated code would appear before the loop

and at the end of the loop (see Table 5.2). This optimization method can also

be applied to nested loops.

Table 5.2: For{Loop

for (i=k;i<10;i++)

a[i]=b[i];

without replication with replication

d[0]=L[A[m[6]+k.]]; d[0]=L[A[m[6]+k.]];

NZ=d[0]?10;

PC=NZ>=0,L0001;

m[0]=A[d[0]+m[6]+a.]; m[0]=A[d[0]+m[6]+a.];

m[1]=A[d[0]+m[6]+b.]; m[1]=A[d[0]+m[6]+b.];

PC=L18; L19

L19 B[A[m[0]i]]=B[A[m[1]i]];

B[A[m[0]i]]=B[A[m[1]i]]; d[0]=d[0]+1;

d[0]=d[0]+1; NZ=d[0]?10;

L18 PC=NZ<0,L19;

NZ=d[0]?10; L0001 ...

PC=NZ<0,L19;

...

Traditionally, the replication of the termination condition discussed so far

is performed by optimizing compilers. But when the exit condition is placed

in the middle of a loop, most compilers do not attempt a replacement for the

unconditional branch. An example for such a situation is given Table 5.3. The

method proposed in this thesis handles these cases as well as unnatural loops.

17

Table 5.1: While{Loop

i = 1;

while (a[i]) f

a[i-1] = a[i];

i++;

g

without replication with replication

m[0]=A[1+m[6]+a.]; NZ=B[A[1+m[6]+a.]]?0;

m[1]=m[0]; PC=NZ==0,L16;

L15 m[0]=A[1+m[6]+a.-1];

NZ=B[A[m[0]]]?0; L000

PC=NZ==0,L16; B[A[m[0]]]=B[A[m[0]+1]];

B[A[m[0]+-1]]=B[A[m[1]i]]; m[0]=m[0]+1;

m[0]=m[0]+1; NZ=B[A[m[0]+1]]?0;

PC=L15; PC=NZ!=0,L000;

L16 ... L16 ...

Chapter 5

Motivation

The optimization evaluated in this thesis, code replication, was accomplished by

modifying the optimizer of VPO. The algorithms to perform the optimization,

except for a few small functions, are machine-independent. In general, RTLs are

searched for unconditional jumps. By determining the branch destination and

using the control
ow information already available in the back-end, a subset

of the basic blocks in the function can be replicated, replacing the uncondi-

tional branch. Such an optimization can be applied for all loop constructs (for,

while, do-while) as well as some conditional statements (if-then-else) and other

transfers of control within a function (break, goto). The following sections give

examples of instances where code replication can be applied.

5.1 Loops

For while-loops with an unknown number of iterations at compile time, the

front-end, VPCC, generates intermediate code with an unconditional transfer of

control at the end of the loop. This unconditional transfer can be replaced by the

instructions testing the termination condition of the loop with the termination

condition reversed. Table 5.1 illustrates the layout of while-loops before and

after code replication.

Similarly, the intermediate code produced by the front-end for for-loops with

an unknown number of iterations has an unconditional transfer of control to the

16

15

De�nition 4.10 A natural loop is a set of basic blocks with a single entry

block h, called the header block, which dominates all other blocks in the loop

and there exists a back edge a ! h for a block a within the loop.

Notice that a natural loop can have more than one back edge. A loop which

has more than one entry point is called an unnatural loop.

De�nition 4.11 The preheader block p of a natural loop is the only predecessor

of the header block h from which the loop can be entered. Thus, p ! h is the

only transition to h from outside the loop.

Preheaders sometimes have to be created to perform optimizations such as

code motion and strength reduction that move RTLs out of a loop.

14

De�nition 4.6 The control
ow graph, CFG, of a function is the graph whose

nodes are the basic blocks representing the function and whose edges are all

legal transitions between any two blocks.

Thus, the CFG is a directed graph possibly including cyclic dependencies.

Figure 4.1 shows the CFG, basic blocks, and RTLs for a simple function with

one loop.

De�nition 4.7 The transitive closure of a directed graph is a graph with edges

from any node a to node b if there exists a sequence of transitions a to b denoted

as a

�

! b.

Thus, the transitive closure of a graph indicates whether one node can be

reached from another. In Figure 4.1, the transition 1

�

! 4 is introduced since

there exists a sequence 1! 3! 4, but there is no sequence 4

�

! 1.

A transitive closure is called re
exive if it includes connections of the form

a

�

! a for any node a. The graph of a non-re
exive transitive closure excludes

these edges.

Finally, the terminology to describe loops in a program is de�ned.

De�nition 4.8 In the CFG, a basic block a dominates block b if all paths from

the �rst basic block in the function to block b include block a.

Notice that any basic basic block dominates itself.

De�nition 4.9 A transition a ! b is called a back edge, if b dominates a.

13

main() f

int i, k;

char a[10],b[10];

scanf("%k", &k);

for (i=k;i<10;i++)

a[i]=b[i];

g

#1 m[6]=LK28;

L[A[dm[7]]]=A[m[6]+k.];

L[A[dm[7]]]=A[L15];

ST=A[scanf];

m[7]=m[7]+8;

d[0]=L[A[m[6]+k.]];

m[0]=A[d[0]+m[6]+a.];

m[1]=A[d[0]+m[6]+b.];

PC=L18;

#2 L19

B[A[m[0]i]]=B[A[m[1]i]];

d[0]=d[0]+1;

#

#3 L18

NZ=d[0]?10;

PC=NZ<0,L19;

#

#4 m[6]=UK;

PC=RT;

�

�
-

�
�

�

Figure 4.1: A simple Control Flow Graph

12

not treated as an ordinary branch instruction since the control is transferred

beyond the bounds of the current function (inter-procedural). Therefore, a call

instruction can occur anywhere within a basic block.

De�nition 4.4 A legal transition from basic block a to basic block b, denoted

as a ! b, is determined by the last RTL r of block a and the location or label

l of block b:

� If r is an unconditional branch, then the transition a ! b is the only

transfer of control from a and the destination of the branch has to be label

l (see transition 1! 2 in Figure 4.1).

� If r is a conditional branch, then there are two transitions from block a.

One transition is to the basic block f which positionally follows block a

(see 3! 4 in Figure 4.1) and the other is to the block g whose label k is the

target of the branch instruction r (see 3! 2 in Figure 4.1). Furthermore,

b = g i� l = k.

� If r is a return instruction, then there is no transition from block a since

only a single function is evaluated at one time (see basic block 4 in Figure

4.1).

� If r is any other instruction, then the transition a ! b is the only transition

and block b positionally follows block a (see transition 2! 3 in Figure 4.1).

Notice that the self-re
exive transition a ! a is legal transition.

De�nition 4.5 A transition a ! b is a fall through transition if block b posi-

tionally follows block a.

11

Table 4.1: Register Transfer Conventions for the Motorola 68020

symbol description

Ln label for n 2 N (positive numbers including 0)

PC program counter

NZ negative and zero
ag

? comparison operation (in�x) with two operands

A[loc] address of a memory location

B[A[loc]] content of a memory location (byte size)

W[A[loc]] content of a memory location (word size)

L[A[loc]] content of a memory location (long size)

b[n] data register (byte size) for n 2 f0::7g

w[n] data register (word size) for n 2 f0::7g

d[n] data register (long size) for n 2 f0::7g

m[n] address register for n 2 f0::7g

where m[7] is reserved for the stack pointer

and m[6] is reserved for the frame pointer

dm[n] address register with pre-decrement for n 2 f0::7g

m[n]i address register with post-increment for n 2 f0::7g

name. symbolic o�set for a local identi�er

name symbolic o�set for a global identi�er

ST call instruction

LK link instruction

UK unlink instruction

MM multiple move instruction

n numeric constant for n 2 Z (positive and negative numbers)

10

The conventions used to denote RTLs for the Motorola 68020 [Mo85], the

architecture used in this thesis, are summarized in Table 4.1. For example, the

RTLs

NZ=d[0]?10;

PC=NZ<=0,L19;

denote a comparison between the content of data register 0 and the numeric

constant 10 followed by a conditional branch to label L19. Note that the branch

is only taken if the value in the register is less than or equal to 10.

For typical machines most RTLs consist of only a single register transfer.

However, there are instances where a single instruction can have more than one

e�ect. For the Motorola 68020, some instructions change the condition codes

implicitly. For example, the RTL

NZ=d[0]?0;d[2]=d[0];

describes a register copy instruction which also has the e�ect of changing the

condition codes that will be used by a conditional branch instruction.

4.2 Intermediate Representation of a Function

The following de�nitions describe control
ow relationships between instructions

within a function (intra-procedural):

De�nition 4.3 A basic block is a sequence of consecutive RTLs with exactly

one entry point, an optional label, and one exit point. Only the last RTL, at

the exit point, can be a branch instruction.

Since the instructions within a basic block are executed sequentially, they are

always executed the same number of times. A function or procedure call is

Chapter 4

De�nitions

In the following sections the essential terminology is introduced, and the no-

tation for discussing the issues of code replication in the compiler back-end is

given. The terms are used in a subsequent chapter to describe the algorithms

to implement code replication.

4.1 Register Transfer Lists

Throughout the following chapters, transformations on instructions of the inter-

mediate representation of a program are described. Each instruction is denoted

by a register transfer list. A more detailed description of the instruction repre-

sentation is given by Benitez [Be91].

De�nition 4.1 A register transfer denotes the assignment of a source value,

src, to a destination location, dst, which represents an individual e�ect of an

instruction and has the general form of an assignment.

dst = src;

The source can be a simple expression of constants, memory values, and oper-

ators. The destination denotes a memory address or a register.

De�nition 4.2 A register transfer list (RTL) is a sequence of register transfers.

The e�ects of the register transfers within the list are accomplished in parallel.

Each RTL describes a legal instruction for a particular architecture.

9

8

transformations to RTLs are legal and to translate each RTL to assembly code.

7

� dead variable elimination

� code motion

� strength reduction

� instruction scheduling

VPO itself is a part of the \Environment for Architectural Study and Exper-

imentation (EASE)" which was designed to take static and dynamic measure-

ments of programs and perform instruction cache analysis by cache simulation.

When generating code, additional instructions are inserted to capture measure-

ments during the execution of a program without in
uencing the measurements.

The characteristics of instructions are obtained and stored at compile time. For

dynamic measurements and cache analysis, the frequency counts and instruc-

tion information are used together to generate detailed reports of the number

of instructions executed, the number of cache hits and misses, the distribution

of instruction types, etc. For static measurements, a frequency count of one is

assumed for each instruction in the program. A more detailed description of

the environment is given by Davidson and Whalley [Da90-2].

The intermediate program representation used by the compiler in the exper-

iment allows transformations and optimizations to occur in a machine-indepen-

dent fashion. Instructions are represented by register transfer lists (RTLs). The

general format of RTLs is machine-independent but the actual register transfers

represent legal instructions for a speci�c architecture. A machine description,

constructed from a context-free grammar and semantic actions, de�nes the set

of legal instructions. This machine description is used to determine whether

Chapter 3

Environment for Experimentation

Two di�erent approaches are commonly taken to reduce the number of un-

conditional branches. One can employ language-dependent optimizations in

the front-end of a compiler or one can attempt machine-dependent optimiza-

tions in the back-end. While optimizations at an early stage take advantage

of information already available from parsing, the latter approach generalizes

optimizations, applies them to unstructured programming constructs, and takes

architectural restrictions into consideration.

For those reasons, code replication was embedded into the back-end of a tool

called Very Portable Optimizer (VPO) which reads the intermediate represen-

tation generated by the front-end called Very Portable C Compiler (VPCC).

The optimizations performed in VPO include:

� branch chaining and branch minimization

� dead code elimination

� instruction selection

� local register allocation

� global register allocation by coloring

� common subexpression elimination

6

5

sic blocks for instruction scheduling. In their approach, it su�ces to copy the

number of instructions needed to avoid a pipeline delay from the block follow-

ing a conditional statement. They expand natural loops similarly by replicating

instructions from the top of the loop, negating the branch condition, and insert-

ing another unconditional branch. Their goal is strictly to increase the pipeline

utilization by �lling the delay slots of conditional branches if they are likely to

be taken, but not to avoid unconditional branches by code replication.

Lately, several approaches have been made to change the positional order of

basic blocks based on pro�ling data [Mc89,Pe90]. Code was restructured such

that frequently executed chains of basic blocks follow one another positionally.

Thus, the number of executed instructions was reduced by introducing transfers

of control to infrequently executed portions of code in remote locations.

4

and a lack of information about the target architecture. Consequently, front-end

methods for code replication cannot catch occurrences of unconditional jumps

which are introduced by the optimization phase.

Procedure inlining, an optimization method described by Davidson and

Holler [Da88], often results in replicated code. Hwu and Chang [Hw89] used

inlining techniques based on pro�ling data to limit the number of call site ex-

pansions and thereby avoid excessive growth. In general, a procedure call to a

non-recursive function can be replaced by the actual code of the procedure body.

The procedure call can be viewed as an unconditional jump to the beginning of

the body, and any return from the procedure can be viewed as an unconditional

branch back to the instruction following the call.

Branches have long been recognized as causing problems for machines, and a

variety of schemes have been proposed to reduce the cost of transfers of control.

Delaying the execution of branches is a commonly used technique to avoid stalls

in instruction pipelines [Pa85]. Using complicated hardware, branches have been

folded into instructions when brought into an instruction cache [Di87]. In this

approach, each instruction also contains the address of the next instruction to

be executed. Thus, an unconditional branch can be folded into its preceding

instruction. Conditional branch instructions contain two potential addresses for

the next instruction and a static prediction bit to support prefetching towards

the path which is more likely to be executed. In another study, the use of branch

registers has been suggested to move the branch target address calculation out

of loops and reduce delays in the pipeline [Da90-1].

Golumbic and Rainish [Go90] used the method of replicating parts of ba-

Chapter 2

Related Research

Several techniques to avoid unconditional jumps have been applied in optimizing

compilers. For example, branch chaining changes the destination of a branch to

the destination of the last jump in a chain of unconditional branches. The num-

ber of unconditional branches can be reduced further by reorganizing the order

of basic blocks. Such traditional techniques, as described by Aho, Sethi, and

Ullman [Ah86], can be enhanced by code replication, an optimization method

described in this thesis, to remove almost all unconditional branches of a pro-

gram.

When a compiler front-end emits intermediate code, it is quite common to

use the termination criteria for a loop as a pre-check condition for the loop,

followed by the loop body, and, instead of an unconditional branch to the pre-

check, a post-check which is the inverted termination condition.

1

Nevertheless,

such code improvements can only be performed whenever natural loops are

found in a program source code. Unconditional jumps in unnatural loops (loops

with multiple entry points) are usually not eliminated.

All techniques employed in the front-end lack generality in reducing the num-

ber of unconditional jumps. Instances of unconditional jumps cannot always be

detected at the level of the parser due to its interaction with other optimizations

1

A set of examples for loops and other occurrences of unconditional branches is given in

Chapter 5.

3

2

scribes the format of the intermediate representation. Chapter 5 illustrates the

advantages of using code replication for optimizing various programming con-

structs. Chapter 6 provides an informal description of the algorithms used to

implement code replication. Chapter 7 discusses the results of the implementa-

tion by comparing the measurements of numerous programs with and without

code replication. Chapter 8 gives an overview of future work and Chapter 9

summarizes the results.

Chapter 1

Introduction

Unconditional branches are instructions that occur often in programs. Depend-

ing on the environment, execution frequencies between 4% and 10% have been

reported [Pe77,Cl82]. Common programming constructs such as loops and con-

ditional statements are coded using unconditional jumps, thus resulting in rel-

atively compact code.

In recent years, code size has become less important. For instance, with

the introduction of reduced instruction set computers (RISC), the code size of

programs has increased since instructions are less powerful and more simply

encoded. To make up for increased bus tra�c due to more frequent instruction

fetches, cache memory has been added for RISC architecture as well as for the

traditional complex instruction set computers (CISC).

This thesis describes a method of replacing unconditional branches uniformly

by replicating a sequence of instructions from the branch destination. To per-

form this task, an algorithm is proposed which is based on the idea of following

the shortest path within the control
ow when searching for a replication se-

quence. The e�ect of code replication is evaluated by measurements of program

traces to illustrate its advantages over traditional replication methods.

The document is structured as follows. Chapter 2 gives an overview of re-

search on related topics. Chapter 3 describes the environment used for the

experiment. Chapter 4 introduces the terminology used in the thesis, and de-

1

Abstract

This thesis evaluates a global optimization technique that avoids unconditional

jumps by replicating code. Common programming constructs such as for-loops

and conditional statements are translated to machine instructions by the use

of conditional and unconditional jumps. One can reduce the number of un-

conditional jumps by replicating chunks of code, which reduces the number of

instructions executed and may introduce new opportunities for code optimiza-

tion. When implemented in the back-end, this technique can be generalized to

work on conditional statements, switch statements coded as a sequence of bran-

ches, and both structured and unstructured loops. The replication method is

based on the idea of �nding a replacement for each unconditional branch which

minimizes the growth in code size. This is achieved by choosing the shortest

sequence of instructions as a replacement. In addition, the execution time of

programs is improved. Measurements taken from a variety of programs showed

that not only the number of executed instructions decreased, but also that the

total cache work was reduced despite increases in code size.

ix

List of Figures

4.1 A simple Control Flow Graph : : : : : : : : : : : : : : : : : : : 13

5.1 Introducing a Remote Preheader : : : : : : : : : : : : : : : : : : 27

6.1 Control Flow Graph for Excerpt from Function wcp() in wc.c. : 31

6.2 Adjusting the Control Flow : 37

6.3 Interference with Natural Loops : : : : : : : : : : : : : : : : : : 38

6.4 Partial Overlapping of Natural Loops : : : : : : : : : : : : : : : 41

6.5 Order of Optimizations : 46

7.1 Instruction Alignment in a Cache : : : : : : : : : : : : : : : : : 55

viii

A.3 Change of Miss Ratio with Unaligned Instructions and without

Context Switch : 63

A.4 Percent Change of Instruction Fetch Cost with Unaligned In-

structions and with Context Switch : : : : : : : : : : : : : : : : 64

A.5 Percent Change of Instruction Fetch Cost with Unaligned In-

structions and without Context Switch : : : : : : : : : : : : : : 64

B.1 Program Size in Bytes and Percent Change for Aligned Instruc-

tions : 65

B.2 Change of Miss Ratio with Aligned Instructions and with Context

Switch : 66

B.3 Change of Miss Ratio with Aligned Instructions and without Con-

text Switch : 66

B.4 Percent Change of Instruction Fetch Cost with Aligned Instruc-

tions and with Context Switch : : : : : : : : : : : : : : : : : : 67

B.5 Percent Change of Instruction Fetch Cost with Aligned Instruc-

tions and without Context Switch : : : : : : : : : : : : : : : : : 67

C.1 Additional Instruction Fetches for Unaligned Instructions for 1Kb

Cache without Context Switch : : : : : : : : : : : : : : : : : : 68

vii

List of Tables

4.1 Register Transfer Conventions for the Motorola 68020 : : : : : : 11

5.1 While{Loop : 17

5.2 For{Loop : 18

5.3 Exit Condition in the Middle of a Loop : : : : : : : : : : : : : : 19

5.4 If{Then{Else Statement : 20

5.5 Constant Folding for If{Then{Else Statements : : : : : : : : : : 22

5.6 Function BubbleSort() in bubblesort.c. : : : : : : : : : : : : : : 25

6.1 Excerpt from Function wcp() in wc.c. : : : : : : : : : : : : : : : 30

6.2 Connections between Basic Blocks : : : : : : : : : : : : : : : : : 34

6.3 Excerpt from Function main() in quicksort.c. : : : : : : : : : : : 43

7.1 Test Set of C Programs : 48

7.2 Percent of Unconditional Branches : : : : : : : : : : : : : : : : 49

7.3 Total Number and Percent Change of Instructions : : : : : : : : 50

7.4 Total Number and Percent Change of Instructions between Bran-

ches : 51

7.5 Percent Change in Instruction Fetch Cost for 1Kb Direct-Mapped

Cache : 54

A.1 Program Size in Bytes and Percent Change for Unaligned In-

structions : 62

A.2 Change of Miss Ratio with Unaligned Instructions and with Con-

text Switch : 63

vi

5.4 Unremovable Branches : 24

6 Algorithms 28

6.1 Code Replication : 28

6.2 Improvements : 36

6.3 Removal of Constant Comparisons : : : : : : : : : : : : : : : : 42

6.4 Integration into an Optimizing Compiler : : : : : : : : : : : : : 43

7 Measurements 47

7.1 Static and Dynamic Behavior : : : : : : : : : : : : : : : : : : : 48

7.2 Impact on Instruction Caching : : : : : : : : : : : : : : : : : : : 52

8 Future Work 59

9 Conclusions 61

Appendices 62

A Cache Measurements for Unaligned Instructions 62

B Cache Measurements for Aligned Instructions 65

C Measurements to Evaluate Instruction Alignment 68

References 69

Bibliographical Sketch 71

v

Contents

List of Tables v

List of Figures vi

Abstract vii

1 Introduction 1

2 Related Research 3

3 Environment for Experimentation 6

4 De�nitions 9

4.1 Register Transfer Lists : 9

4.2 Intermediate Representation of a Function : : : : : : : : : : : : 10

5 Motivation 16

5.1 Loops : 16

5.2 Conditional Statements : 19

5.3 Sources for other Optimizations : : : : : : : : : : : : : : : : : : 21

5.3.1 Constant Folding of Comparisons and Conditional Branches 21

5.3.2 Common Subexpression Elimination : : : : : : : : : : : 23

5.3.3 Relocating the Preheader of Loops : : : : : : : : : : : : 24

iv

Acknowledgements

I want to express my gratitude to Dr. David Whalley, my major professor, for

his guidance, support, patience, and promptness during my work on this thesis.

iii

The members of the Committee approve the thesis of

Frank Mueller defended on April 12, 1991.

David Whalley

Professor Directing Thesis

Theodore P. Baker

Committee Member

Gregory A. Riccardi

Committee Member

THE FLORIDA STATE UNIVERSITY

COLLEGE OF ARTS AND SCIENCES

AVOIDING UNCONDITIONAL JUMPS

BY CODE REPLICATION

By

FRANK MUELLER

A Thesis submitted to the

Department of Computer Science

in partial ful�llment of the

requirements for the degree of

Master of Science

Degree Awarded:

Spring Semester, 1991

