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ABSTRACT

This paper introduces asoptiso, which is an assembly optimizer error isolator. asopt is an assembly

optimizer for a set of new ISAs, called the SCALE ISAs, and is a tool which is significantly difficult

to debug when it produces erroneous assembly-optimized code that fails to correctly execute during

simulation. asopt is difficult to debug due to two reasons. First, simulations can often take a long

time to test the execution of assembly-optimized code. Second, there are often a large number of

transformations which asopt has applied to the program, any of which could be the cause of error.

Manually searching for the erroneous transformations among all applied transformations is highly

impractical. I have created asoptiso to automate and simplify the process of isolating the first

erroneous transformation applied by the assembly optimizer. This tool has proved extremely useful

in speeding up the testing of asopt by not only automating error isolation, but also providing the

user with a variety of useful features.
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CHAPTER 1

INTRODUCTION

There are many challenges when isolating errors in a compilation infrastructure for a new instruc-

tion set architecture (ISA). (1) Application benchmarks can consist of tens or even hundreds of

thousands of lines of source code, which can easily expand by a factor of 10 to machine instructions

after compilation. The number of lines of code is significantly increased when taking into account

the library code that must also be compiled and comprises part of the executables. An application

with corresponding libraries may easily consist of millions of instructions. Large applications signif-

icantly increase the challenge of isolating where a problem in the code exists that causes incorrect

simulation. (2) Applications can simulate billions or even trillions of dynamic instructions. For

instance, all SPEC 2006 benchmarks run for at least several hundred billion to multiple trillion

instructions. Simulation is required for a new ISA and is orders of magnitude slower than native

execution. This can lead to long simulation times, even for functional simulation, which can exac-

erbate the challenge of isolating errors in a compiler. (3)Compilers are complex system software

tools. An instruction set can consist of hundreds of different types of instructions even for RISC in-

struction sets. The number of distinct instructions can directly impact the complexity of a compiler

for that instruction set. The most complex portion of the code generation of a compiler is often the

calling conventions associated with the instruction set. Likewise, the analysis and transformations

to support optimizations introduce much complexity in compilers. The challenge of isolating errors

in a compiler is exacerbated when the ISA is new and a working processor, simulator, and compiler

for the ISA do not yet exist. Even once a problem has been isolated in an application, finding the

cause of the problem in a compiler can be quite challenging. Due to these challenges, a systematic

and automatic method for isolating errors is needed.

I have created an assembly optimizer error isolator, named asoptiso, which automates the

process of isolating the first erroneous transformation which is causing the simulation error of a

SCALE assembly optimized program. In this thesis, I will first describe the SCALE ISAs, simulation

infrastructure, and compilation infrastructure. I then describe various code transformations, along

with how to count transformations in the context of either an assembly file or program. I next
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describe the process of error isolation within asoptiso and various useful features of the assembly

optimizer error isolator. Finally, I will share the results and conclusions for my thesis.

1.1 Simulation and Compilation Infrastructure

1.1.1 The SCALE ISAs

This research is part of the NSF SCALE project, which involves developing both simulation

and compilation support for a set of related, but distinct ISAs. Two ISAs have currently been

implemented in this project, which are the SCALE base ISA and the SCALE VLIW ISA.

The SCALE base ISA is similar to the MIPS ISA with a number of small differences to allow

other information to be encoded in the instruction set. A few of these differences includes memory

references and branches. All SCALE loads and stores are only supported by a register deferred

addressing mode, meaning that all loads and stores use a zero displacement from the base register.

The rationale for this restriction is that it decreases the number of stages in the instruction pipeline

and allows other information supporting more advanced features to be encoded with loads and stores

in SCALE ISAs. In fact, many processors will dynamically split a load or store into an address

generation instruction and a memory reference instruction anyway and treat them as separate

instructions within the processor. By splitting these instructions at compile time, we expose these

instructions to more compiler optimizations to avoid redundant effective address calculations and

to more effectively schedule operations. We also support only bnez (branch not equal to zero)

and beqz (branch equal to zero) instructions for integer branches. This means that each integer

branch references a single register. To allow only these branches to be utilized we added a new seq

instruction that is similar to an slt instruction in that it sets a destination register to 1 if the two

registers being compared are equal or to 0 otherwise.

The SCALE VLIW ISA uses instructions within the SCALE base ISA, but supports very

long instruction word (VLIW) execution. The generated code must be packaged into groups of

independent instructions that are simultaneously issued. We refer to such groups as VLIW packs

and the position of a SCALE instruction within a VLIW pack as a lane. The number of instructions

in each VLIW pack and which types of SCALE instructions can be placed in each lane is configurable

at compile and simulation time. The SCALE VLIW ISA allows instructions to follow a branch

within a VLIW pack. An instruction after a branch within a VLIW pack is only committed if

the branch is predicted to be not taken. Thus, conditional branches support a simple form of
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predication in the SCALE VLIW ISA. An instruction after an unconditional transfer of control

(jump, call, return) within a pack is never executed. Hence, only nop instructions should be placed

after an unconditional transfer of control within a VLIW pack. There can be multiple transfers of

control within a VLIW pack, but only the last transfer of control can be unconditional.

1.1.2 ADL Simulation System

We use the ADL simulation system, which takes a microarchitecture specification file written

in the Architecture Description Language (ADL) as input and automatically produces an assem-

bler, linker, and disassembler [7]. ADL provides constructs for specifying (1) microarchitectural

features including pipelines, control, and memory hierarchy and (2) the instruction set architecture

including the assembly syntax and corresponding binary representation. The assembler and linker

together are used to produce a statically linked executable that is invoked by the ADL produced

simulators. The simulators the ADL system produces can be functional or cycle accurate. These

simulators perform a more realistic simulation than many commonly used simulators as instruc-

tions are actually fetched from the instruction cache, data values are actually loaded from the data

cache, values are actually forwarded through the pipeline, etc. This more realistic simulation helps

to ensure that the described techniques are correctly implemented and hence provides more reliable

statistics.

The SCALE base ISA is used for both a SCALE functional simulator and a SCALE pipelined

simulator. The SCALE VLIW ISA is used for the SCALE VLIW simulator. The SCALE functional

simulator is the fastest simulator and is just used to check if the simulation provides correct results

for the generated code. Functional simulation provides any cycle independent statistics, such as the

number of instructions executed and memory references performed, as well as any other statistics

related with the dynamic instruction stream. The SCALE pipelined simulator provides a five stage

integer pipeline, which includes the stages IF (Instruction Fetch), ID (Instruction Decode), RF

(Register Fetch), EX (EXecution) or MEM (MEMory access), and WB (Write Back). Note the

MEM stage is performed in the same cycle as the EX stage as each load and store does not have a

displacement for the base register and hence does not require the calculation of an effective address.

A SCALE assembly file can be simulated by both the SCALE functional simulator and SCALE

pipelined simulator with no change in how the file is produced. The SCALE VLIW simulator uses

individual SCALE base instructions, but these instructions are placed in groups that we refer to as

VLIW packs. If a useful instruction cannot be placed in a given lane (position) within a VLIW pack,
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then a nop instruction must be placed in that lane. Instructions within a VLIW pack are fetched,

decoded, and executed together. If any instruction within a VLIW pack stalls, then all instructions

in the VLIW pack are stalled Code generated for the VLIW machine can also be simulated by the

functional simulator. This is because the branch instructions within a VLIW pack implement first

taken semantics. Likewise, an instruction that has an antidependence with a previous instruction

is never scheduled before the previous instruction in a VLIW pack. A group of instructions in a

pack can be executed either simultaneously or one at a time in left to right order, as would be the

case with functional simulation.

1.1.3 Compilation System

The compilation support needed for the SCALE project has to be able to compile SPEC bench-

marks and support low-level code generation and code-improving transformations. We decided

to use a conventional compiler to generate code and perform translation and a variety of code-

improving transformations at the assembly level. Figure 1.1 shows how we generate code for the

various SCALE ISAs. We use gcc to produce conventional MIPS assembly files. This allows us to

compile files in a variety of source languages, such as C, C++, and Fortran, and also leverage the

optimizations that are provided by the gcc compiler. We developed our own assembly optimizer,

called asopt, that takes an assembly file as input, translates instructions when necessary to a new

instruction set, performs a variety of analyses and code-improving transformations, and produces

modified assembly code as output. In order to properly determine which registers are live at any

given point in a function, we need to know which registers are being passed to each function that is

being called and which register if any is used to return a value. Rather than attempting to perform

interprocedural analysis to determine this information, we instead gather information as a side ef-

fect of the gcc compilation. We use an option in gcc to produce a .gkd file that contains information

about each gcc RTL (instruction), which we use to determine which registers are passed as values

in function calls. We also generate a MIPS object file with symbolic debugging information from

which we generate an .objdump file, which contains information about the function return type that

is used to determine in which register a return value is placed. Both the .gkd and .objdump files

were input to our geninf tool that produced a .inf file that could be easily parsed by asopt. We

use this approach as asopt also needs to process some hand-written assembly files in the libraries

we utilized. In these cases we generate a corresponding .inf file by hand for each hand-written

assembly file. The assembly optimizer, asopt, reads both the .inf file and the MIPS assembly file
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to produce the new SCALE assembly file. Various flags can be passed to asopt to both select the

code-improving transformations to be performed and to select the ISA for the assembly target file.

MIPS
assembly

file

MIPS

file
gkdgcc

objdump
file

inf
file

source
file

file
object
MIPS

geninf

objdump

assembly file
SCALE ...

assembly file

SCALE VLIW
assembly file

SCALE base

asopt

Figure 1.1: SCALE Code Generation Process

For each function, asopt reads in the instructions, identifies the type of each instruction and

which registers are set and used, and builds the control flow graph for the function. It then

translates each MIPS assembly instruction to its corresponding SCALE assembly instruction when

the input MIPS instruction is not in the SCALE instruction set that is described in Section 1.1.1.

It also expands any pseudo instructions so that each SCALE assembly instruction has a one-to-one

mapping with a SCALE machine instruction. This step is necessary when performing some low-level

code-improving transformations. For instance, scheduling instructions into VLIW packs requires

packaging a specified number of machine instructions together. asopt then performs a number

of code-improving transformations. For instance, it unrolls innermost loops when possible. We

decided to implement loop unrolling in asopt to have more precise control over the heuristics when

deciding whether or not to unroll a loop and the loop unroll factor to use when performing loop

unrolling. asopt also applies a variety of transformations to eliminate true dependences, such as

accumulator expansion and partitioning the increments of a basic induction variable to use separate

registers. The assembly optimizer also applies other optimizations, such as common subexpression

elimination and loop-invariant code motion. The gcc compiler produces many pseudo instructions

that the assembly optimizer expands into multiple assembly instructions that have a one-to-one

correspondence with machine instructions. After pseudo instruction expansion, there are often

opportunities for these optimizations to be applied. When generating code for the SCALE VLIW
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ISA, asopt schedules instructions into VLIW packs by performing register renaming and scheduling

instructions both within and across basic block boundaries.

1.2 Testing the Assembly Optimizer

An error originating from the asopt assembly optimizer may become apparent as either an error

from the execution of asopt itself, or an error in the simulation of asopt-produced code. We utilize

multiple benchmark suites to test the assembly optimizer, which include SPEC ’95 and SPEC ’06.

Despite their age, the SPEC ’95 programs execute a small number of instructions, but have a similar

control flow structure to that of SPEC ’06. An example of their similarity exists with 126.gcc from

’95 and 403.gcc from ’06. Therefore, they are still quite valuable for verification. In our experience,

once SPEC ’95 code runs successfully, very few additional problems are discovered with the similar

SPEC ’06 program.

Ensuring the asopt executable could successfully generate code came first in the testing process,

and was performed with both SPEC benchmark suites. The transformed code of the benchmarks

then needs to be simulated to check execution accuracy; however, a baseline was needed to assess

simulation correctness before this could begin. From both suites, each SPEC benchmark was

simulated using its unaltered, initial MIPS assembly files using a MIPS simulator. If simulation

was successful, the output is known to be accurate. These correct outputs now act as reference

files for comparison against the simulation output of SCALE assembly optimized programs.

After creating reference files, asopt simulation testing began with code generated by the assem-

bly optimizer, but with applying no optimizations. asopt ’s pseudo-expansion code-improving trans-

formation was then applied and simulated. Once all benchmarks transformed by pseudo-expansion

produced the same simulation results as their respective reference files, this transformation type

was considered correct and another transformation type could be tested in the same manner. An

important aspect of the asopt testing process is that the correctness of one type of code-improving

transformation can be tested before testing another transformation type.

6



CHAPTER 2

TRANSFORMATIONS

A code-improving transformation consists of a sequence of changes where the semantic behavior of

the code in a function should remain the same, although its performance may be enhanced. A code-

improving transformation can also be viewed as optional, as compared to a required transformation

that is needed for correct execution. An optimization phase consists of the application of zero or

more code-improving transformations of the same type.

An example of a required (non-optional) transformation is saving and restoring new callee-save

registers which are allocated during a code-improving transformation. A transformation may be

optional/non-optional depending on which simulation machine is being used. For instance, the

standard VLIW simulator requires pseudo expansion be applied to all files and libraries of the sim-

ulated program. The MIPS assembly code that is being input to asopt contains pseudo instructions,

in which one pseudo instruction may generate two or more machine instructions. The assembly

optimizer “expands” these pseudo instructions so that there is a one-to-one correspondence between

SCALE assembly instructions and SCALE machine instructions. When VLIW block scheduling is

not being applied, pseudo expansion is an optional, code-improving transformation whose applica-

tion gives asopt the opportunity for additional code-improving transformations. However, due to

the fact that VLIW packs must contain a specific number of machine instructions, pseudo expansion

is a non-optional transformation when asopt applies VLIW block scheduling.

2.1 Code-Improving Transformation Examples

In this section, I present some examples of code-improving transformations implemented in

asopt.

2.1.1 Simple Transformations

Figure 2.1 displays a variety of transformations which have been sequentially applied to one

section of assembly code. The original version of the code is represented by step a of this figure,

and steps b-h display the first transformation through the seventh transformation applied by asopt.
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We can see in step a that the data at the address of g qCount is then loaded into register 2, and

is incremented before being stored back to g qCount.

l w $2,  g_qCount
addi u $2,  $2,  1
sw $2,  g_qCount

1
2
3

a. original code

l al ui  $1,  g_qCount
l aor i $2,  $1,  g_qCount
l w $2,  ( $2)
addi u $2,  $2,  1
sw $2,  ( $1)

1
2
3
4
5

b. pseudo expansion 

l al ui  $1,  g_qCount
l aor i $2,  $1,  g_qCount
l w $2,  ( $2)
addi u $2,  $2,  1
move $1,  $1
l aor i $1,  $1,  g_qCount
sw $2,  ( $1)

1
2
3
4
5
6
7

d. common subexpression 
eliminat ion

l al ui  $1,  g_qCount
l aor i $2,  $1,  g_qCount
l w $2,  ( $2)
addi u $2,  $2,  1
l aor i $1,  $1,  g_qCount
sw $2,  ( $1)

1
2
3
4
5
6

e. remove ueless moves 

l al ui  $1,  g_qCount
l aor i $3,  $1,  g_qCount
l w $2,  ( $3)
addi u $2,  $2,  1
move $1,  $3
sw $2,  ( $1)

1
2
3
4
5
6

l al ui  $1,  g_qCount
l aor i $3,  $1,  g_qCount
l w $2,  ( $3)
addi u $2,  $2,  1
move $1,  $3
sw $2,  ( $3)

1
2
3
4
5
6

g. copy propagat ion

l al ui  $1,  g_qCount
l aor i $3,  $1,  g_qCount
l w $2,  ( $3)
addi u $2,  $2,  1
sw $2,  ( $3)

1
2
3
4
5

h. dead assignment  eliminat ion

l al ui  $1,  g_qCount
l aor i $2,  $1,  g_qCount
l w $2,  ( $2)
addi u $2,  $2,  1
l al ui $1,  g_qCount
l aor i $1,  $1,  g_qCount
sw $2,  ( $1)

1
2
3
4
5
6
7

c. pseudo expansion 

f. common subexpression 
eliminat ion

Figure 2.1: Sequential Applications of Various Code-Improving Transformations

A pseudo expansion transformation is the first transformation applied, which turns line 1 of step

a into lines 1, 2, and 3 of step b. Similarly, step c shows the result of a second pseudo expansion

transformation performed on line 5 of step b. These two pseudo expansion transformations do not

change the semantics of the code, as they are each performing their respective load or store of the

g qCount address with three instructions rather than one. Intuitively, we know that the address of
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g qCount does not need to be loaded twice in step c. Instead, we only require one lalui, laori pair

to initially load the g qCount address. The remaining series of transformations will work together

to remove this redundancy.

Step d of Figure 2.1 displays the result of a common subexpression elimination transformation,

which transforms the lalui instruction on line 5 of step c into a move instruction on line 5 of step

d. If there are two instructions in which the second calculates the same value as the first, common

subexpression elimination will replace the second instruction with an instruction which moves the

destination register of the first instruction into the destination register of the second instruction

(if this transformation will not alter the semantics of the code). In step c, the upper 16 bits of

the g qCount address are being assigned twice, so the destination register of the first lalui may be

moved into the destination register of the second lalui.

Note that in this example, both destination registers are register 1, so the “move $1,$1” instruc-

tion in step d is formed. This creates an opportunity for the fourth asopt-applied transformation,

a “remove useless moves” transformation, to eliminate line 5 of step d. The result of the fourth

transformation is shown in step e. Common subexpression elimination and remove useless moves

are code-improving transformations that rid the assembly of redundant or useless computations

without changing semantics.

Step f of Figure 2.1 shows the result of another common subexpression elimination transfor-

mation, which replaces the laori instruction on line 5 of step e with the move instruction on line

5 of step f. This common subexpression elimination requires the allocation of an unused register,

register 3, because register 2 had been reset in line 3 of step e.

The transformation shown in step g is a copy propagation transformation that changes the base

register of the sw command in line 6 of step f from register 1 to register 3. Copy propagation

occurs when a copy instruction—the move instruction in this example—sets register “R1” equal to

“R2” and the subsequent uses of R1 may be feasibly changed to R2, given that neither R1 nor R2

are reset in the time that R1 is alive. This is not a required transformation, but may result in less

code if it results in a dead assignment.

Step g is an example of a copy propagation transformation which allows for a dead assignment

elimination—the seventh transformation whose application is shown in step h. Copy propagation

has made line 5 of step g a dead assignment, an instruction in which the destination register is

set, but never subsequently used. Dead assignment elimination is a code-improving transformation

which removes these useless instructions, decreasing code size.
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Figure 2.2 shows a single “remove increment true dependencies” transformation. Part a shows

the assembly code before the transformation and part b shows the result of the transformation.

When comparing the two parts, we can see that the second addiu instruction from a has been

hoisted up before the first addiu instruction from a. The immediate value of the moved instruction

has also been changed from a 4 to a 12. In part a, we can see that a true dependency exists between

the first and second addiu instruction because of register 2. The first addiu is an increment which

sets and uses the same instruction while using an immediate. Therefore, the location of the second

addiu may be moved so long as its immediate value is changed accordingly and the semantics of

the code remains the same. Moving the second addiu above the first removes the true dependency

between them, and as a result of this type of transformation, asopt ’s opportunities for scheduling

instructions are increased due to fewer restrictive true dependencies.

.  .  .
addi u $2, $2, 8
sw $3, ( $2)
addi u $1, $2, 4
sw $3, ( $1)
.  .  .

a. original code

.  .  .
addi u $1, $2, 12
addi u $2, $2, 8
sw $3, ( $2)
sw $3, ( $1)
.  .  .

b. remove increment  t rue 
dependencies

Figure 2.2: Remove Increment True Dependencies Transformation Example

2.1.2 Loop Invariant Code Motion

Figure 2.3 shows the sequential application of transformations on a loop. The original code is

shown in step a, where some block within the loop is loading the address of iDist and accessing the

data at that address. Loop invariant code motion is a transformation which hoists loop invariant

code into the loop preheader to decrease the number of transformations executed in the loop body.

Loop invariant code is code that may be moved outside of the loop body without changing the

semantics of the code.

In this example, the upper 16 bits of the iDist address do not need to be loaded on each iteration

of the loop; instead, this value can be calculated in the loop preheader and referred to within the

loop body. Figure 2.3 shows how this change can be achieved with loop invariant code motion,

and is further improved by subsequent transformations. Step b shows the result of a single loop

invariant code motion transformation on the lalui instruction in step a. The lalui is hoisted to the
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Loop header

l aor i $2, $20, i Di st
l w $2, ( $2)
.  .  .

.  .  .
l al ui $20, i Di st
.  .  .

Loop Preheader

.  .  .

. . .

. . .

Loop Block 

Loop header

d. dead assignment  
eliminat ion

l al ui $2, i Di st
l aor i $2, $2, i Di st
l w $2, ( $2)
.  .  .

.  .  .

Loop Preheader

.  .  .

. . .

. . .

Loop Block 

a. original code

move $2, $20
l aor i $2, $2, i Di st
l w $2, ( $2)
.  .  .

.  .  .
l al ui $20, i Di st
.  .  .

Loop Preheader

.  .  .

. . .

. . .

Loop Block 

Loop header

b. loop invariant  code mot ion 
performed on lalui 

inst ruct ion

move $2, $20
l aor i $2, $20, i Di st
l w $2, ( $2)
.  .  .

.  .  .
l al ui $20, i Di st
.  .  .

Loop Preheader

.  .  .

. . .

. . .

Loop Block 

Loop header

c. copy propagat ion in loop 
block

Figure 2.3: Loop Invariant Code Motion with Other Transformations
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preheader, where it is stored in an available, new register—register 20 in this example. A move

instruction replaces the original lalui to access the upper 16 bits of iDist within the loop.

In step c, a copy propagation transformation in the loop body then is able to propagate register

20 into the laori instruction. The transformation in step c turns themove into a dead assignment, as

register 2 is dead because it is set in the following laori instruction. A dead assignment elimination

transformation then removes the move instruction, and the resulting code is shown in step d. Not

shown in Figure 2.3, this same applications of steps a, b, and c will then be applied to the laori

instruction. This will result in all 32 bits of the address being loaded in the preheader, and accessed

in the loop with register 20.

2.1.3 Loop Unrolling and Accumulator Expansion

Figure 2.4 displays a source code level example of the loop unrolling and accumulator expansion

optimizations. Part a of this figure shows the original code, while b displays the code after loop

unrolling has been applied with an unroll factor of 2. Loop unrolling is an optimization in which

the loop overhead and number of loop iterations is decreased by performing the work of multiple

iterations in one. The number of original iterations that are being executed within a single iteration

of an unrolled loop is called the loop unroll factor. Although increasing code size, the repetition of

the instructions within the unrolled loop body presents opportunities for parallelization.

Accumulator expansion is an optimization that may sometimes be performed after loop unrolling

has also been applied. Figure 2.4 part c shows code that has had both optimizations applied. An

accumulator is defined as a variable which, for each instruction that uses said variable in the loop,

the variable is both set and used and is operated on by a commutative operation. The accumulator

in this figure is the sum variable. When a loop is unrolled, a single accumulator can be formed into

multiple accumulators, like how sum is broken up into sum and sum2 in part c of Figure 2.4.

During accumulator expansion, the number of new accumulators which result from one original

accumulator will be the loop unroll factor - 1. A loop unroll factor of 4 will create 3 additional

accumulators if there are enough available registers. All newly-formed accumulators which have

stemmed from an original accumulator will then be joined together after the loop to rebuild the

original accumulators. Accumulator expansion breaks up the original accumulators so that each new

accumulator may become independent from the original, breaking true dependencies and increasing

instruction scheduling flexibility and opportunities for parallelization.
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# ar r  i s  an ar r ay wi t h 100 r andoml y- i ni t i al i zed el ement s
sum = 0;

f or ( i  = 0;  i  < 100;  i ++) {
sum = sum + ar r [ i ] ;

}

 

a. Loop before Loop Unrolling and Accumulator Expansion

# ar r  i s  an ar r ay wi t h 100 r andoml y- i ni t i al i zed el ement s
sum = 0;  sum2 = 0;

f or ( i  = 0;  i  < 100;  i  = i +2) {
sum = sum + ar r [ i ] ;
sum2 = sum2 + ar r [ i +1] ;

}
sum = sum + sum2;
 

c. Loop after Loop Unrolling With Unroll Factor of 2
after Accumulator Expansion

# ar r  i s  an ar r ay wi t h 100 r andoml y- i ni t i al i zed el ement s
sum = 0;

f or ( i  = 0;  i  < 100;  i  = i +2) {
sum = sum + ar r [ i ] ;
sum = sum + ar r [ i +1] ;

}

 

b. Loop after Loop Unrolling With Unroll Factor of 2
before Accumulator Expansion

Figure 2.4: Loop Unrolling and Accumulator Expansion

Figure 2.5 shows the application of one accumulator expansion transformation within an un-

rolled loop. In this example, the loop has been unrolled by a factor of two, as each instruction

in part a is repeated once. At the assembly level, an accumulator is a register. Register 4 is an

accumulator in the unrolled loop because each instruction in the loop which uses register 4 has
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the same commutative operation and also sets the register. In part b of Figure 2.5, accumulator

expansion has been applied, assigning a new destination register to the second instruction that uses

the accumulator. This effectively splits the original accumulator, register 4, into two separate accu-

mulators that are merged back together with their respective commutative operation once outside

the loop.

l w $3, ( $2)
addu $4, $4, $3
addi u $2, $2, 4
l w $3, ( $2)
addu $8, $8, $3
addi u $3, $2, 4
.  .  .

.  .  .
l i $4, 0
l i $8, 0

. . .

. . .

Loop Block 

.  .  .
addu $4, $4, $8
.  .  .

Loop header

b. accumulator expansion

Outside Loop

l w $3, ( $2)
addu $4, $4, $3
addi u $2, $2, 4
l w $3, ( $2)
addu $4, $4, $3
addi u $3, $2, 4
.  .  .

.  .  .
l i $4, 0

. . .

. . .

Loop Block 

.  .  .

Loop header

Outside Loop

a. unrolled loop

Figure 2.5: An Accumulator Expansion Transformation

2.2 Transformation Counting

A transformation range is a set of code-improving transformations sequentially applied by asopt

to either a program or assembly file. For instance, the first 50 transformations applied by the

assembly optimizer to a program is a transformation range. A transformation count is a number

assigned to a specific transformation in order to identify it.
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When the simulation of asopt-produced code produces incorrect output, we must isolate which

code-improving transformation is the cause of error. The asoptiso tool finds the first code-

improving transformation causing the simulator to produce incorrect output for a given program.

asoptiso was implemented as a C program that performs system() calls that allow it to perform

unix shell commands, which include invoking asopt, the assembler, the linker, and the simulator.

asoptiso performs a binary search on the applied transformations, using simulation to check for

correctness of various transformation ranges until the range is narrowed down to a single transfor-

mation. Note that the terms transformation range and binary search range are synonymous in the

context of error isolation with asoptiso.

asopt and asoptiso have different responsibilities relating to the transformations applied to

a program. The assembly optimizer only works with one assembly file at a time, therefore it is

responsible for tracking and controlling the assembly of transformations applied to a single assembly

file within a program. However, the assembly optimizer error isolator is responsible for tracking and

controlling the number of transformations applied to all assembly files within a program. asoptiso

is able to interact with all transformations by repeatedly running asopt on each assembly file within

a program, and storing the transformation data produced by asopt during its execution.

2.2.1 Transformation Counting in asoptiso

In order to perform a binary search on all transformations of a program, the isolator needs access

to file-offset and program-offset transformation counts. Figure 2.6 displays the distinction between

these two categories. In this diagram, multiple transformations of type “V” and type “G” are being

executed on two assembly files which, in this case, comprise the entire program. asopt applies the

following to Assembly File 1 in this order: one transformation of type V, one transformation of

type G, and one transformation of type V. Assembly File 2 has five transformations of its own,

executed in the order of V, G, G, V, V. These eight individual transformations act as columns in

Figure 2.6, where the rows represented by sections a-f show each column’s transformation count

calculated in a different way. A single transformation is not used in calculating the transformation

counts for the given row if its slot is blank and it is below a dotted, rather than solid, black line.

Section a of Figure 2.6 represents generic file-offset counting, or file-offset counting, which

numbers a transformation by the order in which it was performed by asopt, relative to the assembly

file in which the transformation is applied. The file-offset count of the second V transformation
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A ssembly F i le 1 A ssembly F i le 2

V G V V G G V V

a. fi le-offset  
t r ansfor mat ion count s

d. pr ogr am-offset  
t r ansfor mat ion count s

e.  V -r elat ive 
pr ogr am-offset  
t r ansfor mat ion count s 

f.  G-r elat ive 
pr ogr am-offset  
t r ansfor mat ion count s 

1 2 2 31

c. G-r elat ive fi le-offset  
t r ansfor mat ion count s 1 21

b. V -r elat ive fi le-offset  
t r ansfor mat ion count s 

1 2 3 5 6 7 84

2 31

1 2 4 53

1 2 3 2 3 4 51

Figure 2.6: File-Offset vs. Program-Offset Transformation Counts

in Assembly File 2 is 4. Generic file-offset transformation counting does not distinguish between

different transformation types, unlike specified file-offset transformation counting.

A specified file-offset transformation count is more specifically called an X-relative file-offset

transformation count, where X is the flag representing the transformation type to which the file-

offset counting is relative. Figure 2.6.b shows the V-relative file-offset counts, while c shows

G-relative file-offset counts. The V-relative file-offset count for the second V transformation in

Assembly File 2 is 2 because it is the second transformation among only the V transformations in

that assembly file.

Section d of Figure 2.6 shows generic program-offset counting, or program-offset counting,

which orders transformations relative to the entire program. The second V of Assembly File 2

has a program-offset count of 7. We also track specified program-offset counts which are called X-
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relative program-offset transformation counts, where X is the flag representing the transformation

type to which the program-offset counting is relative. Section e displays V-relative program-offset

counts, and Section f shows the G-relative program-offset counts. The second V of Assembly File

2 is the fourth V type transformation of all V type transformations within the program, so it has

a V-relative program-offset transformation count of 4.

A single transformation of type X will have four transformation counts associated with it: file-

offset, program-offset, X-relative file-offset, and X-relative program-offset. asoptiso will calculate

generic and specified program-offset transformation counts, but will use all types of transformation

counts during its execution. Due to the fact that asopt operates on one assembly file at a time, it is

is responsible for calculating and using both generic and specified file-offset transformation counts.

2.2.2 Transformation Counting in asopt

We have implemented the ability to control and track the amount of transformations being

performed by asopt. Command line flags passed to asopt control which types of transformations

will be applied. For example, passing the V flag will tell asopt to apply the “VLIW block scheduling”

optimization. There are also some optimizations, called “minor optimizations”, which will always

be applied each time asopt is run, even if they are not specified with a flag.

A user is able to specify a maximum limit to the number of code-improving transformations

applied by asopt to the given assembly file. A number immediately following a command line

flag X will implement a maximum X-relative file-offset transformation count, where all following

transformations of any type are not applied. There can be one maximum limit per flag, for any

number of flags; however, only the limit that is reached first in sequential transformation application

order will matter because all transformations are stopped after a limit is reached. For example, if we

run asopt with command line argument “VG2” on Assembly File 2 of Figure 2.6, all transformations

will stop after applying the transformation with a G-relative file-offset count of 2. This specific

transformation has a generic file-offset count of 3; therefore, all transformations with a generic

file-offset count of 4 or greater will not be applied. Specifying flag Y will represent all types of

transformations being applied, rather than a specific type. If, for Assembly File 2 of Figure 2.6, we

pass “VGY4” this will implement a maximum generic file-offset transformation count of 4. asopt

will apply only the first 4 transformations of any type to Assembly File 2.

After the maximum limit transformation is applied, all required transformations will continue

to be applied by the assembly optimizer even though all code-improving (optional) transformations
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will cease. For example, let’s say that a maximum limit on a code-improving transformation type

has been implemented on SCALE VLIW code. The SCALE VLIW simulator requires instructions

to be scheduled into VLIW packs, so after a maximum limit has been reached, the code within the

remaining basic blocks that have not yet been scheduled by asopt must be placed such that there

is one instruction per pack.

Having control over the type and number of transformations applied in asopt is critical for

implementing the use of the isolation flag and non-isolation flags in asoptiso. The isolation flag

is the asopt command line flag which engages transformations of a specific type, where the first

erroneous transformation is suspected to be of this type. The non-isolation flags are an optional

string of command line flags used in conjunction with the isolation flag. Note, only the isolation

flag transformations will be isolated, although the non-isolation flag transformations will also be

used to optimize the program if they are specified.

Let’s say we are isolating on the program represented by Figure 2.6, where G is the isolation

flag and V is the non-isolation flag. asoptiso will run a binary search to find the first erroneous

transformation of type G. Therefore, the binary search ranges will be transformation ranges from the

G-relative program-offset transformation counts because we are trying to isolate the first erroneous

G transformation within the program, among all G transformations within the program. For

this example, we want to know which of the three transformations represented in section f of

Figure 2.6 is the first transformation causing the simulation to produce incorrect output. The V

transformations being performed within the limits of the binary search range will still be applied.

If a transformation type suspected to contain the first erroneous transformation is not known,

the isolation flag may be set to Y to represent all applied transformations and all transformations

will be isolated. If we want to find the first erroneous transformation in the program of Figure 2.6,

which could be of type V or G, we would set “Y” as the isolation flag and “VG” as the non-isolation

flags. This would then result in the binary search ranges to be transformations ranges from the

generic program-offset transformation counts in section d of Figure 2.6.

Two functions within asopt, optimize() and incropt(), track and control the application of file-

offset transformations. asopt ’s optimize() function is represented in Figure 2.7, and is responsible

for the application of optimization phases on a function within the assembly file input to asopt.

In optimize(), each optimization is applied to the function within the assembly code by a call to

other functions within asopt itself. In the code snippet of asopt shown in Figure 2.8, we can see
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that optimize() is applied to each function within an assembly file before the optimized assembly

for that function is dumped to an output file.

Figure 2.7: Transformation Counting in asopt : optimize()

Figure 2.8: Transformation Counting in asopt : calling optimize()

Figure 2.7 shows that before optimize() is called, a global boolean called moreopts is set to true.

This boolean is a flag that indicates whether or not asopt should continue to apply code-improving

transformations to the current function that asopt is processing. When we reach a maximum limit,

and code-improving transformations can no longer be applied to the assembly file, the control will

be returned to the setjmp() within optimize(). At this point, moreopts will be set to false and asopt

will proceed with applying required transformations to the rest of the function within the assembly
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file. Once a maximum limit has been reached, it will stay in effect for the duration of the assembly

file. Code-improving transformations will continue to not be applied in subsequent files.

A key component to implementing maximum limits is being able to identify the start of a code-

improving transformation and then choose whether or not to perform it. We implemented a function

named incropt()–short for ”incrementing optimizations”–in the assembly optimizer which checks

if a transformation should be performed. Figure 2.9 shows the code for the incropt() function.

incropt() is called immediately before asopt reaches the point after the analysis determines that

a code-improving transformation can be applied. This function takes in the argument opt, which

represents the transformation type of the transformation about to be applied.

The code shown in Figure 2.9 can be interpreted in the following way: if this transformation of

type opt which is about to be applied will exceed a maximum limit, set moreopts to false and use a

longjmp() to return to the associated setjmp() in optimize() in order to stop the further application

of code-improving transformations. If this transformation will not exceed a maximum limit, adjust

the totopts structure accordingly. This combination of calling setjmp() and longjmp() allows us

to stop applying code-improving transformations at any point in the binary search when isolating

assembly optimizer errors.

The totopts array has an entry for each type of code-improving transformation. Each entry

contains the fields max and count. The maximum number of applied transformations of the given

type that asopt allows in the assembly file is represented by the max field. The count field contains

the number of times a transformation of the given type has been applied in the assembly file. The

max field holds a maximum limit. There may exist a maximum limit associated with each type

of transformation in totopts, but after the first maximum limit is reached by asopt, all subsequent

code-improving transformations will not be applied to the assembly file.

We also implemented a second type of maximum which limits the number of all types of trans-

formations within an assembly file. As seen in line 10 of Figure 2.9, a valid optimization type is

ALL OPTS, which allows totopts to store max and count information for transformations of all

types. Line 9 increases the count that is specific to the transformation’s own type, and line 10

increments the count of all transformations. The given transformation will not be applied if the

execution of this transformation would exceed either type of maximum limit, which is checked at

lines 3 and 4 of Figure 2.9.

The transformation information in totopts will be output as a file called “trans count.txt”

once asopt has finished processing an assembly file. “trans count.txt” contains the number of
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Figure 2.9: Transformation Counting in asopt : incropt()

transformations applied per transformation type, the number of transformations applied in total

regardless of type, and the number of transformations applied per function regardless of type.

“trans count.txt” will also contain the name of the assembly file to which these transformations

were applied. “trans count.txt” supplies critical file-offset transformation count data to the error

isolator.
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CHAPTER 3

THE ERROR ISOLATOR

3.1 Error Isolation Process

asoptiso performs a binary search on all applied transformations of a specified type, or of

any type, in order to find the first erroneous transformation being applied by asopt throughout

a program. The asoptiso process consists of three general steps, the first of which is to calculate

program-offset transformation count data. The second and third relate to the binary search: apply

transformations to the program up to a specific transformation count and simulate the assembly

optimized program.

The three main steps of asoptiso are shown at a high-level in Figure 3.1, where the first, second,

and third steps are represented by the a, b, and c sections, respectively. Before these main steps

begin, asoptiso reads in a configuration file which specifies information necessary for isolation,

including which types of transformations should be applied to the given program via the isolation

and non-isolation flags. After reading in the configuration file, but before step a, asoptiso performs

two checks. The first makes sure that the given isolation flag is performing transformations in

the program. The second then ensures that the simulation output is correct when applying only

non-isolation flag transformations to the program.

3.1.1 Formation of Program-Offset Transformation Counts

Step a of Figure 3.1 depicts asoptiso creating the “total trans count.txt” file. To create this

file, asoptiso runs the assembly optimizer on each assembly file in the program such that asopt is

applying all transformations of the types specified by the isolation and non-isolation flags. After

asopt processes an assembly file, the isolator will read in “trans count.txt” to gain file-offset trans-

formation count data. The information in “trans count.txt” will be used to calculate and append

program-offset transformation count data to “total trans count.txt”.

For example, let’s say that asoptiso is running on the program depicted by Figure 3.2, where

the isolation flag is V and non-isolation flag is G. During step a of Figure 3.1, the isolator will use

the V-relative file-offset transformation counts to form V-relative program-offset transformation

counts. The isolator will also use the generic file-offset transformation counts to calculate and store
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asopt
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False al l  fi les 
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r ead configur at ion fi le
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fi le
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assembly fi le

Figure 3.1: Optimization Error Isolation Process

the generic program-offset transformation counts. Due to the fact that the isolator will only isolate

on transformations performed by the isolation flag, V-relative program-offset counts will be the

only specified program-offset counts in “total trans count.txt”. The “total trans count.txt” which

would be formed after the completion of step a of Figure 3.1 is shown as Figure 3.3, where the

ellipses represent program-offset counts relating to the assembly file’s functions.
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A ssembly F i le 1 A ssembly F i le 2

V G V V G G V V

a. fi le-offset  
t r ansfor mat ion count s

d. pr ogr am-offset  
t r ansfor mat ion count s

e.  V -r elat ive 
pr ogr am-offset  
t r ansfor mat ion count s 

1 2 2 31
b. V -r elat ive fi le-offset  
t r ansfor mat ion count s 

1 2 3 5 6 7 84

1 2 4 53

1 2 3 2 3 4 51

Figure 3.2: Transformation Counts with an Isolation Flag of V

Tot al  t r ansfor mat ions for  A ssembly F i le 1: 1 - 3
Tr ansfor mat ion couns for  V : 1 - 2

. . .

Tot al  t r ansfor mat ions for  A ssembly F i le 2: 4 - 8
Tr ansfor mat ion count s for  V : 3 - 5

. . .

Figure 3.3: total trans count.txt of Program Depicted in Figure 3.2

3.1.2 Binary Search

Step b of Figure 3.1 represents producing the optimized assembly of the program to be simulated.

When transitioning from step a to step b, the binary search range is initialized to be the range of all

applied transformations of the isolation flag type within the program. If a suspected transformation

type is not known, the isolation flag may be set to Y and the binary search range will be initialized

to the range of all transformations applied in the program. A binary search range “midpoint” is set

to be the middlemost transformation within the binary search range. When transitioning from step

c to step b, the midpoint will be chosen based on an updated binary search range, which itself has
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been chosen based on the most recent simulation result. The midpoint is a specified program-offset

transformation count to which transformations will be applied inclusive. The details of step c will

be explained later in this section.

In order for asoptiso to apply transformations to the program based on the midpoint, it must

first convert from a specified program-offset count to a specified file-offset count. For example, let’s

say that asoptiso is isolating on V transformations applied in the program represented by Figure 3.2.

In this example, asoptiso has just transitioned from step a to step b of Figure 3.1. asoptiso has

initialized the midpoint to the V-relative program-offset count of 3 since 5 V transformations are

applied to the program. The isolator will then transfer the V-relative program-offset midpoint of 3

into the V-relative file-offset midpoint of 1—using the information in “total trans count.txt”—and

store the name of the assembly file in which it is located. In this example, this file is Assembly File

2 of Figure 3.2, but we will refer it to more generally as the “midpoint assembly file”.

As asoptiso is processing each assembly file as shown in step b of Figure 3.1, it will first check

if it is the midpoint assembly file. The isolator will inform asopt to apply transformations without

restriction to all assembly files prior to the midpoint assembly file. Once at the midpoint assembly

file, the isolator will have asopt apply all transformations up to, and including, the specified file-

offset midpoint. In the example using Figure 3.2, in which the file-offset midpoint is 1, asoptiso

restricts the assembly optimizer to only applying the first transformation in Assembly File 2. The

isolator then specifies that no code-improving transformations be applied to the following assembly

files after the midpoint assembly file. In this example, neither G nor V transformations are applied

to any assembly files after processing Assembly File 2.

3.1.3 Simulation

Step c in Figure 3.1 represents the simulation of the program optimized by step b of Figure 3.1.

The optimized assembly files are input to the assembler and linker, which produces an optimized

executable program. This executable is input to the simulator, and the simulation output will be

compared against the program’s reference output file to determine if the simulation was successful.

A new binary search range is determined based on whether simulation output was correct or

incorrect and the isolator returns to step b of Figure 3.1 if the new range is larger than one

transformation. The isolation is complete when the binary search range has been narrowed down

to one transformation, which is the first erroneous transformation.
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3.2 Error Isolation Features

3.2.1 The Configuration File

The process depicted in Figure 3.1 requires flexibility from asoptiso. The isolator must work with

multiple simulators, code transformation combinations, libraries, and user preferences. Information

about these components is specified in a configuration file named “iso.config”, an example of which

is shown in Figure 3.4. This is the same configuration file which is read by asoptiso at the beginning

of isolation, as can be seen in Figure 3.1. There must be an “iso.config” in the directory in which

asoptiso is being run. Although this creates redundancies, it allows for necessary flexibility since a

compiler writer may often need to be simultaneously isolating errors on multiple programs, where

each may require a different isolation configuration.

machine: scale
non-isolat ion flags: V G
isolat ion flag: U
binar y sear ch r un against  golden (y / n) : n
minim ize di ff of iso_ r esult  fi les (y / n) : n
binar y sear ch st ar t  r ange: 30
binar y sear ch end r ange: 50
pat h t o sr c fi les dir :
pat h t o opt  out put  dir :
makefi le inst r uct ion t o cr eat e sim ob j / asm fi les: 'make bui ld_ only '
makefi le inst r uct ion t o r un simulat ion: 'make t est '
makefi le inst r uct ion t o r un t imed simulat ion: 'make t est _ t imed'
use simulat ion t imeout  (y / n) : n
t imeout  as fai lur e (y / n) :
t imeout  (m inut es) :

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Figure 3.4: Optimization Error Isolation Configuration File

Line 1 of this figure shows which simulation machine is to be used with testing. Lines 2 and 3

let the user declare non-isolation flags and an isolation flag. In this configuration example file, the

program that is being run through asoptiso will apply V, G, and U type transformations, but only

the U transformations will be isolated.

Line 4 allows the user to choose if, in step b of Figure 3.1, the files that are processed following the

midpoint assembly file are the original MIPS assembly files (the “golden” files) or asopt-produced

assembly with only the non-isolation flags applied. If “n” is selected, files following the midpoint

assembly file are asopt-produced. This feature is automatically turned off when the simulation

machine is set to the SCALE VLIW simulator, because SCALE instructions must be scheduled in

VLIW packs.
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Lines 6 and 7 allow the user to isolate on a specific range of isolation flag transformations. If

we know that the first erroneous U transformation lies somewhere between the 30th and 50th U

transformations, we can begin the binary search with this range. Combined with the fact that

asoptiso prints status updates as it executes, which includes the transformation range, this means

the user may stop isolation and resume it at a later point. This feature is useful when the processor

crashes during the error isolation process.

Lines 8 and 9 let the user clarify whether the first erroneous transformation is in the assembly

files of a program or within a library being used by the program. Lines 13-15 are a feature to

handle infinite loops or long runtimes. For instance, if some isolation flag transformation causes an

infinite loop on the execution of an otherwise 2-minute simulating program, the user can choose to

treat a 3-minute runtime as a simulation failure.

The configuration file provides a link between the process of isolation and checking simulation

results. The execution of simulation, assemblage and linkage for simulation, and reference file

comparison are the responsibilities of a program’s makefile. The makefile will print a Unix “cmp”

result after simulation, which is then stored and read by the isolator. The asoptiso configuration

file takes the name of the relevant makefile rules in lines 10-12 of Figure 3.4 so that the specifics of

simulation are abstracted from the isolator.

Certain transformations cannot be isolated when they are not optional. In the early stages

of developing the error isolator, required transformations were being isolated when Y was set as

the isolation flag. This kept asoptiso from finding the first erroneous transformation. The lack

of a required transformation’s application to a program after the binary search midpoint was

reached caused each simulation of the program to produce incorrect output. This occurred when

accidentally isolating the required (non-optional) transformation of saving and restoring new callee-

save registers which are allocated during a code-improving transformation. When this problem

with the error isolator occurred, it was known that the required transformations were not the

cause of error, and therefore the problem was solved by not tracking the transformation counts

of required transformations in asopt. There may be restrictions on transformations depending

on which simulation machine is being used. For instance, the standard VLIW simulator requires

pseudo expansion be applied to all files and libraries of the simulated program. This is because the

VLIW simulator requires a 1-1 mapping between assembly instructions and machine instructions for

proper VLIW pack alignment. When the standard VLIW machine is specified, pseudo expansion

may never be isolated on, and in fact must always be applied.
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3.2.2 Diff Minimization

A ssembly F i le 1

V U V V

1 2 3 4

V U V V

5 6 7 8

cba

a. last  cor r ect  U  t r ansfor mat ion 
b. t r ansfor mat ion befor e fi r st  er r oneous U  t r ansfor mat ion
c. fi r st  er r oneous U  t r ansfor mat ion

Figure 3.5: Optimization Error Isolation Diff Minimization

An additional action called diff minimization is performed to further enhance the error isolation.

Figure 3.5 shows eight asopt transformations applied to Assembly File 1. Note that there are three

transformations of interest labeled as a, b, and c, which are file-offset transformations 2, 5, and 6,

respectively. Let’s say that isolation is performed on a program with an isolation flag of U and

non-isolation flag of V, so only U type transformations are being isolated. The result of asoptiso

reveals that Figure 3.5’s transformation c is the problem. This means that the U transformations

up to, and including, transformation a are not causing the simulation error. To perform diff

minimization, the isolator will simulate again, applying transformations up to transformation b

inclusive. If this simulation is correct, we can decisively know that transformation c is the first

erroneous transformation among all types. Otherwise, the first erroneous transformation is located

after transformation a but before transformation c, and a second binary search is now performed

in this new search range.

Diff minimization provides a check that the transformations of the isolation flag type actually

contain the error—although this is likely the case. However, it is possible that the first erroneous

transformation may not be of the isolation flag type due to interactions between flags that are not

obvious to a compiler writer testing only whole flags at a time. Although rare, this scenario has

occurred during the testing of the pseudo expansion transformation. A pseudo expansion trans-

formation appeared to be causing incorrect simulation output, but rather it was the interaction
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between a minor optimization and the pseudo expansion optimization. This caused the first er-

roneous transformation to be a minor optimization, despite the minor optimization not causing

incorrect simulation when used alone.

Although we have not yet encountered this during testing, it is also possible that the first erro-

neous transformation may lie outside of the isolation flag transformation range due to interactions

between transformations. This situation can be handled by running asopt with the Y flag, with a

new binary search range that can be found by looking at the isolator terminal output. For exam-

ple, if all binary search iterations produced correct simulator output, the user can then isolate on

the range of all types of transformations performed after the generic program-wide transformation

count equivalent to the last transformation performed by the fail flag.

Diff minimization serves to increase the precision of the isolator results. As shown in the example

in Figure 3.5, a number of transformations may be occurring between the first erroneous isolation

flag transformation and the last known correct isolation flag transformation. Diff minimization

ensures that there is only a difference of one transformation, of any type, between the first found

erroneous transformation. This results in a smaller difference between the assembly output files

produced by asoptiso, allowing for easier error spotting by the compiler writer. This method

provides the same scope as isolating on all transformation types, while typically resulting in a

much more practical and faster way to narrow down the first erroneous transformation.

3.2.3 Isolator Output

Before the binary search begins, asoptiso prints a confirmation of all configuration data for

the isolation which is about to occur. As it is executing, asoptiso prints status updates to the

user. Among the information presented is the transformation range being tested and its associated

midpoint assembly file, specified file-offset midpoint, and simulation result (success or failure). If

the simulation run was a failure, it will print out the error message resulting from the execution of

assembly optimized code.

asoptiso also provides the user a simple method to assess and debug results. Once the isolation

is complete, the user receives three output files: the assembly file applying the first erroneous

transformation, this same assembly file without the first erroneous transformation, and a simulation

result data file. These two assembly files may be used with a diff tool to quickly spot errors since

they will only differ by the one erroneous transformation. The third file lists relevant data about the

isolation run, including the specified file-offset transformation count of the found first erroneous
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transformation, which can be used for efficient debugging. For instance, if the first erroneous

transformation is found to be the second U transformation of some assembly file, a conditional

breakpoint can be placed at the incropt() call at this point. Because incropt() is called before a

code-improving transformation is about to be applied, this breakpoint will stop immediately prior

to the application of the second U transformation, and the compiler writer can determine why the

transformation was erroneously applied.

The asoptiso tool may also help to find errors originating from the simulators themselves.

This may occur if no problem is apparent in the diff of files produced by asoptiso. Additionally, a

transformation found by the isolator to be erroneous may work for a first simulator but not a second

one, revealing that the problem comes from the second simulator. We found that this scenario was

often the case, and certain errors were revealed to be originating from the VLIW simulator when

the same code would work with the functional simulator. This benefit is especially helpful when a

new simulator is being introduced.
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CHAPTER 4

RESULTS

asoptiso speeds up isolation by decreasing the number of simulations performed as much as possible.

asoptiso takes in a isolation flag, which is useful since compiler writers often implement one new

optimization at a time. If the flag combination “AB” has been successfully simulated, but “ABC”

has not, we can assume the problem likely lies in the newest flag added. Knowing which transfor-

mation type on which to focus the error isolation provides a significant advantage: it decreases the

initial range of transformations which may contain an error, resulting in fewer steps in the binary

search and therefore minimizing the number of simulations required to isolate the first erroneous

code-improving transformation. For any given program, there will be a relatively sizeable amount

of transformations performed by asopt, and starting a binary search with a isolation flag could be

the difference between isolating on 10,000 transformations of all types versus 100 transformations

of a single type. When the programs being tested may take hours to simulate, even a small decrease

in the number of simulations is highly beneficial.

We can calculate the number of required simulations in order for asoptiso to find the first

erroneous transformation among all transformations of any type as ⌈log2 n⌉ + 1, where n is the

total number of transformations performed in a program. The + 1 accounts for one simulation

that occurs before step a of Figure 3.1 in order to check that the program simulates correctly when

only non-isolation flags are applied. We can also approximate the number of required simulations

when asoptiso is using an isolation flag as ⌈log2 ni⌉ + 2. For this calculation, ni is the number of

transformations of the isolation flag’s type applied in the program, and the + 2 is, in addition to

the simulation check before step a of Figure 3.1, the simulation required by diff minimization to

ensure the found transformation is the first erroneous transformation of all types.

Table 4.1 shows the number of transformations and the resulting required number of simulations

for isolation on multiple benchmark programs from the SPEC 2006 integer benchmark suite. The

column “Isolating on All Trans” displays the transformations and required simulations for isolating

on transformations of any type. In this case, asoptiso was isolating on the V, G, F, and U type

transformations. “Isolating on Unrolling Trans” displays transformations and required simulations

for isolating on asopt ’s newest code-improving transformation, loop unrolling. In this case, asoptiso
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was using an isolation flag of U and non-isolation flags of V,G, and F. Both categories’ “num trans”

were obtained by counting the number of transformations applied to only the benchmark program

itself, and not the libraries used by the program.

Table 4.1: Assembly Optimizer Error Isolation Results

Benchmark Isolating on All Trans Isolating on Unrolling Trans
num trans num sims num trans num sims

bzip 6,574 14 23 7
gcc 339,921 20 243 10
gobmk 87,357 18 155 10
h264ref 59,502 17 232 10
hmmer 31,232 16 52 8
libquantum 3,790 13 8 5
mcf 1,216 12 1 2
perlbench 122,691 18 67 9
sjeng 13,570 15 32 7

There is a significant decrease in the number of required simulations for isolating on loop

unrolling versus isolating on transformations of any type. This difference is insignificant for quick-

running programs on the most simple simulator; however, it is highly significant in saving time

for longer-running programs and will become increasingly relevant as compiler writers progress in

the testing of different SCALE ISAs and the different simulators for those ISAs. For instance,

the SCALE pipelined simulator is approximately four times slower than the SCALE functional

simulator. Even minute differences in the number of simulations saved will become more important

as the simulation machines used for testing become slower and more complex.
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CHAPTER 5

RELATED WORK

There has been a significant amount of work to assist in the testing of compilers. This includes

complex methods such as compiler verification and translation validation, in addition to more

practical methods such as constructing test programs, determining whether the output of a compiler

is correct or not, optimizing the testing process, and post-processing of test results [4]. Isolating the

code-improving transformation that causes incorrect output and the place in the compiler where

that transformation is applied falls in the last category.

Compiler verification is a method of compiler testing in which the goal is to rigorously prove the

correctness of a compiler’s output in advance. Compiler verification aims to prove that a compiler’s

output will always be correct, rather than verifying correctness of a compiler’s output on a set of

test programs. Although providing a more generic form of testing which is not reliant on the chosen

test cases, compiler verification is a highly complex task. Furthermore, each time a change is made

to the compiler, the verifying proofs must be redone, hindering the incentive to implement changes

and improvements.

In response to the implementation difficulty of compiler verification, there arose a method

called translation validation [1], which proves that a compiler’s produced output is the same as

the provided input, independent of how the output has been produced. Automated translation

validation requires a common semantic framework between the source code and generated target

code, automated production of the proof which shows that a compiler’s output is the same as its

input, and a proof checker.

A modern example of translation validation is Alive2, which is a bounded translation validation

tool for the intermediate representation (IR) used by the open source compiler LLVM [6]. Alive2

is an open source, fully automated tool which bounds the resources used to perform verification.

Although proving the functional correctness of LLVM is a highly impractical task, Alive2 offers a

way in which to check that individual executions of the compiler are correct. Although providing

benefits over compiler verification, translation validation is still a complex testing method which

may not always be practical.
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A tool called pLiner was developed to isolate lines of code that perform floating-point oper-

ations that have compiler-induced variability [5]. Floating-point (FP) arithmetic does not satisfy

associative and distributive laws. Thus, a compiler optimization that changes the order of FP

operations can induce inconsistences in the output. The authors wrote a tool that manipulates

the abstract syntax tree of a program to rewrite the source code. They change the code to use

long double types instead of float and double types to detect changes in the program output. They

apply a binary search to isolate the problem at each of the following levels: function, loop, basic

block, source line. This allows them to isolate portions of the code that can benefit from using the

additional precision.

A tool known as bugfind was developed to assist in the debugging of optimizing compilers [3].

The bugfind tool attempts to determine the highest optimization level at which each file within a

program can be compiled and produce correct output. To isolate a function that was not optimized

correctly, one has to place each function within the application in a separate file. This tool also

relies on a different compilation of each function that produces correct code. The bugfind tool uses

the make facility in Unix and is generalized enough to work with different compilers.

The vpoiso tool finds not only the failing module, but also the first code-improving transforma-

tion within a function that causes incorrect results [2, 8]. The transformation number can be used

to access the point in the vpo compiler when the transformation is about to be applied. This finer

level of isolating errors is important when optimization errors occur in large functions or code size

increasing transformations are performed.

The asoptiso is most similar to the vpoiso tool in that both tools isolate the first code-improving

transformation that causes incorrect output during execution. asoptiso in addition allows for the

isolation of only a code-improving transformation for a specified type of optimization to decrease the

error isolation time, which is important when isolating errors using long-running simulations. We

have shown this type of error isolation can significantly decrease the required number of simulations

when a specific compiler optimization is being tested that is likely the cause of the error.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

The asoptiso tool has been crucial in testing the simulation output accuracy of asopt-produced code

for a setting in which both the simulator and assembly optimizer are for a new ISA. Throughout

the testing process, asoptiso has significantly reduced the amount of time required for compiler

writers to find and debug various erroneous transformations applied by asopt. The process of test-

ing one new transformation at a time works well with the implementation of an isolation flag. A

configuration file gives asoptiso flexibility regarding which simulation machine is used, flag combi-

nations, starting binary search ranges, and timed simulation testing. After the completion of an

error isolation run, the three output files provide information which allows the user to go directly

to the first erroneous transformation with a debugger.

There are several tasks which could be implemented for future work on the assembly optimizer

error isolator. The first would be to allow multiple isolation flags. In these earlier stages of testing

the assembly optimizer, only two or three flags are typically being used with the isolator. Given

this, and the ability to use diff minimization to find a first erroneous transformation of a non-

isolation flag type so long as it is in the isolation flag range, there has been very little need to

isolate on multiple flags at once. However, as the assembly optimizer becomes more complex, and

a greater number of optimizations are tested together, there will likely arise a need for testing

multiple isolation flags at once due to possible future interactions between transformations.

An additional improvement which could be made to asoptiso is increased flexibility with new

simulators or simulation tools. In the future, the way that the simulation tools interact with the

assembly optimizer may change. It is also possible that the assembly optimizer may have to vary

it’s transformation application slightly depending on which simulation machine is being used—a

current example of this already exists in that pseudo expansion must be applied when implementing

the SCALE VLIW ISA. Currently, the isolator interacts with the assembler, linker, and simulator

via each program’s makefile rules, but future changes may allow for a more efficient method. As

the SCALE research continues, the isolator may need an improved or more thorough configuration

file to adjust for different simulator tools as smoothly as possible.
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asoptiso could be further improved by a change in how it is used. Currently, the isolator is

executed once and the user must wait for the result. This process could be sped up through

parallelism by simultaneously running multiple instances of the isolator on the same program, but

with different search ranges. There is opportunity for further speedup by using this method on

a faster, more powerful multiprocessor machine. A program could be made to automatically run

simultaneous instances of the isolator and analyze the results. With the current use of the isolator,

waiting for the isolator to find the first erroneous transformation on a program which executes for

a single simulation for many hours or days is not a feasible option. This has not been an issue so

far, since errors in faster running programs often fix the same problems within the longest running

programs; however, this may not be the case in the future.
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[7] Soner Önder and Rajiv Gupta. “Automatic generation of microarchitecture simulators”. In:
IEEE International Conference on Computer Languages. Chicago, May 1998, pp. 80–89.

[8] D. B. Whalley. “Automatic Isolation of Compiler Errors”. In: ACM Transactions on Program-
ming Languages and Systems 16.5 (Sept. 1994), pp. 1648–1659.

37



BIOGRAPHICAL SKETCH

Abigail Mortensen completed her Bachelor of Arts in Computer Science at Florida State University

in 2020. In the last year of her undergraduate program, she began her time as a research assistant for

Dr. David Whalley. She has continued to be a research assistant with Dr. Whalley in the compilers

and computer architecture office until the completion of her Master’s degree. Intermittently, Abigail

has been a teaching assistant for Florida State University’s undergraduate software engineering and

computer architecture courses, where she gained experience in teaching recitations. As a research

assistant, Abigail has worked on building testing environments, testing tools, and implementing

functionality of an assembly optimizer for a new instruction set architecture.

38


