
Static Cache Simulationand its ApplicationsbyFrank MuellerDept. of Computer ScienceFlorida State UniversityTallahassee, FL 32306-4019e-mail: mueller@cs.fsu.eduphone: (904) 644-3441July 12, 1994A Dissertation submitted to theDepartment of Computer Sciencein partial ful�llment of therequirements for the degree ofDoctor of PhilosophyDegree Awarded:Summer Semester, 1994Copyright c1994Frank MuellerAll Rights Reserved

AbstractThis work takes a fresh look at the simulation of cache memories. It introduces the tech-nique of static cache simulation that statically predicts a large portion of cache references.To e�ciently utilize this technique, a method to perform e�cient on-the-y analysis of pro-grams in general is developed and proved correct. This method is combined with staticcache simulation for a number of applications. The application of fast instruction cacheanalysis provides a new framework to evaluate instruction cache memories that outperformseven the fastest techniques published. Static cache simulation is shown to address the issueof predicting cache behavior, contrary to the belief that cache memories introduce unpre-dictability to real-time systems that cannot be e�ciently analyzed. Static cache simulationfor instruction caches provides a large degree of predictability for real-time systems. In ad-dition, an architectural modi�cation through bit-encoding is introduced that provides fullypredictable caching behavior. Even for regular instruction caches without architectural mod-i�cations, tight bounds for the execution time of real-time programs can be derived fromthe information provided by the static cache simulator. Finally, the debugging of real-timeapplications can be enhanced by displaying the timing information of the debugged programat breakpoints. The timing information is determined by simulating the instruction cachebehavior during program execution and can be used, for example, to detect missed deadlinesand locate time-consuming code portions. Overall, the technique of static cache simulationprovides a novel approach to analyze cache memories and has been shown to be very e�cientfor numerous applications.

1

AcknowledgementsI would like to to express my gratitude to Dr. David Whalley, my major professor, for hisguidance, support, patience, and promptness during my work on this dissertation. He wasalways available to discuss new problems and exchange ideas. I would also like to thank theother committee members, Dr. Ted Baker, Dr. Gregory Riccardi, and Dr. Steve Bellenot,for their kind support. Dr. Baker introduced me to the area of real-time systems, one of theapplication areas of the dissertation work. His comments on early drafts of the formalizationsin this dissertation were most valuable. Dr. Riccardi helped me to organize my thoughtsand improve the presentation style of this dissertation. Last but not least, Dr. Bellenot'sinput on the formalization and proofs of the graph-theoretical aspects were invaluable.

2

ContentsAbstract 1List of Tables 6List of Figures 71 Introduction 82 Motivation and Prior Work 112.1 Measurement Techniques : 112.2 Cache Simulation : 143 Control-Flow and Call-Graph Analysis 153.1 Introduction : 153.2 Control-Flow Partitioning into Unique Paths : : : : : : : : : : : : : : : : : : 163.3 From Call Graph to Function-Instance Graph : : : : : : : : : : : : : : : : : 243.4 Performance Evaluation : 253.5 Future Work : 263.6 Related Work : 263.7 Conclusion : 274 Static Cache Simulation 284.1 Introduction : 284.2 Instruction Categorization : 284.3 Calculation of Abstract Cache States : 304.4 Interprocedural Propagation : 324.5 Measurements : 324.6 Future Work : 344.7 Related Work : 344.8 Conclusion : 355 Code Instrumentation for Instruction Cache Analysis 365.1 Introduction : 365.2 Merging States : 375.3 Shared Path States : 375.4 Frequency Counters : 385.5 Macros for Calls : 395.6 Macros for Paths : 395.7 First Miss Table : 395.8 Calculation of Hits and Misses : 395.8.1 Hits and Misses based on Frequency Counters : : : : : : : : : : : : : 405.8.2 First Miss Adjustment : 403

5.9 Future Work : 405.10 Related Work : 405.11 Conclusion : 416 Fast Instruction Cache Performance Analysis 426.1 Introduction : 426.2 Related Work : 426.3 Adaptation of Static Cache Simulation : 436.4 Measurements : 456.4.1 Static Analysis : 456.4.2 Dynamic Analysis : 466.5 Future Work : 476.6 Conclusion : 487 Predicting Instruction Cache Behavior 497.1 Introduction : 497.2 Related Work : 507.3 Bit-Encoding Approach : 517.3.1 Operational Semantics of the Fetch-from-Memory Bit : : : : : : : : : 517.3.2 Speedup : 527.4 Adaptation of Static Cache Simulation : 537.5 Analysis : 537.5.1 Static Analysis : 547.5.2 Dynamic Analysis : 547.6 Future Work : 567.7 Conclusion : 568 Bounding Execution Time 588.1 Introduction : 588.2 Related Work : 598.3 Timing Analysis Tree : 608.4 Adaptation of Static Cache Simulation : 618.5 Timing Analysis : 658.6 Future Work : 678.7 Conclusion : 679 A Real-Time Debugging Tool 689.1 Introduction : 689.2 Related Work : 699.3 A Real-Time Debugging Environment : 709.3.1 Adaptation of Static Cache Simulation : : : : : : : : : : : : : : : : : 719.3.2 Querying the Elapsed Time : 719.4 Application of the Debugging Tool : 729.5 Measurements : 739.6 Future Work : 749.7 Conclusion : 7510 Future Work 7611 Summary 774

Appendices 79A Algorithm to Construct the Function-Instance Graph 79B Interface Speci�cation of the PATH File 80C Examples of Code Instrumentation 82D Cache Access Logic of the Fetch-From-Memory Bit 86E Interface Speci�cation of the IST File 87References 89

5

List of Tables3.1 Results for Measurement Overhead : 266.1 Static Results for Cache Performance Evaluation : : : : : : : : : : : : : : : : 456.2 Dynamic Results for Cache Performance Evaluation : : : : : : : : : : : : : : 477.1 Static Results: Call Graph (CG) & Function-Instance Graph (FIG) : : : : : 547.2 Dynamic Results for Cache Predictability : 558.1 Worst-Case Time Estimation for Four Test Programs : : : : : : : : : : : : : 669.1 Performance Overhead for Debugging : 74

6

List of Figures1.1 Overview of Static Simulation : 93.1 Unique Paths in the Control-Flow Graph : 183.2 Sample Graphs : 193.3 Algorithmic Construction of Two Small UPPAs : : : : : : : : : : : : : : : : 223.4 Construction of Function-Instance Graph : 254.1 Example with Flow Graph : 314.2 Pseudo Code for Propagation of Abstract Cache States : : : : : : : : : : : : 324.3 Distribution of Static Cache Prediction for �t : : : : : : : : : : : : : : : : : 335.1 Frequency Counters Indexed by the SPS : 386.1 Overview of Cache Performance Analysis : 446.2 Example for Adaptation of Categorization : : : : : : : : : : : : : : : : : : : 448.1 Overview of Bounding Instruction Cache Performance : : : : : : : : : : : : : 598.2 Example of Conicting Lines between Nested Loops : : : : : : : : : : : : : : 618.3 Sample Analysis by the Static Cache Simulator : : : : : : : : : : : : : : : : 649.1 Overview of the Debugging Environment : 719.2 Annotated Sample Debugging Session : 72B.1 BNF Interface Speci�cation for PATH File : : : : : : : : : : : : : : : : : : : 80C.1 State Table Entry : 82C.2 Counter Table Entry : 82C.3 First Miss Table : 82C.4 Call Macros : 83C.5 Path Macros (1) : 83C.6 Path Macros (2) : 84D.1 Access Logic for Bit-Encoded Approach : 86E.1 BNF Interface Speci�cation for IST File : 877

Chapter 1IntroductionThis dissertation addresses the issue of providing a fast framework for cache performanceevaluation to determine the number of cache hits and misses during a program execution.Cache performance measurements are commonly used to evaluate new cache designs, i.e. todetermine the cache con�guration that best �ts a new processor design. In addition, newcompiler optimization techniques are often analyzed with regard to their impact on cacheperformance.Furthermore, this dissertation challenges the claim that cache memories introduce un-predictability to execution-time predictions for real-time applications. This common beliefhas forced real-time designers to predict the worst-case execution time of program assumingthat caches are not present. A schedulability analysis based on such simplifying assumptionsoften results in a gross underutilization of a processor, the selective enabling and disablingof caches for the most critical task, or even the disabling for caches at all times.This dissertation addresses these issues by a technique to statically simulate a large por-tion of the caching behavior of programs. The technique, called static cache simulation, isformally de�ned in this dissertation. Furthermore, the technique is shown to provide con-siderable speed-up over traditional cache performance analysis techniques. It also providesa framework to statically predict a large number of the caching behavior that is shown toproduce tight execution time bounds when combined with a timing tool. Each of these issuesis addressed in a separate chapter in this dissertation and is supported by measurements.The approach taken by static cache simulation is quite di�erent from traditional methods.It does not rely on tracing but rather combines compile-time analysis and code instrumen-tation within the environment of a compiler back-end. The simulator attempts to determinestatically whether a given program line will result in a cache hit or miss during programexecution. This is achieved by the analysis of both the call graph of the program andcontrol-ow graph for each function. A set of instructions executed in sequence is called aunique path if it can be distinguished from all other paths by at least one (unique) control-ow component. To better predict the cache behavior, functions are further distinguishedby function instances that depend on the call site and call sequence.During program execution, extensive use of frequency counters su�ces for cache simula-tion when instruction references are statically determined to be always cache hits or alwayscache misses. For the remaining instruction references, state information is associated withcode portions and is updated dynamically. This state information represents a localized viewof the cache and is used to determine whether the remaining program lines of a code portionare or are not cached. These localized states are in contrast to a comprehensive global viewof the cache state as employed in conventional trace-driven simulation. The total hits andmisses can be inferred from the state-dependent frequency counts after running the program.In summary, the cheaper method (frequency counters) is used when references are stat-ically known, and the remaining references are determined by local states that also imposeless execution overhead than one global cache state. The improvements of fast instructioncache analysis using static cache simulation over traditional trace-driven cache simulationare summarized below. 8

Unique Paths: The code is instrumented at unique paths (UPs) rather than at basic blocks.This reduces the number of instrumentation points (also called measurement points),i.e. the places where instrumentation code is inserted into the regular code generatedduring program compilation. The set of unique paths is shown to provide a small setof measurement points for on-the-y analysis methods in general.Static Cache Simulation: A large percentage of the instruction references are staticallyidenti�ed as always hits and always misses. These references will not have to be simu-lated at all during program execution.Function Instances: The static cache simulation is re�ned by taking the call site of afunction invocation into account. Thus, the simulation overhead required at run timeis further reduced since the behavior of more instruction references can be staticallyidenti�ed.Inline Code Instrumentation and Frequency Counters: The remaining instructionreferences are simulated at run time by inlining short sequences of instrumentationcode for each UP rather than calling a tracing routine. The compiler identi�es the liveregisters at the instrumentation point. A set of unused registers is provided for theinstrumented code to avoid unnecessary saves and restores. If all registers are used,then some registers will be temporarily spilled around the instrumentation point. Theinstrumentation consists of incrementing simple frequency counters and state transi-tions.Figure 1.1 depicts an overview of the programs and interfaces involved in static cachesimulation. The set of source �les of a program are translated by a compiler. The compiler
source

control

flow

simulator

files

cache

static

information

cache configuration

linker
program

executableobject

files
compiler

files
assembler

assembly

cache
analysis

library
routines

code instru-
mentation

cache
prediction

timing

analyzer
user requests

timing

predictions

source-

level

debugger

Figure 1.1: Overview of Static Simulationgenerates assembly code with macro entries for instrumentation and passes information aboutthe control ow of each source �le to the static cache simulator. The simulator constructsthe call graph of the program and the control-ow graph of each function based on the9

information provided by the compiler. The cache behavior is then simulated for a given cachecon�guration. The output of the static cache simulator depends on the intended applicationand will either describe the predicted cache behavior of each instruction or emit macro codetogether with tables to store cache information for on-the-y cache analysis. In the formercase, further analysis can be employed, for example to analytically bound the timing of codeportions. In the latter case, the output of the simulator is passed to the assembler, whichtranslates the code generated by the compiler into instrumented object code. The linkercombines these object �les to an executable program and links in library routines that mayprovide the �nal cache analysis results or support the output of intermediate results fordebugging.This dissertation is structured as follows. Chapter 2 introduces the reader to measure-ment techniques related to cache analysis. In Chapter 3, a method is introduced to determinea small set of measurement points for on-the-y analysis. Chapter 4 details the method ofstatic cache simulation for instruction caching. Chapter 5 illustrates the instrumentation ofprograms with measurement code. Chapter 6 presents the application of this work to fastinstruction cache analysis. Chapter 7 describes the predictability of instruction caching inthe context of real-time systems. Chapter 8 shows the bene�ts of this work for boundingthe execution time of real-time applications in the presence of instruction caches. Chapter 9provides a description of its application for real-time debugging. Chapter 10 discusses somefuture work. Chapter 11 summarizes the results of this work.

10

Chapter 2Motivation and Prior WorkCache memories have become an important part of recent microprocessor design. While theclock speed of processors has increased dramatically, the access time to main memory islagging behind, causing a bottleneck. This bottleneck is dealt with by primary caches on themicroprocessor and stand-alone secondary caches. Primary caches are a major contributorto the speed-up of memory access. Uni�ed caches have been designed where instructionsand data are not separated (Von-Neumann Architecture). For primary caches separateinstruction caches and data caches are more popular (Harvard Architecture) [31, 29]. Thisis due to the trend of modern processors to pipeline the instruction execution. A pipelinedarchitecture overlaps the di�erent stages of instruction execution to e�ectively achieve athroughput of one instruction per clock cycle. Typical pipeline stages are instruction fetch,decode, load operands, execute, and store result. To achieve a throughput of one instructionper cycle, primary caches are generally split into instruction caches and data caches. Theformer feed the instruction pipeline and the latter provide access to program data via loador store instructions in a single cycle, provided that the information is cached. Thus, aninstruction cache hit and a data cache hit can be served in the same cycle. This would notbe possible if a primary cache was a uni�ed cache.The organization of caches varies from fully-associative caches to direct-mapped caches.Recent results have shown that direct-mapped caches tend to match, if not exceed, the speedof associative caches for large cache sizes [31]. Due to the slightly more complex design, theaccess time for hits of associative caches is generally slower (by about 10%) than the accesstime for direct-mapped caches. For large caches, the bene�t of a higher hit ratio for set-associative caches is generally outweighed by the faster access for direct-mapped caches.The simulation of caches has played an important role in the design of cache memories.Di�erent design issues such as the number of cache sets, line size, level of associativity, anduni�ed or split data and instruction caches have been investigated by cache simulation. Inthe following, a summary of di�erent measurement techniques is given.2.1 Measurement TechniquesProgram analysis through pro�ling and tracing has long been used to evaluate new hardwareand software designs. For instance, an early reference to pro�ling by Knuth can be foundin [37, 39]. Measurement techniques can be distinguished by the provided level of detail ofthe program analysis. For example, the ordering of events allows to distinguish between a�rst execution of some code and the second execution of the same code portion, as well asthose code portions executed in between. Depending on the intended analysis, the orderingof events may or may not be relevant. Below is a list of a variety of techniques used to gathermeasurements about program executions.� Sampling: During execution, the program counter is sampled at regular intervals todetermine which portion of the code is currently executing. This approach provides astatistical sampling method that yields approximate measurements indicating the es-timated portion of the total execution time spent in certain portions of the program11

(typically at the scope of functions). To perform the sampling, common tools, such asprof [65] and gprof [25, 26], rely on the availability of hardware timers and the corre-sponding operating system interface to activate these timers, catch the timer interrupt,and sample the program counter at the interrupt point. It is neither possible to collectaccurate measurements with this method, nor is it possible to deduce the order of eventsfrom the sample after program execution [40]. Yet, if the interrupt handler is used tocollect and record trace data (see below), the order of events can be reconstructed [56].� Tracing: This method involves the generation of a partial or full sequence of theinstruction and data references encountered during program execution. Trace data isgenerated during program execution but analyzed at a later point in time. Thus, thetrace data is commonly stored in a �le. The technique produces accurate measurementsand preserves the order of events during execution for later analyses. A common problemwith this method is presented by the large size of trace data. It is therefore importantto include only the (partial) information that is essential to reconstruct a full traceafter program execution. In the following, di�erent tracing techniques are describedand their overhead is reported based on previous work [63].{ Hardware Simulation of the execution of a program can be used to generate thetrace for prototyped architectures. This technique is known to be very slow (100xto over 1000x slower than the original execution) but provides accurate and verydetailed measurements [61].{ Single-Stepping is a processor mode that interrupts the execution of a programafter each instruction. The interrupt handler can be used to gather the tracedata. This technique is just slightly faster the hardware simulation (100x { 1000xslow down) and works only for existing architectures [70, 21], though sometimestraces from an existing architecture are used to project the speed of prototypedarchitectures [56].{ Inline Tracing is a technique where the program is instrumented before execu-tion such that the trace data is generated by the instrumentation code as a sidee�ect of the program execution. This technique requires a careful analysis of theprogram to ensure that the instrumentation does not a�ect data or code references.This technique is faster than the above techniques (about 10x slow down) and iscurrently regarded as the preferred method to collect trace data. A minimal set ofinstrumentation points can be determined by analyzing the control-ow graph [7].A number of di�erent inline tracing techniques have been used to instrument thecode and to process the trace data. Stunkel and Fuchs [62] instrumented the codeduring compilation and analyzed the trace on-the-y as part of the program exe-cution. Eggers et. al. [22] instrumented code during compilation and saved thetrace data in secondary storage for later analysis. Borg et. al. [10] instrumentedthe program at link time and processed the trace data in parallel to the programexecution by using bu�ers shared between the program and the analysis tool. Thepros and cons of these approaches can be summarized as follows. Compile-timeinstrumentation has the advantage that unused registers can be utilized for the in-strumentation code. Link-time instrumentation provides the means to instrumentlibrary code, which is not available as source code. Saving the trace data in a �leallows later analysis with varying cache con�gurations but limits the trace size due12

to storage capacity and disk access overhead. Immediate processing of the tracedata allows the analysis of longer traces but can only be performed for one cachecon�guration per program execution.{ Abstract Execution is a variation of inline tracing [41]. This technique relies on amodi�ed compiler that instruments the original program to generate a trace of \sig-ni�cant events" for a subset of basic blocks and a given program input. An abstractprogram, a scaled-down version of the original program, uses the signi�cant eventsto generate a complete address trace by recording taken conditional branches. Theabstract program is derived from the original program by omitting computationsthat do not inuence the address trace, such as certain �le I/O. Nevertheless, theexecution time to obtain signi�cant events might still be quite long.{ Microprogramming Instrumentation provides a technique to modify the mi-crocoded instruction set of a processor such that trace data is produced as a sidee�ect of a program's execution. The technique is about as fast as inline tracing(about 20x slow down) due to the fact that the execution is still slowed down mod-erately by the additional microcode instructions [2]. Furthermore, the technique isgenerally not portable, and modern architectures, such as RISC processors, do nothave microcode or do not provide the ability to reprogram microcode anymore.{ Hardware Monitoring can be used to generate traces by probing the pins of aprocessor with dedicated instruments, e.g. a logic analyzer. The probes can bestored in a trace �le. This technique requires additional, expensive hardware andsome expertise to use this hardware. The technique is very fast since the programexecutes at its original speed and does not need to be modi�ed [16, 15]. Yet, themethod hides on-chip activities such as instruction or data references accessingprimary caches.� Frequency Counting: Similar to inline tracing, the program is modi�ed to includeinstrumentation code. But rather than generating a program trace, the execution fre-quency of code portions is recorded for later analysis. Frequency measurements canbe obtained very e�ciently by inserting instructions into a program that incrementfrequency counters. The counters are typically associated with basic blocks and areincremented each time the basic block executes. The number of measurement pointscan be reduced from all basic blocks to a minimal set of control-ow transitions, whichguarantees optimal pro�ling for most programs as explained by Ball and Larus [7].Their reported overhead is a factor of 1.3-3.0 for basic block frequency accounting and1.1-1.5 for optimal frequency accounting. The resulting measurements are accurate butit is not possible to reconstruct the order of events from frequency counts.� Inline On-the-y Analysis: This technique performs inline tracing and the analysisof trace data as part of the program execution. Instead of bu�ering trace data for aconcurrent analysis tool, the program is modi�ed to include instrumentation code thatperforms the trace and the analysis \on-the-y" during program execution. This methodrequires a prior static analysis that performs the code instrumentation. This staticanalysis depends on the measurements requested by the user, i.e. cache performanceanalysis requires a speci�c static analysis and instrumentation code for this purpose.Several variations on the generation of trace data are possible. Stunkel and Fuchs [62]generated a full trace, Whalley [68, 69] only generated a partial trace for some highly13

tuned methods, and this dissertation discusses a method that does not generate anyaddress trace at all during program execution. The overhead is about 1.2 to 2.2 for themethod described in this dissertation, 10-30 for Stunkel and Fuchs, and about 2-15 forWhalley's most highly tuned method. The measurements are accurate and the orderof events is preserved for the analysis. The program execution has to be repeated ifsimulation parameters change. With some additional e�ort, this method can even beused for prototyped architectures [19]. In this dissertation, inline on-the-y analysiswill be simply referred to as \on-the-y analysis".2.2 Cache SimulationThe task of cache simulation is to ascertain the number of cache hits and misses for aprogram execution. To determine if an instruction or data reference was a hit or miss,the cache simulator must be able to deduce the order of events, i.e. the order in whichreferences occur. Simple sampling techniques and counting the frequency of blocks do notpreserve the order of events and thus cannot be used for cache simulation. Tracing methodspreserve the order of events but often require a hidden overhead for reading and writingthe trace data �le, even when the fastest methods are used. Processing trace data whileit is generated eliminates the overhead of storing the entire trace but requires that eachreference be interpreted to determine cache hits and misses. Some of the references haveto be reconstructed to determine the full trace when only a partial trace is generated for aminimal set of instrumentation points.The on-the-y analysis techniques described by Whalley [68, 69] do not require the inter-pretation of each reference. Consecutive references are passed to the simulator as one blockand only the �rst reference of a program line is simulated. Further improvements are basedon the observation that many references in a loop result in misses during the �rst iterationbut in hits for subsequent iterations if the loop �ts in cache. In such cases, the trace actioncan be simpli�ed for each subsequent iteration. But the performance of these techniquessuggests that they do not scale well for small caches.Unfortunately, on-the-y analysis cannot be performed on the minimal set of measure-ment points used by inline tracing and frequency counting [7]. The minimal set of measure-ment points does not immediately provide a full set of events and their execution order. Itis one of the objectives of this work to determine a small set of measurement points thatstill covers all events and preserves their execution order. This objective is addresses by thepartitioning of the control ow into unique paths.Another objective of this work is to take on-the-y cache analysis one step further.Rather than simulating the entire cache behavior during program execution, a static cachesimulator predicts a large portion of the references prior to program execution. If a referenceis statically determined to be a cache hit or miss, simple frequency counters associated withthe region of the reference su�ce to account for its cache behavior at execution time. If thebehavior of a reference is not known statically, it still has to be simulated during execution.Yet, instead of interpreting the addresses of references, localized state transitions are usedto perform the dynamic analysis e�ciently. There are several applications of static cachesimulation that will be discussed to show to bene�ts of this approach.14

Chapter 3Control-Flow and Call-Graph AnalysisIn this chapter, terms and methods are introduced to analyze the call graph of a programand the control-ow graph of each function. The analysis is performed to �nd a smallset of measurement points suitable for on-the-y analysis. The analysis provides a generalframework to reduce the overhead of event-ordered pro�ling and tracing during programexecution. Excerpts of this chapter can be found in [46].This chapter precedes the central part of the dissertation, static cache simulation. Inthis chapter, the terms of a unique path, a unique path partitioning, and the function-instance graph are de�ned. These terms are used throughout this dissertation. For example,the static cache simulation is performed on a function-instance graph and the control-owgraph of each function. The control-ow graph can be represented in the traditional notionof basic blocks as vertices and control-ow transitions as edges, or it can be representedas a partitioning of unique paths. The choice depends on the application of static cachesimulation. 3.1 IntroductionProgram analysis through pro�ling and tracing has long been used to evaluate new hardwareand software designs. In this chapter, a technique for e�cient on-the-y analysis of programsis presented.Traditional tracing techniques rely on generating a program trace during execution, whichis analyzed later by a tool. The problem of generating a minimal trace, which can later beexpanded to a full event-ordered trace, can be regarded as solved. A near-optimal (often evenoptimal) solution to the problem for a control-ow graph G can be found by determining amaximum spanning tree max(G) for the control-ow graph and inserting code on the edgesof G�max(G) [38, 7].Recently, tracing and analyzing programs has been combined using inline tracing [10]and on-the-y analysis [68, 69]. Both techniques require that events are analyzed as theyoccur. Traditional inline tracing performs the analysis separate from the generation of traceinformation.On-the-y analysis integrates the program analysis into its execution. The analysis isspecialized for a certain application (e.g., counting hits and misses for cache performanceevaluation). The results of the analysis are available at program termination such that noconcurrent analysis or post-execution analysis by any tool is required. If the application orthe con�guration changes, the program has to be executed again, sometimes even instru-mented and then executed. In contrast, trace data can be analyzed by several tools and forseveral con�gurations once the data is generated. But the generation and analysis of tracedata is typically slow and space consuming since the data is written to a �le and later readagain by a tool.On-the-y analysis requires that the program be instrumented with code, which performsthe analysis. Many applications, including cache simulation, require that all events aresimulated in the order in which they occur. In the past, each basic block was instrumentedwith code to support event-ordered analysis [62]. Inserting code based on the maximum15

spanning tree (or, to be more precise, on its complement) does not cover all events sinceinstrumentation points are placed on a subset of the control-ow graph. It is therefore notapplicable to on-the-y analysis.This chapter is structured as follows: First, a formal approach to reduce code instrumen-tation to a small number of places is introduced. This general framework supports e�cienton-the-y analysis of program behavior with regard to path partitioning. The focus is re-stricted to the analysis of the control-ow graph of a single function. Next, the formal modeland the analysis are extended to the analysis of the entire program by transforming a callgraph into a function-instance graph. Furthermore, a quantitative analysis is presented toshow that the new methods reduce the number of measurement points by one third overtraditional methods. Finally, future work is outlined, related work is discussed, and theresults are summarized.3.2 Control-Flow Partitioning into Unique PathsThe control ow of each function is partitioned into unique paths (UPs) to provide a smallset of measurement points. The motivation for restructuring the control ow into UPs istwofold.1. Each UP has a unique vertex or edge that provides the insertion point for instrumen-tation code at a later stage. This code may perform arbitrary on-the-y analysis, e.g.simple pro�ling or more complex cache performance analysis.2. Each UP is comprised of a range of instructions that are executed in sequence if andonly if the unique vertex or edge is executed. This range of instructions does not haveto be contiguous in the address space. The range of instructions provides a scope forstatic analysis to determine the instrumentation code for dynamic on-the-y analysis,which preserves the order of events.The �rst aspect, the strategy of instrumenting edges (or vertices where possible), isalso fundamental to the aforementioned work on optimal pro�ling and tracing by Ball andLarus [7]. It is the second aspect that distinguishes this new approach from their work.The option of performing static analysis on the control ow to determine and optimize theinstrumentation code for order-dependent on-the-y analysis requires the de�nition of rangesfor the analysis. Naively, one could choose basic blocks to comprise these ranges. But ithas been demonstrated for pro�ling and tracing that fewer instrumentation points can beobtained by a more selective instrumentation technique. UPs provide such a frameworksupporting e�cient instrumentation for on-the-y analysis.The set of UPs is called a unique path partitioning (UPPA) and is de�ned as follows:Let G(V;E) be the control-ow graph (directed graph) of a function with a set of edges(transitions) E and a set of vertices (basic blocks) V .Let p be a path p = �0; �1; �1; :::; �n; �nwith the ordered set of edges �p = f�1; :::; �ng � E and the ordered set of vertices �p =f�0; :::; �ng � V , i.e., a sequence of distinct vertices connected by edges [13]. The edge �imay also be denoted as �i�1 ! �i. Vertex �0 is called an head vertex and vertex �n a tailvertex, while all other �i are internal vertices. Let H be the set of all head vertices and Tbe the set of all tail vertices. 16

De�nition 1 (UPPA) A unique path partitioning, UPPA, for a control-ow graph G(V,E)is a set of paths with the following properties:1. all vertices are covered by paths: 8v2V 9p2UPPA v 2 �p2. each edge is either on a path or it connects a tail vertex to a head vertex, but not both:8e=(v!w)2E 9p2UPPA e 2 �p � v 2 T ^ w 2 H3. each path has a feature f , an edge or a vertex, which is globally unique, i.e. f is inno other path:8p2UPPA (9e2E e 2 �p ^ 8q2UPPAnfpge 62 �q) _ (9v2V v 2 �p ^ 8q2UPPAnfpgv 62 �q)4. overlapping paths only share an initial or �nal subpath:8p;q2UPPA �p \ �q = � [�where � and � denote the vertices of a common initial and �nal subpath, respectively.In other words, let �p = f�0; :::; �mg and �q = f!0; :::; !ng be the ordered sets of verticesfor paths p and q. Then, � = � or � = f�0 = !0; :::; �i = !ig and � = � or � = f�k =!l; :::; �m = !ng for i < k and i < l.5. proper path chaining:8p;q2UPPA 8v2�p;w2�q e = (v ! w) 2 E ^ e 62 �p [�q) v 2 T ^ w 2 H6. break at calls: Let C � V be the set of vertices (basic blocks) terminated by a callinstruction. 8v2C;p2UPPA v 2 �p) v 2 T7. break at loop boundaries: Let Li be the set of vertices in loop (cycle) i and let L be theset of all Li.8e=(v!w)2E; p2UPPA; Li2L e 2 �p) (v 2 Li , w 2 Li)17

The properties 6 and 7 are operational restrictions motivated by the application of thepartitioning for on-the-y analysis of program behavior. The break at calls allows the inser-tion of instrumentation code for separate compilation. Thus, the compiler is not required toperform interprocedural analysis. The break at loop boundaries ensures that the frequencyof events can be identi�ed. The frequency of events outside a loop di�ers from the frequencyinside loops (unless the loop was iterated only once). Thus, a UP associated with an eventshould not cross loop boundaries.Example: Paths 1 and 2 in Figure 3.1 have two unique transitions each. They comprise anif-then-else structure. Paths 3 and 4 are generated because the loop is entered after basicblock 4. Path 3 only has one unique transition while path 4 has two. Basic block 8 is outsidethe loop and therefore lies in a new path.
1

2 3

4

5

6

7

8

path 3

path 2path 1

path 5

path 4

Figure 3.1: Unique Paths in the Control-Flow GraphTheorem 1 (Existence of a UPPA) Any control-ow graph G(V,E) has a UPPA.Proof: Let G(V,E) be a control-ow graph. Then, UPPAb = ffv0g; :::; fvngg is a uniquepath partitioning, i.e each vertex (basic block) constitutes a UP. Each property of De�nition1 is satis�ed:1. Any vertex vi is part of a UP pi = fvig by choice of the partitioning.2. 8p2UPPAb �p = � since all edges connect paths.3. 8p;q2UPPAb p 6= q) �p \ �q = �.None of the UPs overlap in any vertex as shown for the previous property.18

4. 8pi=fvig2UPPAb vi 2 H ^ vi 2 T5. The proof for the previous property su�ces to prove this property as well.6. 8e2E; p2UPPAb e 62 �p, so the premise of can never be satis�ed. Thus, the property ispreserved.De�nition 2 (Ordering of UPPAs) For a control-ow graph G(V;E), a partitioningUPPAa is smaller than a partitioning UPPAb if UPPAa contains fewer paths than UPPAb.The signi�cance of the ordering is related to the number of measurement points for on-the-y analysis. A smaller partitioning yields fewer measurement points, which improvesthe performance of on-the-y analysis. The following algorithm provides a method to �nd asmall partitioning. The algorithm uses the terminology of a loop header for a vertex with anincoming edges from outside the loop. A loop exit is a vertex with an outgoing edge leavingthe loop. This is illustrated in Figure 3.2(a).
v

h

c

e1

e2

header

exits

backedge b2

backedge b1

(a) loop structure

y

x

join

fork

head

tail

head

a b

v

w

x y

path p path q

(b) fork after join (c) illegal overlapFigure 3.2: Sample GraphsAlgorithm 1 (Computation of a Small UPPA)Input: Control-ow graph G(V,E).Output: A small partitioning UPPA.Algorithm: Let C be the set of vertices containing a call, let Li be the set of vertices inloop i, and let L be the set of all Li as in De�nition 1. The algorithm then determines thebeginning of paths (heads) and the end of paths (tails), for example at loop boundaries. Inaddition, a vertex is a tail if the path leading to this vertex joins with other paths and forksat the current vertex (see Figure 3.2(b)). Once the heads and tails have been determined, apath comprises a sequence of vertices and edges from a head to a tail in the control ow.19

BEGINFOR each v 2 V without any predecessor DOmark v as head; /* entry blocks to the function */FOR each v 2 V without any successor DOmark v as tail; /* return blocks from the function */FOR each v 2 C DOmark v as tail; /* calls */FOR each e = (v ! w) 2 E WITH v 62 Li AND w 2 Li DOmark w as head; /* loop headers */FOR each e = (v ! w) 2 E WITH v 2 Li AND w 62 Li DOmark v as tail; /* loop exits */FOR each v 2 V DOmark v as not done;WHILE change DOchange:= False;propagate heads and tails;FOR each v 2 V WITH v marked as head ANDnot marked as done AND not marked as tail DOchange:= True;mark v as done;FOR each e = (v ! w) 2 E DOrecursive �nd fork after join(w, False);UPPA = �FOR each v 2 V WITH v marked as head DOrecursive �nd paths(v, fvg);END;PROCEDURE propagate heads and tails ISWHILE local change DOlocal change:= False;FOR each v 2 V DOIF v marked as head THENFOR each e = (w! v) 2 E DOIF w not marked as tail THENlocal change:= True;mark w as tail;IF v marked as tail THENFOR each e = (v ! w) 2 E DOIF w not marked as head THENlocal change:= True;mark w as head;END propagate heads and tails;PROCEDURE recursive �nd fork after join(v, joined) ISIF v marked as tail THENreturn;IF v joins, i.e. v has more than once predecessor THEN20

joined:= True;IF joined AND v forks, i.e. v has more than once successor THENmark v as tail;return;FOR each e = (v ! w) 2 E DOrecursive �nd fork after join(w, joined);END recursive �nd fork after join;PROCEDURE recursive �nd paths(v, p) ISIF v marked as tail THENUPPA = UPPA [fpg;ELSE FOR each e = (v ! w) 2 E DOrecursive �nd paths(w, p [fv ! w;wg);END recursive �nd paths;Example: Figure 3.3 illustrates two examples of the construction of a small UPPA usingAlgorithm 1. For the �rst example (upper part of Figure 3.3), vertices without predecessor(successor) are marked as head (tail). In addition, loop headers are heads and loop exits aretails. The second picture shows the same graph after propagate heads and tails has beenapplied. Block 1 is marked as a tail since block 2 is a head. Conversely, block 7 is markedas a head since block 6 is a tail. The last picture depicts the graph after path partitioningthrough recursive �nd paths. Each head is connected to the next tail by one or morepaths, depending on the number of di�erent ways to reach the tail. The resulting UPPA has5 paths.The second example (lower part of Figure 3.1(b)) initially shows a graph whose verticeswithout predecessor (successor) are marked as heads (tails). The second picture shows anadditional tail found by recursive �nd fork after join since there is a possible traversalfor the head block 1 to, for example, the tail block 6, which encounters a join followed by afork in block 4. The �nal graph depicts the e�ect of propagate heads and tails. Blocks 5and 6 are a head since 4 was a tail. Block 2 is a tail since block 5 is now a head. Thus, block 4becomes a head. This causes block 3 to be marked as a tail. Finally, recursive �nd pathspartitions the graph resulting in a UPPA with 5 paths.Theorem 2 (Correctness of Algorithm 1) Algorithm 1 constructs a UPPA for acontrol-ow graph G(V;E).Proof:Termination: It su�ces to show that the WHILE loops and the recursive routines termi-nate. Both WHILE loops terminate since one more vertex is marked as head or tailduring each iteration. This process terminates either when all vertices are marked asheads and tails or when none of the conditions for marking vertices are satis�ed anylonger. The recursive routine recursive �nd fork after join terminates for the fol-lowing reasons. Initially, all loop headers are marked as heads. The propagation of headsand tails ensures that all predecessors of loop headers are marked as tails, in particu-lar the vertices preceding a backedge in a loop. Since recursive �nd fork after jointerminates when a tail is encountered, it will stop at a tail vertex with an outgoingbackedge or at a tail vertex without any successor since it can only traverse forwardedges in the control-ow graph. This also applies for recursive �nd paths.21

head

tail

head

tail

1

2

43

5

6

7

1

2 3

4

5 6tail tail

head 1

2 3

4

5 6tail tail

head

tail

1

2 3

4

5 6

tail

1

2

43

5

6

7

head

tail

1

2

43

5

6

7

head
tail

head
tail

head
tail
head

tail
head
tail

head

tail

head
tail

head
tail

head
tailFigure 3.3: Algorithmic Construction of Two Small UPPAs

22

Output is a UPPA: It has to be shown that the properties of a UPPA as stated in De�-nition 1 hold for Algorithm 1.1. All vertices are covered since recursive �nd paths includes all vertices betweena head and a tail in some path. Due to propagate heads and tails, an outgoingedge of a tail vertex always leads to a head vertex, i.e. there cannot be any inter-mediate vertices between a tail and a head. Furthermore, at least the initial vertex(without predecessor) is a head and the �nal vertices (without successors) are tails.2. Consider any edges between a head and a tail. These edges are included in somepath by recursive �nd paths, and these are all edges on paths. The remainingedges are those connecting tails to heads and are not in any path.3. The following cases have to be distinguished for construction of paths by recur-sive �nd paths: If there are no forks between a head h and the next tail, thenthere will only be one path starting at h, and h is a unique vertex for this path. Ifthere are forks after a head h but no joins, then the tail vertex will be unique foreach path starting in h. If there are forks after a head h, followed by the �rst joinat vertex v along some path starting in h, then the edge immediately preceding von this path will be unique (since no other path has joined yet). Notice that therecannot be another fork after the join in v within the path since any forking vertexwould have been marked as a tail by recursive �nd fork after join.4. Property 3 ensures that any two overlapping paths di�er in at least an edge. (Noticethat a unique vertex implies a unique edge for non-trivial paths with multiplevertices.) Assume there exist two paths p; q that overlap in a subpath fv; :::; wg (seeFigure 3.2(c)) and v is preceded by distinct vertices a and b in p and q, respectively.Also, w is succeeded by distinct vertices x and y in p and q, respectively. In otherwords, p and q overlap somewhere in the middle of their paths. Then, two edges joinin vertex v and two edges fork from vertex w, i.e. a join is followed by a fork. Thus,w should have been mark as a tail by recursive �nd fork after join. Therefore,w should have been the last vertex of paths p and q. Contradiction.5. All edges between a head and the next tail are covered by paths, as shown forproperty 2. Thus, it su�ces to observe that edges connecting a tail t to a head halways connect all paths ending with vertex t to the paths starting with vertex h.It is guaranteed by recursive �nd paths that a path starts with a head vertexand ends in a tail vertex.6. Each vertex v containing a call is initially marked as a tail vertex. Thus, vertexv must be the �nal vertex for any path containing v by construction of the paths(recursive �nd paths).7. Each loop header vertex is initially marked as a head and each loop exit is marked asa tail. Thus, the vertices preceding a loop header are marked as a tail and the ver-tices succeeding a loop exit are marked as heads by propagate heads and tails.Furthermore, the edges crossing loop boundaries connect the paths ending in thetail vertex to the paths starting with the head vertex. As already shown for property2, edges between a tail and a head cannot be covered by any path.23

In terms of the ordering of UPPAs, the basic block partitioning UPPAb is the partitioningwith the largest number of measurement points. Algorithm 1 constructs a partitioning thathas an equal or smaller number of measurement points. It was found that the algorithmproduces a much smaller UPPA if possible. The algorithm may in fact produce a minimalUPPA (with the smallest possible number of measurement points). Attempts to prove theminimality have not yet succeeded due to the fact the a given graph may have more thanone minimal UPPA.In summary, the control-ow graph can be transformed into a small UPPA by Algorithm1. The small set of measurement points is given by a unique vertex or unique edge of eachUP. This provides the framework for e�cient on-the-y analysis with regard to the de�nitionof UPPAs.Another short example for a small UPPA construction shall be given, which is used todiscuss the possibility of letting paths begin and end in edges as well as vertices.Example: Consider the subgraph of Figure 3.2(a) that is inside the loop. A correspondingUPPAs can be constructed by Algorithm 1 resulting in the following partitioning:UPPAs = ffh; h! x; xg; fh; h! e1; e1g; fe2ggIn general, the method may still be further tuned with regard to the dynamic behavior.Currently, a path has to begin and end in a vertex. Consider the notion of open paths thatcan start and end in a vertex or an edge. Then, another small UPPA of the loop in Figure3.2(a) would be:UPPAt = ffh; h! x; xg; fh; h! e1; e1; e1! yg; fh; h! e1; e1; e1! e2; e2ggConsider the number of measurement points executed during each loop iteration. ForUPPAs, there are two measurement points for an iteration reaching b1, one each in paths 2and 3. For UPPAt, there is only one measurement point on b1 in path 30. The de�nition ofUPPAs does not take dynamic properties into account.3.3 From Call Graph to Function-Instance GraphThe small set of measurement points provides the location for inserting measurement codethat records the order of events. While the actual measurement code depends on the in-tended analysis of the program, the amount of the measurement code may be further reducedby distinguishing between di�erent call sites of a function. For an event-ordered analysis,the �rst invocation of a function may trigger certain initialization events. The analysis ofsubsequent calls to the same function are simpli�ed by the assumption that these initializa-tion events have already occurred. Such an example will be illustrated later in the contextof instruction cache analysis.A program may be composed of a number of functions. The possible sequence of callsbetween these functions is depicted in a call graph [3]. Functions can be further distinguishedby function instances. An instance depends on the call sequence, i.e. on the immediate callsite of its caller, the caller's call site, etc. The function instances of a call graph are de�nedbelow. The de�nition excludes recursive calls that require special handling and are discussedlater. Indirect calls through function pointers are not handled since the callee cannot bestatically determined.De�nition 3 (Function Instances) Let G(V;EC) be a call graph where V is the set offunctions including an initial function \main" and EC is a set of pairs (e; c). The edge24

e = v ! w denotes a call to w within v (excluding recursive and indirect calls). The vertexc is a vertex of the control-ow graph of v that contains a call site to w. Then, the set offunction instances is de�ned recursively:1. The function (vertex) \main" has a single instance main0.2. Let (f ! g; c) 2 EC and fi be an instance of f . Then, gc;fi is an instance.3. These are all the function instances.The call graph of a program without recursion (i.e., a directed acyclic graph) can betransformed into a tree of function instances by a depth-�rst search traversal of the callgraph. Function instances can then be uniquely identi�ed by their index, where fi denotesthe ith occurrence of function f within the depth-�rst search.Backedges in the call graph corresponding to recursive calls can be detected by markingvertices as visited during the depth-�rst traversal. If an already visited edge is encounteredagain, the last edge in the current traversal is due to recursion. The depth-�rst search willthen backtrack and retain this backedge as a special edge in the function-instance graph (seeAlgorithm 3 in Appendix A).Example: In Figure 3.4, function f contains three calls: a call to g and two calls to h.
f

g h

Call Graph

i k

f
0

0
k

g

0

0
h h

k k
1 2

10

i

Function Instance Graph

Figure 3.4: Construction of Function-Instance GraphFunction g calls i and k. Function h calls k. Function i calls g, which is an indirect recursivecall. The corresponding function-instance graph contains two instances of h (for each callfrom f0) and three instances of k (for the calls from g0; h0; h1). The backedge i! g due toindirect recursion is retained as a special edge in the function-instance graph.The construction of a function-instance graph does not result in inlining, partial evalu-ation, or any other form of code replication. It is merely a decomposition that facilitatescache analysis. But the code instrumentation includes information to identify a functioninstance during execution.3.4 Performance EvaluationThis chapter evaluates the bene�ts of control-ow partitioning and function-instance graphsto reduce the number of measurement points. Table 3.1 summarizes the performance tests foruser programs, benchmarks, and UNIX utilities. The numbers were produced by modifyingthe back-end of an optimizing compiler VPO (Very Portable Optimizer) [8] to determinemeasurement points by partitioning the control ow and by creating the function-instancegraph. 25

Table 3.1: Results for Measurement OverheadSize Instructions Measure Pts.Name Description [bytes] exec. in FIG static exec.cachesim Cache Simulator 8,460 2,995,817 13,776 73.38% 60.56%cb C Program Beauti�er 4,968 3,974,882 12,735 89.62% 65.61%compact Hu�man Code Compression 5,912 13,349,997 3,226 68.89% 56.56%copt Rule-Based Peephole Optimizer 4,148 2,342,143 1,309 84.19% 74.88%dhrystone Integer Benchmark 1,916 19,050,093 644 81.61% 72.73%�t Fast Fourier Transform 1,968 4,094,244 536 78.43% 74.08%genreport Execution Report Generator 17,720 2,275,814 8,968 71.58% 81.31%mincost VLSI Circuit Partitioning 4,448 2,994,275 2,198 83.19% 76.27%sched Instruction Scheduler 8,272 1,091,755 5,410 73.16% 58.29%sdi� Side-by-side File Di�erences 7,288 2,138,501 16,463 72.13% 77.82%tsp Traveling Salesman 4,724 3,004,145 1,548 64.08% 58.67%whetstone Floating point benchmark 4,816 8,520,241 1,667 70.49% 68.25%average 6,220 5,485,992 5,707 75.90% 68.75%The size of the programs varied between about 2kB and 18kB (see column 3). Thenumber of instructions executed for each program comprised a range of 1 to 19 million usingrealistic input data for each program (see column 4). Column 5 shows the static number ofinstructions in the program after expanding the call graph into a function instance graphand is used by subsequent chapters for comparison. Column 6 indicates the percentage ofmeasurement points required for the new UPPA method versus the number of measurementpoints inserted in conventional on-the-y analysis (i.e., one measurement point per basicblock). The new method requires only 76% of the measurement points required for thetraditional trace-driven analysis, i.e. about 24% fewer measurement points statically. Therun-time savings (column 7) are even higher, requiring only about 69% of the measurementpoints executed under traditional trace-driven analyses. The additional dynamic savings aredue to reducing sequences of basic blocks inside loops to fewer UPs, sometimes just to asingle UP. 3.5 Future WorkAs discussed previously, it may be possible to guarantee more e�cient results for on-the-yanalysis in the general case by extending paths to open paths. Also, it still remains an openquestion if the Algorithm 1 could be proved to produce a minimal UPPA.3.6 Related WorkTraditional pro�ling and tracing is often performed by collecting trace information duringprogram execution that is analyzed afterwards by a separate tool, which reconstructs theorder of events. It has been well established that a small set of measurement points for thistraditional approach can be provided by the edges of G �max(G), where G is the control-ow graph and max(G) is its maximum spanning tree [38, 7]. The resulting placement isoptimal for a large class of control-ow graphs, in particular reducible graphs resulting fromstructured programming constructs, and it is near-optimal for most other cases.It shall be noted that placing measurement code on an edge may involve the creationof new basic blocks and unconditional jumps. Samples [58] challenges the claim that themaximum spanning tree approach is optimal. He argues that the overhead of control-owtransformations should be taken into account. He develops a heuristic model to assess the26

approximate cost of control-ow transformations for code instrumentation and conjecturesthat an optimal solution may be NP-complete. In practice, the overhead of control-owtransformations for placing instrumentation code on edges is generally small and thereforemostly neglected.Lately, on-the-y analysis has been performed for collecting all measurements for a certainanalysis during program execution and generally results in a lower overall overhead thantraditional tracing methods. In the past, on-the-y analysis was performed at the level ofbasic blocks [19].Independent research by Emami et. al. [23] de�nes an invocation graph that has proper-ties similar to the function-instance graph. Their intention lies in interprocedural data-owand alias analysis. The handling of recursion in a function-instance graph was inspired bytheir work but realized di�erently due to the di�erent application.3.7 ConclusionIn this chapter, a formal method was developed to perform e�cient on-the-y analysis ofprogram behavior with regard to path partitioning. The method partitions the control-owgraph into a small set of unique paths, each of which contain a unique edge or vertex whereinstrumentation code can be placed. Furthermore, the construction of the function-instancegraph from a program's call graph re�nes the analysis. Performance evaluations show thatthe number of dynamicmeasurement points can be reduced by one third using these methods.

27

Chapter 4Static Cache SimulationThis chapter introduces the method of static cache simulation that provides the means topredict the behavior of a large number of cache references prior to execution time of a pro-gram. The method is based on a variation of an iterative data-ow algorithm commonly usedin optimizing compilers. It utilizes control-ow partitioning and function-instance graphs forpredicting the caching behavior of each instruction. No prior work on predicting caching be-havior statically could be found in the literature. Excerpts of this chapter can be found in[46, 50]. 4.1 IntroductionIn the last chapter, a framework for e�cient on-the-y analysis was developed. One ap-plication for on-the-y program analysis is cache performance evaluation. Di�erent cachecon�gurations can be evaluated by determining the number of cache hits and misses for aset of programs. Cache analysis can be performed on-the-y or by analyzing stored tracedata, though faster results have been reported for the former approach [69].This chapter introduces the method of static cache simulation, which predicts the cachingbehavior of a large number of instruction references prior to execution time1. The methodemploys a novel view of cache memories that seems to be unprecedented. The methodis based on a variation of an iterative data-ow algorithm commonly used in optimizingcompilers. It can be used to reduce the amount of instrumentation code inserted into aprogram for on-the-y analysis. It can also be used to enable a program timing tool to takethe e�ects of caching into account. These and other applications of static cache simulationare discussed in later chapters.This chapter is structured as follows: First, the categorization of instructions for cacheanalysis is formalized. Next, an algorithm is presented to calculate the information requiredfor instruction categorization within one function. The algorithm is then extended to inter-procedural analysis. Furthermore, measurements of a simple program are discussed. Finally,future work, related work, and conclusions are presented.4.2 Instruction CategorizationStatic cache simulation calculates the abstract cache states associated with UPs. The cal-culation is performed by repeated traversal of the function-instance graph and the UPPA ofeach function.De�nition 4 (Potentially Cached) A program line l can potentially be cached if thereexists a sequence of transitions in the combined UPPAs and function-instance graph suchthat l is cached when it is reached in the UP.De�nition 5 (Abstract Cache State) The abstract cache state of a program line l withina UP and a function instance is the set of program lines that can potentially be cached priorto the execution of l within the UP and the function instance.1Data cache references could be predicted in a similar manner but are not discussed here.28

The notion of an abstract cache state is a compromise between a feasible storage complexityof the static cache simulation and the alternative of an exhaustive set of all cache states thatmay occur at execution time with an exponential storage complexity.Based on the abstract cache state, it becomes possible to statically predict the cachingbehavior of each instruction of a program. Instructions may be categorized as always-hit,always-miss, �rst-miss, or conict. The semantics for each category is as follows. Always-hit(always-miss) instructions will always result in a cache hit (miss) during program execution.First-miss instructions will result in a cache miss on the �rst reference to the instruction andin a cache hit for any consecutive references. Conict instructions may result in a cache hitor a cache miss during program execution, i.e. their behavior cannot be predicted staticallythrough this simulation method. The di�erent categories are de�ned below after introducingthe notion of a reaching state.De�nition 6 (Reaching State) The reaching state of a UP within a function instance isthe set of program lines that can be reached through control-ow transitions from the UP ofthe function instance.De�nition 7 (Instruction Categorization) Let ik be an instruction within a UP and afunction instance. Let l = i0::in�1 be the program line containing ik and let ifirst be the �rstinstruction of l within the UP. Let s be the abstract cache state for l within the UP. Let lmap into cache line c, denoted by l ! c. Let t be the reaching state for the UP. Then, theinstruction categorization is de�ned ascategory (ik)=8>>>>>>>>><>>>>>>>>>:always-miss if k = first ^ l 62 salways-hit if k 6= first _ (l 2 s ^ 8m!c;m 6=lm 62 s)�rst-miss if k = first ^ l 2 s ^ 9m!c;m 6=lm 2 s ^ 8m!c;m 6=lm 2 s) m 62 t^80�x<n category(ix) 2 falways-hit, �rst-missgconict otherwiseAn always miss occurs when instruction ik is the �rst instruction encountered in programline l and l is not in the abstract cache state s. An always hit occurs either if ik is not the�rst instruction in l or l is the only program line in s mapping into c. A �rst miss occurs ifthe following conditions are met. First, ik is �rst in l, and l and at least one other programline m (which maps into c) are in s. Second, if one such line m is in s, then the line mustnot be reachable anymore from the current UP. Third, all other instructions in the programline have to be either always hits or �rst misses. A conict occurs in all other cases.This categorization results in some interesting properties. If the size of the program doesnot exceed the size of the cache, hardly any instructions will be categorized as conicts.Thus, the cache behavior can mostly be statically predicted.2 As the program becomesmuch larger than the cache, the number of conicts increases to a certain point. This pointdepends on the ratio between program size and cache size. After this point, conicts startto decrease again while �rst misses increase.The de�nition for instruction categorization is re�ned according to the application. Thisis discussed in later chapters in the context of a number of applications.2The adaptations of the de�nition for di�erent applications in later chapters will provide static predictabil-ity of all instructions if the program �ts into cache, i.e. no instruction will be categorized as a conict in thiscase. Since the adaptation depends on the application it could not be incorporated in the original de�nition.29

4.3 Calculation of Abstract Cache StatesAlgorithm 2 (Calculation of Abstract Cache States)Input: Function-Instance Graph of the program and UPPA for each function.Output: Abstract Cache State for each UP.Algorithm: Let conf lines(UP) be the set of program lines (excluding the program lines ofUP), which map into the same cache line as any program line within the UP.input state(main):= all invalid lines;WHILE any change DOFOR each instance of a UP in the program DOinput state(UP):= �;FOR each immediate predecessor P of UP DOinput state(UP):= input state(UP) [output state(P);output state(UP):= [input state(UP) [prog lines(UP)] n conf lines(UP);propagate statesThe iterative Algorithm 2 calculates the abstract cache states. In the algorithm, theabstract cache state of the program line of a UP that is referenced �rst is referred to asinput state. Conversely, the abstract cache state after the program line of a UP that isreferenced last is referred to as output state. The set of vertices (basic blocks) in a UPprovides the scope of program lines to transform an input state into an output state. Theinterprocedural propagation of states, propagate states, is explained in the next section.The algorithm is a variation of an iterative data-ow analysis algorithm commonly usedin optimizing compilers. Thus, the time overhead of the algorithm is comparable to thatof data-ow analysis and the space overhead is O(pl � UPs � fi), where pl is the numberof program lines, UPs is the number of paths, and fi the number of function instances.The correctness of the algorithm for data-ow analysis is discussed in [3]. The calculationcan be performed for an arbitrary control-ow graph, even if it is irreducible. In addition,the order of processing basic blocks is irrelevant for the correctness of the algorithm. Thereaching states can be calculated using the same base algorithm with input state(main)= conf lines(UP) = �.Example: Figure 4.1 depicts the calculation of input and output states. The chosen UPPAis UPPAb, the basic block partitioning.3 In the example, there are 4 cache lines and the linesize is 16 bytes (4 instructions). Thus, program line 0 and 4 map into cache line 0, programline 1 and 5 map into cache line 1, program line 2 maps into cache line 2, and program line3 maps into cache line 3. The immediate successor of a block with a call is the �rst block inthat instance of the called function. Block 8a corresponds to the �rst instance of foo() calledfrom block 1 and block 8b corresponds to the second instance of foo() called from block 5.Two passes are required to calculate the input and output states of the blocks, given thatthe blocks are processed in the order shown in Figure 4.1. Only the states of blocks insidethe loop (except for blocks 6 and 8b) change on the second pass. Pass 3 results in no morechanges.After determining the input states of all blocks, each instruction is categorized based onits abstract cache state (derived from the input state) and the reaching state shown in the�gure. By inspecting the input states of each block, one can make some observations thatmay not have been detected by a naive inspection of only physically contiguous sequences of3Algorithm2 operates on any UPPA, and the categorization is not inuenced by the choice of a UPPA. TheUPPAb simpli�es the example but would result in more measurement overhead during on-the-y analysisthan a smaller UPPA constructed by Algorithm 1. 30

return

return
program line 5

4

7

8

3

program line 3

a-hit

a-hit

a-hit

a-hit

a-hit

a-hit a-hit

a-hit

a-hit

a-hit

a-hit

a-miss

a-missfoo()
(a) (b)

program line 1

program line 2

program line 4

f-miss

main() 1 a-miss

a-miss

conflict

a-hit

a-miss

2

call foo() a-hit

program line 0

a-hit

a-hit

5 f-miss

a-hit

f-miss6

call foo()"I" = invalidcache 0 1 2 3 0 1 2 3 0 1 cache ln. 0 1 2 3 0 1 2 3 0 1 cache lineprogram I I I I 0 1 2 3 4 5 prog. ln. I I I I 0 1 2 3 4 5 program linePASS 1------in(1)=[I I I I] out(1)=[I I I 0]in(8a)=[I I I 0] out(8a)=[I I 4 5]in(2)=[I I 4 5] out(2)=[I I 1 4]in(3)=[I I 1 4] out(3)=[I 1 2 4]in(4)=[I 1 2 4] out(4)=[I 1 2 4]in(5)=[I 1 2 4] out(5)=[1 2 3 4]in(8b)=[1 2 3 4] out(8b)=[2 3 4 5]in(6)=[I 1 2 3 4 5] out(6)=[1 2 3 4 5]in(7)=[1 2 3 4 5] out(7)=[1 2 3 4 5]PASS 2------in(1)=[I I I I] out(1)=[I I I 0] reach(1)=[1 2 3 4 5]in(8a)=[I I I 0] out(8a)=[I I 4 5] reach(8a)=[1 2 3 4 5]in(2)=[I I 4 5] out(2)=[I I 1 4] reach(2)=[1 2 3 4 5]in(3)=[I I 1 2 3 4 5] out(3)=[I 1 2 3 4] reach(3)=[1 2 3 4 5]in(4)=[I 1 2 3 4] out(4)=[I 1 2 3 4] reach(4)=[1 2 3 4 5]in(5)=[I 1 2 3 4] out(5)=[1 2 3 4] reach(5)=[1 2 3 4 5]in(8b)=[1 2 3 4] out(8b)=[2 3 4 5] reach(8b)=[1 2 3 4 5]in(6)=[I 1 2 3 4 5] out(6)=[1 2 3 4 5] reach(6)=[1 2 3 4 5]in(7)=[1 2 3 4 5] out(7)=[1 2 3 4 5] reach(7)=[]Figure 4.1: Example with Flow Graph31

references. For instance, the static simulation determined that the �rst instruction in block7 will always be in cache (always hit) due to spatial locality since program line 4 is in in(7)and no conicting program line is in in(7). It was also determined that the �rst instructionin basic block 8b will always be in cache (always hit) due to temporal locality. The staticsimulation determined that the last instruction in block 3 will not be in cache on its �rstreference, but will always be in cache on subsequent references (�rst miss). This is indicatedby in(3), which includes program line 2 but also a conicting program line \invalid" forcache line 3. Yet, the conicting program line cannot be reached. This is also true for the�rst instructions of block 5 and 6 though a miss will only occur on the �rst reference of eitherone of the instructions. This is termed a group �rst miss and is discussed later. Finally, the�rst instruction in block 3 is classi�ed as a conict since it could either be a hit or a miss(due to the conditional call to foo). This is indicated by in(3), which includes program line1 and a conicting program line 5 that can still be reached.4.4 Interprocedural PropagationThe notion of function instances reduces the complexity of the cache states propagated acrossfunctions. Consider the calls from function f to h in Figure 3.4. If there was no distinctionbetween the instances h0 and h1, it could not be determined if a program line in h wascached, i.e. most lines would be considered conicts. Using function instances, it is knownthat the �rst call h0 will result in many cache misses to bring the program lines of h intocache while the second call h1 results in many hits (assuming that the lines of h were retainedin cache between the calls).Algorithm 2 illustrates the calculation of abstract cache states. But it does not show howthe states are propagated across function instances. The pseudo code in Figure 4.2 �lls thisPROCEDURE propagate states ISFOR each function F instance I DOFOR each path P in F with a call to function G instance K DOFOR each entry path E in G DOinput state(E,K):= output state(P,I);FOR each path Q that is a successor path of P DOinput state(Q,I):= �;FOR each exit path E in G DOinput state(Q,I):= input state(Q,I) cup output state(E,K);END propagate states;Figure 4.2: Pseudo Code for Propagation of Abstract Cache Statesgap. Notice that a function instance may have multiple entry paths and exit paths due tothe de�nition of UPs. Informally, the output states of the UP at the call site (of the caller'sinstance) are propagated into the input states of the entry blocks of the callee's instance.Conversely, the union of the output states of the callee's instance are propagated into theinput state of the single UP that succeeds the call site (of the caller's instance).4.5 MeasurementsSome of the characteristics of the instruction categorization have already been discussed.Figure 4.3 shows the distribution of each instruction category for varying cache sizes of a32

sample program. The sample program performs a fast Fourier transformation and has acode size of slightly less than 2kB. The numbers correspond to the static prediction by thestatic cache simulation for a cache line size of 16 bytes (4 instructions).
0

20

40

60

80

100

16 32 64 128 256 512 1024 2048 4096

P
e
r
c
e
n
t

o
f

I
n
s
t
r
u
c
t
i
o
n
s

Cache Size [Bytes]

always-hit
always-miss

conflict
first-miss

Figure 4.3: Distribution of Static Cache Prediction for �tThe number of always hits increases slightly with the cache size but, overall, 70-75% ofthe instructions are predicted as always hits. This number is a�ected by the size of a cacheline. In this case, the �rst instruction of each line mostly does not result in a hit but oncethe line is brought into cache, the remaining 3 instructions are hits. This explains the staticapproximation of 75% of hits for large cache sizes.The number of always misses is large (about 27%) for small cache sizes due to capacitymisses of small caches. But as the cache size increases, misses are reduced to compulsorymisses due to bringing a program line into cache for the �rst time and stays constant (atabout 4% here) once the whole program �ts into cache (at 2kB cache size).The number of conicts starts out relatively low (about 2%), reaches a peak (at about15% here) when the cache size is about a quarter of the program size, and reaches zero oncethe entire program �ts into cache. For small cache sizes, program lines that map into thesame cache line are often certain to be capacity misses as discussed before. As the cache sizeincreases, it can no longer be determined statically whether a program line always replacesanother or not. Once the program �ts into cache, only one program line maps into a cacheline and conicts are complete eliminated.The number of �rst misses is zero for small cache sizes, gradually increases and stabilizes(at 21% here) once the entire program �ts into cache. The following conditions have to bemet for �rst misses. First, the cache has to be large enough to hold a program line of a loop.Second, other program lines mapping into the same cache line must either not exist or mustnot be reachable anymore.Overall, the large number of always misses for small caches is �rst replaced by mostlyconicts as the cache size increases, then conicts and always misses are replaced by �rst33

misses (and by a few always hits). A more comprehensive analysis of the e�ects of staticcache simulation are given later in the context of various applications.4.6 Future WorkSo far, only instruction caching has been simulated. Current work includes the applicationof static cache simulation to data caches under certain restrictions, such as the absence ofpointers and dynamic memory allocation (which are feasible assumptions for the design ofpredictable real-time applications). However, many addresses of data references are knownstatically. For instance, static or global data references retain the same addresses during theexecution of a program. Addresses of run-time stack references can be statically determinedas well in the absence of recursion. Compiler ow analysis can be used to detect the pat-tern of many calculated references, such as indexing through an array. Previous work hasshown improvements by balancing the number of instructions placed behind loads where thememory latency was uncertain [34]. By predicting the memory latency of a large portion ofloads, instruction scheduling could be performed more e�ectively. For example, the numberof instructions the scheduler would place between a load instruction and the �rst instructionreferencing the loaded register should be greater for a data reference classi�ed as an alwaysmiss than an always hit.The current implementation of the static simulator imposes the restriction that onlydirect-mapped cache con�gurations are allowed. Recent results have shown that direct-mapped caches have a faster access time for hits, which outweighs the bene�t of a higher hitratio in set-associative caches for large cache sizes [31]. Yet, current micro-processors are stilldesigned with set-associative caches [12]. A modi�ed algorithm and data structure could bedesigned to handle set-associative caches within the framework of static cache simulation.The implementation of the static cache simulator currently rejects the analysis of recursivefunctions. This restriction can be lifted by denoting recursion as described in the context ofthe function-instance graph and by applying the described algorithm to calculate abstractcache states repeatedly for backedges due to recursion.Furthermore, static cache simulation can only be applied accurately to split data andinstruction caches. This is due to the limited information about data references that canbe inferred statically. In a uni�ed cache design the interference between data caching andinstruction caching may not always be known statically. Also, the current design only coversprimary (on-chip) caches. The simulation of secondary caches would be possible by takingthe cache behavior of a primary cache into account. Yet, most secondary caches are uni�edcaches and cannot be accurately simulated by this method as of now.Finally, indirect calls are not handled since the static simulator must be able to generatean explicit call graph. It may be possible for the compiler to determine some values offunction pointers but this does not seem to be possible for the general case of functionpointers resulting from arithmetic expressions. The same applies to non-local transfers ofcontrol such as setjmp() and longjmp().4.7 Related WorkThe idea to statically simulate a portion of the cache behavior seems to be unprecedented inresearch. Conventional methods for cache analysis use hardware simulators, inline tracing,or on-the-y analysis. Hardware simulators are reportedly much slower than any othertechnique mentioned here. For inline tracing, the cache behavior is analyzed based on tracedata that is generated during program execution. The fastest results have been reported for34

on-the-y analysis, a method that simulates the entire cache during program execution byinstrumenting the program with calls to a trace routine. None of these methods analyze thecache prior to program execution.4.8 ConclusionThe method of static cache simulation is introduced, which allows the prediction of a largenumber of cache references prior to program execution by taking advantage of path partition-ings and the function-instance graph. A number of applications for this method are discussedin later chapters, ranging from faster instruction cache analysis to the analytical bounding ofexecution time by static analysis for real-time tasks. The bene�t of static cache simulationfor fast and accurate cache analysis is illustrated in the context of the applications.

35

Chapter 5Code Instrumentation for Instruction Cache AnalysisThis chapter discusses the generation of instrumentation code for on-the-y analysis of in-struction cache performance evaluation. This code is generated during the second phase ofthe static simulator based on the information of the �rst phase, the instruction categoriza-tion. While this work describes the generation of code for the purpose of cache analysis, anyother on-the-y analysis could be performed in its place by emitting di�erent instrumentationcode.The code emitted by the compiler back end includes macro calls for each UP and foreach call site. The simulator generates the corresponding macro bodies, produces tables tostore local path states and frequency counters at run time, and provides other constant datastructures for the �nal calculation of hits and misses. The code instrumentation includesthe insertion of instructions at the unique transition of each UP to keep track of local stateinformation and to record the frequency of executed instructions for this path and state.The generated code is later inserted into the assembly code of the compiled program.When the instrumented program executes, the counters are incremented to provide theexecution frequency of portions of code. In addition, the cache behavior is simulated forreferences that could not be predicted statically (so-called conicts). The dynamic simulationemploys a novel view of the cache by updating local state information associated with codeportions. At the exit points of the program, an epilogue is inserted to call a library routinethat calculates the total hits and misses from the gathered state-dependent frequencies.It will be shown in later chapters that this new method speeds up cache analysis overconventional trace-driven methods by an order of a magnitude. Excerpts of this chapter canbe found in [47]. 5.1 IntroductionStatistical sampling methods are often employed by pro�ling tools such as prof [65] orgprof [25, 26]. Yet, these tools only provide approximate measurements. On the otherhand, code instrumentation results in accurate pro�ling measurements. For example, in-struction frequency measurements can be obtained by inserting instructions that incrementfrequency counters into a program. The counters are typically associated with a basic blockand incremented each time the basic block executes. The overhead induced by frequencymeasurements is less than a factor of two in execution time. This much lower overhead canbe attributed to the fact that the execution order of instructions is irrelevant.Conventionally, cache analysis is either based on a trace data �le generated during pro-gram execution or by on-the-y tracing, a method where the trace analysis is performedduring program execution. The method discussed here is an on-the-y analysis techniquethat employs short sequences of instrumentation code (inlined as macro calls) for each UPand avoids the generation of trace addresses all together. The compiler identi�es the liveregisters at the instrumentation point. A set of unused registers is provided for the instru-mentation code to avoid unnecessary saves and restores. If all registers are allocated, registerspill code will be emitted around an instrumentation point.36

The code instrumentation for cache analysis discussed in this chapter makes extensiveuse of frequency counters when instruction references are statically determined to be alwayscache hits, always cache misses, or �rst misses. For the remaining instruction references,state information is associated with code portions and is updated dynamically. The totalhits and misses can be inferred from the state-dependent frequency counts after running theprogram.This chapter is structured as follows: First, the merging of states associated with UPs ispresented. The main portion of this chapter describes the code instrumentation step-by-step,�rst describing data structures such as shared path states and frequency counters, then codemacros for calls and paths, and �nally the �rst miss table. Afterwards, the calculation ofhits and misses for instruction cache analysis is presented, followed by future work, relatedwork, and conclusions. 5.2 Merging StatesAfter decomposing the program into function instances and UPs, there still remain manylines that are analyzed to be in conict with another line. It is inevitable to maintaininformation at run time to determine which line is currently cached and to update thisinformation dynamically. This is achieved by maintaining a path state. A path state onlyreects the conicts local to the current path while a cache state comprises the global stateof a cache memory.Naively, a path state may be kept on the most specialized level (for every function instanceand path). But this may require a considerable amount of interaction between UPs. In theworst case, the execution of a UP of some function instance would not only have to updateits path state but every other path state conicting with a line of this path and any functioninstance.The number of function instances may grow exponentially with the dynamic nestingdepth as can be seen in the representation as a function-instance graph in Figure 3.4. Forprograms with a call graph whose average branching factor is greater or equal to two, this canbe infeasible if the height of the call graph becomes large and a leaf function (or a functionclose to a leaf) is called from many places.Cache state information is therefore merged after simulation in two stages to comprisepath states. First, the conicts of the cache states of a UP of all instances of a function aremerged into one local path state. Second, local path states of neighboring UPs, which shareat least one instruction, are merged into one shared path state (SPS), to better utilize thestorage and without any loss of information.The former merging allows uniform instrumentation of code rather than distinguishinginstances dynamically at every instrumentation point or replicating code for each instance.In both cases, the amount of dynamic simulation of conicts is reduced. While an SPS onlyneeds to maintain one state to keep track of conicts dynamically, the state may comprisea wider range of values to combine all possible conicts of the local path states. The localpath states to be merged are therefore chosen with regard to their locality.5.3 Shared Path StatesFor each SPS, a state �eld is generated in the state table (see Figure C.1 in Appendix C).These states are modi�ed at run time by the macro code of UPs. The value of such a statedenotes which lines are cached out of a set of conicting lines. The initial value denotes theset of lines cached prior to the �rst execution of any corresponding UP. The value can be37

used as an index into the frequency counter array of the current UP. Thus, state-dependentfrequency counting can be performed by using the SPS as an index into the counter arrayand incrementing the corresponding counter. Furthermore, if an SPS is constant at run time(no conicting lines), then the state �eld is omitted from the state table.Example: In Figure 5.1, paths 1 and 2 have a shared path state, which is used to simulatethe hits and misses of program lines a and b. The lines conict with the reachable programlines x and y, which explains why they are categorized as conicts. The SPS for path 1 and2 has two bits (due to two conicting program lines) to hold the possible encoding of cachedprogram lines of the SPS (as shown in the �gure). The state is updated on the execution ofpath 1 to include program line a. The execution of path 2 includes both a and b in the state,the execution of path 3 excludes b, and the execution of path 4 excludes both a and b. Simplebit manipulations su�ce for these updates, as indicted by the pseudo code in the �gure. Thefrequency counter, indexed by the incoming SPS, is incremented. Path 2 has an array offour frequency counters, corresponding to each possible value of the SPS. An increment ofthe �rst counter element corresponds to misses on line a and b, an increment of the secondcounter element indicates a miss on a and a hit on b, etc. The separate counter array forpath 2 is incremented in the same manner. Neither the frequency counter increments forpaths 3 and 4 nor their SPS are shown to simplify the example.
SPS (path 1 and 2)

0 1 : miss a, hit b

1 1 : hit a, hit b
1 0 : hit a, miss b

0 0 : miss a, miss b1

4

5

2

3

6

I-Cache

cache line c

7

path 4

path 2

cache line d

freq[sps]++

sps&=~0x3

sps|=0x3

freq[sps]++
path 1

pgm line a
pgm line b

pgm line x
pgm line y

sps|=0x2

path 3
sps&=~0x1Figure 5.1: Frequency Counters Indexed by the SPS5.4 Frequency CountersFor each UP of every function instance, an array of frequency counters is used to keep trackof the execution frequency of the UP (see Figure C.2 in Appendix C). The size of the arrayis determined by the number of permutations of conicting lines for an SPS. Since the size38

is growing exponentially with the number of conicting lines, an alternate counter arraywith a constant size of two entries is provided for large numbers of conicting lines in theSPS. There is a time/space trade-o� between the two alternatives, which is discussed in thecontext of the path macros. In general, alternate methods of code instrumentation optimizespecial cases to reduce the instrumentation overhead.5.5 Macros for CallsMacro code is generated at call sites to pass the base address of the counter table for thecallee's function instance as an additional parameter of the call. The function instance canthereby be identi�ed by path macros (see Figure C.4 in Appendix C).5.6 Macros for PathsThe code emitted for path macros increments the frequency counter indexed by the SPS,updates the SPS to reect that the lines of the current path are now cached, and updatesany other SPS of conicting paths that can still be reached. If a di�erent path shares a line(but not the SPS) with the current path, the line is marked as cached in the SPS of theconicting path. Conversely, if a di�erent path conicts with the current SPS in a line, theline is marked as uncached in the SPS of the conicting path.Alternately, code is emitted to increment a general frequency counter for large SPSs.Since no counter array is generated for large SPSs, indexing into an array becomes obsolete.Rather, the SPS is �rst combined with an AND mask to single out the conict lines of onlythe current path. Then, the number of remaining on-bits is counted and added to a secondcounter that accumulates references to conicting lines resulting in misses. This alternatemethod requires less counter space but increases execution time by determining the numberof set bits in a loop1. Figures C.5 and C.6 in Appendix C depicts examples of path macrocode. 5.7 First Miss TableIf a path of a function instance contains a line that is classi�ed as a �rst miss, an entry forthis line is created in the �rst miss table (see Figure C.3 in Appendix C). If another pathshares the same line and also categorizes this line as a �rst miss, this path's instance is alsoincluded in the same table entry. This table is used to adjust the total number of hits andmisses as explained in the next section.5.8 Calculation of Hits and MissesThe total number of hits and misses can be inferred from the state-dependent frequencycounters and from the �rst miss table. This calculation is performed after running theinstrumented program as part of its exit code. The calculation is independent from thenumber of SPSs or any other code generation parameters and can thus be hidden in alibrary routine that is linked with the instrumented program.1RISC architectures as well as most CISC architectures do not provide a special bit-counting instruction.39

5.8.1 Hits and Misses based on Frequency CountersFor each path of each function instance, the product of a frequency count and the numberof always hits (misses) is added to the total number of hits (misses). First misses, weightedby the frequency, are also added to the total number of hits at this point.The index into the counter array indicates the number of hits and misses for conictinglines, which are then also multiplied by the corresponding frequency (see Figure C.2 inAppendix C). A zero index indicates that all conicting lines are cached while the last indexcorresponds to misses of all conicting lines.Not all cache line con�gurations may be valid during the execution of the program for agiven path and instance. In other words, the frequency count for an index should be zeroif the SPS cannot occur. The actual implementation violates this rule to further improvethe performance in the following manner. To minimize the amount of state changes duringrun time, a conicting SPS is not updated if it can be determined at simulation time thatthe corresponding cache state cannot occur. This information is provided by the reachingstates. Therefore, only a subset of counter indices may actually correspond to a valid cachecon�guration for a given path and instance. The number of conicting lines is thus inferredfrom the array index combined with an AND mask with bits set in the position of validcache lines. This method ensures that the lines corresponding to impossible SPSs are notcounted.If the number of states in the SPS was large and the alternate counting method wasapplied, then the always hits (misses) and �rst misses are still counted based on the frequencycounter. The number of misses due to conicts is readily available in one counter. Thenumber of hits can be calculated as the total frequency times the number of conict linesless the number of misses due to conicts.5.8.2 First Miss AdjustmentSince �rst misses were exclusively counted as hits with respect to the frequency, the hits andmisses have to be adjusted. For each entry in the �rst miss table (see Figure C.3 in AppendixC), the counters of corresponding paths (and instances) are checked. If the frequency of oneof the paths is greater than zero, the total number of hits is decremented while misses areincremented by one. 5.9 Future WorkThe current code instrumentation could be improved in several ways. Some performanceimprovement could be achieved by applying code motion to path macros in the innermostloops when the number of iterations is known before the loop is entered and no alternateexecution paths exist inside the loop.The static analysis has already been extended based on a more detailed picture of theloop structure of the program. A re�ned notion of �rst misses refers to a miss of a programline on loop entry and consecutive hits inside the loop. The code instrumentation couldtake this situation into account during �rst miss adjustment. Thus, some conicts can bereplaced by �rst misses and �rst hits whose simulation requires less overhead during programexecution. For a more detailed discussion, see Chapter 8.5.10 Related WorkA technique called inline tracing can be used to generate the trace of addresses with muchless overhead than trapping or simulation. Measurement instructions are inserted in the40

program to record the addresses that are referenced during the execution in a �le or bu�er.The program analysis may be performed concurrently on a bu�ered address trace to reducethe storage requirements to temporary trace bu�ers. Borg et. al [10] and Eggers et. al. [22]used this technique to obtain accurate measurements for the simulation of instruction anddata caches. Whalley [68, 69] used on-the-y analysis where a cache simulation function wascalled during program execution for each basic block. In the next chapter, their work willbe discussed in more detail and contrasted with the performance results of this work.5.11 ConclusionAn outline of inline code instrumentation for instruction cache analysis was presented. Theinstrumentation is based on the instruction categorization provided by static cache simula-tion. By reducing code instrumentation to simple frequency counting in many places andlocally shared path states in other places, the overhead of the instrumentation code is keptsurprisingly low at program execution time. This will be shown in more detail in the nextchapter.

41

Chapter 6Fast Instruction Cache Performance AnalysisThis chapter evaluates the method of static cache simulation in conjunction with code instru-mentation for instruction cache performance analysis. Measurements taken from a varietyof programs show that static cache simulation speeds up cache analysis over conventionaltrace-driven methods by an order of a magnitude. Thus, cache analysis with static cachesimulation makes it possible to analyze the instruction cache behavior of longer and morerealistic program executions. Excerpts of this chapter can be found in [47].6.1 IntroductionThe method for instruction cache analysis discussed in this chapter uses static cache sim-ulation to statically predict the cache behavior of a large number of instruction references.The method also uses the techniques for code instrumentation described in the last chapter.Thus, dynamic simulation is reduced to simple frequency counting for always hits, alwaysmisses, and �rst misses. Conicts are simulated by updating local state information.This chapter is structured as follows: First, related work in the area is reviewed. Then, theadaptation of static cache simulation for instruction cache performance analysis is discussed.Next, a quantitative analysis of this method is provided. Finally, future work and conclusionsare presented. 6.2 Related WorkEvaluating cache performance has long been recognized as a challenging task to be performedin an e�cient manner. Traces of the actual addresses referenced during the execution of pro-grams have to be used to perform a realistic evaluation. The problem is that a realistic tracetypically consists of millions of references. Evaluation of these traces can require excessiveamounts of space and time when using simple approaches. For instance, a traditional ap-proach is to generate the trace via trapping or simulation, write each address generated inthe trace on disk, and analyze the trace via a separate program that reads the trace fromdisk and simulates the cache. Such an approach can easily slow the execution by a factor ofa 1000 or more [55, 70, 33].A technique called inline tracing can be used to generate the trace of addresses withmuch less overhead than trapping or simulation. Measurement instructions are inserted inthe program to record the addresses that are referenced during the execution in a bu�er. Theprogram analysis is performed either concurrently on the bu�ered address trace to reduce thestorage requirements to temporary trace bu�ers or it is performed after program executionon trace �le data. Borg, Kessler, and Wall [10] modi�ed programs at link time to writeaddresses to a trace bu�er and these addresses were analyzed by a separate process. Thetime required to generate the trace of addresses was reduced by reserving �ve of the generalpurpose registers to avoid memory references in the trace generation code. Overhead rates of8 to 12 times of the normal execution time were reported for the trace generation. Analysisof the trace was stated to require at least 10 times of the overhead of the generation of thetrace (or about 100 times slower than normal execution time).42

Eggers et. al. [22] also used the technique of inline tracing to generate a trace of addressesto a trace bu�er, which was copied to disk by a separate process. They used several strategiesfor minimizing the overhead of generating the trace. First, they produced a subset of theaddresses from which the other addresses could be inferred during a postprocessing pass.For instance, they only stored the �rst address in a sequence of contiguous basic blocks witha single entry point and multiple exit points. Rather than reserving a set of registers to beused for the trace generation code, they identi�ed which registers were available and thusavoided executing many save and restore instructions. The trace generation overhead wasaccomplished in less than 3 times of the normal execution time. In addition, writing thebu�ers to disk required a factor of 10 times of the normal execution time. The postprocessingpass, which generates the complete trace from the subset of addresses stored, was much slowerand produced about 3,000 addresses per second. No information was given on the overheadrequired to actually analyze the cache performance.Ball and Larus [7, 41] also reduced the overhead of the trace generation by storing aportion of the trace from which the complete trace can be generated. They optimizedthe placement of the instrumentation code to produce the reduced trace with respect to aweighting of the control-ow graph. They showed that the placements are optimal for alarge class of graphs. The overhead for the trace generation was less than a factor of 5.However, the postprocessing pass to regenerate the full trace required 19-60 times of thenormal execution time.Whalley [68, 69] evaluated a set of on-the-y analysis techniques to reduce the timerequired to evaluate instruction cache performance. He linked a cache simulator to theprograms, which were instrumented with measurement code to evaluate the instruction cacheperformance during the program's execution. The techniques he evaluated avoided makingcalls to the cache simulator when it could be determined in a less expensive manner thatthe reference was a hit. The overhead time for the faster techniques was highly dependentupon the hit ratio of the programs. He reported 15 times of the normal execution time foraverage hit ratios of 96% and 2 times of the normal execution time for hit ratios exceeding99%. These faster techniques also required recompilation of the program when the cachecon�guration was altered.6.3 Adaptation of Static Cache SimulationFigure 6.1 depicts an overview of the tools and interfaces involved in instruction cacheanalysis using static cache simulation. The set of source �les of a program are translated bya compiler. The compiler generates assembly code with macro entries for instrumentationand passes information about the control ow (i.e. a set of unique paths) of each source �le tothe static cache simulator. The static cache simulator performs the task of determining whichinstruction references can be predicted prior to execution time. It constructs the call graph ofthe program and the control-ow graph of each function based on the information providedby the compiler. The cache behavior is then simulated for a given cache con�gurationas described in Chapter 4. Furthermore, macro code for instrumenting the executable isgenerated together with tables to store cache information at run time. This output of thesimulator is passed to the assembler, which translates the code generated by the compiler intoinstrumented object code. The linker combines these object �les to an executable programand links in library routines that produce the �nal report of the cache analysis at run time(see Chapter 5). When the cache con�guration changes, no recompilation is needed; onlythe static cache simulator, assembler, and linker have to be reinvoked.In the current implementation, the instruction categorization has been slightly relaxed43

source

control

flow

simulator

files

cache

static

information

cache configuration

linker
program

executableobject

files
compiler

files
assembler

assembly

cache state cache

analysis

library

routines

table

macros

tation

instrumen-Figure 6.1: Overview of Cache Performance Analysisto further reduce instructions categorized as conicts. If an instruction was categorized asa conict according to De�nition 7 and the only other conicting line m (where m! c andm 2 s) is the invalid cache line \I", then all �rst references to the program line shall become�rst misses. The measurements of the next section show that this relaxation eliminatesconicts all together when the entire program �ts into cache. For such cases, the cachesimulation during program execution is reduced to only increments of frequency counters.Example: Consider the example in Figure 6.2. In (a), the categorization is shown according
4

5

6

a-miss

4

5

f-miss6

f-miss

(a) original definition (b) revised definition

conflict

program line 2

program line 3"I" = invalidcache line 0 1 2 3 0 1 2 3 0 1program line I I I I 0 1 2 3 4 5input(5) = [I 2] reach(5) = [3 4 5]input(6) = [I 2 3] reach(6) = [4 5]Figure 6.2: Example for Adaptation of Categorizationto the original de�nition. Notice that the conict instruction occurred as a result of theuncertainty introduced by the conditional control ow. If block 5 is not executed, a miss willoccur for the �rst instruction of block 6. If block 5 is executed, the miss will occur in block5 and the �rst instruction in block 6 will be a hit. The relaxed categorization shown in (b)recognizes both references as a group �rst miss since only the invalid line is conicting withline 3 in input(6). 44

6.4 MeasurementsThis section evaluates the bene�ts of instruction cache analysis via static cache simulation.Cache measurements were obtained for user programs, benchmarks, and UNIX utilities listedin Table 3.1 of Chapter 3. The table has already been discussed except for column 5. Column5, instructions in the tree, refers to the static number of instructions in the program afterexpanding the call graph to a function instance tree. The measurements in the next sectionare based on this number.All measurements were produced by modifying the back-end of an optimizing compilerVPO (Very Portable Optimizer) [8] and by performing static cache simulation. The simula-tion was performed for the Sun SPARC instruction set, a RISC architecture with a uniforminstruction size of one word (four bytes). The parameters for cache simulation includeddirect-mapped caches with sizes of 1kB, 2kB, 4kB, and 8kB. The cache line size was �xedat 16 bytes (4 instructions). No context switches were simulated.6.4.1 Static AnalysisThis section describes the analysis that was performed statically on the test programs. Table6.1 shows the percentage of always hits, always misses, �rst misses, and conicts out of theTable 6.1: Static Results for Cache Performance Evaluation1kB cache 2kB cacheName Hit Miss Firstmiss Conict Hit Miss Firstmiss Conictcachesim 70.83% 6.99% 0.70% 21.48% 71.54% 5.18% 1.84% 21.44%cb 79.02% 2.35% 0.00% 18.63% 80.56% 0.95% 0.00% 18.49%compact 70.06% 4.96% 0.12% 24.86% 70.15% 1.95% 0.12% 27.77%copt 70.82% 7.41% 7.03% 14.74% 71.28% 5.73% 15.28% 7.72%dhrystone 70.03% 10.71% 7.30% 11.96% 70.81% 3.73% 25.47% 0.00%�t 74.07% 4.85% 16.42% 4.66% 75.75% 3.92% 20.34% 0.00%genreport 71.63% 9.75% 5.64% 12.98% 72.45% 9.02% 6.67% 11.86%mincost 72.75% 9.96% 1.14% 16.15% 74.66% 5.91% 4.60% 14.83%sched 67.52% 5.06% 0.09% 27.32% 67.76% 2.48% 0.09% 29.67%sdi� 68.93% 12.06% 0.90% 18.11% 69.34% 9.81% 1.88% 18.97%tsp 72.61% 13.50% 3.88% 10.01% 73.00% 9.95% 10.21% 6.85%whetstone 75.70% 12.84% 0.24% 11.22% 76.60% 8.94% 0.24% 14.22%average 72.00% 8.37% 3.62% 16.01% 72.83% 5.63% 7.23% 14.32%4kB cache 8kB cacheName Hit Miss Firstmiss Conict Hit Miss Firstmiss Conictcachesim 72.05% 4.52% 13.78% 9.65% 72.61% 3.54% 23.78% 0.07%cb 80.81% 0.35% 15.81% 3.04% 80.85% 0.03% 19.12% 0.00%compact 70.27% 0.46% 10.26% 19.00% 70.71% 0.46% 28.83% 0.00%copt 71.81% 5.19% 22.99% 0.00% 71.81% 5.19% 22.99% 0.00%dhrystone 70.81% 3.73% 25.47% 0.00% 70.81% 3.73% 25.47% 0.00%�t 75.75% 3.92% 20.34% 0.00% 75.75% 3.92% 20.34% 0.00%genreport 72.62% 8.57% 8.36% 10.44% 72.88% 8.12% 10.87% 8.13%mincost 75.48% 2.91% 21.43% 0.18% 75.52% 2.91% 21.57% 0.00%sched 67.80% 1.92% 2.35% 27.93% 67.95% 1.24% 30.81% 0.00%sdi� 69.41% 9.55% 18.28% 2.75% 69.44% 9.44% 21.12% 0.00%tsp 73.32% 5.10% 21.45% 0.13% 73.39% 5.10% 21.51% 0.00%whetstone 77.08% 1.44% 17.10% 4.38% 77.98% 0.48% 21.54% 0.00%average 73.10% 3.97% 16.47% 6.46% 73.31% 3.68% 22.33% 0.68%45

total number of instructions in the function instance tree. It can be seen that a large numberof hits and misses can be predicted statically.The number of always hits is slightly above 70% in average and does not change signif-icantly as the cache size is varied. Always hits occur mostly due to subsequent referenceswithin a program line (past the �rst reference) that do not depend on the cache size. Theslight variation of always hits is mainly due to multiple function instances. Consider a �rstcall to a function that will cache the function's program lines. Subsequent calls always re-sult in hits for these program lines, given a su�ciently large cache capacity such that noconicting lines could be executed between the two function calls.The number of �rst misses increases for larger caches while conicts and misses decreaseat the same time. This can be explained as follows. First misses occur when a program linewithout any conicts is placed in cache on its �rst reference and remains in cache thereafter.For smaller caches, program lines tend to conict with one another more frequently. Asthe programs begin to �t into cache, fewer program lines are in conict. In the worst case,only every sixth instruction is statically predicted as a conict and will have to be simulatedat execution time. At best, there are virtually no conicts and almost the entire runtimesimulation can be performed using e�cient frequency counters.6.4.2 Dynamic AnalysisTable 6.2 summarizes the dynamic measurements taken for the test programs. For eachgiven cache size and program execution, our method produced exactly the same number ofhits and misses that were obtained by traditional trace-driven cache analysis. As the cachesize increases, the hit ratio (column 2) increases as well. Column 3 and 4 represent thequotient of the execution time of a program with instrumentation over the execution timefor the same program without instrumentation. Column 3 refers to a trace-driven methodthat has been optimized such that the cache simulator is only called once per basic block1.Column 4 refers to the analysis via static cache simulation. The percentage of conicts (outof all instruction references) simulated at execution time is shown in the last column.With the traditional trace-driven method, the execution time of instrumented programsaverages about 17 times slower than the execution time of regular programs without instru-mentation. The overhead for the new method using static cache simulation is much lower,only a factor of 1.2 to 2.2.2 This overhead depends slightly on the ratio of program size andcache size. The variation can be explained as follows.Let the conict degree be the number of program lines that map into the same cache line.This is a useful term to characterize the size of shared path states (SPSs) and the executionoverhead due to order-dependent simulation. For small cache sizes, the conict degree islarger and there are more always misses due to capacity misses. As the cache size increases,capacity misses and the conict degree of program line decrease. They are replaced by �rstmisses. With a diminishing number of conicts for large caches, the size of SPSs decreases asthe cache size increases. In other words, fewer and fewer conicting program lines map intothe same cache lines. Consequently, less instrumentation code to update conicting SPSs isneeded. Finally, for large caches, hardly any conicts remain. Thus, the cache simulation atexecution time can be reduced to simple frequency counting, which imposes a much lower1We used a traditional trace-driven method similar to \Technique B" in [69] but the new method wasprobably �ner tuned.2Sometimes, the instrumented code ran faster than the uninstrumented program, i.e. the ratio wassmaller than 1. These results were reproducible. They may be caused by the di�erent placement of codedue to instrumentation, resulting in fewer misses for frequently executed loops.46

overhead than conventional cache simulation. To summarize this discussion, it is observedthat the new method requires slightly more execution overhead for small caches than forlarge caches since more SPSs have to be updated dynamically.Table 6.2: Dynamic Results for Cache Performance Evaluation1kB cache 2kB cacheName Hit Ratio Trace SSim Conict Hit Ratio Trace SSim Conictcachesim 77.19% 8.52 1.52 34.12% 86.08% 7.98 1.33 38.01%cb 93.84% 35.18 3.65 30.67% 99.06% 32.63 2.85 31.91%compact 92.90% 22.42 2.33 21.34% 96.79% 22.05 1.87 20.94%copt 93.64% 16.04 1.59 30.00% 98.10% 16.46 1.24 10.88%dhrystone 83.73% 19.35 1.28 16.01% 100.00% 14.88 0.91 0.00%�t 99.95% 5.76 0.93 8.80% 100.00% 5.63 0.92 0.00%genreport 97.49% 14.39 2.08 25.74% 98.10% 12.66 1.70 24.32%mincost 89.08% 22.32 2.06 30.67% 95.68% 22.46 1.80 25.41%sched 96.41% 31.38 4.49 41.99% 99.75% 24.59 2.67 42.67%sdi� 97.61% 27.69 3.60 28.40% 99.38% 28.45 2.77 28.27%tsp 86.98% 5.62 1.12 17.63% 96.94% 5.16 1.04 13.24%whetstone 100.00% 13.50 1.35 23.56% 100.00% 13.20 1.52 25.39%average 92.40% 18.51 2.17 25.74% 97.49% 17.18 1.72 21.75%4kB cache 8kB cacheName Hit Ratio Trace SSim Conict Hit Ratio Trace SSim Conictcachesim 99.22% 7.45 1.15 14.02% 99.98% 6.45 1.04 1.67%cb 99.83% 29.36 2.15 7.50% 99.99% 28.09 1.68 0.00%compact 99.82% 20.99 1.43 12.22% 100.00% 18.40 0.88 0.00%copt 99.99% 13.37 1.03 0.00% 99.99% 13.08 0.98 0.00%dhrystone 100.00% 14.96 0.92 0.00% 100.00% 15.03 0.92 0.00%�t 100.00% 5.76 0.89 0.00% 100.00% 5.75 0.91 0.00%genreport 98.11% 12.52 1.72 24.18% 99.93% 12.67 1.62 19.41%mincost 99.99% 17.49 1.10 0.05% 99.99% 17.07 1.10 0.00%sched 99.90% 20.62 1.85 36.82% 99.96% 22.16 1.42 0.00%sdi� 99.99% 25.13 1.36 4.30% 99.99% 23.42 1.30 0.00%tsp 99.99% 4.43 0.99 0.00% 99.99% 4.26 0.96 0.00%whetstone 100.00% 11.11 1.10 12.15% 100.00% 11.10 1.01 0.00%average 99.74% 15.27 1.31 9.27% 99.99% 14.79 1.15 1.76%In general, the new method outperforms conventional trace-driven cache simulation byalmost an order of a magnitude without compromising the accuracy of measurements. Eventhe best results published in [69] required an overhead factor of 4-15 over uninstrumentedcode for hit ratios between 96% and 99%. This highly tuned traditional method required arecompilation pass for better instrumentation. Under all conditions, the new method usingstatic cache simulation outperforms the best traditional trace-driven methods published.6.5 Future WorkThe de�nition of �rst misses can still be improved. The static analysis could be extendedbased on a more detailed picture of the loop structure of the program. A re�ned notion of�rst misses could then refer to a miss of a program line on loop entry and consecutive hitsinside the loop. This would be valuable when a program line will not be cached at loop entryand no other conicting program line is part of the loop.47

6.6 ConclusionA new method to evaluate instruction cache performance was designed and implemented.The cache performance of programs for various cache con�gurations can be obtained with-out recompiling the analyzed program. No special operating system support or dedicatedregisters are required. The new method outperforms conventional trace-driven cache simu-lation by an order of a magnitude without any loss of accuracy of the measurements. Bymaking extensive use of static cache simulation and reducing code instrumentation to simplefrequency counting in many places, this method reduces the execution overhead of analyzedprograms to a factor of 1.2 to 2.2. In addition, di�erent cache sizes and resulting hit ratioshave little inuence on the overhead. In summary, instruction cache analysis via static cachesimulation is a general method to quickly obtain accurate measurements.

48

Chapter 7Predicting Instruction Cache BehaviorIt has been claimed that the execution time of a program can often be predicted moreaccurately on an uncached system than on a system with cache memory [27, 60, 43]. Thus,caches are often disabled for critical real-time tasks to ensure the predictability requiredfor scheduling analysis. This work shows that instruction caching can be exploited to gainexecution speed without sacri�cing predictability. This work takes advantage of static cachesimulation to statically predict the caching behavior of a large portion of the instruction cachereferences of a program. In addition, a fetch-from-memory bit is added to the instructionencoding that indicates whether an instruction shall be fetched from the instruction cache orfrom main memory. This bit-encoding approach provides a signi�cant speedup in executiontime (factor 3-8) over systems with a disabled instruction cache without any sacri�ce inthe predictability of worst-case execution time. The fetch-from-memory bit facilitates thebounding of execution time by conventional timing tools. Even without bit-encoding, theability to predict the caching behavior of a large percentage of the instruction references isvery useful for providing tight worst-case execution time predictions of large code segmentson machines with instruction caches but requires more sophisticated analysis by a timingtool. Excerpts of this chapter can be found in [50].7.1 IntroductionPredicting the execution time of programs or code segments is a di�cult task. Yet, in thecontext of hard real-time systems, it is essential to provide a schedule for tasks with knowndeadlines. Thus, tasks have to be analyzed to determine their best-case execution time(BET) and worst-case execution time (WET). The following problems have to be addressedto predict the execution time of a task or program:� The number of loop iterations needs to be known prior to execution. It is often requiredthat the maximum number of iterations be provided by the programmer [36].� The possible execution paths in the control ow have to be analyzed to predict bothBET and WET.� Architectural features have to be taken into account (e.g. pipeline stalls).In the context of real-time systems, caches have been regarded as a source of unpre-dictability, which conicts with the goal of making the execution of tasks deterministic [60].For a system with an instruction cache as a primary (on-chip) cache, the execution time ofan instruction can vary greatly depending on whether the given instruction is in cache ornot. In addition, context switches and interrupts may replace the instructions cached by onetask with instructions from another task or an interrupt handler. As a result, it has beencommon practice to simply disable the cache for sections of code when predictability wasrequired [60].This work shows that it is possible to predict some cache behavior with certain restric-tions. Let a task be the portion of code executed between two scheduling points (context49

switches). When a task starts execution, the cache memory is assumed to be invalidated.During task execution, instructions are gradually brought into cache and often result inmany hits and misses that can be predicted by static cache simulation. Furthermore, aslight change in the architecture in conjunction with the simulator's analysis allows, withoutloss of predictability, signi�cantly faster execution time than on systems with a disabledinstruction cache.This chapter is structured as follows: The next section reviews related work in the area.Afterwards, the bit-encoding approach is introduced, which can exploit caches for real-timesystems. In the following, the bit-encoding approach is contrasted with uncached and reg-ular cached systems on an abstract level. Then, the adaptation of static cache simulationfor this application is discussed. Furthermore, a quantitative analysis of both static cachesimulation and the bit-encoding approach is provided. Finally, future work and conclusionsare presented. 7.2 Related WorkThe problem of determining the execution time of programs has been the subject of someresearch in the past. Sarkar [59] suggested a framework to determine both average executiontime and its variance. His work was based on the analysis of a program's interval structureand its forward control ow. He calculated a program's execution time for a speci�c set ofinput data by using a description of the architecture and the frequency information obtainedby incrementing counters during a pro�ling run. He assumed that the execution order ofinstructions does not a�ect this calculation. Thus, his method cannot capture the impact ofcaching on execution time.For real-time systems, several tools to predict the execution time of programs have beendesigned. The analysis has been performed at the level of source code [54], at the level ofintermediate code [52], and at the level of machine code [28]. Only Harmon's tool took theimpact of instruction caches into account for restrictive circumstances, i.e. only for smallcode segments that entirely �t into cache.Niehaus outlined how the e�ects of caching can be taken into account in the predictionof execution time [53]. He suggested that caches be ushed on context switches to provide aconsistent cache state at the beginning of each task execution. He provided a rough estimateof the bene�t of caches for speedup and tried to determine the percentage of instructioncache references that can be predicted as hits. The level of analysis remained at a veryabstract level though, as it only dealt with spatial locality for sequential execution and sometemporal locality for simple loops. No general method to analyze the call graph of a taskand control ow for each function was given.A few attempts have been made to improve the predictability of caches by architecturalmodi�cations to meet the needs of real-time systems. Kirk [35] outlined such a system thatrelied on the ability to segment the cache memory into a number of dedicated partitions,each of which can only be accessed by a dedicated task. But this approach introducednew problems such as exhibiting lower hit ratios due to the partitioning and increasing thecomplexity of scheduling analysis by introducing another resource (cache partitioning) as anadditional degree of freedom in the allocation process.Lee et. al. proposed a modi�ed instruction pipeline where instructions are prefetchedalong the worst-case execution path. They reported a 45% improvement of the predictedworst-case execution time under this scheme. This work shows that better results for thetiming prediction can be achieved by using instruction caches, with or without architecturalmodi�cations. 50

Other suggested architectural modi�cations often dedicate a bit in the instruction en-coding that is used by the compiler to a�ect the cache behavior. McFarling [45] used suchan approach to exclude instructions from cache that were not likely to be in cache on sub-sequent references. Chi and Dietz [14] introduced a data cache bypass bit on load and storeinstructions, which, when set, indicates that the processor should go directly to memory(without caching the value as a side-e�ect) or goes to the cache when clear. Their idea is toimprove execution speed by keeping data values either in registers or in cache, thus avoidingstorage mirroring among the faster components in the memory hierarchy (registers and datacaches). Their work emphasizes instruction caches rather than data caches. In contrastto McFarling's study and the work by Chi and Dietz, the work described here is primarilyfocused on the predictability of instruction caching and secondarily on execution speed.7.3 Bit-Encoding ApproachBased on the categorization of instruction references introduced in De�nition 7, a bit-encoding approach has been formulated. The intention of this approach is to provide betterperformance than uncached systems (as currently used in real-time systems) and better pre-dictability over conventional caches with a moderate sacri�ce in execution speed. The bit-encoding approach allows conventional timing tools to provide tight execution time boundsin the presence of instruction caches with this hypothetical architectural feature. A fetch-from-memory bit is encoded into the instruction format by dedicating a single bit position.If the bit is set in an instruction and the instruction is in cache, then the instruction will befetched from main memory. If the bit is not set, then the instruction will be fetched fromcache.7.3.1 Operational Semantics of the Fetch-from-Memory BitDuring each cache reference, the fetch-from-memory bit is evaluated in parallel with the tagcomparison, as shown in Appendix D. The following logic is used to resolve instruction fetchrequests:� If the cache access results in a miss, then the corresponding program line is fetchedfrom main memory taking n cycles and the fetch-from-memory bit is ignored. (The bitwould not be available anyway until the instruction is fetched.)� If the tag comparison matches and the cache line is valid, then the e�ect depends onthe evaluation of the fetch-from-memory bit.{ If the bit is clear, then the processor is directed to use the instruction without delay.{ If the bit is set, then the corresponding program line is fetched from main memorytaking n cycles.In the last subcase, a memory fetch is performed although the program line alreadyresides in cache. If the e�ect of such a memory fetch is only simulated to reduce buscontention, it would be unpredictable whether an actual memory fetch occurs or not. Thus,bus contention may or may not occur. The current semantics forces a memory access suchthat bus contention can be predicted for any memory reference with a fetch-from-memorybit set if a data reference occurs at the same time.51

The fetch-from-memory bit is set whenever the static cache simulation categorizes aninstruction as a conict or an always miss. Otherwise, the bit is cleared. This is straightforward for always hits. For �rst misses, on the other hand, the cache look-up fails on the �rstreference and the program line is fetched from main memory. For any subsequent referencesto this address, the instruction is found in cache with the bit clear resulting in a cache hitand a one cycle access time. Thus, bit-encoding takes advantage of �rst-miss instructions.If an instruction is in a function that has multiple instances and the instruction hasdi�erent categories in the di�erent instances, then the static simulator must decide whetheror not to set the fetch-from-memory bit. Currently, the static simulator conservativelydecides to fetch from memory if one or more instances categorize the instruction as a missor a conict. Otherwise, the bit is cleared1.7.3.2 SpeedupIn this section, the execution time w.r.t. instruction fetch overhead is analyzed. Otherfactors, e.g. data references to main memory, may add to the execution time but should notbe adversely e�ected by the bene�ts of instruction caching.For any uncached system, let the fetch time of one instruction be n cycles. Furthermore,let i be the number of instructions executed. Then, a lower bound for the time for thisexecution is tuncached = i � n cycles. (7:1)For a cached system, let i = h+m be the number of instructions executed where h and mare the number of hits and misses respectively. Assume a cache look-up penalty of one cycle[31, 29]. Since a cache look-up always has to be performed before it can be decided whetherthe program line associated with an instruction has to be fetched from main memory, thelower bound for an execution in a cached system istcached = h +m � (n+ 1) cycles. (7:2)For the bit-encoded cached system, let i = h0+m0 be the number of instructions executedwhere h0 andm0 are the number of instructions fetched from cache and memory respectively2.Then, a lower time bound can be given astbit encoded = h0 +m0 � (n+ 1) cycles. (7:3)There is both spatial and temporal locality inherent in the code of almost all programs.For instance, assume that a cache line consists of multiple instructions. The �rst reference toan instruction in such a line may cause a miss. But if instructions are executed sequentially,consecutive references to instructions of the same line will result in hits. Also, assume thatsome portion of the code executes in a loop does not conict with any other program linesaccessed by the loop. Subsequent references to this code in the same execution of the loopwill also result in hits. Based on this observation, the following inequalities can be assumedfor a typical execution:m� h, m0 � h0, and h0 < h.1It is possible in such a situation that the merged instruction could be safely classi�ed as a �rst miss andhave its bit cleared. An example of this situation is the �rst instruction in block 8 of Figure 4.1. In futurework, the control ow could be analyzed to recognize these situations.2h0and m0 are approximately the same as the number of instructions executed with the fetch-from-memory bit clear and set respectively with the exception of �rst misses, which are counted as misses on the�rst reference and hits on subsequent references. 52

In summary, the following relation holds for an execution on the average.tcached < tbit encoded < tuncached (7:4)7.4 Adaptation of Static Cache SimulationFor the performance analysis of instruction caches, the compiler emits information aboutthe control ow of each function at the basic block level rather than at the level of uniquepaths to facilitate the encoding of the fetch-from-memory bit. The static cache simulator isadapted in the same way as discussed in Chapter 6. The bit-encoding approach uses the sameframework but adjusts the categorization to simulate the e�ect of the fetch-from-memorybit. If the bit is set, then the e�ect on the timing is equivalent to a cache miss. Thus, asimple remapping of the categorization can be used to determine the performance exhibitedby the bit-encoding approach.new-category (ik)=8<:always-miss if category(ik) 2falways-miss,conictgalways-hit if category(ik) =always-hit�rst-miss if category(ik) =�rst-missThe mapping of conicts into always misses simulates the overhead of a memory fetchon each conict instruction, regardless of its original caching behavior (hit or miss at exe-cution time). First misses will still be adjusted as described in Chapter 5. Thus, the �rstreference to a �rst miss will be simulated as a cache miss while all consecutive references arecounted as cache hits. Since paths are comprised of basic blocks for this application, pathscannot overlap3. On the other hand, di�erent categorizations may exist for distinct functioninstances of the same function. In such a case, the worst-case scenario is assumed:� if any instance classi�es the instruction as an always miss, then the �nal category willbe an always miss; otherwise,� if any instance classi�es the instruction as a �rst miss, the �nal category will be a �rstmiss; otherwise,� the �nal category will be an always hit.This remapping of instruction categories provides a framework to evaluate the perfor-mance impact of the fetch-from-memory bit. It will be used in the next section to provide aquantitative analysis of a set of test programs.7.5 AnalysisThis section analyzes the bene�t of predicting the behavior of instruction cache references.Cache measurements were obtained for user programs, benchmarks, and UNIX utilities listedin Table 3.1. The measurements were produced by modifying the back-end of an optimizingcompiler VPO (Very Portable Optimizer) [8] and by performing static cache simulation.The compiler back-end provided the control-ow information for the static simulator. Italso produced assembly code with instrumentation points for instruction cache simulation.3Architectural features may present an exception to this general rule. For example, consider RISCarchitectures with an instruction d in the delay slot of a branch b. Both b and d are part of a basic block.Yet, if d is also the target of another branch instruction, d will also be the �rst instruction of another basicblock. 53

The cache simulation for traditional caches was based on the instruction categorizationby the static simulator and has been validated by comparison with another trace-drivencache simulator. The validity of the bit-encoding approach was derived from mapping theinstruction categories into the values for the fetch-from-memory bit. The assembly code wasgenerated for the Sun SPARC instruction set, a RISC architecture with a uniform instructionsize of one word (four bytes).The parameters for cache simulation included direct-mapped caches with sizes of 1kB,2kB, 4kB, and 8kB (see column 1 in Tables 7.1 and 7.2). The cache line size was �xed at4 words. The size of the programs varied between 500 and 4500 instructions (5kB { 18kB,see column 3 of Table 7.1). This provided a range of measurements from capacity missesdominating for small cache sizes to entire programs �tting in cache for large cache sizes. Thenumber of instructions executed for each program comprised a range of 1 to 19 million usingrealistic input data for each program (see column 3 of Table 7.2).7.5.1 Static AnalysisStatic cache simulation classi�es instructions into categories based on the predicted cachebehavior. Table 7.1 shows the static number of instructions for each program (column 3)Table 7.1: Static Results: Call Graph (CG) & Function-Instance Graph (FIG)number of cache predictionCache instructions CG FIGSize Name CG FIG memory always hit always miss �rst miss conictcachesim 2,115 9,397 28.07% 69.30% 8.23% 0.74% 21.73%cb 1,242 7,017 31.08% 75.70% 2.85% 0.00% 21.45%compact 1,478 2,173 29.84% 69.67% 5.52% 0.18% 24.62%copt 1,037 1,152 21.99% 71.01% 7.73% 7.03% 14.24%dhrystone 479 549 23.17% 69.76% 11.29% 6.56% 12.39%1kB �t 492 528 9.55% 74.05% 4.92% 16.29% 4.73%genreport 4,430 7,060 19.77% 70.64% 11.30% 6.18% 11.88%mincost 1,112 1,657 28.33% 72.24% 8.57% 1.39% 17.80%sched 2,068 3,378 32.88% 66.55% 5.98% 0.15% 27.32%sdi� 1,822 10,407 28.06% 67.44% 12.28% 1.08% 19.21%tsp 1,181 1,236 22.95% 72.73% 13.59% 4.37% 9.30%whetstone 1,204 1,485 26.62% 75.69% 11.65% 0.27% 12.39%1kB average 1,555 3,837 25.19% 71.23% 8.66% 3.69% 16.42%2kB average 1,555 3,837 21.18% 72.09% 5.88% 7.28% 14.75%4kB average 1,555 3,837 11.35% 72.40% 4.36% 16.64% 6.60%8kB average 1,555 3,837 4.73% 72.61% 4.03% 22.77% 0.59%and the number of instructions associated with all function instances when the call graphis converted into a function-instance graph (column 4). Column 5 denotes the percentageof instructions in the call graph that have the fetch-from-memory bit set. Columns 6 to9 show the percentage of instructions in the function-instance graph for each category asdetermined by the static simulator. Notice that the cache behavior could be predictedstatically for 84-99% of the instructions, depending on the ratio of program size and cachesize. The remaining 1-16% are due to conicts.7.5.2 Dynamic AnalysisTable 7.2 illustrates the dynamic behavior of three systems: an uncached system (simulating54

Table 7.2: Dynamic Results for Cache Predictabilitycache Name Instructions hit ratio conicts exec time % of exec timeSize executed bit-enc. cached cached uncached bit-enc. cachedcachesim 2,995,817 65.70% 77.19% 28.52% 26,962,353 45.41% 33.92%cb 3,974,882 67.24% 93.84% 31.08% 35,773,938 43.87% 17.27%compact 13,349,997 67.12% 92.90% 32.45% 120,149,973 43.99% 18.21%copt 2,342,143 68.56% 93.64% 28.93% 21,079,287 42.55% 17.47%dhrystone 19,050,093 77.95% 83.73% 15.75% 171,450,837 33.16% 27.38%1kB �t 4,094,244 91.17% 99.95% 8.80% 36,848,196 19.94% 11.16%genreport 2,275,814 74.64% 97.49% 24.58% 20,482,326 36.47% 13.63%mincost 2,994,275 67.35% 89.08% 28.06% 26,948,475 43.76% 22.03%sched 1,091,755 67.21% 96.41% 32.15% 9,825,795 43.90% 14.70%sdi� 2,138,501 71.20% 97.61% 28.40% 19,246,509 39.92% 13.50%tsp 3,004,145 72.01% 86.98% 22.06% 27,037,305 39.10% 24.13%whetstone 8,520,241 71.57% 100.00% 23.78% 76,682,169 39.54% 11.11%1kB average 5,485,992 71.81% 92.40% 25.38% 49,373,930 39.30% 18.71%2kB average 5,485,992 77.81% 97.49% 21.14% 49,373,930 33.30% 13.62%4kB average 5,485,992 90.73% 99.74% 9.12% 49,373,930 20.38% 11.37%8kB average 5,485,992 98.15% 99.99% 1.76% 49,373,930 12.97% 11.13%a disabled instruction cache), a cached system with the bit-encoding approach, and a con-ventional cached system. Column 3 indicates the number of instructions executed. The hitratio (percentage of cache hits of all instruction references) is shown for the bit-encoded sys-tem in column 4 and for conventional caches in column 5. Column 6 shows the percentage ofexecuted instruction references that were classi�ed as conicts on a cached system. Column7 indicates the estimated execution time in cycles for an uncached system. The percentageof cycles required for a bit-encoded system (column 8) and for a conventional cached system(column 9) are compared to an uncached system. The execution time is calculated based onthe equations 7.1, 7.2, and 7.3 for n = 9.4The bit-encoding approach results in lower hit ratios (72-98%) than on a conventionalcached system (92-99%). Yet, caches are often disabled for critical real-time tasks to providethe predictability required by scheduling analysis. Thus, the bit-encoding approach shouldbe compared to an uncached system. The bit-encoding method requires only 13-39% of thecycles used by the uncached systems. This provides a speedup of programs by a factor of 3-8without sacri�cing the predictability of a program's execution time. The result representsthe improvement over critical real-time tasks that require caches to be disabled. The resultsimprove considerably as the cache size increases and entire programs �t into cache. Theexecution time required for a conventional cached system is only about 14% of an uncachedsystem, but the predictability also decreases to the point where it becomes insu�cient forscheduling analysis of critical tasks. This can be explained as follows:Conicts correspond to the instructions whose cache behavior could not be predictedprior to execution in a conventional cached system. The dynamic percentage of conictreferences is higher than the static percentage given in Table 7.1 since conicts typically4The latency for a memory fetch is assumed to be n = 9 cycles, a cache look-up takes one cycle, andthus a cache hit also consumes one cycle while a miss takes n + 1 = 10 cycles. These assumptions aredescribed as realistic by other researchers [31, 29]. A memory fetch in an uncached system fetches exactlyone instruction while a memory fetch in a cached system fetches a line of 4 instructions. Fetching a line ofmultiple instructions is typically accomplished through a wider bus between cache and main memory for acached system. 55

occur in loops. Since 25% of the instructions executed were conicts, the execution timeof programs cannot be predicted as tightly in conventional cached systems with traditionaltiming tools. However, more recent work (combining the static simulator with a timing tool)shows that the instruction categorization of the static simulator may be used by a moresophisticated timing tool to provide tight worst-case execution time predictions with a 4-9times speedup over uncached system using a conventional instruction cache [5]. This will bediscussed in more detail in the next chapter.7.6 Future WorkFurther work focuses on integrating the method of static cache simulation with a tool thatestimates a program's best-case execution time (BET) and worst-case execution time (WET)[28, 5]. Using the information provided by static cache simulation, the BET and WET canbe based on the categorization of instructions. This relieves the time-estimation tool fromhaving to simulate all possible cache states. The instruction categorization is re�ned toprovide a separate category for each loop level, thereby providing the base for tight executiontime predictions.With the bit-encoding approach, a traditional tool predicting the execution time canperform the same type of analysis and provide estimations for both BET and WET. Butthe execution time predictions can be tighter since the caching behavior is fully predictable.Instructions classi�ed as always hits can be assumed to require one cycle, and always missesor conicts can be estimated to take n+1 cycles. For a �rst miss, the tool could distinguishbetween the �rst reference (n+1 cycles) and any subsequent references (one cycle) by simplytagging �rst miss instructions that have been encountered. A traditional timing tool shouldbe easily modi�ed to take the e�ect of bit-encoding into account. The resulting executiontime estimate will be as tight as for uncached systems since the estimation of the fetch costaccurately represents the number of cycles taken for an instruction in any category. Thereis no uncertainty with respect to the e�ect of an instruction classi�ed as conict, the fetchwill always take n+ 1 cycles. 7.7 ConclusionCache memories have often been disabled for critical real-time tasks to provide su�cientpredictability for scheduling analysis. This chapter shows that the behavior of instructioncache references can be predicted to a large extent prior to the execution of a programvia the method of static cache simulation. The cache simulator uses information providedby the back-end of a compiler to statically predict the cache behavior of 84-99% of theinstructions. Furthermore, a fetch-from-memory bit has been proposed that is added to theinstruction encoding. This approach provides a speedup in execution time by a factor of3-8 over uncached systems without sacri�cing the predictability of the program's worst-caseexecution time. The ability to predict the caching behavior of a large percentage of theinstruction references (in a conventional cached system) or even all instruction references(using the fetch-from-memory bit) can be used to predict the execution time of large codesegments on machines with instruction caches. The advantage of the bit-encoding approachis that it can be used by conventional timing tools to bound execution time while a moresophisticated and more complex timing tool is needed to achieve tight bounds for regularcaches. The latter approach is discussed in the next chapter.In summary, instruction cache behavior is su�ciently predictable to provide worst-caseexecution time predictions that are tight enough for scheduling analysis in a non-preemptive56

environment. Thus, the performance advantage of instruction caches can be exploited forcritical real-time tasks by enabling either conventional or bit-encoded instruction caches.

57

Chapter 8Bounding Execution TimeThe use of caches poses a di�cult tradeo� for architects of real-time systems. While cachesprovide signi�cant performance advantages, they have also been viewed as inherently un-predictable since the behavior of a cache reference depends upon the history of previousreferences to the cache. The use of caches will only be suitable for real-time systems if a rea-sonable bound on the performance of programs using cache memory can be predicted. Thischapter describes an approach for bounding the worst-case instruction cache performance oflarge code segments. Excerpts of this chapter can be found in [5].8.1 IntroductionCaches present a dilemma for architects of real-time systems. The use of cache memory inthe context of real-time systems introduces a potentially high level of unpredictability. Aninstruction's execution time can vary greatly depending on whether the instruction causes acache hit or miss. Whether or not a particular reference is in cache depends on the program'sprevious dynamic behavior (i.e. the history of its previous references to the cache). As aresult, it has been common practice to simply disable the cache for sections of code wherepredictability is required [60]. Unfortunately, even the use of other architectural features,such as a prefetch bu�er, cannot approach the e�ectiveness of using a cache. Furthermore, asprocessor speeds continues to increase faster than the speed of accessing memory, the perfor-mance advantage of using cache memory becomes more signi�cant. Thus, the performancepenalty for not using cache memory in real-time applications will continue to increase.Bounding instruction cache performance for real-time applications may be quite bene�-cial. The use of instruction caches has a greater impact on performance than the use of datacaches. Code generated for a RISC machine typically results in four times more instruc-tion references than data references [29]. In addition, there tends to be a greater locality forinstruction references than data references, typically resulting in higher hit ratios for instruc-tion cache performance. Also, unlike many data references, the address of each instructionremains the same during a program's execution. Thus, instruction caching behavior shouldbe inherently more predictable than data caching behavior.This chapter shows that, with certain restrictions, it is possible to predict much of theinstruction caching behavior of a program. In contrast to previous chapters, the predic-tion is provided at a �ner level of detail, i.e. for each loop nesting level. As in the lastchapter, assume that a task be the portion of code executed between two scheduling points(context switches) in a system with a non-preemptive scheduling paradigm. When a taskstarts execution, the cache memory is assumed to be invalidated. During task execution,instructions are gradually brought into cache and often result in many hits and misses thatcan be predicted statically.Figure 8.1 depicts an overview of the approach described in this chapter for predictingbounds on instruction cache performance of large code segments. Control-ow informationis stored as the side e�ect of the compilation of a �le. This control-ow information couldhave also been obtained by analyzing assembly or object �les. The control-ow informationis passed to a static cache simulator, which constructs the control-ow graph of the program58

Files

Source

C

Compiler

Control

Flow

Information

Instruction

Caching

Categorizations

Static

Cache

Simulator

Analyzer

Timing Timing

Predictions

User Timing Requests

Configuration

CacheFigure 8.1: Overview of Bounding Instruction Cache Performancethat consists of the call graph and the control ow of each function based on the informationprovided by the compiler. The program control-ow graph is then analyzed for a givencache con�guration and a categorization of each instruction's potential caching behavior isproduced. Next, a timing analyzer uses the instruction caching categorizations along withthe control-ow information provided by the compiler to estimate the worst-case instructioncaching performance for each loop within the program. A user is then allowed to requestthe instruction cache performance bounds for any function or loop within the program.This chapter is structured as follows: First, related work is reviewed. Then, the adap-tation of the instruction categorization for this application is discussed. A timing analyzer,which uses the instruction categorization information, then estimates the worst-case instruc-tion cache performance for each loop in the program. Finally, future work and conclusionsare presented. 8.2 Related WorkAs already mentioned in Chapter 7, several tools to predict the execution time of programshave been designed for real-time systems. The analysis has been performed at the level ofsource code [54], intermediate code [52], and machine code [28]. Only the last tool attemptedto estimate the e�ect of instruction caching and was only able to analyze small code segmentsthat contained no function calls and entirely �t into cache. Thus, this tool was able to assumethat at most one miss will occur for each reference.Niehaus outlined how the e�ects of caching on execution time can be estimated [53], asdiscussed in the last chapter. However, no general method was provided to analyze the callgraph of a program and the control ow within each function.Lin and Liou suggested that more frequently executed tasks be placed entirely in cacheand other tasks be denied any cache access [44]. While this approach may have some bene�tfor a few tasks, the performance of the remaining tasks will be signi�cantly decreased. Part oftheir rationale was that if a task could not entirely �t in cache, then the worst-case executionwould be the same as an uncached system since cache hits could not be guaranteed. It willbe shown later that a high percentage of instruction cache hits for such programs can beguaranteed and that the worst-case performance with an instruction cache is signi�cantlybetter than a comparable system with a disabled cache.There have been attempts to improve the performance and predictability of accessingmemory for real-time systems by architectural modi�cations. One attempt by Kirk via59

cache partitioning has already been discussed in the last chapter, including some of theproblems, such as lower hit ratios and increased complexity of scheduling analysis [35].Cogswell and Segall suggest a di�erent approach for the MACS architecture [17], whichuses no cache memory. Instead, their pipelined processor performs a context swap betweenthreads in a round-robin ordering on each instruction. No thread may have more thanone instruction in the pipeline at one time. Assuming that the number of pipeline stagesdoes not exceed the number of threads, the delay of memory fetches is overcome since thenext instruction for a given thread will not be scheduled for the pipeline until the currentinstruction for the task has propagated through all the stages of the pipeline. By usingdi�erent memory banks for di�erent threads, memory fetches for local data can be issuedwithout causing bus contention. Note that only the overall throughput of the entire set ofthreads is enhanced. The response time for an individual thread is not improved. Thus, thisapproach requires that a task be broken up into a number of independent threads, whichimplies restructuring of conventional real-time programs.Lee et. al. suggested an architecture that prefetches instructions in the direction of theworst-case execution path [43]. The justi�cation for using their approach was that \it is verydi�cult, if not impossible, to determine the worst-case execution path and, therefore, theworst-case execution time of a task" when instruction caching is employed. Their analysismeasured a 45% improvement of the predicted worst-case time compared to no prefetch-ing (and no instruction cache). This improvement is probably quite optimistic since buscontention was not taken into consideration (contention between the three competing mem-ory classes for instructions access, data access, and threads). Furthermore, mispredictedbranches may result in an uninterruptible block fetch along the wrong path, which oftencannot be aborted. This misprediction penalty may then cause worst-case behavior alongthe (previously) shorter path. In addition, the ability to improve performance by prefetchinga block of instructions is quite limited compared to the potential improvement when usingan instruction cache. It will be shown later in the chapter that much better worst-casepredictions can be made in the presence of instruction caching than with just a prefetchbu�er. 8.3 Timing Analysis TreeTiming tools generally propagate timing estimates through a timing analysis tree from nodeto node in a bottom-up fashion, i.e. the timing of leaf nodes is calculated �rst, followed byinnermost loops in the control-ow graph, innermost functions in a call sequence, to �nallythe outermost function main(). Intermediate results are stored at each node during thetiming analysis pass. This information can be used at a later stage to satisfy user requestsfor timings of arbitrary code ranges without recalculation of the timing behavior.The timing analysis tree can easily be constructed from the control-ow graph of eachfunction and the function instance graph assuming the absence of recursion.De�nition 8 (Timing Analysis Tree) The timing analysis tree of a program is de�nedas follows:1. The function instance main0 is the root loop node with one iteration.2. Any other function instance is represented as a loop node with one iteration, which is achild of the loop node at its call site.3. The outermost loops of a function are represented as child nodes of the correspondingfunction instances. 60

4. Nested loops are represented as child nodes of the next-outer loops.A loop node � with a distance n from the root is said to be at nesting level nesting(�) = n.Example: Figure 8.3 (discussed in detail later) shows a simple C program in (a) and thecorresponding timing analysis tree in (b). The function main at level 0 includes loop1 atnesting level 1. The loop calls value (a) and value (b), both at level 2.8.4 Adaptation of Static Cache SimulationThis application requires a number of adaptations of the instruction categorization. First,the static cache simulation is performed on the level of basic blocks rather than unique pathsto avoid di�erent categorizations of the same instruction when paths overlap. Furthermore,De�nition 7 for instruction categorization is adapted to provide su�ciently �ne-grained infor-mation for the timing tool. The original de�nition was based on the notion of abstract cachestates and reaching states for the entire program. This global notion of caching behavior istoo coarse to provide tight timing estimates at the level of functions, loops, or even basicblocks. Consider the conict category. For worst-case timings, a conict would be countedas a miss since this reects the worst-case memory access time. Conversely, a conict wouldbe approximated as a hit for the best case. This would result in some predictability of in-struction caches but the timing estimates may not be very tight. A tighter timing predictioncan be provided if conict instructions can be categorized separately at each loop level asone of the categories besides conicts.Example: In Figure 8.2, instruction a is the �rst instruction that can be executed within the
inst a

outer loop

inst b

prog line x

prog line y

cache line c

Instruction Cache

inner loopFigure 8.2: Example of Conicting Lines between Nested Loopsprogram line x in the outer loop. Instruction b is the �rst instruction that can be executedwithin the program line y in the inner loop. Assume program lines x and y are the only twolines that map to cache line c and there are no conditional transfers of control within thetwo loops. In other words, instructions a and b will always be executed on each iterationof the outer and inner loops, respectively. How should instruction b be classi�ed? Withrespect to the inner loop, instruction b will not be in cache when referenced on the �rstiteration, but will be in cache when referenced on the remaining iterations. This situationcan be ascertained by the static cache simulator since it can determine that there are noother program lines within the inner loop that conict with program line y. In addition, theabstract cache state at the exit point of the basic block preceding the inner loop does notcontain program line y. With respect to the outer loop, instruction b will always cause amiss on each iteration since it will not be in cache as the outer loop initially enters the innerloop.11Note that instruction a would be classi�ed as an always miss.61

De�nition 7 needs to be revisited and adapted to represent the caching behavior relativeto each loop nesting level. The same terminology as for De�nition 7 is assumed for De�nition9 below with the following changes.� Let ik be an instruction within a UP, a loop �, and a function instance.� Let u be the set of program lines in loop �.� Let child(�) be the child loop of � for this UP and function instance, if such a childloop exists.� Let header(�) be the set of header paths, preheader(�) be the set of preheader pathsand backedges(�) be the set of backedges of loop �, respectively (see Figure 3.2(a)).2� Let s(p) be the abstract output cache state of path p.3� Let linear(p) be the linear cache state of path p.� Let postdom(p) be the set of self-reexive post-dominating programming lines of pathp.The linear cache state of a path represents the hypothetical cache state in the absenceof loops. It is calculated by algorithm 2 where backedges in the control ow and recursiveedges in the function-instance graph are disregarded.4The post dominator set of a path includes the program lines that are certain to bereached from the path, regardless of the taken paths in the control ow. This informationfor basic blocks is commonly used in optimizing compilers. A more detailed discussion ofpost dominators can be found elsewhere [3].In addition, a new category of �rst-hits is introduced. In analogy to a �rst miss, a �rsthit occurs when the �rst reference to an instruction in a loop results in a cache hit but allsubsequent references in the loop result in misses.De�nition 9 (Instruction Categorization for a Loop) The instruction categorizationis de�ned separately for the worst-case execution timing and the best-case execution timingas worst (ik; �)=8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:
always-hit if k 6= first _ (l 2 s ^ 8m!c;m 6=lm 62 s)�rst-hit if worst(ik; child(�)) =�rst-hit_k = first ^ l 2 s ^ 9m!c;m 6=lm 2 (s \ u)^[8p2preheaders(�)l 2 s(p) ^ 8m!c;m 6=lm 62 (s(p) \ u)]^8p2headers(�)l 2 postdom(p) ^ 8m!c;m 6=lm 62 (linear \ u)�rst-miss if worst(ik; child(�)) =�rst-miss^k = first ^ l 2 s^9m!c;m 6=lm 2 s ^ 8m!c;m 6=lm 62 (s \ u)always-miss otherwise2The common notion of \natural loops" de�nes a single loop header preceded by a single preheader outsidethe loop [3]. This work extends this notion to handle more general control ow with unstructured loops.Multiple loop headers occur only for unstructured loops, which are handled by the simulator. Multiple looppreheaders occur when the loop can be entered from more than one path outside the loop, which can occureven for natural loops.3This notation is also used for edges e = p! q where s(e) = s(p). Thus, abstract cache state s(e) of anedge is the the abstract output cache state of the source path p of the edge.4Linear states are even calculated correctly, yet conservatively, for unstructured loops by disregarding allbackedges of an unstructured loop. 62

best (ik; �)=8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:always-miss if k = first ^ l 62 s�rst-hit if best(ik ; child(�)) =�rst-hit_k = first ^ l 2 s ^ 9m!c;m 6=lm 2 (s \ u)^8p2preheaders(�)l 2 s(p)^8p2headers(�)l 2 postdom(p) ^ 8b2backedges(�)l 62 s(b)�rst-miss if best(ik ; child(�)) 2 f�rst-miss,always-hitg^k = first ^ l 2 s ^ l 62 linearalways-hit otherwiseUnlike the original categories introduced in De�nition 7, recognizing �rst hits requiresmore data ow information. Nonetheless, it was decided to recognize �rst hits during thestatic cache simulation to provide the timing tool with this new category and facilitateits job of timing prediction. The information for recognizing �rst hits can be obtainedby using available information during static cache simulation and by calculating additionalinformation using existing algorithms. First hits can then be used by the timing tool toachieve slightly tighter timing estimates for the worst case and much tighter timing estimatesfor the best case. Informally, a �rst hit occurs under the following conditions.1. The instruction was a �rst hit for the previous (deeper) loop nesting level or all of thefollowing conditions hold.2. The instruction is the �rst reference to the program line in the path.3. The current line is in the abstract cache state.4. A conicting line is in the abstract cache state for this loop.5. The current line is in the abstract output cache state of all preheaders of this loop.6. None of the conicting lines is in the abstract output cache state of the preheaders ofthis loop (only for worst case).7. The current line is in the post dominator of the loop's headers, i.e. the current line willbe referenced during each loop iteration.58. None of the conicting lines are in the linear cache state of the current path, i.e. foreach loop iteration, the current line will be referenced before any conicting line (onlyfor worst case).9. The current line is not in the abstract cache state preceding any of the backedges, i.e.the current line is replaced by a conicting line during each loop iteration (only for bestcase).Several categorizations depend on the categorization of the previous (deeper) loop nestinglevel. This ensures the following invariants that are essential for the consistency of timingpredictions.� Once an instruction becomes a �rst hit, it will remain a �rst hit for all higher levelnestings.5This property is not essential for the categorization but simpli�es the implementation of the timing toolsince it can be assumed that a �rst hit is always referenced during a loop iteration, independent of anyconditional execution. 63

� For the worst-case categorization, once an instruction ceases to be a �rst miss, it willnever again be a �rst miss for any higher nesting level.� For the best-case categorization, once an instruction ceases to be an always hit, it willnever again be an always hit for any higher nesting level.Notice also that the de�nition of �rst misses for the best case checks if the current line isnot in the linear cache state, thereby allowing that the line be brought into cache during the�rst iteration.The static cache simulator categorizes the instructions for each function instance, eachloop level, and both the best-case and worst-base categorization.Example: The approach for bounding instruction cache performance is illustrated in Figure8.3. Part (a) contains the C code for a simple toy program that �nds the largest value in1 extern int a[10];23 int value(index)4 int index;5 {6 return a[index];7 }89 main()10 {11 int i, max = -1;1213 for (i = 0; i < 10; i++)14 if (max < value(i))15 max = value(i);16 return max;17 }(a) C Program to �nd MAX(Array)
main

loop1

value value
(a) (b)(b) Timing Analysis Tree

f = first miss

m = always miss

h = always hit

i = first hit

h

h

h

(b)

m

h

h

main()

h

h

h

sethi %hi(_a),%o1

add %o1,%lo(_a),%o1

sll %o0,2,%o0

ld [%o0+%o1],%o1

retl

mov %o1,%o0

value() (a)

h

h

m

h

h

h

h

save %sp,-96,%sp

mov %g0,%l1

mov %l2,%l0

call _value,1

mov %l1,%o0

bge,a L14

add %l1,1,%l1

call _value,1

mov %l1,%o0

mov %o0,%l2

add %l1,1,%l1

cmp %l1,10

bl,a L16

mov %l2,%l0

ret

restore %l2,%g0,%o0

cmp %l0,%o0

mov -1,%l2

program line 0

program line 1

program line 2

program line 3

program line 5

program line 4

m

h

m

h

h

h

h

m

m

h

f

m

source line 6

source lines 11-13

source line 14

source line 14

source line 15

source line 15

source line 13

source line 16

Block 1

Block 2

Block 4

Block 3

Block 5

Block 6

Block 7

Block 8

m/h

f/h , i , i

(c) Instruction CategorizationFigure 8.3: Sample Analysis by the Static Cache Simulatoran array, part (b) illustrates the corresponding timing analysis tree, and part (c) shows theactual SPARC assembly instructions generated for this program within a control-ow graphof basic blocks. Assume there are 4 cache lines and the line size is 16 bytes (4 SPARCinstructions). Note the immediate successor of a block with a call is the �rst block in thatinstance of the called function. Block 1a corresponds to the �rst instance of value() calledfrom block 3 and block 1b corresponds to the second instance of value() called from block5. The instruction categorizations are given to the right of each instruction.Instructions categorizations are separated by a slash if the the worst case di�ers fromthe best case (e.g. block 7, instruction 1). Categorizations that di�er for each loop levelare separated by commas from the innermost loop level at the far left to the outermost64

loop level at the far right (e.g. block 1, instruction 5). This example also shows a di�erentcategorization for the best case and the worst case, separated by a slash. Recall that afunction is considered a loop with a single iteration.Each instruction is categorized according to the criteria speci�ed in De�nition 9 providinginformation that may not be detected by a naive inspection of only physically contiguoussequences of references. For instance, the static cache simulator determined that the �fthinstruction in block 1b will always be in cache (an always hit) due to temporal locality.It detected that the �rst instruction of block 1, the last instruction of block 5, and the�rst instruction of block 6 will never be in cache (always misses) since the program linesassociated with these instructions map to the same cache line and the execution of block 1occurs exactly between block 5 and 6. The static cache simulator was also able to predict thecaching behavior of instructions that could not be classi�ed as always being a hit or alwaysa miss. It determined that the �rst instruction in block 4 will miss on its �rst referenceand all subsequent references will be hits. The �fth instruction of block 1a is a �rst missfor function instance (a) of value and the worst-case prediction, i.e. if the function valuewas timed, the instruction would be timed as a miss since there is only one iteration of afunction. For the best case and the timing of value (a), the prediction indicates an alwayshit. This is the optimistic (best case) interpretation of the fact that program line 1 may bein cache when value (a) is called. The same instruction is then classi�ed as a �rst hit forthe loop consisting of blocks 3 to 7 and for main. This is due to spatial locality, caused bybringing program line 1 into cache when block 2 executes. During the �rst call to value(a), program line 1 will be in cache but is then replaced by line 5, which is accessed byblock 7 and causes subsequent misses for the �fth instruction of block 1a. Thus, the �rstinstruction of block 7 is categorized as a miss for the worst-case prediction since the line isnot in cache if the branch in block 4 is taken. Conversely, the instruction is categorized as ahit for the best-case prediction since the line was brought into cache by block 6 if the branchin block 4 was not taken.The instruction categorization is summarized in an interface �le as speci�ed in AppendixE. This �le is produced by the static cache simulator instead of the code instrumentationdiscussed in the previous chapters. The interface �le is used by the timing tool to identifythe caching behavior of instructions in the program, which will be discussed in the nextsection. 8.5 Timing AnalysisThe design and implementation of the timing analysis tool is beyond the scope of thiswork. A detailed description can be found elsewhere [5, 4]. But a short outline and somepreliminary results shall be presented to illustrate the bene�t of static cache simulation fortiming analysis.The timing tool constructs a timing analysis tree as discussed earlier. The instructioncategorizations are then used to calculate the timings for each node. The timings are ex-pressed in number of processor cycles, which can be easily transformed into seconds for aknown processor cycle frequency.The timings for each node are calculated in a bottom-up fashion in the timing analysistree. First, both worst-case and best-case timings are calculated for leaf nodes by traversalsthrough the longest and shortest paths. The timing of non-leaf nodes is determined again bypath traversals where the timing of child nodes has already been calculated and can simplybe added for the corresponding paths. The timing of child nodes is also adjusted at a higher65

nesting level if the child nodes contained �rst hits or �rst misses.6Some preliminary timing predictions are shown in Table 8.1. Currently, only the worst-Table 8.1: Worst-Case Time Estimation for Four Test ProgramsStatic Measurements Dynamic Worst-Case MeasurementsName Size Num Always Always First Hit Observed Estimated Naive[Bytes] Funcs Hit Miss Miss Ratio Cycles Ratio RatioMatmult 788 7 71.15% 25.28% 3.57% 99.04% 2,917,887 1.00 9.21Matsum 632 7 69.89% 26.24% 3.87% 87.08% 677,204 1.00 4.63Matsumcnt 800 8 70.64% 26.70% 2.65% 85.32% 959,064 1.09 4.31Bubblesort 520 5 68.18% 27.60% 4.22% 84.05% 7,620,684 1.99 8.18case calculation algorithm has been implemented. The �rst program, Matmult, multiplestwo 50x50 matrices. The second program, Matsum, determines the sum of the non-negativevalues in a 100x100 matrix. The third program, Matsumcnt, is a variation of the secondprogram, Matsum, since it also counts the number of elements that were summed. The �nalprogram, Bubblesort, uses the bubblesort algorithm to sort an array of 500 numbers intoascending order.For each program, a direct-mapped cache con�guration containing 8 lines of 16 byteswas used. Thus, the cache contains 128 bytes. The programs were 4 to 6 times larger thanthe cache as shown in column 2 of Table 3. Column 3 shows that each program was highlymodularized to illustrate the handling of timing predictions across functions. Columns 4-6show the static percentage of each type of instruction categorization in the function-instancegraph. Column 7 indicates the hit ratio for each program. Only Matmult had a very highhit ratio. This was due to the program spending most of its cycles in 3 tightly nested loopscontaining no calls to perform the actual multiplication. Column 8 shows the time in cyclesfor an execution with worst-case input data. The number of cycles was measured usinga traditional cache simulator [20], where a hit required one cycle and a miss required tencycles (a miss penalty of nine cycles). These assumptions were described as realistic by otherresearchers [31, 29]. Column 9 shows the ratio of the predicted worst-case instruction cacheperformance using the timing analyzer to the observed worst-case performance in column 8.Column 10 shows a similar ratio assuming a disabled cache. This naive prediction simplydetermines the maximum number of instructions that could be executed and assumes thateach instruction reference requires a memory fetch of ten cycles (miss time).For programs without conditional control ow except for looping constructs (e.g. Mat-mult), the timing estimation is exact. Even for simple conditional statements (e.g. Matsum),the prediction for worst-case performance estimates is generally very tight. In case of Mat-sum, it is even exact.As the conditional control ow becomes more complex (e.g. Matsumcnt), the estimatesare no longer accurate but remain relatively tight. The analysis of the last program, Bubble-sort, depicts a problem faced by any conventional timing analyzer. The Bubblesort programcontains an inner loop whose number of iterations depends on the counter of an outer loop.Without additional information from the compiler or from the user, the limits of any staticanalysis method are reached. The loop count will be overestimated for the worst-case timingprediction. This explains why the estimated worst-case time is twice as high as the observedtime and indicates the limits of strictly analytical timing prediction in general.6A detailed description of these timing prediction algorithms is beyond the scope of this work.66

The user of the timing tool can query the estimated execution time of a range of sourcelines. This range is approximated as closely as possible by a range of basic blocks. Thetiming can then be calculated based on the timing analysis tree as explained earlier.In summary, timing analysis based on static cache simulation for instruction caches canresult in tight timing predictions with a small error at the order of traditional timing predic-tions for uncached systems, contrary to the belief that instruction caches are unpredictable.8.6 Future WorkFuture extensions concern mostly the timing tool and are outside the scope of this dis-sertation but shall be mentioned briey. An algorithm has been designed and partiallyimplemented that estimates the best-case instruction cache for each loop within a program.The facility to query timing predictions is currently being extended to provide a user-friendlyinterface under a window environment. Current work also includes an attempt to predictthe execution time of code segments on a MicroSPARC I processor. In order to provide real-istic timing predictions, the e�ect of other architectural features besides instruction caching(e.g. pipelining) must be analyzed. A technique called micro-analysis [28] was developed todetect the potential overlap between operations on various CISC processors. This techniqueis being extended to model the MicroSPARC I processor.8.7 ConclusionPredicting the worst-case execution time of a program on a processor that uses cache memoryhas long been considered an intractable problem [60, 44, 43]. However, this work shows thattight estimations in the presence of instruction caches are feasible, using the fact that theaddresses of the instructions within a program and the possible control-ow paths betweenthese instructions are known statically.This chapter presents a technique for predicting worst-case instruction cache performancein two steps. First, a static cache simulator analyzes the control ow of a program tostatically categorize the caching behavior of each instruction within the program. Second, atiming analyzer uses this instruction categorization information to estimate the worst-caseinstruction cache performance for each loop in the program. The user is allowed to querythe timing analyzer for the estimated worst-case performance of any function or loop withinthe program.It has been demonstrated that instruction cache behavior is su�ciently predictable forreal-time applications. Thus, instruction caches should be enabled, yielding a speedup offour to nine for the predicted worst case compared to disabled caches (depending on thehit ratio and miss penalty). This speedup is a considerable improvement over prior work,such as requiring special architectural modi�cations for prefetching, which only results in aspeedup factor of 2 [43]. As processor speeds continue to increase faster than the speed ofaccessing memory, the performance bene�t of using cache memory in real-time systems willonly increase.
67

Chapter 9A Real-Time Debugging ToolDebugging is an integral part of the software development cycle that can account for upto 50% of the development time of an application. This chapter discusses some of thechallenges speci�c to real-time debugging. It explains how developing real-time applicationscan be supported by an environment that addresses the issues of time deadline monitoringand distortion due to the interference of debugging. The current implementation of thisenvironment provides the elapsed time during debugging on request at breakpoints. Thistime information corresponds to the elapsed execution time since program initiation. Delaysdue to the interference of the debugger, for example input delays at breakpoints, are excludedfrom the time estimates. The environment includes a modi�ed compiler and a static cachesimulator that together produce instrumented programs for the purpose of debugging. Theinstrumented program supports source-level debugging of optimized code and e�cient cachesimulation to provide timing information at execution time. The overhead in execution timeof an instrumented optimized program is only approximately 1 to 4 times slower than thecorresponding unoptimized program. Conventional hardware simulators could alternativelybe used to obtain the same information but would run much slower. The environmentfacilitates the debugging of real-time applications. It allows the monitoring of deadlines,helps to locate the �rst task that misses a deadline, and supports the search for code portionsthat account for most of the execution time. This facilitates hand-tuning of selected tasksto make a schedule feasible. Excerpts of this chapter can be found in [48].9.1 IntroductionThe issue of debugging real-time applications has received little attention in the past. Yet,in the process of building real-time applications, debugging is commonly performed just asoften as in the development of non-real-time software and may account for up to 50% ofthe development time [66]. The debugging tools used for real-time applications are oftenordinary debuggers that do not cater to speci�c needs of real-time systems listed below.Time distortion: The notion of real time is central to real-time applications. Hardwaretimers are commonly used to inquire timing information during program execution tosynchronize the application with periodic events. Yet, during debugging the notionof real time should be replaced by the notion of virtual time to compensate for timedistortion due to the interference of debugging. External events have to be simulatedbased on the elapsed (virtual) time of tasks. Thus, values of variables used by theapplication can be related to the elapsed time, which is essential for debugging real-time applications.Deadline monitoring: During the implementation phase, deadlines may not always bemet. A real-time debugger should display the elapsed time for a task on request. Thiswould facilitate �nding the �rst task that fails to meet a deadline. It could also be usedto inquire at which point during the execution a deadline was missed. Furthermore, theelapsed time may help in tuning tasks by locating where most of the execution time isspent. 68

Uniprocessor vs. multiprocessor: Multiprocessor applications are sometimes simulatedon uniprocessors during debugging. In this case, a virtual clock has to be kept for eachprocessor that is shared by a set of tasks running on this processor.This work concentrates on time distortion and deadline monitoring.A debugging environment has been developed that permits the user to query the elapsedtime. This time corresponds to the virtual time from program initiation to the currentbreakpoint excluding debugging overhead and is calculated on demand. In contrast, timequeries in current debuggers correspond to the wall-clock time and include the delay of userinput at breakpoints as well as the debugger trap overhead.The environment can be used to debug a real-time application whose tasks do not meettheir deadline. It facilitates the analyses of the tasks and helps to �nd out where a taskspends most of its execution time or which portion of a task completed execution beforemissing the deadline. This knowledge can then be utilized to �ne-tune the task that ismissing its deadlines or any of the previous tasks in the schedule. Thus, this debuggingenvironment assists the process of designing a feasible schedule in a step-by-step fashion.The elapsed time of a task is estimated based on the caching behavior of the task. Thecaching information is updated during execution and provides an estimate of the number ofelapsed processor cycles.The dynamic simulation of cache performance necessitates the tracking of events and theirordering to determine a cache miss vs. a cache hit. It can be quite a challenge to performorder-dependent events e�ciently. This chapter describes the design and implementationof such an environment within the framework of a compiler, a static cache simulator [50],and an arbitrary source-level debugger. The compiler translates a program into assemblycode and provides control-ow information to the static cache simulator. The static cachesimulator analyzes the caching behavior of the program and produces instrumentation codethat is merged into the assembly code. The source program corresponding to the resultingassembly code can then be debugged and the elapsed time can be requested at breakpoints.The elapsed time is calculated based on the cache simulation up to the current breakpoint,i.e. the number of cache hits and misses are multiplied by the access time for hits andmisses, respectively. This provides an estimate of the executed numbers of processor cyclescorresponding to the elapsed (virtual) time since program initiation.It may be argued that the virtual execution time can be provided by the operating system.Notice though that the debugging process a�ects the execution of the real-time task, e.g.the caching behavior. The cache simulation discussed here estimates the timing of the taskin an actual real-time environment disregarding the interference of debugging.Another problem is posed by the debugging of optimized code. Conventional compilersonly support source-level debugging of unoptimized code. Clearly, unoptimized code causesfurther time distortion, which cannot be accepted for real-time systems. Thus, a compiler hasbeen modi�ed to support source-level debugging of optimized code with certain restrictions,which are discussed later in the chapter.This chapter is structured as follows: In the next section, related work is discussed. Then,a new real-time debugging environment is introduced. In the following, the application of theenvironment is illustrated. In addition, the feasibility of the environment is demonstratedby presenting performance �gures. Finally, future work and conclusions are presented.9.2 Related WorkConventional debugging tools, whether at the assembly-level or at the source-level, do notaddress the speci�c demands of real-time debugging. The amount of work in the area of69

real-time debugging has been limited with a few exceptions.The Remedy debugging tool [57] addresses the customization of the debugging interfacefor real-time purposes and synchronizes on breakpoints by suspending the execution on allprocessors. DCT [9] is a tool that allows practically non-intrusive monitoring but requiresspecial hardware for bus access and does not extend to non-intrusive debugging. BothRED [30] and ART [67] provide monitoring and debugging facilities at the price of softwareinstrumentation. RED dedicates a co-processor to collect trace data and send it to the hostsystem. The instrumentation is removed for production code. In ART, a special reportingtask sends trace data to a host system for further processing. The instrumentation code isa permanent part of the application. It will never be removed to prevent alteration of thetiming. Debugging is limited to forced suspension and resumption of entities, viewing andalteration of variables, and monitoring of communication messages.The DARTS system [66] approaches the debugging problem in two stages. It �rst gen-erates a program trace and then allows for debugging based on the trace data that is time-stamped to address the time distortion problem. The debugging is limited to a restrictedset of events that is extracted from the control ow. This tool only supports a subset of thefunctionality of common debuggers, e.g. excluding data queries. The high volume of traceinformation and the associated overhead of trace generation may also limit its applicationto programs with short execution times. None of the systems make use of the compiler toenhance the debugging process.In the absence of real-time debuggers, hardware simulators are often used that run consid-erably slower than the actual application and, consequently, allow only selective and not veryextensive testing. In addition, changing the simulated architecture of hardware simulatorsis typically complicated.9.3 A Real-Time Debugging EnvironmentThe current work concentrates on monitoring deadlines based on the cache analysis of a taskand the corresponding estimate of the elapsed (virtual) execution time. This facility canbe used in conjunction with a conventional debugger. The debugger does not need to bemodi�ed.The cache simulation overhead at run time is reduced by analyzing the cache behaviorstatically. A large number of cache hits and misses can be determined prior to executiontime by considering the control ow of each function and the call graph of the program. Theremaining references are simulated at execution time.Figure 9.1 depicts an overview of the environment. A set of source �les of a program istranslated by a compiler. The compiler generates object code with symbol table entries andpasses information about the control ow of each source �le to the static cache simulator.The static cache simulator performs the task of determining which instruction references canbe predicted prior to execution time. It constructs the call graph of the program and thecontrol-ow graph of each function based on the information provided by the compiler. Thecache behavior is then simulated for a given cache con�guration. Furthermore, the staticsimulator produces instruction annotations and passes them to the linker, which modi�esthe object code according to the annotations and creates an executable program includinglibrary routines for the time estimation. The executable may then be run within a source-level debugger. The elapsed time can be inquired at any breakpoint by calling the libraryroutine that estimates the number of processor cycles executed based on the number of cachehits and misses up to that point. 70

source

files

cache

static

cache configuration

program

object

files
linkercompiler

time estimation routines

control

flow

debugger

source-

level
executable

simulatorinformation

instruction

annotationFigure 9.1: Overview of the Debugging Environment9.3.1 Adaptation of Static Cache SimulationFor real-time debugging support, the static cache simulator is adapted in the same wayas discussed in Chapter 6 with one exception: The static cache simulation is performedon the level of basic blocks rather than unique paths to represent the control ow of afunction, which provides a �ner level of granularity for intermediate timings. The codeinstrumentation provides the means to calculate the number of cache hits and misses at anygiven point during program execution. The calculation is based on simple frequency countersand the adjustment of �rst misses. Thus, the calculation can be repeated and the programcan be interrupted at breakpoints without inuencing the outcome of this calculation.9.3.2 Querying the Elapsed TimeThe elapsed execution time can be queried at any breakpoint while debugging a programwithout modifying the debugger. The time is calculated based on the cache analysis. Thenumber of cache hits and misses can be calculated on the y from the frequency counters.The elapsed time is then calculated astelapsed = hits � hit penalty+misses �miss penalty [cycles]where the hit penalty is typically one cycle while the miss penalty is ten cycles [31] or evenmore, depending on the clock rate and the access time of main memory. This time estimatecan be converted into seconds by multiplying it by the cycle time. The calculation of hits andmisses takes only a short time and can therefore be repeated whenever the program stopsat a breakpoint without much overhead. The code performing the calculation is hidden inlinked-in library code.The program being debugged has been compiled with full optimizations to avoid timedistortion. The compiler was modi�ed to emit debugging information for unoptimized codeas well as optimized code. Emitting accurate debugging information for optimized codeis a non-trivial task and subject to ongoing research [1, 11, 32]. Contrary to debuggingunoptimized code, debugging optimized code typically restricts the scope of breakpoints andthe displaying of data structures. In the debugging environment described in this chapter,a breakpoint set on a source line is approximated as a breakpoint at the beginning of thecorresponding basic block when code is optimized. In addition, the value of variables assigned71

to a register will only be displayed if all live ranges of the variable are assigned to thesame register [3]. Register-mapped values may still be inconsistent at times due to globaloptimizations, such as common subexpression elimination, which is a common problem whendebugging optimized code.The fact that optimized code is executed during debugging speeds up the execution overconventional debugging of unoptimized code. The cache simulation, on the other hand, addsto the execution time. A quantitative analysis of the e�ect of these issues will be given inthe measurement section.9.4 Application of the Debugging ToolThe output shown in Figure 9.2 illustrates a short debugging session of a program perform-ing fast Fourier transformations within the environment using the unmodi�ed source-leveldebugger dbx [64].> dbx fftReading symbolic information...Read 396 symbols(dbx) stop at 43 /* set breakpoint on line 43 */(2) stop at 43(dbx) stop at 114 /* set breakpoint on line 114 */(3) stop at 114(dbx) stop at 123 if elapsed_cycles() > 4000000 /* set cond. breakpoint */(4) stop at 123 if elapsed_cycles() > 4000000(dbx) display elapsed_cycles() /* display function return value on breakpoint */elapsed_cycles() = 0 /* 0 cycles since program has not started */(dbx) run /* start program execution */Running: fftstopped in main at line 114 /* execution stopped on first breakpoint */114 printf("Objective: measure exec. time of 128 FFT.\n");elapsed_cycles() = 22 /* 22 cycles executed before first breakpoint */(dbx) cont /* resume execution until next breakpoint */Objective: measure exec. time of 128 FFT. /* program output */stopped in four at line 4343 mmax=2;elapsed_cycles() = 29413(dbx) next /* single step to next source line statement */stopped in four at line 4444 while(n>mmax) {elapsed_cycles() = 29428(dbx) print mmax /* print out value of variable */mmax = 2(dbx) contstopped in four at line 4343 mmax=2;elapsed_cycles() = 70547(dbx) clear /* clear current breakpoint (line 43) */(dbx) nextstopped in four at line 4444 while(n>mmax) {elapsed_cycles() = 70553(dbx) contstopped in main at line 123 /* execution stopped on conditional breakpoint */123 four(tdata,nn,isign);elapsed_cycles() = 4015629(dbx) clear(dbx) contK = 100 Time = 0.290000 Seconds /* program output */elapsed cycles() = 4095351 /* total number of executed cycles */execution completed, exit code is 1program exited with 1(dbx) quit Figure 9.2: Annotated Sample Debugging Session72

First, a few breakpoints are set including a conditional breakpoint on a function callthat checks on a deadline miss after 4 million cycles. The display command ensures thatthe elapsed time estimated in cycles is displayed at each breakpoint as seen later duringexecution. The value of the variable mmax can be printed although it has been assigned toa register due to code optimization. Notice that the breakpoint on line 43 is reached twice.The di�erence in the number of cycles between line 43 and line 44 is 15 cycles during the �rstiteration but only 6 cycles during the second iteration. A closer investigation reveals thatduring the �rst iteration, one of the six instructions in the basic block references a programline that results in a compulsory miss estimated as 10 cycles. On the second iteration, thesame reference results in a hit due to temporal locality estimated as 1 cycle. The execution isstopped on line 123 after over 4 million cycles, which indicates that the task could not �nishwithin the given deadline. This conditional breakpoint was placed on a repeatedly executedfunction call to periodically check this condition. The deadline miss can be narrowed downto an even smaller code portion by setting further conditional breakpoints. At programtermination, the �nal number of processor cycles is displayed.The timing information can be used during debugging to locate portions of code thatconsume most of the execution time. This knowledge can be used to hand-tune programs orredesign algorithms.When a set of real-time tasks is debugged, one can identify the task that is missing adeadline either by checking the elapsed time or by setting a conditional breakpoint dependenton the elapsed time. The schedule can then be �xed in various ways. One can tune the taskthat missed the deadline. Alternatively, one can tune any of the preceding tasks if thisresults in a feasible schedule. The latter may be a useful approach when a task overruns itsestimated execution time without violating a deadline, thereby causing subsequent tasks tomiss their deadlines. The debugger will help to �nd the culprit in such situations. Anotheroption would be to redesign the task set and the schedule, for example by further partitioningof the tasks [24]. 9.5 MeasurementsThe environment discussed above was implemented for the SPARC architecture. It includesa modi�ed compiler front-end of VPCC (very portable C compiler) [18] and a modi�ed back-end of VPO (very portable optimizer) [8], the static simulator for direct-mapped caches [50],and the regular system linker and source level debugger dbx under SunOS 4.1.3. Calling alibrary routine to query the elapsed time takes a negligible amount of time in the order ofone millisecond. Thus, this section focuses on measuring the overhead of cache simulationduring program execution. The correctness of the instruction cache simulation was veri�edby comparison with a traditional trace-driven cache simulator. The execution time wasmeasured for a number of user programs, benchmarks, and UNIX utilities using the built-intimer of the operating system to determine the overhead of cache simulation at run time.Table 9.1 shows programs of varying program size (column 3), the overhead of unoptimizedcode (column 4), and the support of virtual timing information through dynamic cachesimulation as a factor of the execution time of optimized code for cache sizes of 1kB, 2KB,4kB, and 8kB (column 5-8).On the average, unoptimized programs ran 1.8 times slower than their optimized version.Running the optimized program and performing cache simulation to provide virtual timinginformation was on average 2.1 to 7.8 times slower than executing optimized code.1 In other1The overhead reported here di�ers from Table 6.2 in Chapter 6 since the former used instrumentationfor basic blocks and the latter used instrumentation for UPs. Notice also that the static cache simulation73

Table 9.1: Performance Overhead for DebuggingSize unopt. opt. code with time estimatesName [bytes] code 1kB 2kB 4kB 8kBcachesim 8,452 1.1 2.0 1.4 1.3 1.2cb 4,968 1.4 6.8 5.8 3.4 2.6compact 5,912 2.1 10.3 7.8 6.0 2.7copt 4,144 1.4 2.5 1.7 1.4 1.4dhrystone 1,912 1.6 2.7 1.6 1.6 1.6�t 1,968 1.3 1.4 1.2 1.2 1.2genreport 17,716 1.4 3.6 2.5 2.4 2.3mincost 4,492 1.6 5.0 3.2 2.2 1.8sched 8,352 2.1 22.9 14.6 8.3 4.1sdi� 7,288 4.1 27.1 8.1 4.0 3.0whetstone 4,812 1.2 2.0 2.0 1.5 1.2average 6,365 1.8 7.8 4.5 3.0 2.1words, the optimized code with cache simulation was roughly 1 to 4 times slower than theunoptimized code typically used for program debugging.The cache size inuences the overhead factor considerably, which can be explained asfollows: For small cache sizes, programs do not �t into cache and capacity misses occurfrequently, which requires the dynamic overhead of simulating program lines classi�ed asconicts. For larger cache sizes, a larger portion of the program �ts into cache reducingcapacity misses and thereby reducing the number of conicts. Once the entire program �tsinto cache, no conicts need to be simulated. Rather, frequency counters are su�cient tosimulate the cache behavior. This reduces the overhead considerably.9.6 Future WorkThe work is currently being extended to take the e�ect of pipeline stalls and other machine-speci�c characteristics into account. The goal is to provide a debugging framework viaminimal hardware simulation for the MicroSPARC I processor [49]. The work could beextended to take external events into account. The user will be required to specify theoccurrence of events in a time table. The events are then simulated by the debuggingenvironment based on the elapsed time. At program termination, the monitored activities(e.g. completion time, deadline) could be summarized in a table.The interaction of the debugging environment with a compiler provides the means tointroduce a compilation pragma zero time that excludes a code portion from virtual timeaccounting. This can be used to insert conditionally compiled debugging code that does nota�ect the overall timing.Furthermore, this environment could also be used for multi-threaded applications wherea thread corresponds to a task. The application could be designed for a non-preemptiveembedded system2 but may be debugged on a regular workstation using this environmentto simulate the embedded system e�ciently.makes the debugging approach feasible. Traditional trace-driven cache simulation (for each basic block) isreported to slow down the execution time by over one to three orders of a magnitude [68].2A multi-threaded real-time kernel has been designed for such an embedded system based on a SPARCVME bus board [6, 51]. 74

9.7 ConclusionThis work discusses some challenges of real-time debugging that have not yet been addressedadequately. A debugging environment is proposed that addresses the problem of time dis-tortion during debugging. In this environment, the notion of real time is replaced by virtualtime based on the estimated number of elapsed processor cycles. The �rst implementationstep has been completed and provides the elapsed time based on instruction cache simula-tion at any breakpoint during debugging. This time information can be used for deadlinemonitoring, identifying the task that �rst misses a deadline, or locating time-consuming codeportions to support hand-tuning of tasks until a schedule becomes feasible. To provide thistiming information, the execution speed of the application during debugging is 1-4 timesslower in average than the speed of the corresponding unoptimized application. In contrast,conventional hardware simulators may provide the same information but are less portableand much slower. The environment facilitates the debugging of real-time programs whentiming-related problems occur that have to be reproduced during debugging.

75

Chapter 10Future WorkThe future work sections of each chapter discuss various extensions of e�cient on-the-yanalysis, static cache simulation, and each of its applications, which will not be reiterated.Instead, further potential areas for applications shall be presented here.The static cache simulator could be used for pro�ling to e�ciently provide more de-tailed information than traditional pro�ling tools. Traditional pro�les often rely on samplingmethods, which are somewhat inaccurate and generally provide pro�ling data at the level offunctions. Static cache simulation tracks the accurate frequency of execution not only at thelevel of functions but at the level of UPs. The actual frequency of basic blocks (and therebyof any instruction) can be inferred from the frequency of UPs. By annotating the generatedcode, instructions may be correlated to source-code statements. This can be used to providethe user with timing information in a source-code listing. A tool for precise and detailedpro�ling can be constructed around static cache simulation.Static cache simulation also provides the means to produce measurements for prototypedmachines. One example has already been given in Chapter 7 for the bit-encoding approach.In general, the cache behavior of non-existent architectures can be tested more e�ciently.Traditional tools such as hardware simulators may provide analysis at a higher level of detailwith regard to hardware components but are far less e�cient than static cache simulation.Even inline tracing for cache simulation is slower than the method of static cache simulation,as shown in Chapter 6.Finally, the method of static cache simulation does not have to interact with a compiler,although compiler support seems to facilitate the task. Yet, it is possible to analyze thecontrol ow of an arbitrary executable and to modify the binary by inserting instrumentationcode (similar to the work in [42, 10]). This would allow library code to be measured as well.
76

Chapter 11SummaryThis work presents a fresh look at the simulation of cache memories, provides an e�cientframework for on-the-y program analysis in general, and combines this framework with anew cache simulation technique for a number of applications.On-the-y program analysis instruments the code of a program to perform a speci�canalysis of the program during execution. In contrast, the most common tracing methodstoday separate the analysis from the program execution. While the problem of optimallypro�ling and tracing programs can be regarded as solved, on-the-y analysis requires adi�erent approach. A framework for e�cient on-the-y analysis is developed and provedcorrect as part of this work. This framework can be applied to any type of program analysis.This work discusses its application to cache analysis.In the past, cache performance has often been analyzed using trace-driven methods.These methods record program traces at execution time and analyze the traces either con-currently or at a later time. Recently, on-the-y analysis has been used to simulate thecache during program execution by instrumenting the program. To determine cache accesshits and misses, it is recorded at run time which program or data line resides in a particularcache line.This work introduces the technique of static cache simulation that statically predicts alarge portion of cache references. The technique is formally derived for the simulation ofdirect-mapped instruction caches. It provides a novel view of cache memories. By analyzingthe call graph and control-ow graphs of a program at compile time, some hits and missescan be determined statically. For the remaining program lines, a somewhat unorthodox viewof the cache is taken. Rather than examining the contents of the global cache to determineif a program line is currently cached, a local state associated with a path (i.e., a set ofinstructions) keeps track if the lines of this path have been cached. Instead of updatingthe hits and misses for each program line, a frequency counter associated with the currentpath state is incremented. Hits and misses can be inferred from the frequency counters afterprogram termination.Furthermore, static cache simulation determines the set of values a local state could haveduring execution. If this set is a singleton, the state is omitted during execution and the hitsand misses are inferred statically for each iteration. The simulator decomposes the control-ow graph and the call graph, analyzes the cache behavior at this �ner level by �nding statetransitions, and then recomposes the information to reduce the amount of instrumentationcode.E�cient on-the-y analysis and static cache simulation are combined in this fashion fora number of applications that have been implemented and evaluated on the Sun SPARCarchitecture. The application of fast instruction cache analysis provides a new framework toevaluate instruction cache memories that outperforms even the fastest techniques published.Static cache simulation is also used to predict the caching behavior of real-time applica-tions. This result disproves the conjecture that cache memories introduce unpredictabilityin real-time systems that cannot be e�ciently addressed. While static cache simulation forinstruction caches provides a certain degree of predictability for real-time systems, an ar-chitectural modi�cation through bit-encoding is introduced that provides fully predictable77

caching behavior. Even for regular instruction caches without architectural modi�cations,tight bounds for the execution time of real-time programs can be derived from the informa-tion provided by the static cache simulator. Finally, the debugging of real-time applicationsis enhanced by displaying the timing information of the debugged program at breakpoints.The timing information is determined by simulating the instruction cache behavior duringprogram execution and can be used, for example, to detect missed deadlines and locatetime-consuming code portions. Overall, the technique of static cache simulation provides anovel approach to analyze cache memories and is shown to be very e�cient for numerousapplications.

78

Appendix AAlgorithm to Construct the Function-Instance GraphAlgorithm 3 (Construction of Function-Instance Graph)Input: Let G(V;EC) be a call graph where V is the set of functions (vertices) including aninitial function main and EC is a set of pairs (e; c) of edges e and call sites c. The edgee = v ! w denotes a call to w within v (excluding indirect calls but including recursivecalls).Output: The function-instance graph FIG(W;F;B) where W is a set of function instances(vertices), F is a set of forward edges, and B is a set of backedges (due to recursive calls).Algorithm:PROCEDURE construct_FIGv: vertex;BEGINFOR all v in V DOv.visited:= FALSE; /* initialize vertices: not visited */v.last_instance:= -1 /* no func instance */END FOR;F:= {}; /* initialize FIG components: empty sets */B:= {};W:= {main(0)};main.last_instance:= 0; /* initialize instance of main to be 0 */dfs_traverse_CG(main) /* perform recursive depth-1st-search */END construct_FIG;PROCEDURE dfs_traverse_CG(v: vertex)w: vertex;i, k: INTEGER;BEGINi:= v.last_instance;v.visited:= TRUE;FOR all vertices wwith (v --> w) in EC DO /* for each edge: v to w */IF (w.visited) THEN /* if visited then add to recursive edges*/k:= w.last_instance;B:= B + {v(i) --> w(k)} /* vertex v inst i to vertex w inst k */ELSE /* otherwise add to non-recursive edges */w.last_instance:=w.last_instance + 1;k:= w.last_instance; /* new function instance of callee w */W:= W + {w(k)};F:= F + {v(i) --> w(k)};/* vertex v inst i to vertex w inst k */dfs_traverse_CG(w)END IFEND FOR;v.visited:= FALSEEND dfs_traverse_CG;
79

Appendix BInterface Speci�cation of the PATH FileIn Figure B.1, the speci�cation for the interface �le generated by the compiler for the controlow and instruction layout of paths is given using a BNF notation.<file> ::= <funclist>.<funclist> ::= <func> <funclist> |.<func> ::= -1 <funcname> nn <entrypaths> -1 nn<other paths> -1 0 nn .<entrypaths> ::= <pathlist>.<other paths> ::= <pathlist>.<pathlist> ::= <pathinfo> -1 nn <flowinfo> nn .<pathinfo> ::= <thispath> <loopno> <loopfreq> <instlist>.<instlist> ::= <instseq> <instlist> |<instseq>.<instseq> ::= <instoffset> <numinst>.<flowinfo> ::= 0 <pathlabelseq> -1 |1 <funccall>.<pathlabelseq> ::= <nextpath> <pathlabelseq> |.<funccall> ::= <funcname> <thispath> <nextpath>.<thispath> ::= <pathlabel>.<nextpath> ::= <pathlabel>.Figure B.1: BNF Interface Speci�cation for PATH FileThe syntax and semantics of some of the symbols requires further explanation:\nn" denotes a new line.<funcname> is always preceded by an underscore \ ".<entrypaths> is a sequence of paths that can be reached from a call to the current function.<pathlabel> is the numeric label of the path within the current function.80

<thispath> refers to the current path.<nextpath> refers to a successor path in the control ow.<insto�set> denotes the byte o�set of an instruction sequence. Each function starts withan o�set 0.<numinst> denotes the number of instructions of an instruction sequence.

81

Appendix CExamples of Code Instrumentationpath3_cal_curstate:.word 12 ! SPS: 2 uncached lines at startup (1100b)Figure C.1: State Table Entry! typical method based on frequency counter arraypath3_cal0_curstate: ! path 3 in function cal instance 0.word 0 ! AND mask.word 12 ! always hits \.word 5 ! always misses > on each increment.word 0 ! first misses /.word 4 ! # shared path statespath3_cal0: ! frequency counts (counter array):.word 0 ! hits on line a and b.word 0 ! miss line a, hit line b.word 0 ! hit line a, miss line b.word 0 ! misses on line a and b! alternative method for large path statespath7_whet1_0_curstate:.word 4088 ! AND mask.word 23 ! hits.word 0 ! misses.word 1 ! first misses.word -9 ! -(# shared path states)path7_whet10:.word 0 ! general frequency counter.word 0 ! counter for misses due to conflictsFigure C.2: Counter Table Entryconf_table:.word path6_cal0_curstate.word 0.word path8_cal1_curstate.word path7_cal1_curstate.word 0... Figure C.3: First Miss TableThe code emitted for call macros in Figure C.4 places the callee's base address (instance)in a register designated by the compiler. The compiler either chooses an unused register orspills an allocated register before the call. If the calling function of the macro has only oneinstance, two instructions su�ce to load the register with a �xed address. (Notice that a82

set instruction is a synonym for the two instructions sethi and or.) In the case of multiplefunction instances of the caller, the register is loaded with the value of the callee's baseaddress, which is determined by indexing with the caller's instance into a base address array.Figure C.4 depicts examples for both cases.! current function has one function instance#define CALL6_main(base_in, base_out) \set inst_table_number0,%base_out! current function has multiple function instances#define CALL1_cal(base_in, base_out) \ld [%base_in+8],%base_outFigure C.4: Call MacrosThe number of instructions generated for a path macro varies. Figures C.5 and C.6depict examples for three cases. In the �rst case without conicts, a frequency counter is#define PATH1_cal(base, temp1, temp2) \ld [%base+path1_cal0-inst_table_cal0],%temp2 ; \inc %temp2 ; \st %temp2,[%base+path1_cal0-inst_table_cal0] ; \#define PATH4_cal(base, temp1, temp2) \! increment counter in array index by SPS of current path \sethi %hi(path3_cal_curstate),%temp1 ; \ld [%temp1+%lo(path3_cal_curstate)],%temp2 ; \add %temp2,%base,%temp1 ; \ld [%temp1+path4_cal0-inst_table_cal0],%temp2 ; \inc %temp2 ; \st %temp2,[%temp1+path4_cal0-inst_table_cal0] ; \! update SPS of current path \sethi %hi(path3_cal_curstate),%temp1 ; \ld [%temp1+%lo(path3_cal_curstate)],%temp2 ; \andn %temp2,8,%temp2 ; \st %temp2,[%temp1+%lo(path3_cal_curstate)] ; \! update two conflicting SPSs of other paths \set state_table,%temp1 ; \ld [%temp1+path20_main_curstate-state_table],%temp2 ; \or %temp2,4,%temp2 ; \st %temp2,[%temp1+path20_main_curstate-state_table] ; \ld [%temp1+path19_main_curstate-state_table],%temp2 ; \or %temp2,4,%temp2 ; \st %temp2,[%temp1+path19_main_curstate-state_table] ; \Figure C.5: Path Macros (1)simply incremented in three instructions. In the second case, conicts are present. The SPSis used as an index into the frequency array, and the indexed counter is incremented. Then,the SPS is updated to reect changes in the cached program lines. Thus, 12 instructionsare required for updating the counter and SPS. In addition, three instructions are requiredfor updating every conicting SPS in the worst case. In the second example, there are twosuch conicting SPSs. In the third case, the alternate code instrumentation is used. A loopcounts the number of on-bits in the SPS combined with the AND mask. This number isadded to the second counter entry while the �rst entry, the frequency counter, is simply83

#define PATH16_whet1(base, temp1, temp2) \! apply AND mask to SPS of current path \sethi %hi(path6_whet1_curstate),%temp1 ; \ld [%temp1+%lo(path6_whet1_curstate)],%temp2 ; \ld [%base+path16_whet1_0_curstate-inst_table_whet10],%temp1 ; \andcc %temp2,%temp1,%temp1 ; \bz path16_whet1_nocnt;\! count on-bits \mov %g0,%temp2 ; \path16_whet1_cnt: ; \bz path16_whet1_ccnt;\btst 1,%temp1 ; \srl %temp1,1,%temp1 ; \bz path16_whet1_cnt ;\tst %temp1 ; \b path16_whet1_cnt ; \inc %temp2 ; \path16_whet1_ccnt: ; \! add # of on-bits to accumulated # of conflicts which were misses \ld [%base+4+path16_whet10-inst_table_whet10],%temp1 ; \add %temp1,%temp2,%temp2 ; \st %temp2,[%base+4+path16_whet10-inst_table_whet10] ; \path16_whet1_nocnt: ; \! increment the general frequency counter \ld [%base+path16_whet10-inst_table_whet10],%temp2 ; \inc %temp2 ; \st %temp2,[%base+path16_whet10-inst_table_whet10] ;%\! update the SPS of the current path \sethi %hi(path6_whet1_curstate),%temp1 ; \ld [%temp1+%lo(path6_whet1_curstate)],%temp2 ; \andn %temp2,12,%temp2 ; \st %temp2,[%temp1+%lo(path6_whet1_curstate)] ; \Figure C.6: Path Macros (2)
84

incremented. Then, the SPS is updated to reect changes in the cached program lines.Here, 16 instructions are required plus a maximum of 30 iterations of 7 instructions insidethe bit-counting loop.

85

Appendix DCache Access Logic of the Fetch-From-Memory BitThe access logic for an instruction cache using the proposed bit-encoded approach is il-lustrated in Figure D.1. The instruction memory contains the cached instructions. It is
CPU

Instruction

Memory

Tag

Memory

rest of instruction
t

TagState

ts

t i o

i&o

fetch

i

Match

mf

address

offsetindextag

physical

Instruction

Valid, Tag Match and
not Memory Fetch

memoryFigure D.1: Access Logic for Bit-Encoded Approachaccessed by using the index �eld to select the cache line and the o�set �eld to select theinstruction within that line. The tag memory contains the state bit and address tag for eachcache line and is also accessed by using the index �eld. The match logic compares the tagof the instruction's physical address to the tag obtained by accessing the tag memory andveri�es the state to ensure that the cache line is valid. In parallel, it also checks that thefetch-from-memory bit is clear. If any of these conditions are not met, then it informs theCPU to issue a main memory fetch. The logic to request a main memory fetch is not shownin this �gure.
86

Appendix EInterface Speci�cation of the IST FileIn Figure E.1, the speci�cation for the interface �le generated by the static cache simulatorfor instruction caches is given using a BNF notation.<file> ::= <func> <file> |<func>.<func> ::= <func header> <inst seq>.<func header> ::= -1 func <funcname> instance <instno>parent <parent> nn.<inst seq> ::= <inst line> <inst seq> |<inst line>.<inst line> ::= 0 inst <instno> <loopno> <cache line><cat list> <cont> nn.<parent> ::= <funcname> |0. /* for main only */<cat list> ::= <nesting> <loop cat>.<loop cat> ::= <worst cat>/<best cat> <loop cat> |<worst cat>/<best cat>.<worst cat> ::= <category>.<best cat> ::= <category>.<category> ::= h | /* hit */m | /* miss */f | /* first miss */i . /* initial miss */<cont> ::= 1 nn call <funcname> instance <instno> |0. /* no function call */Figure E.1: BNF Interface Speci�cation for IST FileThe syntax and semantics of some of the symbols requires further explanation:\nn" denotes a new line.<funcname> is preceded by an underscore \ ", unless it is a static function.<instno> starts with 0 for each function. 87

<loopno> indicates if an instruction belongs to a loop with <loopno> within a function.A <loopno> of 0 means no loop (outermost level of function).<cache line> denotes the cache line number (which can be used for handling �rst misses).First misses of di�erent instructions with the same <cache line> only cause one misson the line during program execution.<nesting> denotes the number of loop nesting levels (incl. functions) for which the pre-diction is listed. In trivial cases (always hit \h/h" and always miss \m/m"), the valuewill be 1 although the nesting might be deeper.<loop cat> is a sequence of doubles \worst/best" for each loop nesting level where anyfunction is regarded as a separate loop nesting level.Example: Assume a loop sequence main(loop1(func1(loop2(loop3())))).0 inst 11 1 49 5 f/h f/h f/f m/f m/f 0loop3 loop2 func1 loop1 mainSubsequent categories are provided for each loop nesting level (including function levels)in an inside-out order with respect to the nesting level.

88

References[1] A. Adl-Tabatabai and Thomas Gross. Detection and recovery of endangered variablescaused by instruction scheduling. In ACM SIGPLAN Conference on Programming Lan-guage Design and Implementation, pages 13{25, June 1993.[2] A. Agrawal, R. L Sites, and M. Horowitz. ATUM: A new technique for capturing addresstraces using microcode. In International Symposium on Computer Architecture, pages119{127, 1986.[3] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers { Principles, Techniques, and Tools.Addison-Wesley, 1986.[4] R. Arnold. Bounding instruction cache performance. Master's thesis, Dept. of CS,Florida State University, December 1994. (to appear).[5] R. Arnold, F. Mueller, D. B. Whalley, and M. Harmon. Bounding worst-case instruc-tion cache performance. In IEEE Symposium on Real-Time Systems, December 1994.(accepted).[6] T. P. Baker, F. Mueller, and Viresh Rustagi. Experience with a prototype of the POSIX\minimal realtime system pro�le". In IEEE Workshop on Real-Time Operating Systemsand Software, pages 12{16, 1994.[7] T. Ball and J. R. Larus. Optimally pro�ling and tracing programs. In ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 59{70, January1992.[8] M. E. Benitez and J. W. Davidson. A portable global optimizer and linker. In ACMSIGPLAN Conference on Programming Language Design and Implementation, pages329{338, June 1988.[9] D. Bhatt, A. Ghonami, and R. Ramanujan. An instrumented testbed for real-timedistributed systems development. In IEEE Symposium on Real-Time Systems, pages241{250, December 1987.[10] A. Borg, R. E. Kessler, and D. W. Wall. Generation and analysis of very long addresstraces. In International Symposium on Computer Architecture, pages 270{279, May1990.[11] G. Brooks, G. Hansen, and S. Simmons. A new approach to debugging optimized code.In ACM SIGPLAN Conference on Programming Language Design and Implementation,pages 1{11, June 1992.[12] B. Burgess, N. Ullah, P. Van Overen, and D. Ogden. The PowerPC 603 microprocessor.Communications of the ACM, 37(6):34{42, June 1994.89

[13] G. Chartrand and L. Lesniak. Graphs & Digraphs. Wadsworth & Brooks, 2nd edition,1986.[14] C.-H. Chi and H. Dietz. Uni�ed management of register and cache using liveness andcache bypass. In ACM SIGPLAN Conference on Programming Language Design andImplementation, pages 344{355, June 1989.[15] D. W. Clark. Cache performance in the VAX-11/780. ACM Transactions on ComputerSystems, 1(1):24{37, February 1983.[16] D. W. Clark and H. M. Levy. Measurement and analysis of instruction use in the VAX-11/780. In Architectural Support for Programming Languages and Operating Systems,pages 9{17, April 1982.[17] B. Cogswell and Z. Segall. MACS: a predictable architecture for real time systems. InIEEE Symposium on Real-Time Systems, pages 296{305, December 1991.[18] J. W. Davidson and D. B. Whalley. Quick compilers using peephole optimizations.Software Practice & Experience, 19(1):195{203, January 1989.[19] J. W. Davidson and D. B. Whalley. Ease: An environment for architecture studyand experimentation. In SIGMETRICS Conference on Measurement and Modeling ofComputer Systems, pages 259{260, May 1990.[20] J. W. Davidson and D. B. Whalley. A design environment for addressing architectureand compiler interactions. Microprocessors and Microsystems, 15(9):459{472, November1991.[21] S. J. Eggers and R. H. Katz. A characterization of sharing in parallel programs and itsapplication to coherency protocol evaluation. In International Symposium on ComputerArchitecture, pages 373{382, 1988.[22] S. J. Eggers, D. R. Keppel, E. J. Koldinge, and H. M. Levy. Techniques for e�cientinline tracing on a shared-memory multiprocessor. In SIGMETRICS Conference onMeasurement and Modeling of Computer Systems, pages 37{47, 1990.[23] M. Emami, R. Ghiya, and L. J. Hendren. Context-sensitive interprocedural points-to analysis in the presence of function pointers. In ACM SIGPLAN Conference onProgramming Language Design and Implementation, pages 242{256, June 1994.[24] R. Gerber and S. Hong. Semantics-based compiler transformations for enhanced schedu-lability. In IEEE Symposium on Real-Time Systems, pages 232{242, December 1993.[25] S. L. Graham, P. B. Kessler, and M. K. McKusick. gprof: A call graph executionpro�ler. In Symposium on Compiler Construction, pages 276{283, June 1982.[26] S. L. Graham, P. B. Kessler, and M. K. McKusick. An execution pro�ler for modularprograms. Software Practice & Experience, 21(11):25{40, December 1988.[27] T. Hand. Real-time systems need predictability. Computer Design (RISC Supplement),pages 57{59, August 1989. 90

[28] M. Harmon, T. P. Baker, and D. B. Whalley. A retargetable technique for predictingexecution time. In IEEE Symposium on Real-Time Systems, pages 68{77, December1992.[29] J. Hennessy and D. Patterson. Computer Architecture: A Quantitative Approach. Mor-gan Kaufmann, 1990.[30] C. R. Hill. A real-time microprocessor debugging technique. In ACM SIG-SOFT/SIGPLAN Software Engineering Symposium on High-Level Debugging, pages145{148, 1983.[31] M. Hill. A case for direct-mapped caches. IEEE Computer, 21(11):25{40, December1988.[32] U. Hoelzle, C. Chambers, and D. Ungar. Debugging optimized code with dynamicdeoptimization. In ACM SIGPLAN Conference on Programming Language Design andImplementation, pages 32{43, June 1992.[33] M. Huguet, T. Lang, and Y. Tamir. A block-and-actions generator as an alternative toa simulator for collecting architecture measurement. In ACM SIGPLAN Symposium onInterpreters and Interpretive Techniques, pages 14{25, June 1987.[34] D. Kerns and S. Eggers. Balanced scheduling: Instruction scheduling when memorylatency is uncertain. In ACM SIGPLAN Conference on Programming Language Designand Implementation, pages 278{289, June 1993.[35] D. B. Kirk. SMART (strategic memory allocation for real-time) cache design. In IEEESymposium on Real-Time Systems, pages 229{237, December 1989.[36] E. Kligerman and A. Stoyenko. Real-time euclid: A language for reliable real-timesystems. IEEE Transactions on Software Engineering, SE-12(9):941{949, September1986.[37] D. E. Knuth. An empirical study of FORTRAN programs. Software Practice & Expe-rience, 1:105{133, 1971.[38] D. E. Knuth. The Art of Computer Programming: Fundamental Algorithms, volume 2.Addison Wesley, 2 edition, 1973.[39] D. E. Knuth and F. R. Steverson. Optimal measurement points for program frequencycounts. BIT, 13:313{322, 1973.[40] S. Laha, J. H. Patel, and R. K. Iyer. Accurate low-cost methods for performanceevaluation of cache memory systems. IEEE Transactions on Computers, 37(11):1325{1336, November 1988.[41] J. R. Larus. Abstract execution: A technique for e�ciently tracing programs. SoftwarePractice & Experience, 13(8):671{685, August 1983.[42] J. R. Larus and T. Ball. Rewriting executable �les to measure program behavior. TR1083, University of Wisconsin, March 1992.91

[43] M. Lee, S. Min, C. Park, Y. Bae, H. Shin, and C. Kim. A dual-mode instructionprefetch scheme for improved worst case and average program execution times. InIEEE Symposium on Real-Time Systems, pages 98{105, December 1993.[44] T. H. Lin and W. S. Liou. Using cache to improve task scheduling in hard real-timesystems. In IEEE Workshop on Architecture Supports for Real-Time Systems, pages81{85, 1991.[45] S. McFarling. Program optimization for instruction caches. In Architectural Support forProgramming Languages and Operating Systems, pages 183{191, April 1989.[46] F. Mueller and D. B. Whalley. E�cient on-the-y analysis of program behavior andstatic cache simulation. In Static Analysis Symposium, September 1994. (accepted).[47] F. Mueller and D. B.Whalley. Fast instruction cache analysis via static cache simulation.TR 94-042, Dept. of CS, Florida State University, April 1994.[48] F. Mueller and D. B. Whalley. On debugging real-time applications. In ACM SIGPLANWorkshop on Language, Compiler, and Tool Support for Real-Time Systems, June 1994.[49] F. Mueller and D. B. Whalley. Real-time debugging by minimal hardware simulation.In PEARL Workshop �uber Realzeitsysteme, December 1994. (accepted).[50] F. Mueller, D. B. Whalley, and M. Harmon. Predicting instruction cache behavior. InACM SIGPLAN Workshop on Language, Compiler, and Tool Support for Real-TimeSystems, June 1994.[51] Frank Mueller. A library implementation of POSIX threads under UNIX. In Proceedingsof the USENIX Conference, pages 29{41, January 1993.[52] D. Niehaus. Program representation and translation for predictable real-time systems.In IEEE Symposium on Real-Time Systems, pages 53{63, December 1991.[53] D. Niehaus, E. Nahum, and J. A. Stankovic. Predictable real-time caching in the springsystem. In IEEE Workshop on Real-Time Operating Systems and Software, pages 80{87,1991.[54] C. Y. Park. Predicting program execution times by analyzing static and dynamic pro-gram paths. Real-Time Systems, 5(1):31{61, March 1993.[55] B. L. Peuto and L. J. Shustek. An instruction timing model of CPU performance. InInternational Symposium on Computer Architecture, pages 165{178, March 1977.[56] A. Poursepanj. The PowerPC performance modeling methodology. Communications ofthe ACM, 37(6):47{55, June 1994.[57] P. Rowe and B. Pagurek. Remedy: A real-time, multiprocessor, system level debugger.In IEEE Symposium on Real-Time Systems, pages 230{239, December 1987.[58] A. D. Samples. Pro�le-Driven Compilation. PhD thesis, University of California atBerkley, September 1992.[59] V. Sarkar. Determining average program execution times and their variance. In ACMSIGPLAN Conference on Programming Language Design and Implementation, pages298{312, June 1989. 92

[60] D. Simpson. Real-time RISCS. Systems Integration, pages 35{38, July 1989.[61] K. So, F. Darema, D. A. George, V. A. Norton, and G. F. P�ster. PSIMUL { a systemfor parallel execution of parallel programs. Performance Evaluation of Supercomputers,pages 187{213, 1988.[62] C. Stunkel and W. Fuchs. Trapeds: Producing traces for multicomputers via execu-tion driven simulation. In SIGMETRICS Conference on Measurement and Modeling ofComputer Systems, pages 70{78, May 1989.[63] C. B. Stunkel. Address tracing for parallel machines. IEEE Computer, 24(1):31{38,January 1991.[64] Sun Microsystems, Inc. Programmer's Language Guide, March 1990. Part No. 800-3844-10.[65] SunSoft, Inc. SunOS 5.1 User Commands, March 1992.[66] M. Timmerman, F. Gielen, and P. Lambix. A knowledge-based approach for the debug-ging of real-timemultiprocessor systems. In IEEE Workshop on Real-Time Applications,pages 23{28, 1993.[67] H. Tokuda, M. Kotera, and C. W. Mercer. A real-time monitor for a distributed real-time operating system. In ACM/ONR Workshop on Parallel and Distributed Debugging,pages 68{77, 1988.[68] D. B. Whalley. Fast instruction cache performance evaluation using compile-time analy-sis. In SIGMETRICS Conference on Measurement and Modeling of Computer Systems,pages 13{22, June 1992.[69] D. B. Whalley. Techniques for fast instruction cache performance evaluation. SoftwarePractice & Experience, 19(1):195{203, January 1993.[70] C. A. Wiecek. A case study of VAX-11 instruction set usage for compiler execution. InArchitectural Support for Programming Languages and Operating Systems, pages 177{184, March 1982.
93

