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Abstract

This work takes a fresh look at the simulation of cache memories. It introduces the tech-
nique of static cache simulation that statically predicts a large portion of cache references.
To efficiently utilize this technique, a method to perform efficient on-the-fly analysis of pro-
grams in general is developed and proved correct. This method is combined with static
cache simulation for a number of applications. The application of fast instruction cache
analysis provides a new framework to evaluate instruction cache memories that outperforms
even the fastest techniques published. Static cache simulation is shown to address the issue
of predicting cache behavior, contrary to the belief that cache memories introduce unpre-
dictability to real-time systems that cannot be efficiently analyzed. Static cache simulation
for instruction caches provides a large degree of predictability for real-time systems. In ad-
dition, an architectural modification through bit-encoding is introduced that provides fully
predictable caching behavior. Even for regular instruction caches without architectural mod-
ifications, tight bounds for the execution time of real-time programs can be derived from
the information provided by the static cache simulator. Finally, the debugging of real-time
applications can be enhanced by displaying the timing information of the debugged program
at breakpoints. The timing information is determined by simulating the instruction cache
behavior during program execution and can be used, for example, to detect missed deadlines
and locate time-consuming code portions. Overall, the technique of static cache simulation
provides a novel approach to analyze cache memories and has been shown to be very efficient
for numerous applications.
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Chapter 1

Introduction

This dissertation addresses the issue of providing a fast framework for cache performance
evaluation to determine the number of cache hits and misses during a program execution.
Cache performance measurements are commonly used to evaluate new cache designs, i.e. to
determine the cache configuration that best fits a new processor design. In addition, new
compiler optimization techniques are often analyzed with regard to their impact on cache
performance.

Furthermore, this dissertation challenges the claim that cache memories introduce un-
predictability to execution-time predictions for real-time applications. This common belief
has forced real-time designers to predict the worst-case execution time of program assuming
that caches are not present. A schedulability analysis based on such simplifying assumptions
often results in a gross underutilization of a processor, the selective enabling and disabling
of caches for the most critical task, or even the disabling for caches at all times.

This dissertation addresses these issues by a technique to statically simulate a large por-
tion of the caching behavior of programs. The technique, called static cache simulation, is
formally defined in this dissertation. Furthermore, the technique is shown to provide con-
siderable speed-up over traditional cache performance analysis techniques. It also provides
a framework to statically predict a large number of the caching behavior that is shown to
produce tight execution time bounds when combined with a timing tool. Each of these issues
is addressed in a separate chapter in this dissertation and is supported by measurements.

The approach taken by static cache simulation is quite different from traditional methods.
It does not rely on tracing but rather combines compile-time analysis and code instrumen-
tation within the environment of a compiler back-end. The simulator attempts to determine
statically whether a given program line will result in a cache hit or miss during program
execution. This is achieved by the analysis of both the call graph of the program and
control-flow graph for each function. A set of instructions executed in sequence is called a
unique path if it can be distinguished from all other paths by at least one (unique) control-
flow component. To better predict the cache behavior, functions are further distinguished
by function instances that depend on the call site and call sequence.

During program execution, extensive use of frequency counters suffices for cache simula-
tion when instruction references are statically determined to be always cache hits or always
cache misses. For the remaining instruction references, state information is associated with
code portions and is updated dynamically. This state information represents a localized view
of the cache and is used to determine whether the remaining program lines of a code portion
are or are not cached. These localized states are in contrast to a comprehensive global view
of the cache state as employed in conventional trace-driven simulation. The total hits and
misses can be inferred from the state-dependent frequency counts after running the program.

In summary, the cheaper method (frequency counters) is used when references are stat-
ically known, and the remaining references are determined by local states that also impose
less execution overhead than one global cache state. The improvements of fast instruction
cache analysis using static cache simulation over traditional trace-driven cache simulation
are summarized below.



Unique Paths: The code is instrumented at unique paths (UPs) rather than at basic blocks.
This reduces the number of instrumentation points (also called measurement points),
i.e. the places where instrumentation code is inserted into the regular code generated
during program compilation. The set of unique paths is shown to provide a small set
of measurement points for on-the-fly analysis methods in general.

Static Cache Simulation: A large percentage of the instruction references are statically
identified as always hits and always misses. These references will not have to be simu-
lated at all during program execution.

Function Instances: The static cache simulation is refined by taking the call site of a
function invocation into account. Thus, the simulation overhead required at run time
is further reduced since the behavior of more instruction references can be statically

identified.

Inline Code Instrumentation and Frequency Counters: The remaining instruction
references are simulated at run time by inlining short sequences of instrumentation
code for each UP rather than calling a tracing routine. The compiler identifies the live
registers at the instrumentation point. A set of unused registers is provided for the
instrumented code to avoid unnecessary saves and restores. If all registers are used,
then some registers will be temporarily spilled around the instrumentation point. The
instrumentation consists of incrementing simple frequency counters and state transi-
tions.

Figure 1.1 depicts an overview of the programs and interfaces involved in static cache
simulation. The set of source files of a program are translated by a compiler. The compiler
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Figure 1.1: Overview of Static Simulation

generates assembly code with macro entries for instrumentation and passes information about
the control flow of each source file to the static cache simulator. The simulator constructs
the call graph of the program and the control-flow graph of each function based on the



information provided by the compiler. The cache behavior is then simulated for a given cache
configuration. The output of the static cache simulator depends on the intended application
and will either describe the predicted cache behavior of each instruction or emit macro code
together with tables to store cache information for on-the-fly cache analysis. In the former
case, further analysis can be employed, for example to analytically bound the timing of code
portions. In the latter case, the output of the simulator is passed to the assembler, which
translates the code generated by the compiler into instrumented object code. The linker
combines these object files to an executable program and links in library routines that may
provide the final cache analysis results or support the output of intermediate results for
debugging.

This dissertation is structured as follows. Chapter 2 introduces the reader to measure-
ment techniques related to cache analysis. In Chapter 3, a method is introduced to determine
a small set of measurement points for on-the-fly analysis. Chapter 4 details the method of
static cache simulation for instruction caching. Chapter 5 illustrates the instrumentation of
programs with measurement code. Chapter 6 presents the application of this work to fast
instruction cache analysis. Chapter 7 describes the predictability of instruction caching in
the context of real-time systems. Chapter 8 shows the benefits of this work for bounding
the execution time of real-time applications in the presence of instruction caches. Chapter 9
provides a description of its application for real-time debugging. Chapter 10 discusses some
future work. Chapter 11 summarizes the results of this work.
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Chapter 2
Motivation and Prior Work

Cache memories have become an important part of recent microprocessor design. While the
clock speed of processors has increased dramatically, the access time to main memory is
lagging behind, causing a bottleneck. This bottleneck is dealt with by primary caches on the
microprocessor and stand-alone secondary caches. Primary caches are a major contributor
to the speed-up of memory access. Unified caches have been designed where instructions
and data are not separated (Von-Neumann Architecture). For primary caches separate
instruction caches and data caches are more popular (Harvard Architecture) [31, 29]. This
is due to the trend of modern processors to pipeline the instruction execution. A pipelined
architecture overlaps the different stages of instruction execution to effectively achieve a
throughput of one instruction per clock cycle. Typical pipeline stages are instruction fetch,
decode, load operands, execute, and store result. To achieve a throughput of one instruction
per cycle, primary caches are generally split into instruction caches and data caches. The
former feed the instruction pipeline and the latter provide access to program data via load
or store instructions in a single cycle, provided that the information is cached. Thus, an
instruction cache hit and a data cache hit can be served in the same cycle. This would not
be possible if a primary cache was a unified cache.

The organization of caches varies from fully-associative caches to direct-mapped caches.
Recent results have shown that direct-mapped caches tend to match, if not exceed, the speed
of associative caches for large cache sizes [31]. Due to the slightly more complex design, the
access time for hits of associative caches is generally slower (by about 10%) than the access
time for direct-mapped caches. For large caches, the benefit of a higher hit ratio for set-
associative caches is generally outweighed by the faster access for direct-mapped caches.

The simulation of caches has played an important role in the design of cache memories.
Different design issues such as the number of cache sets, line size, level of associativity, and
unified or split data and instruction caches have been investigated by cache simulation. In
the following, a summary of different measurement techniques is given.

2.1 Measurement Techniques

Program analysis through profiling and tracing has long been used to evaluate new hardware
and software designs. For instance, an early reference to profiling by Knuth can be found
in [37, 39]. Measurement techniques can be distinguished by the provided level of detail of
the program analysis. For example, the ordering of events allows to distinguish between a
first execution of some code and the second execution of the same code portion, as well as
those code portions executed in between. Depending on the intended analysis, the ordering
of events may or may not be relevant. Below is a list of a variety of techniques used to gather
measurements about program executions.

e Sampling: During execution, the program counter is sampled at regular intervals to
determine which portion of the code is currently executing. This approach provides a
statistical sampling method that yields approximate measurements indicating the es-
timated portion of the total execution time spent in certain portions of the program
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(typically at the scope of functions). To perform the sampling, common tools, such as
prof [65] and gprof [25, 26], rely on the availability of hardware timers and the corre-
sponding operating system interface to activate these timers, catch the timer interrupt,
and sample the program counter at the interrupt point. It is neither possible to collect
accurate measurements with this method, nor is it possible to deduce the order of events
from the sample after program execution [40]. Yet, if the interrupt handler is used to
collect and record trace data (see below), the order of events can be reconstructed [56].

Tracing: This method involves the generation of a partial or full sequence of the
instruction and data references encountered during program execution. Trace data is
generated during program execution but analyzed at a later point in time. Thus, the
trace data is commonly stored in a file. The technique produces accurate measurements
and preserves the order of events during execution for later analyses. A common problem
with this method is presented by the large size of trace data. It is therefore important
to include only the (partial) information that is essential to reconstruct a full trace
after program execution. In the following, different tracing techniques are described
and their overhead is reported based on previous work [63].

— Hardware Simulation of the execution of a program can be used to generate the
trace for prototyped architectures. This technique is known to be very slow (100x
to over 1000x slower than the original execution) but provides accurate and very
detailed measurements [61].

— Single-Stepping is a processor mode that interrupts the execution of a program
after each instruction. The interrupt handler can be used to gather the trace
data. This technique is just slightly faster the hardware simulation (100x — 1000x
slow down) and works only for existing architectures [70, 21], though sometimes
traces from an existing architecture are used to project the speed of prototyped
architectures [56].

— Inline Tracing is a technique where the program is instrumented before execu-
tion such that the trace data is generated by the instrumentation code as a side
effect of the program execution. This technique requires a careful analysis of the
program to ensure that the instrumentation does not affect data or code references.
This technique is faster than the above techniques (about 10x slow down) and is
currently regarded as the preferred method to collect trace data. A minimal set of
instrumentation points can be determined by analyzing the control-flow graph [7].

A number of different inline tracing techniques have been used to instrument the
code and to process the trace data. Stunkel and Fuchs [62] instrumented the code
during compilation and analyzed the trace on-the-fly as part of the program exe-
cution. Eggers et. al. [22] instrumented code during compilation and saved the
trace data in secondary storage for later analysis. Borg et. al. [10] instrumented
the program at link time and processed the trace data in parallel to the program
execution by using buffers shared between the program and the analysis tool. The
pros and cons of these approaches can be summarized as follows. Compile-time
instrumentation has the advantage that unused registers can be utilized for the in-
strumentation code. Link-time instrumentation provides the means to instrument
library code, which is not available as source code. Saving the trace data in a file
allows later analysis with varying cache configurations but limits the trace size due
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to storage capacity and disk access overhead. Immediate processing of the trace
data allows the analysis of longer traces but can only be performed for one cache
configuration per program execution.

— Abstract Execution is a variation of inline tracing [41]. This technique relies on a
modified compiler that instruments the original program to generate a trace of “sig-
nificant events” for a subset of basic blocks and a given program input. An abstract
program, a scaled-down version of the original program, uses the significant events
to generate a complete address trace by recording taken conditional branches. The
abstract program is derived from the original program by omitting computations
that do not influence the address trace, such as certain file I/O. Nevertheless, the
execution time to obtain significant events might still be quite long.

— Microprogramming Instrumentation provides a technique to modify the mi-
crocoded instruction set of a processor such that trace data is produced as a side
effect of a program’s execution. The technique is about as fast as inline tracing
(about 20x slow down) due to the fact that the execution is still slowed down mod-
erately by the additional microcode instructions [2]. Furthermore, the technique is
generally not portable, and modern architectures, such as RISC processors, do not
have microcode or do not provide the ability to reprogram microcode anymore.

— Hardware Monitoring can be used to generate traces by probing the pins of a
processor with dedicated instruments, e.g. a logic analyzer. The probes can be
stored in a trace file. This technique requires additional, expensive hardware and
some expertise to use this hardware. The technique is very fast since the program
executes at its original speed and does not need to be modified [16, 15]. Yet, the
method hides on-chip activities such as instruction or data references accessing
primary caches.

e Frequency Counting: Similar to inline tracing, the program is modified to include
instrumentation code. But rather than generating a program trace, the execution fre-
quency of code portions is recorded for later analysis. Frequency measurements can
be obtained very efficiently by inserting instructions into a program that increment
frequency counters. The counters are typically associated with basic blocks and are
incremented each time the basic block executes. The number of measurement points
can be reduced from all basic blocks to a minimal set of control-flow transitions, which
guarantees optimal profiling for most programs as explained by Ball and Larus [7].
Their reported overhead is a factor of 1.3-3.0 for basic block frequency accounting and
1.1-1.5 for optimal frequency accounting. The resulting measurements are accurate but
it is not possible to reconstruct the order of events from frequency counts.

e Inline On-the-fly Analysis: This technique performs inline tracing and the analysis
of trace data as part of the program execution. Instead of buffering trace data for a
concurrent analysis tool, the program is modified to include instrumentation code that
performs the trace and the analysis “on-the-fly” during program execution. This method
requires a prior static analysis that performs the code instrumentation. This static
analysis depends on the measurements requested by the user, i.e. cache performance
analysis requires a specific static analysis and instrumentation code for this purpose.
Several variations on the generation of trace data are possible. Stunkel and Fuchs [62]
generated a full trace, Whalley [68, 69] only generated a partial trace for some highly
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tuned methods, and this dissertation discusses a method that does not generate any
address trace at all during program execution. The overhead is about 1.2 to 2.2 for the
method described in this dissertation, 10-30 for Stunkel and Fuchs, and about 2-15 for
Whalley’s most highly tuned method. The measurements are accurate and the order
of events is preserved for the analysis. The program execution has to be repeated if
simulation parameters change. With some additional effort, this method can even be
used for prototyped architectures [19]. In this dissertation, inline on-the-fly analysis
will be simply referred to as “on-the-fly analysis”.

2.2 Cache Simulation

The task of cache simulation is to ascertain the number of cache hits and misses for a
program execution. To determine if an instruction or data reference was a hit or miss,
the cache simulator must be able to deduce the order of events, i.e. the order in which
references occur. Simple sampling techniques and counting the frequency of blocks do not
preserve the order of events and thus cannot be used for cache simulation. Tracing methods
preserve the order of events but often require a hidden overhead for reading and writing
the trace data file, even when the fastest methods are used. Processing trace data while
it is generated eliminates the overhead of storing the entire trace but requires that each
reference be interpreted to determine cache hits and misses. Some of the references have
to be reconstructed to determine the full trace when only a partial trace is generated for a
minimal set of instrumentation points.

The on-the-fly analysis techniques described by Whalley [68, 69] do not require the inter-
pretation of each reference. Consecutive references are passed to the simulator as one block
and only the first reference of a program line is simulated. Further improvements are based
on the observation that many references in a loop result in misses during the first iteration
but in hits for subsequent iterations if the loop fits in cache. In such cases, the trace action
can be simplified for each subsequent iteration. But the performance of these techniques
suggests that they do not scale well for small caches.

Unfortunately, on-the-fly analysis cannot be performed on the minimal set of measure-
ment points used by inline tracing and frequency counting [7]. The minimal set of measure-
ment points does not immediately provide a full set of events and their execution order. It
is one of the objectives of this work to determine a small set of measurement points that
still covers all events and preserves their execution order. This objective is addresses by the
partitioning of the control flow into unique paths.

Another objective of this work is to take on-the-fly cache analysis one step further.
Rather than simulating the entire cache behavior during program execution, a static cache
stmulator predicts a large portion of the references prior to program execution. If a reference
is statically determined to be a cache hit or miss, simple frequency counters associated with
the region of the reference suffice to account for its cache behavior at execution time. If the
behavior of a reference is not known statically, it still has to be simulated during execution.
Yet, instead of interpreting the addresses of references, localized state transitions are used
to perform the dynamic analysis efficiently. There are several applications of static cache
simulation that will be discussed to show to benefits of this approach.
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Chapter 3
Control-Flow and Call-Graph Analysis

In this chapter, terms and methods are introduced to analyze the call graph of a program
and the control-flow graph of each function. The analysis is performed to find a small
set of measurement points suitable for on-the-fly analysis. The analysis provides a general
framework to reduce the overhead of event-ordered profiling and tracing during program
execution. Excerpts of this chapter can be found in [46].

This chapter precedes the central part of the dissertation, static cache simulation. In
this chapter, the terms of a unique path, a unique path partitioning, and the function-
instance graph are defined. These terms are used throughout this dissertation. For example,
the static cache simulation is performed on a function-instance graph and the control-flow
graph of each function. The control-flow graph can be represented in the traditional notion
of basic blocks as vertices and control-flow transitions as edges, or it can be represented
as a partitioning of unique paths. The choice depends on the application of static cache
simulation.

3.1 Introduction

Program analysis through profiling and tracing has long been used to evaluate new hardware
and software designs. In this chapter, a technique for efficient on-the-fly analysis of programs
is presented.

Traditional tracing techniques rely on generating a program trace during execution, which
is analyzed later by a tool. The problem of generating a minimal trace, which can later be
expanded to a full event-ordered trace, can be regarded as solved. A near-optimal (often even
optimal) solution to the problem for a control-flow graph ' can be found by determining a
maximum spanning tree max(G') for the control-flow graph and inserting code on the edges
of G —max(G) [38, 7].

Recently, tracing and analyzing programs has been combined using inline tracing [10]
and on-the-fly analysis [68, 69]. Both techniques require that events are analyzed as they
occur. Traditional inline tracing performs the analysis separate from the generation of trace
information.

On-the-fly analysis integrates the program analysis into its execution. The analysis is
specialized for a certain application (e.g., counting hits and misses for cache performance
evaluation). The results of the analysis are available at program termination such that no
concurrent analysis or post-execution analysis by any tool is required. If the application or
the configuration changes, the program has to be executed again, sometimes even instru-
mented and then executed. In contrast, trace data can be analyzed by several tools and for
several configurations once the data is generated. But the generation and analysis of trace
data is typically slow and space consuming since the data is written to a file and later read
again by a tool.

On-the-fly analysis requires that the program be instrumented with code, which performs
the analysis. Many applications, including cache simulation, require that all events are
simulated in the order in which they occur. In the past, each basic block was instrumented
with code to support event-ordered analysis [62]. Inserting code based on the maximum
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spanning tree (or, to be more precise, on its complement) does not cover all events since
instrumentation points are placed on a subset of the control-flow graph. It is therefore not
applicable to on-the-fly analysis.

This chapter is structured as follows: First, a formal approach to reduce code instrumen-
tation to a small number of places is introduced. This general framework supports efficient
on-the-fly analysis of program behavior with regard to path partitioning. The focus is re-
stricted to the analysis of the control-flow graph of a single function. Next, the formal model
and the analysis are extended to the analysis of the entire program by transforming a call
graph into a function-instance graph. Furthermore, a quantitative analysis is presented to
show that the new methods reduce the number of measurement points by one third over
traditional methods. Finally, future work is outlined, related work is discussed, and the
results are summarized.

3.2 Control-Flow Partitioning into Unique Paths

The control flow of each function is partitioned into unique paths (UPs) to provide a small
set of measurement points. The motivation for restructuring the control flow into UPs is
twofold.

1. Each UP has a unique vertex or edge that provides the insertion point for instrumen-
tation code at a later stage. This code may perform arbitrary on-the-fly analysis, e.g.
simple profiling or more complex cache performance analysis.

2. Each UP is comprised of a range of instructions that are executed in sequence if and
only if the unique vertex or edge is executed. This range of instructions does not have
to be contiguous in the address space. The range of instructions provides a scope for
static analysis to determine the instrumentation code for dynamic on-the-fly analysis,
which preserves the order of events.

The first aspect, the strategy of instrumenting edges (or vertices where possible), is
also fundamental to the aforementioned work on optimal profiling and tracing by Ball and
Larus [7]. It is the second aspect that distinguishes this new approach from their work.
The option of performing static analysis on the control flow to determine and optimize the
instrumentation code for order-dependent on-the-fly analysis requires the definition of ranges
for the analysis. Naively, one could choose basic blocks to comprise these ranges. But it
has been demonstrated for profiling and tracing that fewer instrumentation points can be
obtained by a more selective instrumentation technique. UPs provide such a framework
supporting efficient instrumentation for on-the-fly analysis.

The set of UPs is called a unique path partitioning (UPPA) and is defined as follows:
Let G(V, E) be the control-flow graph (directed graph) of a function with a set of edges
(transitions) E and a set of vertices (basic blocks) V.

Let p be a path

P =V, €1, V1,5...5€n,Vp

with the ordered set of edges ¢, = {e1,...,¢,} € FE and the ordered set of vertices v, =
{vo,...,vn} €V, i.e., a sequence of distinct vertices connected by edges [13]. The edge ¢;
may also be denoted as v;_; — v;. Vertex vg is called an head vertex and vertex v, a tail
vertex, while all other v; are internal vertices. Let H be the set of all head vertices and T
be the set of all tail vertices.
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Definition 1 (UPPA) A unique path partitioning, UPP A, for a control-flow graph G(V,E)
is a set of paths with the following properties:

1. all vertices are covered by paths:

Y 3 v E v,

veV  peUPPA

2. each edge is either on a path or it connects a tail vertex to a head vertex, but not both:

v 3 ece,brvelNwel

e=(v—w)EE peUPPA

3. each path has a feature f, an edge or a vertex, which is globally unique, 1.e. f is in
no other path:
Vo (3 e€egA v ede)V( I vey, A v v vy
peUPPA  ecE qeUPPA\{p} vEV qgeUPPA\{p}

4. overlapping paths only share an initial or final subpath:

v vpNyg=aUp
p.g€UPPA

where o and 3 denote the vertices of a common initial and final subpath, respectively.
In other words, let v, = {1y, ...,vm} and v, = {wo, ...,w,} be the ordered sets of vertices
for paths p and q. Then, o = ¢ or a = {vg = wo, ..., v; =w;} and = ¢ or f = {v =
Wiy ey Uy =Wy} Jor i < k and 1 < [.

5. proper path chaining:

v v e=(v—ow)ebNede,Ue,=veTl NweH
p,q€UPPA  vEvp,wevqg

6. break at calls: Let C C 'V be the set of vertices (basic blocks) terminated by a call
instruction.

v vev,=>vel
vEC,pEUPPA

7. break at loop boundaries: Let L; be the set of vertices in loop (cycle) @ and let L be the
set of all L;.

v eceg=((veL &wel)

e=(v—w)€EE, peUPPA, L;eL
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The properties 6 and 7 are operational restrictions motivated by the application of the

partitioning for on-the-fly analysis of program behavior. The break at calls allows the inser-
tion of instrumentation code for separate compilation. Thus, the compiler is not required to
perform interprocedural analysis. The break at loop boundaries ensures that the frequency
of events can be identified. The frequency of events outside a loop differs from the frequency
inside loops (unless the loop was iterated only once). Thus, a UP associated with an event
should not cross loop boundaries.
FExample: Paths 1 and 2 in Figure 3.1 have two unique transitions each. They comprise an
if-then-else structure. Paths 3 and 4 are generated because the loop is entered after basic
block 4. Path 3 only has one unique transition while path 4 has two. Basic block 8 is outside
the loop and therefore lies in a new path. H

~path 2",

pat

pah3 |6
7
“path 5

Figure 3.1: Unique Paths in the Control-Flow Graph

Theorem 1 (Existence of a UPPA) Any control-flow graph G(V,E) has a UPPA.

Proof: Let G(V,E) be a control-flow graph. Then, UPPA, = {{vo},...,{v,}} is a unique
path partitioning, i.e each vertex (basic block) constitutes a UP. Each property of Definition
1 1s satisfied:

1. Any vertex v; is part of a UP p; = {v;} by choice of the partitioning.

2. v €, = ¢ since all edges connect paths.
peUPPA,

3. v pPFqG=v,Nv,=¢.
p7quPPAb

None of the UPs overlap in any vertex as shown for the previous property.
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4. A v, € HANv;, €T

pi={vi}€UPPA4,

5. The proof for the previous property suffices to prove this property as well.

6. v e & €,, so the premise of can never be satisfied. Thus, the property is

eell, peUPPA,

preserved. W

Definition 2 (Ordering of UPPAs) For a control-flow graph G(V,E), a partitioning
UPPA, is smaller than a partitioning UPPAy if UPPA, contains fewer paths than UPP Ay.

The significance of the ordering is related to the number of measurement points for on-
the-fly analysis. A smaller partitioning yields fewer measurement points, which improves
the performance of on-the-fly analysis. The following algorithm provides a method to find a
small partitioning. The algorithm uses the terminology of a loop header for a vertex with an
incoming edges from outside the loop. A loop exit is a vertex with an outgoing edge leaving
the loop. This is illustrated in Figure 3.2(a).

join
backedge b2
=+~ exits | backedge bl )
: tail
fork
head
(@) loop structure (b) fork after join (c) illegal overlap

Figure 3.2: Sample Graphs

Algorithm 1 (Computation of a Small UPPA)

Input: Control-flow graph G(V,E).

Qutput: A small partitioning UPPA.

Algorithm: Let C be the set of vertices containing a call, let L; be the set of vertices in
loop ¢, and let L be the set of all L; as in Definition 1. The algorithm then determines the
beginning of paths (heads) and the end of paths (tails), for example at loop boundaries. In
addition, a vertex is a tail if the path leading to this vertex joins with other paths and forks
at the current vertex (see Figure 3.2(b)). Once the heads and tails have been determined, a
path comprises a sequence of vertices and edges from a head to a tail in the control flow.

19



BEGIN
FOR each v € V without any predecessor DO
mark v as head; /* entry blocks to the function */
FOR each v € V without any successor DO
mark v as tail; /* return blocks from the function */
FOR each v € C' DO
mark v as tail; /* calls */
FOR each e = (v »w) € F WITH v ¢ L, AND w € L; DO
mark w as head; /* loop headers */
FOR each e = (v - w) € K WITH v € L, AND w ¢ L; DO
mark v as tail; /* loop exits */
FOR each v € V DO

mark v as not done;

WHILE change DO

change:= False;

propagate_heads_and _tails;

FOR each v € V WITH v marked as head AND

not marked as done AND not marked as ta:/ DO

change:= True;
mark v as done;
FOR each e = (v — w) € £ DO

recursive_find _fork_after_join(w, False);

UPPA=¢
FOR each v € V WITH v marked as head DO

recursive find_paths(v, {v});
END:;
PROCEDURE propagate_heads_and_tails IS

WHILE local _change DO
local _change:= False;
FOR each v € V DO
IF v marked as head THEN
FOR each e = (w — v) € £ DO
IF w not marked as ta:! THEN
local _change:= True;
mark w as taul;
IF v marked as ta:l THEN
FOR each e = (v — w) € £ DO
IF w not marked as head THEN
local _change:= True;
mark w as head;
END propagate_heads_and _tails;

PROCEDURE recursive_find_fork_after_join(v, joined) IS
IF v marked as ta:l THEN
return;
IF v joins, i.e. v has more than once predecessor THEN

20



joined:= True;
IF joined AND v forks, i.e. v has more than once successor THEN
mark v as taul;
return;
FOR each e = (v — w) € £ DO
recursive_find _fork_after_join(w, joined);
END recursive_find_fork _after_join;

PROCEDURE recursive_find_paths(v, p) IS
IF v marked as ta:l THEN
UPPA=UPPAU {p};
ELSE FOR each e = (v — w) € £ DO
recursive find_paths(w, p U {v — w, w});
END recursive_find_paths;

Fxample: Figure 3.3 illustrates two examples of the construction of a small UPPA using
Algorithm 1. For the first example (upper part of Figure 3.3), vertices without predecessor
(successor) are marked as head (tail). In addition, loop headers are heads and loop exits are
tails. The second picture shows the same graph after propagate_heads_and_tails has been
applied. Block 1 is marked as a tail since block 2 is a head. Conversely, block 7 is marked
as a head since block 6 is a tail. The last picture depicts the graph after path partitioning
through recursive_find_paths. Each head is connected to the next tail by one or more
paths, depending on the number of different ways to reach the tail. The resulting UPPA has
5 paths.

The second example (lower part of Figure 3.1(b)) initially shows a graph whose vertices
without predecessor (successor) are marked as heads (tails). The second picture shows an
additional tail found by recursive_find_fork_after_join since there is a possible traversal
for the head block 1 to, for example, the tail block 6, which encounters a join followed by a
fork in block 4. The final graph depicts the effect of propagate_heads_and _tails. Blocks 5
and 6 are a head since 4 was a tail. Block 2 is a tail since block 5 is now a head. Thus, block 4
becomes a head. This causes block 3 to be marked as a tail. Finally, recursive_find_paths
partitions the graph resulting in a UPPA with 5 paths. B

Theorem 2 (Correctness of Algorithm 1) Algorithm 1 constructs a UPPA for a
control-flow graph G(V, E).

Proof:

Termination: It suffices to show that the WHILE loops and the recursive routines termi-
nate. Both WHILE loops terminate since one more vertex is marked as head or tail
during each iteration. This process terminates either when all vertices are marked as
heads and tails or when none of the conditions for marking vertices are satisfied any
longer. The recursive routine recursive_find fork_after_join terminates for the fol-
lowing reasons. Initially, all loop headers are marked as heads. The propagation of heads
and tails ensures that all predecessors of loop headers are marked as tails, in particu-
lar the vertices preceding a backedge in a loop. Since recursive_find_fork_after_join
terminates when a tail is encountered, it will stop at a tail vertex with an outgoing
backedge or at a tail vertex without any successor since it can only traverse forward
edges in the control-flow graph. This also applies for recursive_find_paths.
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Figure 3.3: Algorithmic Construction of Two Small UPPAs
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Output is a UPPA: [t has to be shown that the properties of a UPPA as stated in Defi-
nition 1 hold for Algorithm 1.

1. All vertices are covered since recursive_find_paths includes all vertices between
a head and a tail in some path. Due to propagate_heads_and _tails, an outgoing
edge of a tail vertex always leads to a head vertex, i.e. there cannot be any inter-
mediate vertices between a tail and a head. Furthermore, at least the initial vertex
(without predecessor) is a head and the final vertices (without successors) are tails.

2. Consider any edges between a head and a tail. These edges are included in some
path by recursive_find_paths, and these are all edges on paths. The remaining
edges are those connecting tails to heads and are not in any path.

3. The following cases have to be distinguished for construction of paths by recur-
sive_find_paths: If there are no forks between a head h and the next tail, then
there will only be one path starting at A, and % is a unique vertex for this path. If
there are forks after a head h but no joins, then the tail vertex will be unique for
each path starting in h. If there are forks after a head h, followed by the first join
at vertex v along some path starting in h, then the edge immediately preceding v
on this path will be unique (since no other path has joined yet). Notice that there
cannot be another fork after the join in v within the path since any forking vertex
would have been marked as a tail by recursive_find_fork_after_join.

4. Property 3 ensures that any two overlapping paths differ in at least an edge. (Notice
that a unique vertex implies a unique edge for non-trivial paths with multiple
vertices.) Assume there exist two paths p, ¢ that overlap in a subpath {v,...,w} (see
Figure 3.2(c)) and v is preceded by distinct vertices ¢ and bin p and ¢, respectively.
Also, w is succeeded by distinct vertices x and y in p and ¢, respectively. In other
words, p and g overlap somewhere in the middle of their paths. Then, two edges join
in vertex v and two edges fork from vertex w, i.e. a join is followed by a fork. Thus,
w should have been mark as a tail by recursive_find_fork_after_join. Therefore,
w should have been the last vertex of paths p and ¢. Contradiction.

5. All edges between a head and the next tail are covered by paths, as shown for
property 2. Thus, it suffices to observe that edges connecting a tail ¢ to a head h
always connect all paths ending with vertex ¢ to the paths starting with vertex h.
It is guaranteed by recursive find_paths that a path starts with a head vertex
and ends in a tail vertex.

6. Each vertex v containing a call is initially marked as a tail vertex. Thus, vertex
v must be the final vertex for any path containing v by construction of the paths
(recursive_find_paths).

7. Fach loop header vertex is initially marked as a head and each loop exit is marked as
a tail. Thus, the vertices preceding a loop header are marked as a tail and the ver-
tices succeeding a loop exit are marked as heads by propagate_heads_and_tails.
Furthermore, the edges crossing loop boundaries connect the paths ending in the
tail vertex to the paths starting with the head vertex. As already shown for property
2, edges between a tail and a head cannot be covered by any path. B

23



In terms of the ordering of UPPAs, the basic block partitioning U PP Ay is the partitioning
with the largest number of measurement points. Algorithm 1 constructs a partitioning that
has an equal or smaller number of measurement points. It was found that the algorithm
produces a much smaller UPPA if possible. The algorithm may in fact produce a minimal
UPPA (with the smallest possible number of measurement points). Attempts to prove the
minimality have not yet succeeded due to the fact the a given graph may have more than
one minimal UPPA.

In summary, the control-flow graph can be transformed into a small UPPA by Algorithm
1. The small set of measurement points is given by a unique vertex or unique edge of each
UP. This provides the framework for efficient on-the-fly analysis with regard to the definition
of UPPAs.

Another short example for a small UPPA construction shall be given, which is used to
discuss the possibility of letting paths begin and end in edges as well as vertices.

FExample: Consider the subgraph of Figure 3.2(a) that is inside the loop. A corresponding
UPPA; can be constructed by Algorithm 1 resulting in the following partitioning:

UPPAs; ={{h,h — z,2},{h,h — el,el}, {e2}}

|

In general, the method may still be further tuned with regard to the dynamic behavior.
Currently, a path has to begin and end in a vertex. Consider the notion of open paths that
can start and end in a vertex or an edge. Then, another small UPPA of the loop in Figure

3.2(a) would be:
UPPA; = {{h,h — z 2}, {h,h — el el,el — y},{h,h — el el el — €2, e2}}

Consider the number of measurement points executed during each loop iteration. For
UPPA;,, there are two measurement points for an iteration reaching b1, one each in paths 2
and 3. For UPPA,, there is only one measurement point on 61 in path 3’. The definition of
UPPAs does not take dynamic properties into account.

3.3 From Call Graph to Function-Instance Graph

The small set of measurement points provides the location for inserting measurement code
that records the order of events. While the actual measurement code depends on the in-
tended analysis of the program, the amount of the measurement code may be further reduced
by distinguishing between different call sites of a function. For an event-ordered analysis,
the first invocation of a function may trigger certain initialization events. The analysis of
subsequent calls to the same function are simplified by the assumption that these initializa-
tion events have already occurred. Such an example will be illustrated later in the context
of instruction cache analysis.

A program may be composed of a number of functions. The possible sequence of calls
between these functions is depicted in a call graph [3]. Functions can be further distinguished
by function instances. An instance depends on the call sequence, i.e. on the immediate call
site of its caller, the caller’s call site, etc. The function instances of a call graph are defined
below. The definition excludes recursive calls that require special handling and are discussed
later. Indirect calls through function pointers are not handled since the callee cannot be
statically determined.

Definition 3 (Function Instances) Let G(V, EC) be a call graph where V is the set of
functions including an initial function “main” and EC is a set of pairs (e,c). The edge
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e = v — w denotes a call to w within v (excluding recursive and indirect calls). The vertex
¢ is a vertex of the control-flow graph of v that contains a call site to w. Then, the set of
function instances is defined recursively:

1. The function (vertex) “main” has a single instance maing.
2. Let (f — g,¢) € EC and f; be an instance of f. Then, g.y is an instance.

3. These are all the function instances.

The call graph of a program without recursion (i.e., a directed acyclic graph) can be
transformed into a tree of function instances by a depth-first search traversal of the call
graph. Function instances can then be uniquely identified by their index, where f; denotes
the ¢th occurrence of function f within the depth-first search.

Backedges in the call graph corresponding to recursive calls can be detected by marking
vertices as visited during the depth-first traversal. If an already visited edge is encountered
again, the last edge in the current traversal is due to recursion. The depth-first search will
then backtrack and retain this backedge as a special edge in the function-instance graph (see
Algorithm 3 in Appendix A).

FExample: In Figure 3.4, function f contains three calls: a call to ¢ and two calls to h.

Call Graph Function Instance Graph

Figure 3.4: Construction of Function-Instance Graph

Function ¢ calls 7z and k. Function & calls k. Function ¢ calls g, which is an indirect recursive
call. The corresponding function-instance graph contains two instances of h (for each call
from fo) and three instances of k (for the calls from g, ho, h1). The backedge ¢ — ¢ due to
indirect recursion is retained as a special edge in the function-instance graph. H

The construction of a function-instance graph does not result in inlining, partial evalu-
ation, or any other form of code replication. It is merely a decomposition that facilitates
cache analysis. But the code instrumentation includes information to identify a function
instance during execution.

3.4 Performance Evaluation

This chapter evaluates the benefits of control-flow partitioning and function-instance graphs
to reduce the number of measurement points. Table 3.1 summarizes the performance tests for
user programs, benchmarks, and UNIX utilities. The numbers were produced by modifying
the back-end of an optimizing compiler VPO (Very Portable Optimizer) [8] to determine
measurement points by partitioning the control flow and by creating the function-instance
graph.
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Table 3.1: Results for Measurement Overhead

Size Instructions Measure Pts.
Name Description [bytes] exec. |in FIG | static | exec.
cachesim | Cache Simulator 8,460 | 2,995,817 | 13,776 | 73.38% | 60.56%
cb C Program Beautifier 4968 | 3,974,882 12,735 89.62% | 65.61%
compact | Huffman Code Compression 5,912 | 13,349,997 | 3,226 | 68.89% | 56.56%
copt Rule-Based Peephole Optimizer | 4,148 | 2,342,143 | 1,309 | 84.19% | 74.88%
dhrystone | Integer Benchmark 1,916 | 19,050,093 644 | 81.61% | 72.73%
ft Fast Fourier Transform 1,968 | 4,094,244 536 | 78.43% | 74.08%
genreport | Execution Report Generator 17,720 | 2,275,814 | 8,968 | 71.58% | 81.31%
mincost VLSI Circuit Partitioning 4,448 | 2,994,275 | 2,198 | 83.19% | 76.27%
sched Instruction Scheduler 8,272 1,091,755 | 5,410|73.16% | 568.29%
sdiff Side-by-side File Differences 7,288 | 2,138,501 | 16,463 | 72.13% | 77.82%
tsp Traveling Salesman 4724 | 3,004,145 | 1,548 |64.08% | 58.67%
whetstone | Floating point benchmark 4,816 | 8,520,241 | 1,667 |70.49% | 68.25%
average 6,220 | 5,485,992 | 5,707 |75.90% | 68.75%

The size of the programs varied between about 2kB and 18kB (see column 3). The
number of instructions executed for each program comprised a range of 1 to 19 million using
realistic input data for each program (see column 4). Column 5 shows the static number of
instructions in the program after expanding the call graph into a function instance graph
and is used by subsequent chapters for comparison. Column 6 indicates the percentage of
measurement points required for the new UPPA method versus the number of measurement
points inserted in conventional on-the-fly analysis (i.e., one measurement point per basic
block). The new method requires only 76% of the measurement points required for the
traditional trace-driven analysis, i.e. about 24% fewer measurement points statically. The
run-time savings (column 7) are even higher, requiring only about 69% of the measurement
points executed under traditional trace-driven analyses. The additional dynamic savings are
due to reducing sequences of basic blocks inside loops to fewer UPs, sometimes just to a

single UP.

3.5 Future Work

As discussed previously, it may be possible to guarantee more efficient results for on-the-fly
analysis in the general case by extending paths to open paths. Also, it still remains an open
question if the Algorithm 1 could be proved to produce a minimal UPPA.

3.6 Related Work

Traditional profiling and tracing is often performed by collecting trace information during
program execution that is analyzed afterwards by a separate tool, which reconstructs the
order of events. It has been well established that a small set of measurement points for this
traditional approach can be provided by the edges of G — max((), where i is the control-
flow graph and maxz(G) is its maximum spanning tree [38, 7]. The resulting placement is
optimal for a large class of control-flow graphs, in particular reducible graphs resulting from
structured programming constructs, and it is near-optimal for most other cases.

It shall be noted that placing measurement code on an edge may involve the creation
of new basic blocks and unconditional jumps. Samples [58] challenges the claim that the
maximum spanning tree approach is optimal. He argues that the overhead of control-flow
transformations should be taken into account. He develops a heuristic model to assess the
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approximate cost of control-flow transformations for code instrumentation and conjectures
that an optimal solution may be NP-complete. In practice, the overhead of control-flow
transformations for placing instrumentation code on edges is generally small and therefore
mostly neglected.

Lately, on-the-fly analysis has been performed for collecting all measurements for a certain
analysis during program execution and generally results in a lower overall overhead than
traditional tracing methods. In the past, on-the-fly analysis was performed at the level of
basic blocks [19].

Independent research by Emami et. al. [23] defines an invocation graph that has proper-
ties similar to the function-instance graph. Their intention lies in interprocedural data-flow
and alias analysis. The handling of recursion in a function-instance graph was inspired by
their work but realized differently due to the different application.

3.7 Conclusion

In this chapter, a formal method was developed to perform efficient on-the-fly analysis of
program behavior with regard to path partitioning. The method partitions the control-flow
graph into a small set of unique paths, each of which contain a unique edge or vertex where
instrumentation code can be placed. Furthermore, the construction of the function-instance
graph from a program’s call graph refines the analysis. Performance evaluations show that
the number of dynamic measurement points can be reduced by one third using these methods.
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Chapter 4

Static Cache Simulation

This chapter introduces the method of static cache simulation that provides the means to
predict the behavior of a large number of cache references prior to execution time of a pro-
gram. The method is based on a variation of an iterative data-flow algorithm commonly used
in optimizing compilers. It utilizes control-flow partitioning and function-instance graphs for
predicting the caching behavior of each instruction. No prior work on predicting caching be-
havior statically could be found in the literature. Excerpts of this chapter can be found in

46, 50].

4.1 Introduction

In the last chapter, a framework for efficient on-the-fly analysis was developed. One ap-
plication for on-the-fly program analysis is cache performance evaluation. Different cache
configurations can be evaluated by determining the number of cache hits and misses for a
set of programs. Cache analysis can be performed on-the-fly or by analyzing stored trace
data, though faster results have been reported for the former approach [69].

This chapter introduces the method of static cache simulation, which predicts the caching
behavior of a large number of instruction references prior to execution time!. The method
employs a novel view of cache memories that seems to be unprecedented. The method
is based on a variation of an iterative data-flow algorithm commonly used in optimizing
compilers. It can be used to reduce the amount of instrumentation code inserted into a
program for on-the-fly analysis. It can also be used to enable a program timing tool to take
the effects of caching into account. These and other applications of static cache simulation
are discussed in later chapters.

This chapter is structured as follows: First, the categorization of instructions for cache
analysis is formalized. Next, an algorithm is presented to calculate the information required
for instruction categorization within one function. The algorithm is then extended to inter-
procedural analysis. Furthermore, measurements of a simple program are discussed. Finally,
future work, related work, and conclusions are presented.

4.2 Instruction Categorization

Static cache simulation calculates the abstract cache states associated with UPs. The cal-
culation is performed by repeated traversal of the function-instance graph and the UPPA of
each function.

Definition 4 (Potentially Cached) A program line | can potentially be cached if there
exists a sequence of transitions in the combined UPPAs and function-instance graph such
that [ is cached when it is reached in the UP.

Definition 5 (Abstract Cache State) The abstract cache state of a program line | within
a UP and a function instance is the set of program lines that can potentially be cached prior
to the execution of | within the UP and the function instance.

'Data cache references could be predicted in a similar manner but are not discussed here.
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The notion of an abstract cache state is a compromise between a feasible storage complexity
of the static cache simulation and the alternative of an exhaustive set of all cache states that
may occur at execution time with an exponential storage complexity.

Based on the abstract cache state, it becomes possible to statically predict the caching
behavior of each instruction of a program. Instructions may be categorized as always-hit,
always-miss, first-miss, or conflict. The semantics for each category is as follows. Always-hit
(always-miss) instructions will always result in a cache hit (miss) during program execution.
First-miss instructions will result in a cache miss on the first reference to the instruction and
in a cache hit for any consecutive references. Conflict instructions may result in a cache hit
or a cache miss during program execution, i.e. their behavior cannot be predicted statically
through this simulation method. The different categories are defined below after introducing
the notion of a reaching state.

Definition 6 (Reaching State) The reaching state of a UP within a function instance is
the set of program lines that can be reached through control-flow transitions from the UP of
the function instance.

Definition 7 (Instruction Categorization) Let iy be an instruction within a UP and a
function instance. Let | = 1g..1,_1 be the program line containing vy, and let 5,4 be the first
instruction of | within the UP. Let s be the abstract cache state for | within the UP. Let |
map into cache line ¢, denoted by | — c. Let t be the reaching state for the UP. Then, the
instruction categorization is defined as

always-miss if k = first Al & s
always-hit if k # firstv(lesn ¥ m¢es)

m—c,m#l
. ) first-miss ifk = first Al€ésA 3 méesAn ¥V meEs=>megin
Category (Zk)_ m—c,m#l m—c,m#l
YV category(iy) € {always-hit, first-miss}
0<e<n
conflict otherwise

An always miss occurs when instruction ¢ is the first instruction encountered in program
line [ and [ is not in the abstract cache state s. An always hit occurs either if 7; is not the
first instruction in [ or [ is the only program line in s mapping into ¢. A first miss occurs if
the following conditions are met. First, 25 is first in [, and [ and at least one other program
line m (which maps into ¢) are in s. Second, if one such line m is in s, then the line must
not be reachable anymore from the current UP. Third, all other instructions in the program
line have to be either always hits or first misses. A conflict occurs in all other cases.

This categorization results in some interesting properties. If the size of the program does
not exceed the size of the cache, hardly any instructions will be categorized as conflicts.
Thus, the cache behavior can mostly be statically predicted.? As the program becomes
much larger than the cache, the number of conflicts increases to a certain point. This point
depends on the ratio between program size and cache size. After this point, conflicts start
to decrease again while first misses increase.

The definition for instruction categorization is refined according to the application. This
is discussed in later chapters in the context of a number of applications.

2The adaptations of the definition for different applications in later chapters will provide static predictabil-
ity of all instructions if the program fits into cache, 7.e. no instruction will be categorized as a conflict in this
case. Since the adaptation depends on the application it could not be incorporated in the original definition.
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4.3 Calculation of Abstract Cache States

Algorithm 2 (Calculation of Abstract Cache States)

Input: Function-Instance Graph of the program and UPPA for each function.

QOutput: Abstract Cache State for each UP.

Algorithm: Let conf_lines(UP) be the set of program lines (excluding the program lines of
UP), which map into the same cache line as any program line within the UP.

input_state(main):= all invalid lines;
WHILE any change DO
FOR each instance of a UP in the program DO
input_state(UP):= ¢;
FOR each immediate predecessor P of UP DO
input_state(UP):= input_state(UP) U output_state(P);
output_state(UP):= [input_state(UP) U prog_lines(UP)] \ conf_lines(UP);
propagate_states

The iterative Algorithm 2 calculates the abstract cache states. In the algorithm, the
abstract cache state of the program line of a UP that is referenced first is referred to as
input_state. Conversely, the abstract cache state after the program line of a UP that is
referenced last is referred to as output_state. The set of vertices (basic blocks) in a UP
provides the scope of program lines to transform an input_state into an output_state. The
interprocedural propagation of states, propagate_states, is explained in the next section.

The algorithm is a variation of an iterative data-flow analysis algorithm commonly used

in optimizing compilers. Thus, the time overhead of the algorithm is comparable to that
of data-flow analysis and the space overhead is O(pl * UPs * fi), where pl is the number
of program lines, U/ Ps is the number of paths, and fi the number of function instances.
The correctness of the algorithm for data-flow analysis is discussed in [3]. The calculation
can be performed for an arbitrary control-flow graph, even if it is irreducible. In addition,
the order of processing basic blocks is irrelevant for the correctness of the algorithm. The
reaching states can be calculated using the same base algorithm with input_state(main)
= conf_lines(UP) = ¢.
FExample: Figure 4.1 depicts the calculation of input and output states. The chosen UPPA
is U PP Ay, the basic block partitioning.® In the example, there are 4 cache lines and the line
size is 16 bytes (4 instructions). Thus, program line 0 and 4 map into cache line 0, program
line 1 and 5 map into cache line 1, program line 2 maps into cache line 2, and program line
3 maps into cache line 3. The immediate successor of a block with a call is the first block in
that instance of the called function. Block 8a corresponds to the first instance of foo() called
from block 1 and block 8b corresponds to the second instance of foo() called from block 5.
Two passes are required to calculate the input and output states of the blocks, given that
the blocks are processed in the order shown in Figure 4.1. Only the states of blocks inside
the loop (except for blocks 6 and 8b) change on the second pass. Pass 3 results in no more
changes.

After determining the input states of all blocks, each instruction is categorized based on
its abstract cache state (derived from the input state) and the reaching state shown in the
figure. By inspecting the input states of each block, one can make some observations that
may not have been detected by a naive inspection of only physically contiguous sequences of

3Algorithm 2 operates on any UPPA, and the categorization is not influenced by the choice of a UPPA. The
UPP A, simplifies the example but would result in more measurement overhead during on-the-fly analysis
than a smaller UPPA constructed by Algorithm 1.
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references. For instance, the static simulation determined that the first instruction in block
7 will always be in cache (always hit) due to spatial locality since program line 4 is in in(7)
and no conflicting program line is in in(7). It was also determined that the first instruction
in basic block 8b will always be in cache (always hit) due to temporal locality. The static
simulation determined that the last instruction in block 3 will not be in cache on its first
reference, but will always be in cache on subsequent references (first miss). This is indicated
by in(3), which includes program line 2 but also a conflicting program line “invalid” for
cache line 3. Yet, the conflicting program line cannot be reached. This is also true for the
first instructions of block 5 and 6 though a miss will only occur on the first reference of either
one of the instructions. This is termed a group first miss and is discussed later. Finally, the
first instruction in block 3 is classified as a conflict since it could either be a hit or a miss
(due to the conditional call to foo). This is indicated by in(3), which includes program line
1 and a conflicting program line 5 that can still be reached. B

4.4 Interprocedural Propagation

The notion of function instances reduces the complexity of the cache states propagated across
functions. Consider the calls from function f to & in Figure 3.4. If there was no distinction
between the instances hg and hq, it could not be determined if a program line in h was
cached, i.e. most lines would be considered conflicts. Using function instances, it is known
that the first call hg will result in many cache misses to bring the program lines of & into
cache while the second call h; results in many hits (assuming that the lines of h were retained
in cache between the calls).

Algorithm 2 illustrates the calculation of abstract cache states. But it does not show how
the states are propagated across function instances. The pseudo code in Figure 4.2 fills this

PROCEDURE propagate_states IS
FOR each function F instance I DO
FOR each path P in F with a call to function G instance K DO
FOR each entry path E in G DO
input_state(E,K):= output_state(P,I);
FOR each path Q that is a successor path of P DO
input_state(Q,l):= ¢;
FOR each exit path E in G DO
input_state(Q,I):= input_state(Q,I) cup output_state(E,K);
END propagate_states;

Figure 4.2: Pseudo Code for Propagation of Abstract Cache States

gap. Notice that a function instance may have multiple entry paths and exit paths due to
the definition of UPs. Informally, the output states of the UP at the call site (of the caller’s
instance) are propagated into the input states of the entry blocks of the callee’s instance.
Conversely, the union of the output states of the callee’s instance are propagated into the
input state of the single UP that succeeds the call site (of the caller’s instance).

4.5 Measurements

Some of the characteristics of the instruction categorization have already been discussed.
Figure 4.3 shows the distribution of each instruction category for varying cache sizes of a
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sample program. The sample program performs a fast Fourier transformation and has a
code size of slightly less than 2kB. The numbers correspond to the static prediction by the
static cache simulation for a cache line size of 16 bytes (4 instructions).
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Figure 4.3: Distribution of Static Cache Prediction for fft

The number of always hits increases slightly with the cache size but, overall, 70-75% of
the instructions are predicted as always hits. This number is affected by the size of a cache
line. In this case, the first instruction of each line mostly does not result in a hit but once
the line is brought into cache, the remaining 3 instructions are hits. This explains the static
approximation of 75% of hits for large cache sizes.

The number of always misses is large (about 27%) for small cache sizes due to capacity
misses of small caches. But as the cache size increases, misses are reduced to compulsory
misses due to bringing a program line into cache for the first time and stays constant (at
about 4% here) once the whole program fits into cache (at 2kB cache size).

The number of conflicts starts out relatively low (about 2%), reaches a peak (at about
15% here) when the cache size is about a quarter of the program size, and reaches zero once
the entire program fits into cache. For small cache sizes, program lines that map into the
same cache line are often certain to be capacity misses as discussed before. As the cache size
increases, it can no longer be determined statically whether a program line always replaces
another or not. Once the program fits into cache, only one program line maps into a cache
line and conflicts are complete eliminated.

The number of first misses is zero for small cache sizes, gradually increases and stabilizes
(at 21% here) once the entire program fits into cache. The following conditions have to be
met for first misses. First, the cache has to be large enough to hold a program line of a loop.
Second, other program lines mapping into the same cache line must either not exist or must
not be reachable anymore.

Overall, the large number of always misses for small caches is first replaced by mostly
conflicts as the cache size increases, then conflicts and always misses are replaced by first
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misses (and by a few always hits). A more comprehensive analysis of the effects of static
cache simulation are given later in the context of various applications.

4.6 Future Work

So far, only instruction caching has been simulated. Current work includes the application
of static cache simulation to data caches under certain restrictions, such as the absence of
pointers and dynamic memory allocation (which are feasible assumptions for the design of
predictable real-time applications). However, many addresses of data references are known
statically. For instance, static or global data references retain the same addresses during the
execution of a program. Addresses of run-time stack references can be statically determined
as well in the absence of recursion. Compiler flow analysis can be used to detect the pat-
tern of many calculated references, such as indexing through an array. Previous work has
shown improvements by balancing the number of instructions placed behind loads where the
memory latency was uncertain [34]. By predicting the memory latency of a large portion of
loads, instruction scheduling could be performed more effectively. For example, the number
of instructions the scheduler would place between a load instruction and the first instruction
referencing the loaded register should be greater for a data reference classified as an always
miss than an always hit.

The current implementation of the static simulator imposes the restriction that only
direct-mapped cache configurations are allowed. Recent results have shown that direct-
mapped caches have a faster access time for hits, which outweighs the benefit of a higher hit
ratio in set-associative caches for large cache sizes [31]. Yet, current micro-processors are still
designed with set-associative caches [12]. A modified algorithm and data structure could be
designed to handle set-associative caches within the framework of static cache simulation.

The implementation of the static cache simulator currently rejects the analysis of recursive
functions. This restriction can be lifted by denoting recursion as described in the context of
the function-instance graph and by applying the described algorithm to calculate abstract
cache states repeatedly for backedges due to recursion.

Furthermore, static cache simulation can only be applied accurately to split data and
instruction caches. This is due to the limited information about data references that can
be inferred statically. In a unified cache design the interference between data caching and
instruction caching may not always be known statically. Also, the current design only covers
primary (on-chip) caches. The simulation of secondary caches would be possible by taking
the cache behavior of a primary cache into account. Yet, most secondary caches are unified
caches and cannot be accurately simulated by this method as of now.

Finally, indirect calls are not handled since the static simulator must be able to generate
an explicit call graph. It may be possible for the compiler to determine some values of
function pointers but this does not seem to be possible for the general case of function
pointers resulting from arithmetic expressions. The same applies to non-local transfers of
control such as setjmp() and longjmp().

4.7 Related Work

The idea to statically simulate a portion of the cache behavior seems to be unprecedented in
research. Conventional methods for cache analysis use hardware simulators, inline tracing,
or on-the-fly analysis. Hardware simulators are reportedly much slower than any other
technique mentioned here. For inline tracing, the cache behavior is analyzed based on trace
data that is generated during program execution. The fastest results have been reported for
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on-the-fly analysis, a method that simulates the entire cache during program execution by
instrumenting the program with calls to a trace routine. None of these methods analyze the
cache prior to program execution.

4.8 Conclusion

The method of static cache simulation is introduced, which allows the prediction of a large
number of cache references prior to program execution by taking advantage of path partition-
ings and the function-instance graph. A number of applications for this method are discussed
in later chapters, ranging from faster instruction cache analysis to the analytical bounding of
execution time by static analysis for real-time tasks. The benefit of static cache simulation
for fast and accurate cache analysis is illustrated in the context of the applications.
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Chapter 5

Code Instrumentation for Instruction Cache Analysis

This chapter discusses the generation of instrumentation code for on-the-fly analysis of in-
struction cache performance evaluation. This code is generated during the second phase of
the static simulator based on the information of the first phase, the instruction categoriza-
tion. While this work describes the generation of code for the purpose of cache analysis, any
other on-the-fly analysis could be performed in its place by emitting different instrumentation
code.

The code emitted by the compiler back end includes macro calls for each UP and for
each call site. The simulator generates the corresponding macro bodies, produces tables to
store local path states and frequency counters at run time, and provides other constant data
structures for the final calculation of hits and misses. The code instrumentation includes
the insertion of instructions at the unique transition of each UP to keep track of local state
information and to record the frequency of executed instructions for this path and state.
The generated code is later inserted into the assembly code of the compiled program.

When the instrumented program executes, the counters are incremented to provide the
execution frequency of portions of code. In addition, the cache behavior is simulated for
references that could not be predicted statically (so-called conflicts). The dynamic simulation
employs a novel view of the cache by updating local state information associated with code
portions. At the exit points of the program, an epilogue is inserted to call a library routine
that calculates the total hits and misses from the gathered state-dependent frequencies.
It will be shown in later chapters that this new method speeds up cache analysis over
conventional trace-driven methods by an order of a magnitude. Excerpts of this chapter can

be found in [47].

5.1 Introduction

Statistical sampling methods are often employed by profiling tools such as prof [65] or
gprof [25, 26]. Yet, these tools only provide approximate measurements. On the other
hand, code instrumentation results in accurate profiling measurements. For example, in-
struction frequency measurements can be obtained by inserting instructions that increment
frequency counters into a program. The counters are typically associated with a basic block
and incremented each time the basic block executes. The overhead induced by frequency
measurements is less than a factor of two in execution time. This much lower overhead can
be attributed to the fact that the execution order of instructions is irrelevant.

Conventionally, cache analysis is either based on a trace data file generated during pro-
gram execution or by on-the-fly tracing, a method where the trace analysis is performed
during program execution. The method discussed here is an on-the-fly analysis technique
that employs short sequences of instrumentation code (inlined as macro calls) for each UP
and avoids the generation of trace addresses all together. The compiler identifies the live
registers at the instrumentation point. A set of unused registers is provided for the instru-
mentation code to avoid unnecessary saves and restores. If all registers are allocated, register
spill code will be emitted around an instrumentation point.
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The code instrumentation for cache analysis discussed in this chapter makes extensive
use of frequency counters when instruction references are statically determined to be always
cache hits, always cache misses, or first misses. For the remaining instruction references,
state information is associated with code portions and is updated dynamically. The total
hits and misses can be inferred from the state-dependent frequency counts after running the
program.

This chapter is structured as follows: First, the merging of states associated with UPs is
presented. The main portion of this chapter describes the code instrumentation step-by-step,
first describing data structures such as shared path states and frequency counters, then code
macros for calls and paths, and finally the first miss table. Afterwards, the calculation of
hits and misses for instruction cache analysis is presented, followed by future work, related
work, and conclusions.

5.2 Merging States

After decomposing the program into function instances and UPs, there still remain many
lines that are analyzed to be in conflict with another line. It is inevitable to maintain
information at run time to determine which line is currently cached and to update this
information dynamically. This is achieved by maintaining a path state. A path state only
reflects the conflicts local to the current path while a cache state comprises the global state
of a cache memory.

Naively, a path state may be kept on the most specialized level (for every function instance
and path). But this may require a considerable amount of interaction between UPs. In the
worst case, the execution of a UP of some function instance would not only have to update
its path state but every other path state conflicting with a line of this path and any function
instance.

The number of function instances may grow exponentially with the dynamic nesting
depth as can be seen in the representation as a function-instance graph in Figure 3.4. For
programs with a call graph whose average branching factor is greater or equal to two, this can
be infeasible if the height of the call graph becomes large and a leaf function (or a function
close to a leaf) is called from many places.

Cache state information is therefore merged after simulation in two stages to comprise
path states. First, the conflicts of the cache states of a UP of all instances of a function are
merged into one local path state. Second, local path states of neighboring UPs, which share
at least one instruction, are merged into one shared path state (SPS), to better utilize the
storage and without any loss of information.

The former merging allows uniform instrumentation of code rather than distinguishing
instances dynamically at every instrumentation point or replicating code for each instance.
In both cases, the amount of dynamic simulation of conflicts is reduced. While an SPS only
needs to maintain one state to keep track of conflicts dynamically, the state may comprise
a wider range of values to combine all possible conflicts of the local path states. The local
path states to be merged are therefore chosen with regard to their locality.

5.3 Shared Path States

For each SPS, a state field is generated in the state table (see Figure C.1 in Appendix C).
These states are modified at run time by the macro code of UPs. The value of such a state
denotes which lines are cached out of a set of conflicting lines. The initial value denotes the
set of lines cached prior to the first execution of any corresponding UP. The value can be
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used as an index into the frequency counter array of the current UP. Thus, state-dependent
frequency counting can be performed by using the SPS as an index into the counter array
and incrementing the corresponding counter. Furthermore, if an SPS is constant at run time
(no conflicting lines), then the state field is omitted from the state table.

Example: In Figure 5.1, paths 1 and 2 have a shared path state, which is used to simulate
the hits and misses of program lines @ and b. The lines conflict with the reachable program
lines = and y, which explains why they are categorized as conflicts. The SPS for path 1 and
2 has two bits (due to two conflicting program lines) to hold the possible encoding of cached
program lines of the SPS (as shown in the figure). The state is updated on the execution of
path 1 to include program line a. The execution of path 2 includes both @ and b in the state,
the execution of path 3 excludes b, and the execution of path 4 excludes both a and b. Simple
bit manipulations suffice for these updates, as indicted by the pseudo code in the figure. The
frequency counter, indexed by the incoming SPS, is incremented. Path 2 has an array of
four frequency counters, corresponding to each possible value of the SPS. An increment of
the first counter element corresponds to misses on line ¢ and b, an increment of the second
counter element indicates a miss on ¢ and a hit on b, etc. The separate counter array for
path 2 is incremented in the same manner. Neither the frequency counter increments for
paths 3 and 4 nor their SPS are shown to simplify the example. B
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Figure 5.1: Frequency Counters Indexed by the SPS

5.4 Frequency Counters

For each UP of every function instance, an array of frequency counters is used to keep track
of the execution frequency of the UP (see Figure C.2 in Appendix C). The size of the array
is determined by the number of permutations of conflicting lines for an SPS. Since the size
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is growing exponentially with the number of conflicting lines, an alternate counter array
with a constant size of two entries is provided for large numbers of conflicting lines in the
SPS. There is a time/space trade-off between the two alternatives, which is discussed in the
context of the path macros. In general, alternate methods of code instrumentation optimize
special cases to reduce the instrumentation overhead.

5.5 Macros for Calls

Macro code is generated at call sites to pass the base address of the counter table for the
callee’s function instance as an additional parameter of the call. The function instance can
thereby be identified by path macros (see Figure C.4 in Appendix C).

5.6 Macros for Paths

The code emitted for path macros increments the frequency counter indexed by the SPS,
updates the SPS to reflect that the lines of the current path are now cached, and updates
any other SPS of conflicting paths that can still be reached. If a different path shares a line
(but not the SPS) with the current path, the line is marked as cached in the SPS of the
conflicting path. Conversely, if a different path conflicts with the current SPS in a line, the
line is marked as uncached in the SPS of the conflicting path.

Alternately, code is emitted to increment a general frequency counter for large SPSs.
Since no counter array is generated for large SPSs, indexing into an array becomes obsolete.
Rather, the SPS is first combined with an AND mask to single out the conflict lines of only
the current path. Then, the number of remaining on-bits is counted and added to a second
counter that accumulates references to conflicting lines resulting in misses. This alternate
method requires less counter space but increases execution time by determining the number
of set bits in a loop'. Figures C.5 and C.6 in Appendix C depicts examples of path macro
code.

5.7 First Miss Table

If a path of a function instance contains a line that is classified as a first miss, an entry for
this line is created in the first miss table (see Figure C.3 in Appendix C). If another path
shares the same line and also categorizes this line as a first miss, this path’s instance is also
included in the same table entry. This table is used to adjust the total number of hits and
misses as explained in the next section.

5.8 Calculation of Hits and Misses

The total number of hits and misses can be inferred from the state-dependent frequency
counters and from the first miss table. This calculation is performed after running the
instrumented program as part of its exit code. The calculation is independent from the
number of SPSs or any other code generation parameters and can thus be hidden in a
library routine that is linked with the instrumented program.

LRISC architectures as well as most, CISC architectures do not provide a special bit-counting instruction.
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5.8.1 Hits and Misses based on Frequency Counters

For each path of each function instance, the product of a frequency count and the number
of always hits (misses) is added to the total number of hits (misses). First misses, weighted
by the frequency, are also added to the total number of hits at this point.

The index into the counter array indicates the number of hits and misses for conflicting
lines, which are then also multiplied by the corresponding frequency (see Figure C.2 in
Appendix C). A zero index indicates that all conflicting lines are cached while the last index
corresponds to misses of all conflicting lines.

Not all cache line configurations may be valid during the execution of the program for a
given path and instance. In other words, the frequency count for an index should be zero
if the SPS cannot occur. The actual implementation violates this rule to further improve
the performance in the following manner. To minimize the amount of state changes during
run time, a conflicting SPS is not updated if it can be determined at simulation time that
the corresponding cache state cannot occur. This information is provided by the reaching
states. Therefore, only a subset of counter indices may actually correspond to a valid cache
configuration for a given path and instance. The number of conflicting lines is thus inferred
from the array index combined with an AND mask with bits set in the position of valid
cache lines. This method ensures that the lines corresponding to impossible SPSs are not
counted.

If the number of states in the SPS was large and the alternate counting method was
applied, then the always hits (misses) and first misses are still counted based on the frequency
counter. The number of misses due to conflicts is readily available in one counter. The
number of hits can be calculated as the total frequency times the number of conflict lines
less the number of misses due to conflicts.

5.8.2 First Miss Adjustment

Since first misses were exclusively counted as hits with respect to the frequency, the hits and
misses have to be adjusted. For each entry in the first miss table (see Figure C.3 in Appendix
C), the counters of corresponding paths (and instances) are checked. If the frequency of one
of the paths is greater than zero, the total number of hits is decremented while misses are
incremented by one.

5.9 Future Work

The current code instrumentation could be improved in several ways. Some performance
improvement could be achieved by applying code motion to path macros in the innermost
loops when the number of iterations is known before the loop is entered and no alternate
execution paths exist inside the loop.

The static analysis has already been extended based on a more detailed picture of the
loop structure of the program. A refined notion of first misses refers to a miss of a program
line on loop entry and consecutive hits inside the loop. The code instrumentation could
take this situation into account during first miss adjustment. Thus, some conflicts can be
replaced by first misses and first hits whose simulation requires less overhead during program
execution. For a more detailed discussion, see Chapter 8.

5.10 Related Work

A technique called inline tracing can be used to generate the trace of addresses with much
less overhead than trapping or simulation. Measurement instructions are inserted in the
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program to record the addresses that are referenced during the execution in a file or buffer.
The program analysis may be performed concurrently on a buffered address trace to reduce
the storage requirements to temporary trace buffers. Borg et. al [10] and Eggers et. al. [22]
used this technique to obtain accurate measurements for the simulation of instruction and
data caches. Whalley [68, 69] used on-the-fly analysis where a cache simulation function was
called during program execution for each basic block. In the next chapter, their work will
be discussed in more detail and contrasted with the performance results of this work.

5.11 Conclusion

An outline of inline code instrumentation for instruction cache analysis was presented. The
instrumentation is based on the instruction categorization provided by static cache simula-
tion. By reducing code instrumentation to simple frequency counting in many places and
locally shared path states in other places, the overhead of the instrumentation code is kept
surprisingly low at program execution time. This will be shown in more detail in the next
chapter.
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Chapter 6

Fast Instruction Cache Performance Analysis

This chapter evaluates the method of static cache simulation in conjunction with code instru-
mentation for instruction cache performance analysis. Measurements taken from a variety
of programs show that static cache simulation speeds up cache analysis over conventional
trace-driven methods by an order of a magnitude. Thus, cache analysis with static cache
simulation makes it possible to analyze the instruction cache behavior of longer and more
realistic program executions. Excerpts of this chapter can be found in [47].

6.1 Introduction

The method for instruction cache analysis discussed in this chapter uses static cache sim-
ulation to statically predict the cache behavior of a large number of instruction references.
The method also uses the techniques for code instrumentation described in the last chapter.
Thus, dynamic simulation is reduced to simple frequency counting for always hits, always
misses, and first misses. Conflicts are simulated by updating local state information.

This chapter is structured as follows: First, related work in the area is reviewed. Then, the
adaptation of static cache simulation for instruction cache performance analysis is discussed.
Next, a quantitative analysis of this method is provided. Finally, future work and conclusions
are presented.

6.2 Related Work

Evaluating cache performance has long been recognized as a challenging task to be performed
in an efficient manner. Traces of the actual addresses referenced during the execution of pro-
grams have to be used to perform a realistic evaluation. The problem is that a realistic trace
typically consists of millions of references. Evaluation of these traces can require excessive
amounts of space and time when using simple approaches. For instance, a traditional ap-
proach is to generate the trace via trapping or simulation, write each address generated in
the trace on disk, and analyze the trace via a separate program that reads the trace from
disk and simulates the cache. Such an approach can easily slow the execution by a factor of
a 1000 or more [55, 70, 33].

A technique called inline tracing can be used to generate the trace of addresses with
much less overhead than trapping or simulation. Measurement instructions are inserted in
the program to record the addresses that are referenced during the execution in a buffer. The
program analysis is performed either concurrently on the buffered address trace to reduce the
storage requirements to temporary trace buffers or it is performed after program execution
on trace file data. Borg, Kessler, and Wall [10] modified programs at link time to write
addresses to a trace buffer and these addresses were analyzed by a separate process. The
time required to generate the trace of addresses was reduced by reserving five of the general
purpose registers to avoid memory references in the trace generation code. Overhead rates of
8 to 12 times of the normal execution time were reported for the trace generation. Analysis
of the trace was stated to require at least 10 times of the overhead of the generation of the
trace (or about 100 times slower than normal execution time).
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Eggers et. al. [22] also used the technique of inline tracing to generate a trace of addresses
to a trace buffer, which was copied to disk by a separate process. They used several strategies
for minimizing the overhead of generating the trace. First, they produced a subset of the
addresses from which the other addresses could be inferred during a postprocessing pass.
For instance, they only stored the first address in a sequence of contiguous basic blocks with
a single entry point and multiple exit points. Rather than reserving a set of registers to be
used for the trace generation code, they identified which registers were available and thus
avoided executing many save and restore instructions. The trace generation overhead was
accomplished in less than 3 times of the normal execution time. In addition, writing the
buffers to disk required a factor of 10 times of the normal execution time. The postprocessing
pass, which generates the complete trace from the subset of addresses stored, was much slower
and produced about 3,000 addresses per second. No information was given on the overhead
required to actually analyze the cache performance.

Ball and Larus [7, 41] also reduced the overhead of the trace generation by storing a
portion of the trace from which the complete trace can be generated. They optimized
the placement of the instrumentation code to produce the reduced trace with respect to a
weighting of the control-flow graph. They showed that the placements are optimal for a
large class of graphs. The overhead for the trace generation was less than a factor of 5.
However, the postprocessing pass to regenerate the full trace required 19-60 times of the
normal execution time.

Whalley [68, 69] evaluated a set of on-the-fly analysis techniques to reduce the time
required to evaluate instruction cache performance. He linked a cache simulator to the
programs, which were instrumented with measurement code to evaluate the instruction cache
performance during the program’s execution. The techniques he evaluated avoided making
calls to the cache simulator when it could be determined in a less expensive manner that
the reference was a hit. The overhead time for the faster techniques was highly dependent
upon the hit ratio of the programs. He reported 15 times of the normal execution time for
average hit ratios of 96% and 2 times of the normal execution time for hit ratios exceeding
99%. These faster techniques also required recompilation of the program when the cache
configuration was altered.

6.3 Adaptation of Static Cache Simulation

Figure 6.1 depicts an overview of the tools and interfaces involved in instruction cache
analysis using static cache simulation. The set of source files of a program are translated by
a compiler. The compiler generates assembly code with macro entries for instrumentation
and passes information about the control flow (i.e. a set of unique paths) of each source file to
the static cache simulator. The static cache simulator performs the task of determining which
instruction references can be predicted prior to execution time. It constructs the call graph of
the program and the control-flow graph of each function based on the information provided
by the compiler. The cache behavior is then simulated for a given cache configuration
as described in Chapter 4. Furthermore, macro code for instrumenting the executable is
generated together with tables to store cache information at run time. This output of the
simulator is passed to the assembler, which translates the code generated by the compiler into
instrumented object code. The linker combines these object files to an executable program
and links in library routines that produce the final report of the cache analysis at run time
(see Chapter 5). When the cache configuration changes, no recompilation is needed; only
the static cache simulator, assembler, and linker have to be reinvoked.

In the current implementation, the instruction categorization has been slightly relaxed
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Figure 6.1: Overview of Cache Performance Analysis

to further reduce instructions categorized as conflicts. If an instruction was categorized as
a conflict according to Definition 7 and the only other conflicting line m (where m — ¢ and
m € s) is the invalid cache line “I”, then all first references to the program line shall become
first misses. The measurements of the next section show that this relaxation eliminates
conflicts all together when the entire program fits into cache. For such cases, the cache
simulation during program execution is reduced to only increments of frequency counters.

FExample: Consider the example in Figure 6.2. In (a), the categorization is shown according

program line 2 4 4
5| amiss 5| f-miss
programline 3 6| conflict 6| f-miss
_________________ T R U
(a) origina definition (b) revised definition
"I" = invalid
cache 1l1ine 0 1 23012301
program line I I I I 012345
input(5) = [ I 2 ] reach(5) = [ 3 4 5]
input(6) = [ I 23 1 reach(6) = [ 4 5]

Figure 6.2: Example for Adaptation of Categorization

to the original definition. Notice that the conflict instruction occurred as a result of the
uncertainty introduced by the conditional control flow. If block 5 is not executed, a miss will
occur for the first instruction of block 6. If block 5 is executed, the miss will occur in block
5 and the first instruction in block 6 will be a hit. The relaxed categorization shown in (b)
recognizes both references as a group first miss since only the invalid line is conflicting with
line 3 in input(6). W
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6.4 Measurements

This section evaluates the benefits of instruction cache analysis via static cache simulation.
Cache measurements were obtained for user programs, benchmarks, and UNIX utilities listed
in Table 3.1 of Chapter 3. The table has already been discussed except for column 5. Column
5, instructions in the tree, refers to the static number of instructions in the program after
expanding the call graph to a function instance tree. The measurements in the next section
are based on this number.

All measurements were produced by modifying the back-end of an optimizing compiler
VPO (Very Portable Optimizer) [8] and by performing static cache simulation. The simula-
tion was performed for the Sun SPARC instruction set, a RISC architecture with a uniform
instruction size of one word (four bytes). The parameters for cache simulation included
direct-mapped caches with sizes of 1kB, 2kB, 4kB, and 8kB. The cache line size was fixed
at 16 bytes (4 instructions). No context switches were simulated.

6.4.1 Static Analysis

This section describes the analysis that was performed statically on the test programs. Table
6.1 shows the percentage of always hits, always misses, first misses, and conflicts out of the

Table 6.1: Static Results for Cache Performance Evaluation

1kB cache 2kB cache
Name Hit Miss | Firstmiss | Conflict Hit | Miss | Firstmiss | Conflict
cachesim |[70.83% | 6.99% 0.70% | 21.48% | 71.564% | 5.18% 1.84% | 21.44%
cb 79.02% | 2.35% 0.00% | 18.63% | 80.56% | 0.95% 0.00% | 18.49%
compact | 70.06% | 4.96% 0.12% | 24.86% | 70.15% | 1.95% 0.12% | 27.77%
copt 70.82% | 7.41% 7.03% | 14.74% | 71.28% | 5.73% 15.28% | 7.72%
dhrystone | 70.03% | 10.71% 7.30% | 11.96% | 70.81% | 3.73% 25.47% | 0.00%
1Tt 74.07% | 4.85% 16.42% | 4.66% | 75.75% | 3.92% 20.34% | 0.00%

genreport | 71.63% | 9.75% 5.64% | 12.98% | 72.45% | 9.02% 6.67% | 11.86%
mincost | 72.75% | 9.96% 1.14% | 16.15% | 74.66% | 5.91% 4.60% | 14.83%

sched 67.52% | 5.06% 0.09% | 27.32% | 67.76% | 2.48% 0.09% | 29.67%
sdiff 68.93% | 12.06% 0.90% | 18.11%{69.34% | 9.81% 1.88% | 18.97%
tsp 72.61% | 13.50% 3.88% | 10.01% | 73.00% | 9.95% | 10.21%| 6.85%

whetstone | 75.70% | 12.84% 0.24% | 11.22% | 76.60% | 8.94% 0.24% | 14.22%
average 72.00% | 8.37% 3.62% | 16.01% | 72.83% | 5.63% 7.23% | 14.32%

4kB cache 8kB cache
Name Hit Miss | Firstmiss | Conflict Hit | Miss | Firstmiss | Conflict
cachesim |72.06% | 4.52% 13.78% | 9.65% | 72.61% | 3.54% 23.78% | 0.07%
cb 80.81% | 0.35% 15.81% | 3.04% | 80.85% | 0.03% 19.12% | 0.00%
compact |70.27% | 0.46% 10.26% | 19.00% | 70.71% | 0.46% 28.83% | 0.00%
copt 71.81% | 5.19%| 22.99% | 0.00%|71.81% |5.19% 22.99% | 0.00%
dhrystone | 70.81% | 3.73% | 25.47% | 0.00%|70.81% |3.73% 25.47% | 0.00%
1Tt 75.75% | 3.92% | 20.34% | 0.00% | 75.75% | 3.92% 20.34% | 0.00%

genreport | 72.62% | 8.57% 8.36% | 10.44% | 72.88% | 8.12% | 10.87%| 8.13%
mincost | 75.48% | 2.91% | 21.43%| 0.18%|75.52%|2.91% | 21.57% | 0.00%

sched 67.80% | 1.92% 2.35% | 27.93%|67.95% | 1.24%| 30.81%| 0.00%
sdiff 69.41% | 9.55% | 18.28% | 2.75% |69.44%|9.44% | 21.12%| 0.00%
tsp 73.32% | 5.10% | 21.45% | 0.13%|73.39% |5.10% | 21.51% | 0.00%

whetstone | 77.08% | 1.44% | 17.10% | 4.38% |77.98%|0.48% | 21.54% | 0.00%
average 73.10% | 3.97% | 16.47% | 6.46%|73.31%|3.68% | 22.33%| 0.68%
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total number of instructions in the function instance tree. It can be seen that a large number
of hits and misses can be predicted statically.

The number of always hits is slightly above 70% in average and does not change signif-
icantly as the cache size is varied. Always hits occur mostly due to subsequent references
within a program line (past the first reference) that do not depend on the cache size. The
slight variation of always hits is mainly due to multiple function instances. Consider a first
call to a function that will cache the function’s program lines. Subsequent calls always re-
sult in hits for these program lines, given a sufficiently large cache capacity such that no
conflicting lines could be executed between the two function calls.

The number of first misses increases for larger caches while conflicts and misses decrease
at the same time. This can be explained as follows. First misses occur when a program line
without any conflicts is placed in cache on its first reference and remains in cache thereafter.
For smaller caches, program lines tend to conflict with one another more frequently. As
the programs begin to fit into cache, fewer program lines are in conflict. In the worst case,
only every sixth instruction is statically predicted as a conflict and will have to be simulated
at execution time. At best, there are virtually no conflicts and almost the entire runtime
simulation can be performed using efficient frequency counters.

6.4.2 Dynamic Analysis

Table 6.2 summarizes the dynamic measurements taken for the test programs. For each
given cache size and program execution, our method produced exactly the same number of
hits and misses that were obtained by traditional trace-driven cache analysis. As the cache
size increases, the hit ratio (column 2) increases as well. Column 3 and 4 represent the
quotient of the execution time of a program with instrumentation over the execution time
for the same program without instrumentation. Column 3 refers to a trace-driven method
that has been optimized such that the cache simulator is only called once per basic block!.
Column 4 refers to the analysis via static cache simulation. The percentage of conflicts (out
of all instruction references) simulated at execution time is shown in the last column.

With the traditional trace-driven method, the execution time of instrumented programs
averages about 17 times slower than the execution time of regular programs without instru-
mentation. The overhead for the new method using static cache simulation is much lower,
only a factor of 1.2 to 2.2.2 This overhead depends slightly on the ratio of program size and
cache size. The variation can be explained as follows.

Let the conflict degree be the number of program lines that map into the same cache line.
This is a useful term to characterize the size of shared path states (SPSs) and the execution
overhead due to order-dependent simulation. For small cache sizes, the conflict degree is
larger and there are more always misses due to capacity misses. As the cache size increases,
capacity misses and the conflict degree of program line decrease. They are replaced by first
misses. With a diminishing number of conflicts for large caches, the size of SPSs decreases as
the cache size increases. In other words, fewer and fewer conflicting program lines map into
the same cache lines. Consequently, less instrumentation code to update conflicting SPSs is
needed. Finally, for large caches, hardly any conflicts remain. Thus, the cache simulation at
execution time can be reduced to simple frequency counting, which imposes a much lower

'We used a traditional trace-driven method similar to “Technique B” in [69] but the new method was
probably finer tuned.

ZSometimes, the instrumented code ran faster than the uninstrumented program, i.e. the ratio was
smaller than 1. These results were reproducible. They may be caused by the different placement of code
due to instrumentation, resulting in fewer misses for frequently executed loops.
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overhead than conventional cache simulation. To summarize this discussion, it is observed
that the new method requires slightly more execution overhead for small caches than for
large caches since more SPSs have to be updated dynamically.

Table 6.2: Dynamic Results for Cache Performance Evaluation

1kB cache 2kB cache
Name Hit Ratio | Trace | SSim | Conflict | Hit Ratio | Trace | SSim | Conflict
cachesim 77.19% 8.52 1.562 | 34.12% 86.08% 7.98 1.33 | 38.01%
cb 93.84% | 35.18 | 3.65 | 30.67% 99.06% | 32.63 | 2.85 | 31.91%
compact 92.90% | 22.42 | 2.33 | 21.34% 96.79% | 22.05 1.87 | 20.94%
copt 93.64% | 16.04 | 1.59 | 30.00% 98.10% | 16.46 1.24 | 10.88%
dhrystone 83.73% | 19.35 1.28 | 16.01% 100.00% | 14.88 | 0.91 0.00%
1Tt 99.95% 5.76 | 0.93 8.80% 100.00% 5.63 | 0.92 0.00%
genreport 97.49% | 14.39 | 2.08 | 25.74% 98.10% | 12.66 1.70 | 24.32%
mincost 89.08% | 22.32 | 2.06 | 30.67% 95.68% | 22.46 1.80 | 25.41%
sched 96.41% | 31.38 | 4.49 | 41.99% 99.75% | 24.59 | 2.67 | 42.67%
sdiff 97.61% | 27.69 | 3.60 | 28.40% 99.38% | 28.45 | 2.77 | 28.27%
tsp 86.98% 5.62 1.12 | 17.63% 96.94% 5.16 1.04 | 13.24%
whetstone 100.00% | 13.50 1.35 | 23.56% 100.00% | 13.20 1.52 | 25.39%
average 92.40% | 18.51 | 2.17 | 25.74% 97.49% | 17.18 1.72 | 21.75%
4kB cache 8kB cache
Name Hit Ratio | Trace | SSim | Conflict | Hit Ratio | Trace | SSim | Conflict
cachesim 99.22% 7.45 1.15 | 14.02% 99.98% 6.45 1.04 1.67%
cb 99.83% | 29.36 | 2.15 7.50% 99.99% | 28.09 1.68 0.00%
compact 99.82% | 20.99 143 | 12.22% 100.00% | 18.40 | 0.88 0.00%
copt 99.99% | 13.37 | 1.03 0.00% 99.99% | 13.08 | 0.98 0.00%
dhrystone 100.00% | 14.96 | 0.92 0.00% 100.00% | 15.03 | 0.92 0.00%
1Tt 100.00% 5.76 | 0.89 0.00% 100.00% 5.75 | 0.91 0.00%
genreport 98.11% | 12.52 1.72 | 24.18% 99.93% | 12.67 | 1.62 | 19.41%
mincost 99.99% | 17.49 1.10 0.05% 99.99% | 17.07 | 1.10 0.00%
sched 99.90% | 20.62 1.85 | 36.82% 99.96% | 22.16 1.42 0.00%
sdiff 99.99% | 25.13 1.36 4.30% 99.99% | 23.42 1.30 0.00%
tsp 99.99% 443 | 0.99 0.00% 99.99% 4.26 | 0.96 0.00%
whetstone 100.00% | 11.11 1.10 | 12.15% 100.00% | 11.10 1.01 0.00%
average 99.74% | 15.27 | 1.31 9.27% 99.99% | 14.79 1.15 1.76%

In general, the new method outperforms conventional trace-driven cache simulation by
almost an order of a magnitude without compromising the accuracy of measurements. Even
the best results published in [69] required an overhead factor of 4-15 over uninstrumented
code for hit ratios between 96% and 99%. This highly tuned traditional method required a
recompilation pass for better instrumentation. Under all conditions, the new method using
static cache simulation outperforms the best traditional trace-driven methods published.

6.5 Future Work

The definition of first misses can still be improved. The static analysis could be extended
based on a more detailed picture of the loop structure of the program. A refined notion of
first misses could then refer to a miss of a program line on loop entry and consecutive hits
inside the loop. This would be valuable when a program line will not be cached at loop entry
and no other conflicting program line is part of the loop.
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6.6 Conclusion

A new method to evaluate instruction cache performance was designed and implemented.
The cache performance of programs for various cache configurations can be obtained with-
out recompiling the analyzed program. No special operating system support or dedicated
registers are required. The new method outperforms conventional trace-driven cache simu-
lation by an order of a magnitude without any loss of accuracy of the measurements. By
making extensive use of static cache simulation and reducing code instrumentation to simple
frequency counting in many places, this method reduces the execution overhead of analyzed
programs to a factor of 1.2 to 2.2. In addition, different cache sizes and resulting hit ratios
have little influence on the overhead. In summary, instruction cache analysis via static cache
simulation is a general method to quickly obtain accurate measurements.
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Chapter 7

Predicting Instruction Cache Behavior

It has been claimed that the execution time of a program can often be predicted more
accurately on an uncached system than on a system with cache memory [27, 60, 43]. Thus,
caches are often disabled for critical real-time tasks to ensure the predictability required
for scheduling analysis. This work shows that instruction caching can be exploited to gain
execution speed without sacrificing predictability. This work takes advantage of static cache
simulation to statically predict the caching behavior of a large portion of the instruction cache
references of a program. In addition, a fetch-from-memory bit is added to the instruction
encoding that indicates whether an instruction shall be fetched from the instruction cache or
from main memory. This bit-encoding approach provides a significant speedup in execution
time (factor 3-8) over systems with a disabled instruction cache without any sacrifice in
the predictability of worst-case execution time. The fetch-from-memory bit facilitates the
bounding of execution time by conventional timing tools. Even without bit-encoding, the
ability to predict the caching behavior of a large percentage of the instruction references is
very useful for providing tight worst-case execution time predictions of large code segments
on machines with instruction caches but requires more sophisticated analysis by a timing
tool. Excerpts of this chapter can be found in [50].

7.1 Introduction

Predicting the execution time of programs or code segments is a difficult task. Yet, in the
context of hard real-time systems, it is essential to provide a schedule for tasks with known
deadlines. Thus, tasks have to be analyzed to determine their best-case execution time
(BET) and worst-case execution time (WET). The following problems have to be addressed
to predict the execution time of a task or program:

e The number of loop iterations needs to be known prior to execution. It is often required
that the maximum number of iterations be provided by the programmer [36].

e The possible execution paths in the control flow have to be analyzed to predict both
BET and WET.

e Architectural features have to be taken into account (e.g. pipeline stalls).

In the context of real-time systems, caches have been regarded as a source of unpre-
dictability, which conflicts with the goal of making the execution of tasks deterministic [60].
For a system with an instruction cache as a primary (on-chip) cache, the execution time of
an instruction can vary greatly depending on whether the given instruction is in cache or
not. In addition, context switches and interrupts may replace the instructions cached by one
task with instructions from another task or an interrupt handler. As a result, it has been
common practice to simply disable the cache for sections of code when predictability was
required [60].

This work shows that it is possible to predict some cache behavior with certain restric-
tions. Let a task be the portion of code executed between two scheduling points (context

49



switches). When a task starts execution, the cache memory is assumed to be invalidated.
During task execution, instructions are gradually brought into cache and often result in
many hits and misses that can be predicted by static cache simulation. Furthermore, a
slight change in the architecture in conjunction with the simulator’s analysis allows, without
loss of predictability, significantly faster execution time than on systems with a disabled
instruction cache.

This chapter is structured as follows: The next section reviews related work in the area.
Afterwards, the bit-encoding approach is introduced, which can exploit caches for real-time
systems. In the following, the bit-encoding approach is contrasted with uncached and reg-
ular cached systems on an abstract level. Then, the adaptation of static cache simulation
for this application is discussed. Furthermore, a quantitative analysis of both static cache
simulation and the bit-encoding approach is provided. Finally, future work and conclusions
are presented.

7.2 Related Work

The problem of determining the execution time of programs has been the subject of some
research in the past. Sarkar [59] suggested a framework to determine both average execution
time and its variance. His work was based on the analysis of a program’s interval structure
and its forward control flow. He calculated a program’s execution time for a specific set of
input data by using a description of the architecture and the frequency information obtained
by incrementing counters during a profiling run. He assumed that the execution order of
instructions does not affect this calculation. Thus, his method cannot capture the impact of
caching on execution time.

For real-time systems, several tools to predict the execution time of programs have been
designed. The analysis has been performed at the level of source code [54], at the level of
intermediate code [52], and at the level of machine code [28]. Only Harmon’s tool took the
impact of instruction caches into account for restrictive circumstances, i.e. only for small
code segments that entirely fit into cache.

Niehaus outlined how the effects of caching can be taken into account in the prediction
of execution time [53]. He suggested that caches be flushed on context switches to provide a
consistent cache state at the beginning of each task execution. He provided a rough estimate
of the benefit of caches for speedup and tried to determine the percentage of instruction
cache references that can be predicted as hits. The level of analysis remained at a very
abstract level though, as it only dealt with spatial locality for sequential execution and some
temporal locality for simple loops. No general method to analyze the call graph of a task
and control flow for each function was given.

A few attempts have been made to improve the predictability of caches by architectural
modifications to meet the needs of real-time systems. Kirk [35] outlined such a system that
relied on the ability to segment the cache memory into a number of dedicated partitions,
each of which can only be accessed by a dedicated task. But this approach introduced
new problems such as exhibiting lower hit ratios due to the partitioning and increasing the
complexity of scheduling analysis by introducing another resource (cache partitioning) as an
additional degree of freedom in the allocation process.

Lee et. al. proposed a modified instruction pipeline where instructions are prefetched
along the worst-case execution path. They reported a 45% improvement of the predicted
worst-case execution time under this scheme. This work shows that better results for the
timing prediction can be achieved by using instruction caches, with or without architectural
modifications.
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Other suggested architectural modifications often dedicate a bit in the instruction en-
coding that is used by the compiler to affect the cache behavior. McFarling [45] used such
an approach to exclude instructions from cache that were not likely to be in cache on sub-
sequent references. Chi and Dietz [14] introduced a data cache bypass bit on load and store
instructions, which, when set, indicates that the processor should go directly to memory
(without caching the value as a side-effect) or goes to the cache when clear. Their idea is to
improve execution speed by keeping data values either in registers or in cache, thus avoiding
storage mirroring among the faster components in the memory hierarchy (registers and data
caches). Their work emphasizes instruction caches rather than data caches. In contrast
to McFarling’s study and the work by Chi and Dietz, the work described here is primarily
focused on the predictability of instruction caching and secondarily on execution speed.

7.3 Bit-Encoding Approach

Based on the categorization of instruction references introduced in Definition 7, a bit-
encoding approach has been formulated. The intention of this approach is to provide better
performance than uncached systems (as currently used in real-time systems) and better pre-
dictability over conventional caches with a moderate sacrifice in execution speed. The bit-
encoding approach allows conventional timing tools to provide tight execution time bounds
in the presence of instruction caches with this hypothetical architectural feature. A fetch-
from-memory bit is encoded into the instruction format by dedicating a single bit position.
If the bit is set in an instruction and the instruction is in cache, then the instruction will be
fetched from main memory. If the bit is not set, then the instruction will be fetched from
cache.

7.3.1 Operational Semantics of the Fetch-from-Memory Bit

During each cache reference, the fetch-from-memory bit is evaluated in parallel with the tag
comparison, as shown in Appendix D. The following logic is used to resolve instruction fetch
requests:

o If the cache access results in a miss, then the corresponding program line is fetched
from main memory taking n cycles and the fetch-from-memory bit is ignored. (The bit
would not be available anyway until the instruction is fetched.)

o [f the tag comparison matches and the cache line is valid, then the effect depends on
the evaluation of the fetch-from-memory bit.

— If the bit is clear, then the processor is directed to use the instruction without delay.

— If the bit is set, then the corresponding program line is fetched from main memory
taking n cycles.

In the last subcase, a memory fetch is performed although the program line already
resides in cache. If the effect of such a memory fetch is only simulated to reduce bus
contention, it would be unpredictable whether an actual memory fetch occurs or not. Thus,
bus contention may or may not occur. The current semantics forces a memory access such
that bus contention can be predicted for any memory reference with a fetch-from-memory
bit set if a data reference occurs at the same time.
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The fetch-from-memory bit is set whenever the static cache simulation categorizes an
instruction as a conflict or an always miss. Otherwise, the bit is cleared. This is straight
forward for always hits. For first misses, on the other hand, the cache look-up fails on the first
reference and the program line is fetched from main memory. For any subsequent references
to this address, the instruction is found in cache with the bit clear resulting in a cache hit
and a one cycle access time. Thus, bit-encoding takes advantage of first-miss instructions.

If an instruction is in a function that has multiple instances and the instruction has
different categories in the different instances, then the static simulator must decide whether
or not to set the fetch-from-memory bit. Currently, the static simulator conservatively
decides to fetch from memory if one or more instances categorize the instruction as a miss
or a conflict. Otherwise, the bit is cleared!.

7.3.2 Speedup

In this section, the execution time w.r.t. instruction fetch overhead is analyzed. Other
factors, e.g. data references to main memory, may add to the execution time but should not
be adversely effected by the benefits of instruction caching.

For any uncached system, let the fetch time of one instruction be n cycles. Furthermore,
let ¢ be the number of instructions executed. Then, a lower bound for the time for this
execution is

Luncached = 1 % . cycles. (7.1)

For a cached system, let : = h+m be the number of instructions executed where h and m
are the number of hits and misses respectively. Assume a cache look-up penalty of one cycle
[31, 29]. Since a cache look-up always has to be performed before it can be decided whether
the program line associated with an instruction has to be fetched from main memory, the
lower bound for an execution in a cached system is

teached = h +m* (n 4 1) cycles. (7.2)

For the bit-encoded cached system, let ¢ = h’+m’ be the number of instructions executed
where h’ and m’ are the number of instructions fetched from cache and memory respectively?.
Then, a lower time bound can be given as

hit_encoded = B+ m’ * (n + 1) cycles. (7.3)

There is both spatial and temporal locality inherent in the code of almost all programs.
For instance, assume that a cache line consists of multiple instructions. The first reference to
an instruction in such a line may cause a miss. But if instructions are executed sequentially,
consecutive references to instructions of the same line will result in hits. Also, assume that
some portion of the code executes in a loop does not conflict with any other program lines
accessed by the loop. Subsequent references to this code in the same execution of the loop
will also result in hits. Based on this observation, the following inequalities can be assumed
for a typical execution:

m < h,m' < k', and b’ < h.

Tt is possible in such a situation that the merged instruction could be safely classified as a first miss and
have its bit cleared. An example of this situation is the first instruction in block 8 of Figure 4.1. In future
work, the control flow could be analyzed to recognize these situations.

Zh'and m' are approximately the same as the number of instructions executed with the fetch-from-
memory bit clear and set respectively with the exception of first misses, which are counted as misses on the
first reference and hits on subsequent references.
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In summary, the following relation holds for an execution on the average.

tcached < tbit_encoded < tuncached (74)

7.4 Adaptation of Static Cache Simulation

For the performance analysis of instruction caches, the compiler emits information about
the control flow of each function at the basic block level rather than at the level of unique
paths to facilitate the encoding of the fetch-from-memory bit. The static cache simulator is
adapted in the same way as discussed in Chapter 6. The bit-encoding approach uses the same
framework but adjusts the categorization to simulate the effect of the fetch-from-memory
bit. If the bit is set, then the effect on the timing is equivalent to a cache miss. Thus, a
simple remapping of the categorization can be used to determine the performance exhibited
by the bit-encoding approach.

always-miss if category(iy) €{always-miss,conflict}
new-category (i )=< always-hit if category(i;) =always-hit
first-miss  if category(iy ) =first-miss

The mapping of conflicts into always misses simulates the overhead of a memory fetch
on each conflict instruction, regardless of its original caching behavior (hit or miss at exe-
cution time). First misses will still be adjusted as described in Chapter 5. Thus, the first
reference to a first miss will be simulated as a cache miss while all consecutive references are
counted as cache hits. Since paths are comprised of basic blocks for this application, paths
cannot overlap®. On the other hand, different categorizations may exist for distinct function
instances of the same function. In such a case, the worst-case scenario is assumed:

e if any instance classifies the instruction as an always miss, then the final category will
be an always miss; otherwise,

e if any instance classifies the instruction as a first miss, the final category will be a first
miss; otherwise,

o the final category will be an always hit.

This remapping of instruction categories provides a framework to evaluate the perfor-
mance impact of the fetch-from-memory bit. It will be used in the next section to provide a
quantitative analysis of a set of test programs.

7.5 Analysis

This section analyzes the benefit of predicting the behavior of instruction cache references.
Cache measurements were obtained for user programs, benchmarks, and UNIX utilities listed
in Table 3.1. The measurements were produced by modifying the back-end of an optimizing
compiler VPO (Very Portable Optimizer) [8] and by performing static cache simulation.
The compiler back-end provided the control-flow information for the static simulator. It
also produced assembly code with instrumentation points for instruction cache simulation.

3Architectural features may present an exception to this general rule. For example, consider RISC
architectures with an instruction d in the delay slot of a branch 4. Both b and d are part of a basic block.
Yet, if d is also the target of another branch instruction, d will also be the first instruction of another basic

block.
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The cache simulation for traditional caches was based on the instruction categorization
by the static simulator and has been validated by comparison with another trace-driven
cache simulator. The validity of the bit-encoding approach was derived from mapping the
instruction categories into the values for the fetch-from-memory bit. The assembly code was
generated for the Sun SPARC instruction set, a RISC architecture with a uniform instruction
size of one word (four bytes).

The parameters for cache simulation included direct-mapped caches with sizes of 1kB,
2kB, 4kB, and 8kB (see column 1 in Tables 7.1 and 7.2). The cache line size was fixed at
4 words. The size of the programs varied between 500 and 4500 instructions (5kB — 18kB,
see column 3 of Table 7.1). This provided a range of measurements from capacity misses
dominating for small cache sizes to entire programs fitting in cache for large cache sizes. The
number of instructions executed for each program comprised a range of 1 to 19 million using
realistic input data for each program (see column 3 of Table 7.2).

7.5.1 Static Analysis

Static cache simulation classifies instructions into categories based on the predicted cache
behavior. Table 7.1 shows the static number of instructions for each program (column 3)

Table 7.1: Static Results: Call Graph (CG) & Function-Instance Graph (FIG)

number of cache prediction

Cache instructions CG FIG
Size | Name CG FIG || memory | always hit | always miss | first miss | conflict
cachesim || 2,115| 9,397 || 28.07% 69.30% 8.23% 0.74% | 21.73%
cb 1,242 | 7,017 31.08% 75.70% 2.85% 0.00% | 21.45%
compact 1,478 | 2,173 | 29.84% 69.67% 5.52% 0.18% | 24.62%
copt 1,037 1,152 || 21.99% 71.01% 7.73% 7.03% | 14.24%
dhrystone 479 549 || 23.17% 69.76% 11.29% 6.56% | 12.39%
1kB | fft 492 528 9.55% 74.05% 4.92% | 16.29% | 4.73%
genreport || 4,430 | 7,060 || 19.77% 70.64% 11.30% 6.18% | 11.88%
mincost 1,112 1,657 28.33% 72.24% 8.57% 1.39% | 17.80%
sched 2,068 | 3,378 || 32.88% 66.55% 5.98% 0.15% | 27.32%
sdiff 1,822 (10,407 || 28.06% 67.44% 12.28% 1.08% | 19.21%
tsp 1,181 1,236 22.95% 72.73% 13.59% 4.37% | 9.30%
whetstone || 1,204 | 1,485 26.62% 75.69% 11.65% 0.27% | 12.39%
1kB | average 1,555 3,837 || 25.19% 71.23% 8.66% 3.69% | 16.42%
2kB | average 1,555 3,837 || 21.18% 72.09% 5.88% 7.28% | 14.75%
4kB | average 1,655 3,837 || 11.35% 72.40% 4.36% | 16.64% | 6.60%
8kB | average 1,655 | 3,837 4.73% 72.61% 4.03% | 22.77%| 0.59%

and the number of instructions associated with all function instances when the call graph
is converted into a function-instance graph (column 4). Column 5 denotes the percentage
of instructions in the call graph that have the fetch-from-memory bit set. Columns 6 to
9 show the percentage of instructions in the function-instance graph for each category as
determined by the static simulator. Notice that the cache behavior could be predicted
statically for 84-99% of the instructions, depending on the ratio of program size and cache
size. The remaining 1-16% are due to conflicts.

7.5.2 Dynamic Analysis

Table 7.2 illustrates the dynamic behavior of three systems: an uncached system (simulating
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Table 7.2: Dynamic Results for Cache Predictability

cache | Name Instructions hit ratio conflicts exec time| % of exec time
Size executed | bit-enc.| cached| cached uncached | bit-enc. | cached
cachesim 2,995,817| 65.70% | 77.19%| 28.52% | 26,962,353|45.41% | 33.92%
cb 3,974,882| 67.24% | 93.84%| 31.08% | 35,773,938|43.87% |17.27%
compact 13,349,997| 67.12%| 92.90%| 32.45% (/120,149,973 | 43.99% |18.21%
copt 2,342,143 68.56% | 93.64%| 28.93% | 21,079,287|42.55% | 17.47%
dhrystone || 19,050,093 | 77.95% | 83.73%| 15.75%|171,450,837| 33.16% | 27.38%
1kB |fft 4,094,244 91.17%| 99.95%| 8.80%| 36,848,196|19.94% |11.16%
genreport 2,275,814 | 74.64% | 97.49%| 24.58% | 20,482,326 36.47% | 13.63%
mincost 2,994,275| 67.35% | 89.08% | 28.06% | 26,948,475|43.76% | 22.03%
sched 1,091,755| 67.21%| 96.41%| 32.15% 9,825,795( 43.90% | 14.70%
sdiff 2,138,501| 71.20% | 97.61%| 28.40% | 19,246,509|39.92% | 13.50%
tsp 3,004,145| 72.01%| 86.98% | 22.06% | 27,037,305|39.10% | 24.13%
whetstone 8,520,241| 71.57%|100.00% | 23.78% | 76,682,169 39.54% |11.11%
1kB |average 5,485,992| 71.81% | 92.40%| 25.38% | 49,373,930 39.30% | 18.71%
2kB | average 5,485,992| 77.81% | 97.49%| 21.14% | 49,373,930 33.30% | 13.62%
4kB | average 5,485,992( 90.73% | 99.74%| 9.12%| 49,373,930 20.38% | 11.37%
8kB | average 5,485,992( 98.15% | 99.99%| 1.76%| 49,373,930|12.97% |11.13%

a disabled instruction cache), a cached system with the bit-encoding approach, and a con-
ventional cached system. Column 3 indicates the number of instructions executed. The hit
ratio (percentage of cache hits of all instruction references) is shown for the bit-encoded sys-
tem in column 4 and for conventional caches in column 5. Column 6 shows the percentage of
executed instruction references that were classified as conflicts on a cached system. Column
7 indicates the estimated execution time in cycles for an uncached system. The percentage
of cycles required for a bit-encoded system (column 8) and for a conventional cached system
(column 9) are compared to an uncached system. The execution time is calculated based on
the equations 7.1, 7.2, and 7.3 for n = 9.4

The bit-encoding approach results in lower hit ratios (72-98%) than on a conventional
cached system (92-99%). Yet, caches are often disabled for critical real-time tasks to provide
the predictability required by scheduling analysis. Thus, the bit-encoding approach should
be compared to an uncached system. The bit-encoding method requires only 13-39% of the
cycles used by the uncached systems. This provides a speedup of programs by a factor of 3-8
without sacrificing the predictability of a program’s execution time. The result represents
the improvement over critical real-time tasks that require caches to be disabled. The results
improve considerably as the cache size increases and entire programs fit into cache. The
execution time required for a conventional cached system is only about 14% of an uncached
system, but the predictability also decreases to the point where it becomes insufficient for
scheduling analysis of critical tasks. This can be explained as follows:

Conflicts correspond to the instructions whose cache behavior could not be predicted
prior to execution in a conventional cached system. The dynamic percentage of conflict
references is higher than the static percentage given in Table 7.1 since conflicts typically

*The latency for a memory fetch is assumed to be n = 9 cycles, a cache look-up takes one cycle, and
thus a cache hit also consumes one cycle while a miss takes n + 1 = 10 cycles. These assumptions are
described as realistic by other researchers [31, 29]. A memory fetch in an uncached system fetches exactly
one instruction while a memory fetch in a cached system fetches a line of 4 instructions. Fetching a line of
multiple instructions is typically accomplished through a wider bus between cache and main memory for a
cached system.
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occur in loops. Since 25% of the instructions executed were conflicts, the execution time
of programs cannot be predicted as tightly in conventional cached systems with traditional
timing tools. However, more recent work (combining the static simulator with a timing tool)
shows that the instruction categorization of the static simulator may be used by a more
sophisticated timing tool to provide tight worst-case execution time predictions with a 4-9
times speedup over uncached system using a conventional instruction cache [5]. This will be
discussed in more detail in the next chapter.

7.6 Future Work

Further work focuses on integrating the method of static cache simulation with a tool that
estimates a program’s best-case execution time (BET) and worst-case execution time (WET)
[28, 5]. Using the information provided by static cache simulation, the BET and WET can
be based on the categorization of instructions. This relieves the time-estimation tool from
having to simulate all possible cache states. The instruction categorization is refined to
provide a separate category for each loop level, thereby providing the base for tight execution
time predictions.

With the bit-encoding approach, a traditional tool predicting the execution time can
perform the same type of analysis and provide estimations for both BET and WET. But
the execution time predictions can be tighter since the caching behavior is fully predictable.
Instructions classified as always hits can be assumed to require one cycle, and always misses
or conflicts can be estimated to take n+ 1 cycles. For a first miss, the tool could distinguish
between the first reference (n+1 cycles) and any subsequent references (one cycle) by simply
tagging first miss instructions that have been encountered. A traditional timing tool should
be easily modified to take the effect of bit-encoding into account. The resulting execution
time estimate will be as tight as for uncached systems since the estimation of the fetch cost
accurately represents the number of cycles taken for an instruction in any category. There
is no uncertainty with respect to the effect of an instruction classified as conflict, the fetch
will always take n + 1 cycles.

7.7 Conclusion

Cache memories have often been disabled for critical real-time tasks to provide sufficient
predictability for scheduling analysis. This chapter shows that the behavior of instruction
cache references can be predicted to a large extent prior to the execution of a program
via the method of static cache simulation. The cache simulator uses information provided
by the back-end of a compiler to statically predict the cache behavior of 84-99% of the
instructions. Furthermore, a fetch-from-memory bit has been proposed that is added to the
instruction encoding. This approach provides a speedup in execution time by a factor of
3-8 over uncached systems without sacrificing the predictability of the program’s worst-case
execution time. The ability to predict the caching behavior of a large percentage of the
instruction references (in a conventional cached system) or even all instruction references
(using the fetch-from-memory bit) can be used to predict the execution time of large code
segments on machines with instruction caches. The advantage of the bit-encoding approach
is that it can be used by conventional timing tools to bound execution time while a more
sophisticated and more complex timing tool is needed to achieve tight bounds for regular
caches. The latter approach is discussed in the next chapter.

In summary, instruction cache behavior is sufficiently predictable to provide worst-case
execution time predictions that are tight enough for scheduling analysis in a non-preemptive
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environment. Thus, the performance advantage of instruction caches can be exploited for
critical real-time tasks by enabling either conventional or bit-encoded instruction caches.
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Chapter 8

Bounding Execution Time

The use of caches poses a difficult tradeoff for architects of real-time systems. While caches
provide significant performance advantages, they have also been viewed as inherently un-
predictable since the behavior of a cache reference depends upon the history of previous
references to the cache. The use of caches will only be suitable for real-time systems if a rea-
sonable bound on the performance of programs using cache memory can be predicted. This
chapter describes an approach for bounding the worst-case instruction cache performance of
large code segments. Excerpts of this chapter can be found in [5].

8.1 Introduction

Caches present a dilemma for architects of real-time systems. The use of cache memory in
the context of real-time systems introduces a potentially high level of unpredictability. An
instruction’s execution time can vary greatly depending on whether the instruction causes a
cache hit or miss. Whether or not a particular reference is in cache depends on the program’s
previous dynamic behavior (i.e. the history of its previous references to the cache). As a
result, it has been common practice to simply disable the cache for sections of code where
predictability is required [60]. Unfortunately, even the use of other architectural features,
such as a prefetch buffer, cannot approach the effectiveness of using a cache. Furthermore, as
processor speeds continues to increase faster than the speed of accessing memory, the perfor-
mance advantage of using cache memory becomes more significant. Thus, the performance
penalty for not using cache memory in real-time applications will continue to increase.

Bounding instruction cache performance for real-time applications may be quite benefi-
cial. The use of instruction caches has a greater impact on performance than the use of data
caches. Code generated for a RISC machine typically results in four times more instruc-
tion references than data references [29]. In addition, there tends to be a greater locality for
instruction references than data references, typically resulting in higher hit ratios for instruc-
tion cache performance. Also, unlike many data references, the address of each instruction
remains the same during a program’s execution. Thus, instruction caching behavior should
be inherently more predictable than data caching behavior.

This chapter shows that, with certain restrictions, it is possible to predict much of the
instruction caching behavior of a program. In contrast to previous chapters, the predic-
tion is provided at a finer level of detail, i.e. for each loop nesting level. As in the last
chapter, assume that a task be the portion of code executed between two scheduling points
(context switches) in a system with a non-preemptive scheduling paradigm. When a task
starts execution, the cache memory is assumed to be invalidated. During task execution,
instructions are gradually brought into cache and often result in many hits and misses that
can be predicted statically.

Figure 8.1 depicts an overview of the approach described in this chapter for predicting
bounds on instruction cache performance of large code segments. Control-flow information
is stored as the side effect of the compilation of a file. This control-flow information could
have also been obtained by analyzing assembly or object files. The control-flow information
is passed to a static cache simulator, which constructs the control-flow graph of the program
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Figure 8.1: Overview of Bounding Instruction Cache Performance

that consists of the call graph and the control flow of each function based on the information
provided by the compiler. The program control-flow graph is then analyzed for a given
cache configuration and a categorization of each instruction’s potential caching behavior is
produced. Next, a timing analyzer uses the instruction caching categorizations along with
the control-flow information provided by the compiler to estimate the worst-case instruction
caching performance for each loop within the program. A user is then allowed to request
the instruction cache performance bounds for any function or loop within the program.

This chapter is structured as follows: First, related work is reviewed. Then, the adap-
tation of the instruction categorization for this application is discussed. A timing analyzer,
which uses the instruction categorization information, then estimates the worst-case instruc-
tion cache performance for each loop in the program. Finally, future work and conclusions
are presented.

8.2 Related Work

As already mentioned in Chapter 7, several tools to predict the execution time of programs
have been designed for real-time systems. The analysis has been performed at the level of
source code [54], intermediate code [52], and machine code [28]. Only the last tool attempted
to estimate the effect of instruction caching and was only able to analyze small code segments
that contained no function calls and entirely fit into cache. Thus, this tool was able to assume
that at most one miss will occur for each reference.

Niehaus outlined how the effects of caching on execution time can be estimated [53], as
discussed in the last chapter. However, no general method was provided to analyze the call
graph of a program and the control flow within each function.

Lin and Liou suggested that more frequently executed tasks be placed entirely in cache
and other tasks be denied any cache access [44]. While this approach may have some benefit
for a few tasks, the performance of the remaining tasks will be significantly decreased. Part of
their rationale was that if a task could not entirely fit in cache, then the worst-case execution
would be the same as an uncached system since cache hits could not be guaranteed. It will
be shown later that a high percentage of instruction cache hits for such programs can be
guaranteed and that the worst-case performance with an instruction cache is significantly
better than a comparable system with a disabled cache.

There have been attempts to improve the performance and predictability of accessing
memory for real-time systems by architectural modifications. One attempt by Kirk via
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cache partitioning has already been discussed in the last chapter, including some of the
problems, such as lower hit ratios and increased complexity of scheduling analysis [35].

Cogswell and Segall suggest a different approach for the MACS architecture [17], which
uses no cache memory. Instead, their pipelined processor performs a context swap between
threads in a round-robin ordering on each instruction. No thread may have more than
one instruction in the pipeline at one time. Assuming that the number of pipeline stages
does not exceed the number of threads, the delay of memory fetches is overcome since the
next instruction for a given thread will not be scheduled for the pipeline until the current
instruction for the task has propagated through all the stages of the pipeline. By using
different memory banks for different threads, memory fetches for local data can be issued
without causing bus contention. Note that only the overall throughput of the entire set of
threads is enhanced. The response time for an individual thread is not improved. Thus, this
approach requires that a task be broken up into a number of independent threads, which
implies restructuring of conventional real-time programs.

Lee et. al. suggested an architecture that prefetches instructions in the direction of the
worst-case execution path [43]. The justification for using their approach was that “it is very
difficult, if not impossible, to determine the worst-case execution path and, therefore, the
worst-case execution time of a task” when instruction caching is employed. Their analysis
measured a 45% improvement of the predicted worst-case time compared to no prefetch-
ing (and no instruction cache). This improvement is probably quite optimistic since bus
contention was not taken into consideration (contention between the three competing mem-
ory classes for instructions access, data access, and threads). Furthermore, mispredicted
branches may result in an uninterruptible block fetch along the wrong path, which often
cannot be aborted. This misprediction penalty may then cause worst-case behavior along
the (previously) shorter path. In addition, the ability to improve performance by prefetching
a block of instructions is quite limited compared to the potential improvement when using
an instruction cache. It will be shown later in the chapter that much better worst-case
predictions can be made in the presence of instruction caching than with just a prefetch

buffer.

8.3 Timing Analysis Tree

Timing tools generally propagate timing estimates through a timing analysis tree from node
to node in a bottom-up fashion, i.e. the timing of leaf nodes is calculated first, followed by
innermost loops in the control-flow graph, innermost functions in a call sequence, to finally
the outermost function main(). Intermediate results are stored at each node during the
timing analysis pass. This information can be used at a later stage to satisfy user requests
for timings of arbitrary code ranges without recalculation of the timing behavior.

The timing analysis tree can easily be constructed from the control-flow graph of each
function and the function instance graph assuming the absence of recursion.

Definition 8 (Timing Analysis Tree) The timing analysis tree of a program is defined
as follows:
1. The function instance maing is the root loop node with one iteration.

2. Any other function instance is represented as a loop node with one iteration, which is a
child of the loop node at its call site.

3. The outermost loops of a function are represented as child nodes of the corresponding
function instances.
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4. Nested loops are represented as child nodes of the next-outer loops.

A loop node A with a distance n from the root is said to be at nesting level nesting(\) = n.
FExample: Figure 8.3 (discussed in detail later) shows a simple C program in (a) and the
corresponding timing analysis tree in (b). The function main at level 0 includes loopl at
nesting level 1. The loop calls value (a) and value (b), both at level 2. B

8.4 Adaptation of Static Cache Simulation

This application requires a number of adaptations of the instruction categorization. First,
the static cache simulation is performed on the level of basic blocks rather than unique paths
to avoid different categorizations of the same instruction when paths overlap. Furthermore,
Definition 7 for instruction categorization is adapted to provide sufficiently fine-grained infor-
mation for the timing tool. The original definition was based on the notion of abstract cache
states and reaching states for the entire program. This global notion of caching behavior is
too coarse to provide tight timing estimates at the level of functions, loops, or even basic
blocks. Consider the conflict category. For worst-case timings, a conflict would be counted
as a miss since this reflects the worst-case memory access time. Conversely, a conflict would
be approximated as a hit for the best case. This would result in some predictability of in-
struction caches but the timing estimates may not be very tight. A tighter timing prediction
can be provided if conflict instructions can be categorized separately at each loop level as
one of the categories besides conflicts.

FExample: In Figure 8.2, instruction a is the first instruction that can be executed within the

_outer loop

,,,,,,,

vinsta " Instruction Cache

cachelinec

Figure 8.2: Example of Conflicting Lines between Nested Loops

program line x in the outer loop. Instruction b is the first instruction that can be executed
within the program line y in the inner loop. Assume program lines x and y are the only two
lines that map to cache line ¢ and there are no conditional transfers of control within the
two loops. In other words, instructions a and b will always be executed on each iteration
of the outer and inner loops, respectively. How should instruction b be classified? With
respect to the inner loop, instruction b will not be in cache when referenced on the first
iteration, but will be in cache when referenced on the remaining iterations. This situation
can be ascertained by the static cache simulator since it can determine that there are no
other program lines within the inner loop that conflict with program line y. In addition, the
abstract cache state at the exit point of the basic block preceding the inner loop does not
contain program line y. With respect to the outer loop, instruction b will always cause a

miss on each iteration since it will not be in cache as the outer loop initially enters the inner
loop.! W

I'Note that instruction a would be classified as an always miss.
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Definition 7 needs to be revisited and adapted to represent the caching behavior relative
to each loop nesting level. The same terminology as for Definition 7 is assumed for Definition
9 below with the following changes.

o Let ¢; be an instruction within a UP, a loop A, and a function instance.

o Let u be the set of program lines in loop A.

o Let child(A) be the child loop of A for this UP and function instance, if such a child

loop exists.

o Let header(A) be the set of header paths, preheader()) be the set of preheader paths
and backedges(\) be the set of backedges of loop A, respectively (see Figure 3.2(a)).?

e Let s(p) be the abstract output cache state of path p.”
o Let linear(p) be the linear cache state of path p.

o Let postdom(p) be the set of self-reflexive post-dominating programming lines of path
.

The linear cache state of a path represents the hypothetical cache state in the absence
of loops. It is calculated by algorithm 2 where backedges in the control flow and recursive
edges in the function-instance graph are disregarded.*

The post dominator set of a path includes the program lines that are certain to be
reached from the path, regardless of the taken paths in the control flow. This information
for basic blocks is commonly used in optimizing compilers. A more detailed discussion of
post dominators can be found elsewhere [3].

In addition, a new category of first-hits is introduced. In analogy to a first miss, a first
hit occurs when the first reference to an instruction in a loop results in a cache hit but all
subsequent references in the loop result in misses.

Definition 9 (Instruction Categorization for a Loop) The instruction categorization
is defined separately for the worst-case execution timing and the best-case execution timing

as
always-hit if k # first V(I€esn ¥ m¢s)
m—c,m#l
first-hit if worst(éy, child(X)) =first-hitv
k= first ANlesAn T me(sNu)A
m—c,m#l
[ ¥ lesp)A ¥ mé (sp)nula
worst (zk’ A): pEpreheaders(X) m—c,m#l
YVl €postdom(p) A ¥V m ¢ (linear Nu)
pEheaders(X) m—c,m#l
first-miss  if worst(éy, child(A)) =first-missAk = first Al € sA
I mesA ¥ mé(sNu)
m—c,m#l m—c,m#l

always-miss otherwise

?The common notion of “natural loops” defines a single loop header preceded by a single preheader outside
the loop [3]. This work extends this notion to handle more general control flow with unstructured loops.
Multiple loop headers occur only for unstructured loops, which are handled by the simulator. Multiple loop
preheaders occur when the loop can be entered from more than one path outside the loop, which can occur
even for natural loops.

3This notation is also used for edges e = p — ¢ where s(e) = s(p). Thus, abstract cache state s(e) of an
edge is the the abstract output cache state of the source path p of the edge.

4Linear states are even calculated correctly, yet conservatively, for unstructured loops by disregarding all
backedges of an unstructured loop.
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always-miss if k = first Al & s
first-hit if best(iy, child(X)) =first-hitv
k=first AlesAn 3 me(sNu)A

m—c,m#l
v L€ s(p)A
best (ik, /\)I pEpreheaders(X)
vV 1€ postdom(p) A v 1 & s(b)
pEheaders(X) bebackedges(X)

first-miss  if best(iy, child())) € {first-miss,always-hit}A
k= first Nl € s N1 & linear
always-hit otherwise

Unlike the original categories introduced in Definition 7, recognizing first hits requires
more data flow information. Nonetheless, it was decided to recognize first hits during the
static cache simulation to provide the timing tool with this new category and facilitate
its job of timing prediction. The information for recognizing first hits can be obtained
by using available information during static cache simulation and by calculating additional
information using existing algorithms. First hits can then be used by the timing tool to
achieve slightly tighter timing estimates for the worst case and much tighter timing estimates
for the best case. Informally, a first hit occurs under the following conditions.

1. The instruction was a first hit for the previous (deeper) loop nesting level or all of the
following conditions hold.

2. The instruction is the first reference to the program line in the path.

3. The current line is in the abstract cache state.

4. A conflicting line is in the abstract cache state for this loop.

5. The current line is in the abstract output cache state of all preheaders of this loop.

6. None of the conflicting lines is in the abstract output cache state of the preheaders of
this loop (only for worst case).

7. The current line is in the post dominator of the loop’s headers, i.e. the current line will
be referenced during each loop iteration.®

8. None of the conflicting lines are in the linear cache state of the current path, i.e. for
each loop iteration, the current line will be referenced before any conflicting line (only
for worst case).

9. The current line is not in the abstract cache state preceding any of the backedges, i.e.
the current line is replaced by a conflicting line during each loop iteration (only for best
case).

Several categorizations depend on the categorization of the previous (deeper) loop nesting
level. This ensures the following invariants that are essential for the consistency of timing
predictions.

e Once an instruction becomes a first hit, it will remain a first hit for all higher level
nestings.

>This property is not essential for the categorization but simplifies the implementation of the timing tool
since 1t can be assumed that a first hit is always referenced during a loop iteration, independent of any
conditional execution.
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o For the worst-case categorization, once an instruction ceases to be a first miss, it will
never again be a first miss for any higher nesting level.

e For the best-case categorization, once an instruction ceases to be an always hit, it will
never again be an always hit for any higher nesting level.

Notice also that the definition of first misses for the best case checks if the current line is
not in the linear cache state, thereby allowing that the line be brought into cache during the
first iteration.

The static cache simulator categorizes the instructions for each function instance, each
loop level, and both the best-case and worst-base categorization.
FExample: The approach for bounding instruction cache performance is illustrated in Figure
8.3. Part (a) contains the C code for a simple toy program that finds the largest value in

value() @ ®

. . h = aways hit
% extern int a [10] ’ sourceline6 | set hi %i (_a), %01 Block 1| m m m = always miss
3 int Value ( index) program line 0 add %1, % o(_a), %ol h h .f:f-ira n.1i§
4 int 1ndex ; sl %00, 2, %00 h h i = first hit
5 S L. B [e0+%e1] %01 ! h b
8 return alindex]; retl fih,i,i h
7 nov %1, %0 h h
g main() program line 1 main()
10 { . . sourcelines11-13 | save %sp, - 96, %sp Block 2| m
%% int 1, max = -1; mv__ -1,%2 |t h
. . . %0, % 1
13 for (i = 0; i < 10; i++) Y %?2%0 :
. . nmov .
14 if (max < value(i)),oganiines
15 max = value(i); ,
16 return max; sourceline14 |cal | _value, 1 Block 3
17 } nov % 1, %0
sourceline14 |cnp % 0, %00 Block 4
(a) C Program to find MAX(Array) baorn iTa

program line 3 add %1,1,%1

|

sourceline15 |cal | _value, 1 Block 5

nov % 1, %0

sourceline15 | nov %0, % 2 Block 6
program line 4 add %1,1,%1
sourceline13 |cnp %1, 10 Block 7
bl , a L16

nov %2,%0

program line 5 ¢
sourceline16 |ret Block 8| h
restore % 2, %g0, %0 h

(b) Timing Analysis Tree

(c) Instruction Categorization

Figure 8.3: Sample Analysis by the Static Cache Simulator

an array, part (b) illustrates the corresponding timing analysis tree, and part (c) shows the
actual SPARC assembly instructions generated for this program within a control-flow graph
of basic blocks. Assume there are 4 cache lines and the line size is 16 bytes (4 SPARC
instructions). Note the immediate successor of a block with a call is the first block in that
instance of the called function. Block la corresponds to the first instance of value() called
from block 3 and block 1b corresponds to the second instance of value() called from block
5. The instruction categorizations are given to the right of each instruction.

Instructions categorizations are separated by a slash if the the worst case differs from
the best case (e.g. block 7, instruction 1). Categorizations that differ for each loop level
are separated by commas from the innermost loop level at the far left to the outermost
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loop level at the far right (e.g. block 1, instruction 5). This example also shows a different
categorization for the best case and the worst case, separated by a slash. Recall that a
function is considered a loop with a single iteration.

Each instruction is categorized according to the criteria specified in Definition 9 providing
information that may not be detected by a naive inspection of only physically contiguous
sequences of references. For instance, the static cache simulator determined that the fifth
instruction in block 1b will always be in cache (an always hit) due to temporal locality.
It detected that the first instruction of block 1, the last instruction of block 5., and the
first instruction of block 6 will never be in cache (always misses) since the program lines
associated with these instructions map to the same cache line and the execution of block 1
occurs exactly between block 5 and 6. The static cache simulator was also able to predict the
caching behavior of instructions that could not be classified as always being a hit or always
a miss. [t determined that the first instruction in block 4 will miss on its first reference
and all subsequent references will be hits. The fifth instruction of block la is a first miss
for function instance (a) of value and the worst-case prediction, i.e. if the function value
was timed, the instruction would be timed as a miss since there is only one iteration of a
function. For the best case and the timing of value (a), the prediction indicates an always
hit. This is the optimistic (best case) interpretation of the fact that program line 1 may be
in cache when value (a) is called. The same instruction is then classified as a first hit for
the loop consisting of blocks 3 to 7 and for main. This is due to spatial locality, caused by
bringing program line 1 into cache when block 2 executes. During the first call to value
(a), program line 1 will be in cache but is then replaced by line 5, which is accessed by
block 7 and causes subsequent misses for the fifth instruction of block la. Thus, the first
instruction of block 7 is categorized as a miss for the worst-case prediction since the line is
not in cache if the branch in block 4 is taken. Conversely, the instruction is categorized as a
hit for the best-case prediction since the line was brought into cache by block 6 if the branch
in block 4 was not taken.

The instruction categorization is summarized in an interface file as specified in Appendix
E. This file is produced by the static cache simulator instead of the code instrumentation
discussed in the previous chapters. The interface file is used by the timing tool to identify
the caching behavior of instructions in the program, which will be discussed in the next
section.

8.5 Timing Analysis

The design and implementation of the timing analysis tool is beyond the scope of this
work. A detailed description can be found elsewhere [5, 4]. But a short outline and some
preliminary results shall be presented to illustrate the benefit of static cache simulation for
timing analysis.

The timing tool constructs a timing analysis tree as discussed earlier. The instruction
categorizations are then used to calculate the timings for each node. The timings are ex-
pressed in number of processor cycles, which can be easily transformed into seconds for a
known processor cycle frequency.

The timings for each node are calculated in a bottom-up fashion in the timing analysis
tree. First, both worst-case and best-case timings are calculated for leaf nodes by traversals
through the longest and shortest paths. The timing of non-leaf nodes is determined again by
path traversals where the timing of child nodes has already been calculated and can simply
be added for the corresponding paths. The timing of child nodes is also adjusted at a higher
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nesting level if the child nodes contained first hits or first misses.®

Some preliminary timing predictions are shown in Table 8.1. Currently, only the worst-

Table 8.1: Worst-Case Time Estimation for Four Test Programs

Static Measurements Dynamic Worst-Case Measurements
Name Size | Num | Always | Always| First Hit | Observed | Estimated | Naive
[Bytes] | Funes | Hit Miss | Miss | Ratio Cycles| Ratio | Ratio
Matmult 788 T |71.15%25.28%|3.57% | 99.04% | 2,917,887 1.00 9.21
Matsum 632 7T 169.89%26.24% |3.87% | 87.08% | 677,204 1.00 4.63
Matsument | 800 8 |70.64%26.70% |2.65% | 85.32%| 959,064 1.09 4.31
Bubblesort | 520 5 68.18%|27.60% |4.22% | 84.05% | 7,620,684 1.99 8.18

case calculation algorithm has been implemented. The first program, Matmult, multiples
two 50x50 matrices. The second program, Matsum, determines the sum of the non-negative
values in a 100x100 matrix. The third program, Matsument, is a variation of the second
program, Matsum, since it also counts the number of elements that were summed. The final
program, Bubblesort, uses the bubblesort algorithm to sort an array of 500 numbers into
ascending order.

For each program, a direct-mapped cache configuration containing 8 lines of 16 bytes
was used. Thus, the cache contains 128 bytes. The programs were 4 to 6 times larger than
the cache as shown in column 2 of Table 3. Column 3 shows that each program was highly
modularized to illustrate the handling of timing predictions across functions. Columns 4-6
show the static percentage of each type of instruction categorization in the function-instance
graph. Column 7 indicates the hit ratio for each program. Only Matmult had a very high
hit ratio. This was due to the program spending most of its cycles in 3 tightly nested loops
containing no calls to perform the actual multiplication. Column 8 shows the time in cycles
for an execution with worst-case input data. The number of cycles was measured using
a traditional cache simulator [20], where a hit required one cycle and a miss required ten
cycles (a miss penalty of nine cycles). These assumptions were described as realistic by other
researchers [31, 29]. Column 9 shows the ratio of the predicted worst-case instruction cache
performance using the timing analyzer to the observed worst-case performance in column 8.
Column 10 shows a similar ratio assuming a disabled cache. This naive prediction simply
determines the maximum number of instructions that could be executed and assumes that
each instruction reference requires a memory fetch of ten cycles (miss time).

For programs without conditional control flow except for looping constructs (e.g. Mat-
mult), the timing estimation is exact. Even for simple conditional statements (e.g. Matsum),
the prediction for worst-case performance estimates is generally very tight. In case of Mat-
sum, it 1s even exact.

As the conditional control flow becomes more complex (e.g. Matsument), the estimates
are no longer accurate but remain relatively tight. The analysis of the last program, Bubble-
sort, depicts a problem faced by any conventional timing analyzer. The Bubblesort program
contains an inner loop whose number of iterations depends on the counter of an outer loop.
Without additional information from the compiler or from the user, the limits of any static
analysis method are reached. The loop count will be overestimated for the worst-case timing
prediction. This explains why the estimated worst-case time is twice as high as the observed
time and indicates the limits of strictly analytical timing prediction in general.

6A detailed description of these timing prediction algorithms is beyond the scope of this work.
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The user of the timing tool can query the estimated execution time of a range of source
lines. This range is approximated as closely as possible by a range of basic blocks. The
timing can then be calculated based on the timing analysis tree as explained earlier.

In summary, timing analysis based on static cache simulation for instruction caches can
result in tight timing predictions with a small error at the order of traditional timing predic-
tions for uncached systems, contrary to the belief that instruction caches are unpredictable.

8.6 Future Work

Future extensions concern mostly the timing tool and are outside the scope of this dis-
sertation but shall be mentioned briefly. An algorithm has been designed and partially
implemented that estimates the best-case instruction cache for each loop within a program.
The facility to query timing predictions is currently being extended to provide a user-friendly
interface under a window environment. Current work also includes an attempt to predict
the execution time of code segments on a MicroSPARC I processor. In order to provide real-
istic timing predictions, the effect of other architectural features besides instruction caching
(e.g. pipelining) must be analyzed. A technique called micro-analysis [28] was developed to
detect the potential overlap between operations on various CISC processors. This technique
is being extended to model the MicroSPARC I processor.

8.7 Conclusion

Predicting the worst-case execution time of a program on a processor that uses cache memory
has long been considered an intractable problem [60, 44, 43]. However, this work shows that
tight estimations in the presence of instruction caches are feasible, using the fact that the
addresses of the instructions within a program and the possible control-flow paths between
these instructions are known statically.

This chapter presents a technique for predicting worst-case instruction cache performance
in two steps. First, a static cache simulator analyzes the control flow of a program to
statically categorize the caching behavior of each instruction within the program. Second, a
timing analyzer uses this instruction categorization information to estimate the worst-case
instruction cache performance for each loop in the program. The user is allowed to query
the timing analyzer for the estimated worst-case performance of any function or loop within
the program.

It has been demonstrated that instruction cache behavior is sufficiently predictable for
real-time applications. Thus, instruction caches should be enabled, yielding a speedup of
four to nine for the predicted worst case compared to disabled caches (depending on the
hit ratio and miss penalty). This speedup is a considerable improvement over prior work,
such as requiring special architectural modifications for prefetching, which only results in a
speedup factor of 2 [43]. As processor speeds continue to increase faster than the speed of
accessing memory, the performance benefit of using cache memory in real-time systems will
only increase.
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Chapter 9
A Real-Time Debugging Tool

Debugging is an integral part of the software development cycle that can account for up
to 50% of the development time of an application. This chapter discusses some of the
challenges specific to real-time debugging. It explains how developing real-time applications
can be supported by an environment that addresses the issues of time deadline monitoring
and distortion due to the interference of debugging. The current implementation of this
environment provides the elapsed time during debugging on request at breakpoints. This
time information corresponds to the elapsed execution time since program initiation. Delays
due to the interference of the debugger, for example input delays at breakpoints, are excluded
from the time estimates. The environment includes a modified compiler and a static cache
simulator that together produce instrumented programs for the purpose of debugging. The
instrumented program supports source-level debugging of optimized code and efficient cache
simulation to provide timing information at execution time. The overhead in execution time
of an instrumented optimized program is only approximately 1 to 4 times slower than the
corresponding unoptimized program. Conventional hardware simulators could alternatively
be used to obtain the same information but would run much slower. The environment
facilitates the debugging of real-time applications. It allows the monitoring of deadlines,
helps to locate the first task that misses a deadline, and supports the search for code portions
that account for most of the execution time. This facilitates hand-tuning of selected tasks
to make a schedule feasible. Excerpts of this chapter can be found in [48].

9.1 Introduction

The issue of debugging real-time applications has received little attention in the past. Yet,
in the process of building real-time applications, debugging is commonly performed just as
often as in the development of non-real-time software and may account for up to 50% of
the development time [66]. The debugging tools used for real-time applications are often
ordinary debuggers that do not cater to specific needs of real-time systems listed below.

Time distortion: The notion of real time is central to real-time applications. Hardware
timers are commonly used to inquire timing information during program execution to
synchronize the application with periodic events. Yet, during debugging the notion
of real time should be replaced by the notion of virtual time to compensate for time
distortion due to the interference of debugging. External events have to be simulated
based on the elapsed (virtual) time of tasks. Thus, values of variables used by the
application can be related to the elapsed time, which is essential for debugging real-
time applications.

Deadline monitoring: During the implementation phase, deadlines may not always be
met. A real-time debugger should display the elapsed time for a task on request. This
would facilitate finding the first task that fails to meet a deadline. It could also be used
to inquire at which point during the execution a deadline was missed. Furthermore, the
elapsed time may help in tuning tasks by locating where most of the execution time is
spent.
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Uniprocessor vs. multiprocessor: Multiprocessor applications are sometimes simulated
on uniprocessors during debugging. In this case, a virtual clock has to be kept for each
processor that is shared by a set of tasks running on this processor.

This work concentrates on time distortion and deadline monitoring.

A debugging environment has been developed that permits the user to query the elapsed
time. This time corresponds to the virtual time from program initiation to the current
breakpoint excluding debugging overhead and is calculated on demand. In contrast, time
queries in current debuggers correspond to the wall-clock time and include the delay of user
input at breakpoints as well as the debugger trap overhead.

The environment can be used to debug a real-time application whose tasks do not meet
their deadline. It facilitates the analyses of the tasks and helps to find out where a task
spends most of its execution time or which portion of a task completed execution before
missing the deadline. This knowledge can then be utilized to fine-tune the task that is
missing its deadlines or any of the previous tasks in the schedule. Thus, this debugging
environment assists the process of designing a feasible schedule in a step-by-step fashion.

The elapsed time of a task is estimated based on the caching behavior of the task. The
caching information is updated during execution and provides an estimate of the number of
elapsed processor cycles.

The dynamic simulation of cache performance necessitates the tracking of events and their
ordering to determine a cache miss vs. a cache hit. It can be quite a challenge to perform
order-dependent events efficiently. This chapter describes the design and implementation
of such an environment within the framework of a compiler, a static cache simulator [50],
and an arbitrary source-level debugger. The compiler translates a program into assembly
code and provides control-flow information to the static cache simulator. The static cache
simulator analyzes the caching behavior of the program and produces instrumentation code
that is merged into the assembly code. The source program corresponding to the resulting
assembly code can then be debugged and the elapsed time can be requested at breakpoints.

The elapsed time is calculated based on the cache simulation up to the current breakpoint,
i.e. the number of cache hits and misses are multiplied by the access time for hits and
misses, respectively. This provides an estimate of the executed numbers of processor cycles
corresponding to the elapsed (virtual) time since program initiation.

It may be argued that the virtual execution time can be provided by the operating system.
Notice though that the debugging process affects the execution of the real-time task, e.g.
the caching behavior. The cache simulation discussed here estimates the timing of the task
in an actual real-time environment disregarding the interference of debugging.

Another problem is posed by the debugging of optimized code. Conventional compilers
only support source-level debugging of unoptimized code. Clearly, unoptimized code causes
further time distortion, which cannot be accepted for real-time systems. Thus, a compiler has
been modified to support source-level debugging of optimized code with certain restrictions,
which are discussed later in the chapter.

This chapter is structured as follows: In the next section, related work is discussed. Then,
a new real-time debugging environment is introduced. In the following, the application of the
environment is illustrated. In addition, the feasibility of the environment is demonstrated
by presenting performance figures. Finally, future work and conclusions are presented.

9.2 Related Work

Conventional debugging tools, whether at the assembly-level or at the source-level, do not
address the specific demands of real-time debugging. The amount of work in the area of
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real-time debugging has been limited with a few exceptions.

The Remedy debugging tool [57] addresses the customization of the debugging interface
for real-time purposes and synchronizes on breakpoints by suspending the execution on all
processors. DCT [9] is a tool that allows practically non-intrusive monitoring but requires
special hardware for bus access and does not extend to non-intrusive debugging. Both
RED [30] and ART [67] provide monitoring and debugging facilities at the price of software
instrumentation. RED dedicates a co-processor to collect trace data and send it to the host
system. The instrumentation is removed for production code. In ART, a special reporting
task sends trace data to a host system for further processing. The instrumentation code is
a permanent part of the application. It will never be removed to prevent alteration of the
timing. Debugging is limited to forced suspension and resumption of entities, viewing and
alteration of variables, and monitoring of communication messages.

The DARTS system [66] approaches the debugging problem in two stages. It first gen-
erates a program trace and then allows for debugging based on the trace data that is time-
stamped to address the time distortion problem. The debugging is limited to a restricted
set of events that is extracted from the control flow. This tool only supports a subset of the
functionality of common debuggers, e.g. excluding data queries. The high volume of trace
information and the associated overhead of trace generation may also limit its application
to programs with short execution times. None of the systems make use of the compiler to
enhance the debugging process.

In the absence of real-time debuggers, hardware simulators are often used that run consid-
erably slower than the actual application and, consequently, allow only selective and not very
extensive testing. In addition, changing the simulated architecture of hardware simulators
is typically complicated.

9.3 A Real-Time Debugging Environment

The current work concentrates on monitoring deadlines based on the cache analysis of a task
and the corresponding estimate of the elapsed (virtual) execution time. This facility can
be used in conjunction with a conventional debugger. The debugger does not need to be
modified.

The cache simulation overhead at run time is reduced by analyzing the cache behavior
statically. A large number of cache hits and misses can be determined prior to execution
time by considering the control flow of each function and the call graph of the program. The
remaining references are simulated at execution time.

Figure 9.1 depicts an overview of the environment. A set of source files of a program is
translated by a compiler. The compiler generates object code with symbol table entries and
passes information about the control flow of each source file to the static cache simulator.
The static cache simulator performs the task of determining which instruction references can
be predicted prior to execution time. It constructs the call graph of the program and the
control-flow graph of each function based on the information provided by the compiler. The
cache behavior is then simulated for a given cache configuration. Furthermore, the static
simulator produces instruction annotations and passes them to the linker, which modifies
the object code according to the annotations and creates an executable program including
library routines for the time estimation. The executable may then be run within a source-
level debugger. The elapsed time can be inquired at any breakpoint by calling the library
routine that estimates the number of processor cycles executed based on the number of cache
hits and misses up to that point.

70



time estimation routines

object executable
files program

source
files

cache configuration

control
flow

instruction

. . annotation
information

Figure 9.1: Overview of the Debugging Environment

9.3.1 Adaptation of Static Cache Simulation

For real-time debugging support, the static cache simulator is adapted in the same way
as discussed in Chapter 6 with one exception: The static cache simulation is performed
on the level of basic blocks rather than unique paths to represent the control flow of a
function, which provides a finer level of granularity for intermediate timings. The code
instrumentation provides the means to calculate the number of cache hits and misses at any
given point during program execution. The calculation is based on simple frequency counters
and the adjustment of first misses. Thus, the calculation can be repeated and the program
can be interrupted at breakpoints without influencing the outcome of this calculation.

9.3.2 Querying the Elapsed Time

The elapsed execution time can be queried at any breakpoint while debugging a program
without modifying the debugger. The time is calculated based on the cache analysis. The
number of cache hits and misses can be calculated on the fly from the frequency counters.
The elapsed time is then calculated as

elapsed = hits * hit_penalty + misses * miss_penalty [cycles]

where the hit penalty is typically one cycle while the miss penalty is ten cycles [31] or even
more, depending on the clock rate and the access time of main memory. This time estimate
can be converted into seconds by multiplying it by the cycle time. The calculation of hits and
misses takes only a short time and can therefore be repeated whenever the program stops
at a breakpoint without much overhead. The code performing the calculation is hidden in
linked-in library code.

The program being debugged has been compiled with full optimizations to avoid time
distortion. The compiler was modified to emit debugging information for unoptimized code
as well as optimized code. Emitting accurate debugging information for optimized code
is a non-trivial task and subject to ongoing research [1, 11, 32]. Contrary to debugging
unoptimized code, debugging optimized code typically restricts the scope of breakpoints and
the displaying of data structures. In the debugging environment described in this chapter,
a breakpoint set on a source line is approximated as a breakpoint at the beginning of the
corresponding basic block when code is optimized. In addition, the value of variables assigned
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to a register will only be displayed if all live ranges of the variable are assigned to the
same register [3]. Register-mapped values may still be inconsistent at times due to global
optimizations, such as common subexpression elimination, which is a common problem when
debugging optimized code.

The fact that optimized code is executed during debugging speeds up the execution over
conventional debugging of unoptimized code. The cache simulation, on the other hand, adds
to the execution time. A quantitative analysis of the effect of these issues will be given in
the measurement section.

9.4 Application of the Debugging Tool

The output shown in Figure 9.2 illustrates a short debugging session of a program perform-
ing fast Fourier transformations within the environment using the unmodified source-level

debugger dbx [64].

> dbx fft
Reading symbolic information...
Read 396 symbols

(dbx) stop at 43 /* set breakpoint on line 43 */
(2) stop at 43

(dbx) stop at 114 /* set breakpoint on line 114 */
(3) stop at 114

(dbx) stop at 123 if elapsed_cycles() > 4000000 /* set cond. breakpoint */

(4) stop at 123 if elapsed_cycles() > 4000000
(dbx) display elapsed_cycles() /* display function return value on breakpoint */

elapsed_cycles() = 0 /* 0 cycles since program has not started */
(dbx) run /* start program execution */
Running: fft
stopped in main at line 114 /* execution stopped on first breakpoint */
114 printf("Objective: measure exec. time of 128 FFT.\n");
elapsed_cycles() = 22 /* 22 cycles executed before first breakpoint */
(dbx) cont /* resume execution until next breakpoint */
Objective: measure exec. time of 128 FFT. /* program output */
stopped in four at line 43
43 mmax=2;
elapsed_cycles() = 29413
(dbx) next /* single step to next source line statement  */
stopped in four at line 44
44 while (n>mmax) {
elapsed_cycles() = 29428
(dbx) print mmax /* print out value of variable */
mmax = 2
(dbx) cont
stopped in four at line 43
43 mmax=2;
elapsed_cycles() = 70547
(dbx) clear /* clear current breakpoint (line 43) */
(dbx) next
stopped in four at line 44
44 while (n>mmax) {
elapsed_cycles() = 70553
(dbx) cont
stopped in main at line 123 /* execution stopped on conditional breakpoint */
123 four(tdata,nn,isign);

elapsed_cycles() = 4015629
(dbx) clear

(dbx) cont
K = 100 Time = 0.290000 Seconds /* program output */
elapsed cycles() = 4095351 /* total number of executed cycles */

execution completed, exit code is 1
program exited with 1
(dbx) quit

Figure 9.2: Annotated Sample Debugging Session
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First, a few breakpoints are set including a conditional breakpoint on a function call
that checks on a deadline miss after 4 million cycles. The display command ensures that
the elapsed time estimated in cycles is displayed at each breakpoint as seen later during
execution. The value of the variable mmax can be printed although it has been assigned to
a register due to code optimization. Notice that the breakpoint on line 43 is reached twice.
The difference in the number of cycles between line 43 and line 44 is 15 cycles during the first
iteration but only 6 cycles during the second iteration. A closer investigation reveals that
during the first iteration, one of the six instructions in the basic block references a program
line that results in a compulsory miss estimated as 10 cycles. On the second iteration, the
same reference results in a hit due to temporal locality estimated as 1 cycle. The execution is
stopped on line 123 after over 4 million cycles, which indicates that the task could not finish
within the given deadline. This conditional breakpoint was placed on a repeatedly executed
function call to periodically check this condition. The deadline miss can be narrowed down
to an even smaller code portion by setting further conditional breakpoints. At program
termination, the final number of processor cycles is displayed.

The timing information can be used during debugging to locate portions of code that
consume most of the execution time. This knowledge can be used to hand-tune programs or
redesign algorithms.

When a set of real-time tasks is debugged, one can identify the task that is missing a
deadline either by checking the elapsed time or by setting a conditional breakpoint dependent
on the elapsed time. The schedule can then be fixed in various ways. One can tune the task
that missed the deadline. Alternatively, one can tune any of the preceding tasks if this
results in a feasible schedule. The latter may be a useful approach when a task overruns its
estimated execution time without violating a deadline, thereby causing subsequent tasks to
miss their deadlines. The debugger will help to find the culprit in such situations. Another

option would be to redesign the task set and the schedule, for example by further partitioning
of the tasks [24].

9.5 Measurements

The environment discussed above was implemented for the SPARC architecture. It includes
a modified compiler front-end of VPCC (very portable C compiler) [18] and a modified back-
end of VPO (very portable optimizer) [8], the static simulator for direct-mapped caches [50],
and the regular system linker and source level debugger dbx under SunOS 4.1.3. Calling a
library routine to query the elapsed time takes a negligible amount of time in the order of
one millisecond. Thus, this section focuses on measuring the overhead of cache simulation
during program execution. The correctness of the instruction cache simulation was verified
by comparison with a traditional trace-driven cache simulator. The execution time was
measured for a number of user programs, benchmarks, and UNIX utilities using the built-in
timer of the operating system to determine the overhead of cache simulation at run time.
Table 9.1 shows programs of varying program size (column 3), the overhead of unoptimized
code (column 4), and the support of virtual timing information through dynamic cache
simulation as a factor of the execution time of optimized code for cache sizes of 1kB, 2KB,
4kB, and 8kB (column 5-8).

On the average, unoptimized programs ran 1.8 times slower than their optimized version.
Running the optimized program and performing cache simulation to provide virtual timing
information was on average 2.1 to 7.8 times slower than executing optimized code.! In other

!The overhead reported here differs from Table 6.2 in Chapter 6 since the former used instrumentation
for basic blocks and the latter used instrumentation for UPs. Notice also that the static cache simulation
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Table 9.1: Performance Overhead for Debugging

Size unopt. | opt. code with time estimates
Name [bytes] code | 1kB | 2kB | 4kB 8kB
cachesim 8,452 1.1 2.0 1.4 1.3 1.2
cb 4,968 1.4 6.8 5.8 3.4 2.6
compact 5,912 2.1 10.3 7.8 6.0 2.7
copt 4144 1.4 2.5 1.7 1.4 1.4
dhrystone 1,912 1.6 2.7 1.6 1.6 1.6
fIt 1,968 1.3 1.4 1.2 1.2 1.2
genreport | 17,716 1.4 3.6 2.5 2.4 2.3
mincost 4,492 1.6 5.0 3.2 2.2 1.8
sched 8,352 2.1 229 | 14.6 8.3 4.1
sdiff 7,288 4.1 271 8.1 4.0 3.0
whetstone 4,812 1.2 2.0 2.0 1.5 1.2
average 6,365 1.8 7.8 4.5 3.0 2.1

words, the optimized code with cache simulation was roughly 1 to 4 times slower than the
unoptimized code typically used for program debugging.

The cache size influences the overhead factor considerably, which can be explained as
follows: For small cache sizes, programs do not fit into cache and capacity misses occur
frequently, which requires the dynamic overhead of simulating program lines classified as
conflicts. For larger cache sizes, a larger portion of the program fits into cache reducing
capacity misses and thereby reducing the number of conflicts. Once the entire program fits
into cache, no conflicts need to be simulated. Rather, frequency counters are sufficient to
simulate the cache behavior. This reduces the overhead considerably.

9.6 Future Work

The work is currently being extended to take the effect of pipeline stalls and other machine-
specific characteristics into account. The goal is to provide a debugging framework via
minimal hardware simulation for the MicroSPARC I processor [49]. The work could be
extended to take external events into account. The user will be required to specify the
occurrence of events in a time table. The events are then simulated by the debugging
environment based on the elapsed time. At program termination, the monitored activities
(e.g. completion time, deadline) could be summarized in a table.

The interaction of the debugging environment with a compiler provides the means to
introduce a compilation pragma zero_time that excludes a code portion from virtual time
accounting. This can be used to insert conditionally compiled debugging code that does not
affect the overall timing.

Furthermore, this environment could also be used for multi-threaded applications where
a thread corresponds to a task. The application could be designed for a non-preemptive
embedded system? but may be debugged on a regular workstation using this environment
to simulate the embedded system efficiently.

makes the debugging approach feasible. Traditional trace-driven cache simulation (for each basic block) is
reported to slow down the execution time by over one to three orders of a magnitude [68].

2A multi-threaded real-time kernel has been designed for such an embedded system based on a SPARC
VME bus board [6, 51].
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9.7 Conclusion

This work discusses some challenges of real-time debugging that have not yet been addressed
adequately. A debugging environment is proposed that addresses the problem of time dis-
tortion during debugging. In this environment, the notion of real time is replaced by virtual
time based on the estimated number of elapsed processor cycles. The first implementation
step has been completed and provides the elapsed time based on instruction cache simula-
tion at any breakpoint during debugging. This time information can be used for deadline
monitoring, identifying the task that first misses a deadline, or locating time-consuming code
portions to support hand-tuning of tasks until a schedule becomes feasible. To provide this
timing information, the execution speed of the application during debugging is 1-4 times
slower in average than the speed of the corresponding unoptimized application. In contrast,
conventional hardware simulators may provide the same information but are less portable
and much slower. The environment facilitates the debugging of real-time programs when
timing-related problems occur that have to be reproduced during debugging.
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Chapter 10
Future Work

The future work sections of each chapter discuss various extensions of efficient on-the-fly
analysis, static cache simulation, and each of its applications, which will not be reiterated.
Instead, further potential areas for applications shall be presented here.

The static cache simulator could be used for profiling to efficiently provide more de-
tailed information than traditional profiling tools. Traditional profiles often rely on sampling
methods, which are somewhat inaccurate and generally provide profiling data at the level of
functions. Static cache simulation tracks the accurate frequency of execution not only at the
level of functions but at the level of UPs. The actual frequency of basic blocks (and thereby
of any instruction) can be inferred from the frequency of UPs. By annotating the generated
code, instructions may be correlated to source-code statements. This can be used to provide
the user with timing information in a source-code listing. A tool for precise and detailed
profiling can be constructed around static cache simulation.

Static cache simulation also provides the means to produce measurements for prototyped
machines. One example has already been given in Chapter 7 for the bit-encoding approach.
In general, the cache behavior of non-existent architectures can be tested more efficiently.
Traditional tools such as hardware simulators may provide analysis at a higher level of detail
with regard to hardware components but are far less efficient than static cache simulation.
Even inline tracing for cache simulation is slower than the method of static cache simulation,
as shown in Chapter 6.

Finally, the method of static cache simulation does not have to interact with a compiler,
although compiler support seems to facilitate the task. Yet, it is possible to analyze the
control flow of an arbitrary executable and to modify the binary by inserting instrumentation
code (similar to the work in [42, 10]). This would allow library code to be measured as well.
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Chapter 11

Summary

This work presents a fresh look at the simulation of cache memories, provides an efficient
framework for on-the-fly program analysis in general, and combines this framework with a
new cache simulation technique for a number of applications.

On-the-fly program analysis instruments the code of a program to perform a specific
analysis of the program during execution. In contrast, the most common tracing methods
today separate the analysis from the program execution. While the problem of optimally
profiling and tracing programs can be regarded as solved, on-the-fly analysis requires a
different approach. A framework for efficient on-the-fly analysis is developed and proved
correct as part of this work. This framework can be applied to any type of program analysis.
This work discusses its application to cache analysis.

In the past, cache performance has often been analyzed using trace-driven methods.
These methods record program traces at execution time and analyze the traces either con-
currently or at a later time. Recently, on-the-fly analysis has been used to simulate the
cache during program execution by instrumenting the program. To determine cache access
hits and misses, it is recorded at run time which program or data line resides in a particular
cache line.

This work introduces the technique of static cache simulation that statically predicts a
large portion of cache references. The technique is formally derived for the simulation of
direct-mapped instruction caches. It provides a novel view of cache memories. By analyzing
the call graph and control-flow graphs of a program at compile time, some hits and misses
can be determined statically. For the remaining program lines, a somewhat unorthodox view
of the cache is taken. Rather than examining the contents of the global cache to determine
if a program line is currently cached, a local state associated with a path (i.e., a set of
instructions) keeps track if the lines of this path have been cached. Instead of updating
the hits and misses for each program line, a frequency counter associated with the current
path state is incremented. Hits and misses can be inferred from the frequency counters after
program termination.

Furthermore, static cache simulation determines the set of values a local state could have
during execution. If this set is a singleton, the state is omitted during execution and the hits
and misses are inferred statically for each iteration. The simulator decomposes the control-
flow graph and the call graph, analyzes the cache behavior at this finer level by finding state
transitions, and then recomposes the information to reduce the amount of instrumentation
code.

Efficient on-the-fly analysis and static cache simulation are combined in this fashion for
a number of applications that have been implemented and evaluated on the Sun SPARC
architecture. The application of fast instruction cache analysis provides a new framework to
evaluate instruction cache memories that outperforms even the fastest techniques published.
Static cache simulation is also used to predict the caching behavior of real-time applica-
tions. This result disproves the conjecture that cache memories introduce unpredictability
in real-time systems that cannot be efficiently addressed. While static cache simulation for
instruction caches provides a certain degree of predictability for real-time systems, an ar-
chitectural modification through bit-encoding is introduced that provides fully predictable

77



caching behavior. Even for regular instruction caches without architectural modifications,
tight bounds for the execution time of real-time programs can be derived from the informa-
tion provided by the static cache simulator. Finally, the debugging of real-time applications
is enhanced by displaying the timing information of the debugged program at breakpoints.
The timing information is determined by simulating the instruction cache behavior during
program execution and can be used, for example, to detect missed deadlines and locate
time-consuming code portions. Overall, the technique of static cache simulation provides a
novel approach to analyze cache memories and is shown to be very efficient for numerous
applications.
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Appendix A
Algorithm to Construct the Function-Instance Graph

Algorithm 3 (Construction of Function-Instance Graph)

Input: Let G(V, EC) be a call graph where V' is the set of functions (vertices) including an
initial function main and EC is a set of pairs (e,c) of edges e and call sites ¢. The edge
e = v — w denotes a call to w within v (excluding indirect calls but including recursive
calls).

Output: The function-instance graph FIG(W, F, B) where W is a set of function instances
(vertices), F'is a set of forward edges, and B is a set of backedges (due to recursive calls).
Algorithm:

PROCEDURE construct_FIG
Vv: vertex;

BEGIN
FOR all v in V DO
v.visited:= FALSE; /* initialize vertices: not visited */
v.last_instance:= -1 /* no func instance */
END FOR;
F:= {}; /* initialize FIG components: empty sets */
B:= {};
W:= {maln(O)}
main.last_instance:= 0; /* initialize instance of main to be 0 */
dfs_traverse_CG(main) /* perform recursive depth-1st-search */

END construct_FIG;

PROCEDURE dfs_traverse_CG(v: vertex)
wW: vertex;
i, k: INTEGER;
BEGIN
i:= v.last_instance;
v.visited:= TRUE,
FOR all vertices
with (v -—> w) in EC DO /* for each edge: v to w */

IF (w.visited) THEN /* if visited then add to recursive edges*/
k:= w.last_instance;
B:= B + {v(i) -—> w(k)} /* vertex v inst i to vertex w inst k */

ELSE /* otherwise add to non-recursive edges */
w.last_instance:=

w.last_instance + 1;

k:= w.last_instance; /* new function instance of callee w */
We= W + {w(k)};
F:=F + {v(i) ——> w(k)};/* vertex v inst i to vertex w inst k */
dfs_traverse_CG(w)

END IF

END FOR;

v.visited:= FALSE
END dfs_traverse_CG;
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Appendix B
Interface Specification of the PATH File

In Figure B.1, the specification for the interface file generated by the compiler for the control
flow and instruction layout of paths is given using a BNF notation.

<file> = <funclist>.
<funclist> 1:=  <func> <funclist> |
<func> ::= -1 <funcname> \n <entrypaths> -1 \n
<other paths> -1 0 \n .
<entrypaths> ::=  <pathlist>.
<other_paths> ::=  <pathlist>.
<pathlist> ::=  <pathinfo> -1 \n <flowinfo> \n .
<pathinfo> ::= <thispath> <loopno> <loopfreq> <instlist>.
<instlist> 1:=  <instseq> <instlist> |
<instseq>.
<instseq> ::= <instoffset> <numinst>.
<flowinfo> ::= 0 <pathlabelseq> -1 |
1 <funccall>.
<pathlabelseq> ::= <nextpath> <pathlabelseq> |
<funccall> ::= <funcname> <thispath> <nextpath>.
<thispath> ::= <pathlabel>.
<nextpath> ::= <pathlabel>.

Figure B.1: BNF Interface Specification for PATH File

The syntax and semantics of some of the symbols requires further explanation:

“\n” denotes a new line.
<funcname> is always preceded by an underscore “_”.

<entrypaths> is a sequence of paths that can be reached from a call to the current function.

<pathlabel> is the numeric label of the path within the current function.
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<thispath> refers to the current path.
<nextpath> refers to a successor path in the control flow.

<instoffset> denotes the byte offset of an instruction sequence. Each function starts with
an offset 0.

<numinst> denotes the number of instructions of an instruction sequence.
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Appendix C

Examples of Code Instrumentation

path3_cal_curstate:
.word 12 ! SPS: 2 uncached lines at startup (1100Db)

Figure C.1: State Table Entry

! typical method based on frequency counter array

path3_calO_curstate: ! path 3 in function cal instance 0O
.word O ! AND mask
.word 12 I always hits \
.word b always misses > on each increment
.word O first misses /
.word 4 # shared path states

]
]
!

path3_cal0: | frequency counts (counter array):
]
]
]
]

.word 0 hits on line a and b

.word 0 miss line a, hit line b
.word 0 hit line a, miss line b
.word 0 misses on line a and b

! alternative method for large path states
path7_whetl_O_curstate:

.word 4088 ! AND mask

.word 23 ! hits

.word O ! misses

.word 1 ! first misses

.word -9 ! —(# shared path states)
path7_whet10:

.word O ! general frequency counter

.word O ! counter for misses due to conflicts

Figure C.2: Counter Table Entry

conf_table:

.word path6_calO_curstate

.word 0

.word path8_call_curstate
.word path7_call_curstate
.word O

Figure C.3: First Miss Table

The code emitted for call macros in Figure C.4 places the callee’s base address (instance)
in a register designated by the compiler. The compiler either chooses an unused register or
spills an allocated register before the call. If the calling function of the macro has only one
instance, two instructions suffice to load the register with a fixed address. (Notice that a
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set instruction is a synonym for the two instructions sethi and or.) In the case of multiple
function instances of the caller, the register is loaded with the value of the callee’s base
address, which is determined by indexing with the caller’s instance into a base address array.
Figure C.4 depicts examples for both cases.

! current function has one function instance
#tdefine CALL6_main(base_in, base_out
set inst_table_number0,%base_out

! current function has multiple function instances
#tdefine CALL1_cal(base_in, base_out) \
14 [Ybase_in+8],%base_out

Figure C.4: Call Macros

The number of instructions generated for a path macro varies. Figures C.5 and C.6
depict examples for three cases. In the first case without conflicts, a frequency counter is

#define PATH1_ cal(base, templ, temp2) \

1d [%basetpathl_calO-inst_table_cal0],%temp2 ; \
inc %temp2 ; \
st %temp2, [%basetpathl_calO-inst_table_call0]l ; \

#define PATH4_cal(base, templ, temp2) \
| increment counter in array index by SPS of current path \
sethi  %hi(path3_cal_curstate),’%templ ; \

1d [%templ+%lo(path3_cal_curstate)],’temp2 ; \
add %temp2,Y%base,templ ; \

1d [%templ+path4_calO-inst_table_call],%temp2 ; \
inc %temp2 ; \

st %temp2, [%templ+path4_calO-inst_table_call] ; \

! update SPS of current path \
sethi  %hi(path3_cal_curstate),’%templ ; \

1d [%templ+%lo(path3_cal_curstate)],’temp2 ; \
andn %temp2,8,%temp2 ; \
st %temp2, [%templ+%lo(path3_cal_curstate)] ; \
! update two conflicting SPSs of other paths \
set state_table,%templ ; \
1d [%templ+path20_main_curstate-state_tablel,’temp2 ; \
or %temp2,4,%temnp2 ; \
st %temp2, [%templ+path20_main_curstate-state_table] ; \
1d [%templ+pathl19_main_curstate-state_tablel,’temp2 ; \
or %temp2,4,%temnp2 ; \
st %temp2, [%templ+pathl19_main_curstate-state_table] ; \

Figure C.5: Path Macros (1)

simply incremented in three instructions. In the second case, conflicts are present. The SPS
is used as an index into the frequency array, and the indexed counter is incremented. Then,
the SPS is updated to reflect changes in the cached program lines. Thus, 12 instructions
are required for updating the counter and SPS. In addition, three instructions are required
for updating every conflicting SPS in the worst case. In the second example, there are two
such conflicting SPSs. In the third case, the alternate code instrumentation is used. A loop
counts the number of on-bits in the SPS combined with the AND mask. This number is
added to the second counter entry while the first entry, the frequency counter, is simply
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#define PATH16_whet1(base, templ, temp2) \
! apply AND mask to SPS of current path \
sethi  %hi(path6_whetl_curstate),’templ ; \

1d [%tempi+%lo(path6_whetl_curstate)],%itemp2 ; \
1d [%basetpath16_whetl_O_curstate-inst_table_whet10],%templ ; \
andcc  %temp2,%templ,¥%templ ; \
bz pathi6_whetl_nocnt;\
! count on-bits \
mov %g0,%temp2 ; \
pathi6_whetl_cnt: ; \
bz pathi6_whetl_ccnt;\
btst 1,%empl ; \
srl %templ,1,%templ ; \
bz pathi6_whetl_cnt ;\
tst %templ ; \
b pathi6_whetl_cnt ; \
inc %temp2 ; \

pathi6_whetl_ccnt: ; \

! add # of on-bits to accumulated # of conflicts which were misses \
1d [%baset+4+pathi6_whet10-inst_table_whet10],%templ ; \

add %templ,Y%temp2,%temp2 ; \

st %temp2, [%baset4+path16_whet10-inst_table_whet10] ; \
pathi6_whetl_nocnt: ; \
! increment the general frequency counter \

1d [%basetpath16_whet10-inst_table_whet10],%temp2 ; \
inc %temp2 ; \
st %temp2, [%basetpath16_whet10-inst_table_whet10] ;

%\
! update the SPS of the current path \
sethi  %hi(path6_whetl_curstate),’templ ; \

1d [%tempi+%lo(path6_whetl_curstate)],%itemp2 ; \
andn %temp2,12,%temp2 ; \
st %temp2, [%templ+¥lo(path6_whetl_curstate)] ; \

Figure C.6: Path Macros (2)
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incremented. Then, the SPS is updated to reflect changes in the cached program lines.
Here, 16 instructions are required plus a maximum of 30 iterations of 7 instructions inside
the bit-counting loop.
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Appendix D
Cache Access Logic of the Fetch-From-Memory Bit

The access logic for an instruction cache using the proposed bit-encoded approach is il-
lustrated in Figure D.1. The instruction memory contains the cached instructions. It is

Instruction

Memory

memory
mf fetch ~ rest of instruction

Instruction| —

Match

Figure D.1: Access Logic for Bit-Encoded Approach

accessed by using the index field to select the cache line and the offset field to select the
instruction within that line. The tag memory contains the state bit and address tag for each
cache line and is also accessed by using the index field. The match logic compares the tag
of the instruction’s physical address to the tag obtained by accessing the tag memory and
verifies the state to ensure that the cache line is valid. In parallel, it also checks that the
fetch-from-memory bit is clear. If any of these conditions are not met, then it informs the
CPU to issue a main memory fetch. The logic to request a main memory fetch is not shown
in this figure.

86



Appendix E
Interface Specification of the IST File

In Figure E.1, the specification for the interface file generated by the static cache simulator
for instruction caches is given using a BNF notation.

<file> i:= <func> <file> |

<func>.
<func> ::= <func_header> <inst_seq>.
<func_header> = -1 func <funcname> instance <instno>

parent <parent> \n.

<inst_seq> 1:=  <inst_line> <inst_seq> |
<inst_line>.

<inst_line> = 0 inst <instno> <loopno> <cache line>
<cat_list> <cont> \n.

<parent> ::=  <funcname> |
0. /* for main only */

<cat_list> ::= <nesting> <loop._cat>.

<loop_cat> 1:=  <worst._cat>/<best_cat> <loop._cat> |

<worst_cat>/<best_cat>.

<worst_cat> = <category>.
<best_cat> ::= <category>.
<category> ::= h | /% hit */
m | /* miss */
f | /* first miss */
i /* initial miss */
<cont> ::= 1 \n call <funcname> instance <instno> |

0. /* no function call */

Figure E.1: BNF Interface Specification for IST File

The syntax and semantics of some of the symbols requires further explanation:

“\n” denotes a new line.
[T

<funcname> is preceded by an underscore “_”, unless it is a static function.

<instno> starts with 0 for each function.
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<loopno> indicates if an instruction belongs to a loop with <loopno> within a function.
A <loopno> of 0 means no loop (outermost level of function).

<cache_line> denotes the cache line number (which can be used for handling first misses).
First misses of different instructions with the same <cache line> only cause one miss
on the line during program execution.

<nesting> denotes the number of loop nesting levels (incl. functions) for which the pre-
diction is listed. In trivial cases (always hit “h/h” and always miss “m/m”), the value
will be 1 although the nesting might be deeper.

<loop_cat> is a sequence of doubles “worst/best” for each loop nesting level where any
function is regarded as a separate loop nesting level.

Fxample: Assume a loop sequence main(loopl(funcl(loop2(loop3())))).

0 inst 11 1 49 5 f/h f/h f/ft  m/f m/f 0

loop3 loop2 funcl loopl main

Subsequent categories are provided for each loop nesting level (including function levels)
in an inside-out order with respect to the nesting level. l
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