
Guaranteeing Hits to Improve the Efficiency of a Small Instruction Cache

Stephen Hines, David Whalley, and Gary Tyson

Florida State University

Computer Science Dept.

Tallahassee, FL 32306-4530

{hines,whalley,tyson}@cs.fsu.edu

Abstract

Very small instruction caches have been shown to

greatly reduce fetch energy. However, for many appli-

cations the use of a small filter cache can lead to an

unacceptable increase in execution time. In this paper,

we propose the Tagless Hit Instruction Cache (TH-IC),

a technique for completely eliminating the performance

penalty associated with filter caches, as well as a fur-

ther reduction in energy consumption due to not having

to access the tag array on cache hits. Using a few meta-

data bits per line, we are able to more efficiently track

the cache contents and guarantee when hits will occur

in our small TH-IC. When a hit is not guaranteed, we

can instead fetch directly from the L1 instruction cache,

eliminating any additional cycles due to a TH-IC miss.

Experimental results show that the overall processor en-

ergy consumption can be significantly reduced due to the

faster application running time and the elimination of

tag comparisons for most of the accesses.

1 Introduction

Embedded systems are often subject to tighter power

constraints due to their portable nature and thus in-

creased dependence on batteries. Instruction fetch is

a prime area to investigate since previous studies have

shown that the instruction cache (IC) can be responsi-

ble for a significant portion of the energy consumption,

up to 27% of the total processor power requirements

on a StrongARM SA110 [17]. Although traditional

caches are often found on embedded processors, many

also include specialized cache structures to further re-

duce energy requirements. Such structures include filter

caches [13, 14], loop caches [15], L-caches [2, 3], and

zero-overhead loop buffers (ZOLBs) [6]. Techniques

like drowsy caching [12] can also be applied to further

reduce power consumption.

Figure 1. Traditional L0/Filter and Tagless
Hit Instruction Cache Layouts

Filter or L0 instruction caches (L0-IC) are small, and

typically direct-mapped caches placed before the L1 in-

struction cache (L1-IC) for the purpose of providing

more energy-efficient access to frequently fetched in-

structions [13, 14]. Since the L0-IC is accessed instead

of the L1-IC, any miss in the L0-IC incurs an additional

1-cycle miss penalty prior to fetching the appropriate

line from the L1-IC. Figure 1a shows the traditional lay-

out of a small L0/filter IC. Although an L0-IC reduces

the requirements for fetch energy, these miss penalties

can accumulate and result in significant performance

degradation for some applications. It is important to note

that this performance loss will indeed reduce some of the

energy benefit gained by adding the L0-IC due to having

to actively run the processor for a longer period of time.

The inclusion of an L0-IC in a memory system design is

essentially a tradeoff providing a savings in fetch energy

at the expense of longer execution times.

In this paper we propose an alternative configuration

for a small instruction cache to be used in conjunction



with an L1-IC. This configuration is shown in Figure 1b

and is related to previous research that has sought to by-

pass the small cache based on predictions [20]. We have

renamed the small IC as a Tagless Hit instruction cache

or TH-IC. Using just a few specialized metadata bits,

the TH-IC supplies a fetched instruction only when the

instruction is guaranteed to reside in it. As a side ef-

fect of the way in which guarantees are implemented,

we no longer require tag comparisons on hits, hence the

term “Tagless Hit”. The small size of the cache and its

novel use of metadata is what facilitates the ability to

make guarantees about future cache hits, while still re-

taining the ability to operate and update in an energy-

and performance-conscious manner. A TH-IC of sim-

ilar size to an L0-IC has nearly the same hit rate and

does not suffer a miss penalty since the TH-IC is not

used to fetch an instruction when a miss may occur. In

essence, the TH-IC acts as a filter cache for those in-

structions that can be determined to be hits in the TH-IC,

while all instructions that cannot be guaranteed to reside

in the TH-IC access the L1-IC without delay. Addition-

ally, the energy savings is greater than using a L0-IC

due to the faster execution time (the TH-IC has no miss

penalty), the reduction in ITLB accesses (the TH-IC can

be accessed using bits from the portion of the virtual ad-

dress that is unaffected by the translation to a physical

address), as well as the elimination of tag comparisons

on cache hits (since we do not need to check a tag to

verify a hit).

This paper makes the following contributions. We

show that a simple direct-mapped L0/filter instruction

cache can be replaced with a Tagless Hit instruction

cache (TH-IC) that does not require a tag comparison

when an instruction can be guaranteed to be in the TH-

IC. Additionally, the TH-IC can be bypassed when a

hit is not guaranteed, resulting in the elimination of the

L0-IC performance penalty. We also show that the hit

rate for a TH-IC is only slightly lower than an L0-IC of

equivalent size. This leads to a technique for instruction

cache design that features both higher performance and

greater energy efficiency than the current state of the art

in filter cache design and implementation. It also makes

the inclusion of a small, energy-conscious instruction

cache feasible even for high performance processors.

The remainder of this paper is organized as follows.

First, we describe the design of the Tagless Hit instruc-

tion cache in detail, including various configurable op-

tions that facilitate the effective scaling of circuit com-

plexity. Next, we present our experimental framework

along with a thorough evaluation of the TH-IC. Third,

we review related research in reducing instruction fetch

energy. Finally, we present our conclusions.

fm
true misses

potential misses
guaranteed hits (or just hits)

potential hits

TH−IC accesses

Figure 2. Terminology Used to Describe

Tagless Hit Instruction Cache Accesses

2 Tagless Hit Instruction Cache (TH-IC)

This section presents an overview of the design of the

Tagless Hit instruction cache (TH-IC). First, we describe

the intuition behind removing tag comparisons from our

small IC, as well as the principles involved in guarantee-

ing when the next instruction fetch will be a hit. Second,

we explore the new IC metadata and the rules required

for guaranteeing tagless hits. Finally, we propose four

invalidation policies for efficiently managing the cache

metadata.

2.1 Guaranteeing Tagless Hits

One of the key principles in the design of the TH-IC

is the idea of bypassing the TH-IC when we are not cer-

tain that the requested instruction/line is resident in the

TH-IC. This leaves three possibilities when an instruc-

tion is fetched: 1) it is guaranteed to be a hit in the TH-

IC, 2) it resides in the TH-IC, but we were not sure so

we directly accessed the L1-IC, or 3) it did not reside in

the TH-IC, and we avoided the miss penalty by attempt-

ing to access it directly from the L1-IC. None of these

cases involve any miss processing by the TH-IC, so the

execution time will be unchanged by the inclusion of a

TH-IC. Figure 2 illustrates the terminology we use to de-

scribe the types of accesses that can occur when fetching

from a TH-IC. The potential hits and true misses reflect

the hits and misses that would occur in an L0-IC with

the same cache organization. A guaranteed hit repre-

sents the portion of the potential hits that the TH-IC can

guarantee to reside in cache. A potential miss means that

a hit is not guaranteed, and thus the requested line will

instead be fetched from the L1-IC. We may miss oppor-

tunities to retrieve data from the TH-IC when it might

reside there but cannot be guaranteed; however, any re-

duction in hit rate will be more than offset by the ability

to avoid any TH-IC miss penalty. During potential TH-

IC misses, we check whether the line fetched from the

L1-IC is already available in the TH-IC. We use the term

false miss (fm in Figure 2) to describe such an event, and

true miss to indicate that the line is not in the TH-IC. The

TH-IC approach works well when a significant fraction

of the instructions that reside in the TH-IC can be guar-

anteed to reside there prior to fetch.



Figure 3. Fetch Address Breakdown

A breakdown of fetch addresses into their separate

bitwise components for properly accessing the various

instruction caches present in our memory hierarchy is

shown in Figure 3. For this example, we use a 16 KB,

256 line, 16-byte line size, 4-way set associative L1-IC.

We also use a 128 B, 8 line, 16-byte line size, direct-

mapped TH-IC. Instructions are word-aligned, so the

low-order two bits of any fetch address can be safely

ignored. Two bits are used to determine the L1-IC line

offset, while eight bits are necessary for the set index,

leaving twenty bits for the tag. Two bits are again used

to determine the TH-IC line offset, while three bits are

used for the set index. In order to reduce the effective tag

size of the TH-IC, we employ a subtle approach based on

Ghose and Kamble’s work with multiple line buffers [8].

Instead of storing a large tag for the remainder of the ad-

dress in the TH-IC, it is sufficient to identify the corre-

sponding line in the L1-IC by storing the set index and

the location of the line in the set. Not storing the entire

tag in the TH-IC is possible since the L1-IC is being ac-

cessed simultaneously and a true miss will occur if the

L1-IC misses. The cache inclusion principle guarantees

that any line in the TH-IC must also reside in the L1-IC.

Thus by detecting an L1-IC hit and verifying the precise

L1-IC line that corresponds to our TH-IC line, we can

effectively determine whether we have a false miss.

The figure shows that we construct a TH-IC ID field

that is made up of the additional high-order bits from

the L1-IC set index along with two bits for specifying

which line in the cache set is actually associated with

this particular line address (it’s “way”). When we are

updating the TH-IC (on a potential miss), we are al-

ready accessing the L1-IC, so we only need to compare

whether we have the appropriate set/way from the L1-

IC already in the TH-IC. The miss check can be done by

concatenating the two-bit way information for the cur-

rently accessed line in the L1-IC and the five high-order

Figure 4. Tagless Hit Instruction Cache

bits of the address corresponding to the L1-IC set in-

dex, and comparing this result to the stored TH-IC ID of

the given set. If these seven bits match, then the TH-IC

currently contains the same line from the L1-IC and we

indeed have a false miss. If these bits do not match, or

the L1-IC cache access is also a miss, then we have a

TH-IC true miss and must update the line data as well as

the TH-IC ID with the appropriate way and high index

information. The ID field can be viewed as a line pointer

into the L1-IC that is made up of way information plus a

small slice of what would have otherwise been the TH-

IC tag. If the L1-IC were direct-mapped, the ID field

would only consist of the extra bits that are part of the

L1-IC set index but not the TH-IC set index. The cache

inclusion property thus allows us to significantly reduce

the cost of a tag/ID check even when the TH-IC cannot

guarantee a “tagless” hit.

Figure 4 shows a more detailed view of an instruc-

tion fetch datapath that includes a TH-IC. The TH-IC

has been extended to use additional metadata bits (ap-

proximately 110 total bits for the simplest configuration

we evaluated). The first aspect to notice in the TH-IC

is the presence of a single decision bit for determining

where to fetch the next instruction from (Fetch From

TH-IC?). This decision bit determines when the TH-IC

will be bypassed and is updated based on the metadata

bits contained in the TH-IC line for the current instruc-

tion being fetched, as well as the branch prediction sta-

tus (predict taken or not taken). We also keep track of

the last instruction accessed from the TH-IC (using the



pointer Last Inst). The last line accessed from the TH-IC

(Last Line) can easily be extracted from the high-order

bits of the last instruction pointer.

There are really two distinct types of access in the

TH-IC or any other instruction cache for that matter: se-

quential accesses and transfers of control. If the predic-

tor specifies a direct transfer of control (taken branch,

call or jump), then the TH-IC will make use of the Next

Target bit (NT), one of which is associated with each

instruction present in the small cache. If the current in-

struction has its NT bit set, then the transfer target’s line

is guaranteed to be available and thus the next instruc-

tion should be fetched from the TH-IC. If the NT bit is

not set, then the next instruction should be fetched from

the L1-IC instead, and the TH-IC should be updated so

that the previous instruction’s target is now in the TH-IC.

We discuss a variety of update policies and their associ-

ated complexity in the next subsection. In this figure,

the last instruction fetched was Insn5, which resides in

line 1. The branch predictor (which finished at the end

of the last cycle’s IF) specified that this was to be a taken

branch and thus we will be fetching Insn5’s branch tar-

get, which is Insn2. The corresponding NT bit was set,

so the TH-IC is going to be used to fetch the target in-

struction on this cycle. We thus fetch Insn2 from line

0 of the TH-IC. Since the cache is direct-mapped, there

is only a single line where this instruction can reside.

Note that the tag/ID check is unnecessary, since the NT

bit guarantees that this instruction’s branch target is cur-

rently available in the TH-IC.

On a sequential fetch access (branch prediction is not

taken), there are two possible scenarios to consider. If

we are accessing any instruction other than the last one

in the line, then we will always choose to fetch the next

instruction from the TH-IC, since we know that the next

sequential instruction in this same line will still be avail-

able on the subsequent access. This process is similar to

the operation of a sophisticated line buffer [7]. If it is the

last instruction in the line that is instead being fetched,

then fetching the next instruction from the TH-IC will

occur only if the Next Sequential bit (NS) is set. This bit

signifies that the next line (modulo the number of lines)

in the cache actually contains the next sequential line in

memory. This is a behavior that line buffers do not sup-

port, since they only hold a single line at a time, and

thus must always return to fetch from the L1-IC when

they reach the end of the line.

Figure 5 shows an example that illustrates how in-

structions can be guaranteed to reside in the TH-IC. The

example in the figure contains eight instructions span-

ning four basic blocks and two lines within the TH-IC.

Instruction 1 is fetched and is a miss. The previous line’s

NS bit within the TH-IC is set since there was a se-

quential transition from line 0 to line 1. Instruction 5 is

fetched

inst 1

inst 5

insts 6,7

inst 2

insts 3,4

inst 5

insts 6,7

insts 2

insts 3,4

inst 5

insts 6,7

inst 8

false miss

false miss

miss

miss

hits

hits

hits

hit

hits

hits

hit

hit

set inst 1 NT bit

result

set inst 7 NT bit

set line 1 NS bit

inst 1

inst 2

inst 3

inst 4

inst 5

inst 6

inst 7

inst 8

...

...

li
n
e 

1
li

n
e 

2

metadata set

set line 0 NS bit

Figure 5. TH-IC Example

fetched after the transfer of control and it is also a miss.

Instruction 1’s NT bit is set to reflect that the target of

instruction 1 resides in the TH-IC. Instructions 6 and 7

are fetched and are guaranteed to be hits since they are

sequential references within the same line. Instruction

2 is fetched and it resides in the TH-IC, but it is a false

miss since it was not guaranteed to hit in the TH-IC (in-

struction 7’s NT bit is initially false). At this point, the

NT bit for instruction 7 is set to indicate its target now

is in the TH-IC. Instructions 3 and 4 are fetched and are

hits due to the intra-line access. Instruction 5 is fetched

and is a false miss (line 1’s NS bit is false). Line 1’s NS

bit is set at this point indicating that the next sequential

line now resides in the TH-IC. The instructions fetched

in the remaining iterations of the loop are guaranteed to

be hits since the TH-IC metadata indicates that the tran-

sitions between lines (line 1’s NS bit and instruction 7’s

NT bit) will be hits. Finally, instruction 8 is fetched and

will be a hit since it is a sequential reference within the

same line.

The TH-IC exploits several nice properties of small,

direct-mapped instruction caches. First of all, the nature

of a direct-mapped cache allows a given fetch address

to reside in only a single location. This facilitates the

tracking of cache line contents and their associated in-

terdependences. In addition to the elimination of tag/ID

comparisons, the ITLB access can also be avoided on

TH-IC hits. This is due to the virtual to physical address

translation not affecting the page offset portion (12-bits

for 4KB page size) of a fetch address. Since the indexing

of the TH-IC is accomplished using bits from the page

offset (and no tag comparison is required on guaranteed

hits), we do not actually need to verify the translation.

The update and invalidation policies of the TH-IC help

to maintain these conservative principles by which hits

can be guaranteed.



One special case to consider is the possibility of in-

direct transfers of control. If the current instruction to

be fetched is a jr or jalr instruction (jump register or

jump and link register in the MIPS ISA), then we can-

not guarantee that the branch target is in the TH-IC since

the address in the register may have been updated since

the last time the instruction was executed. We instead

choose to fetch from the L1-IC directly. Recognizing

an indirect transfer of control is relatively simple and

can be done by checking for only 2 instructions in the

MIPS ISA. Fortunately, indirect transfers of control oc-

cur much less frequently than direct transfers.

2.2 Updating Tagless Hit Instruction
Cache Metadata

There are really only two important steps in the op-

eration for the TH-IC: fetch and update. Figure 6 shows

a flow diagram that graphically depicts the operation

of the TH-IC. The first step is the decision based on

whether to fetch from the TH-IC or the L1-IC. Fetch is

similar to traditional instruction fetch on a cache hit. Up-

date replaces the concept of the traditional cache miss.

The TH-IC performs an update whenever the instruc-

tion/line being fetched is not guaranteed to be in cache.

This does not necessarily mean that the line is not avail-

able in the cache. Availability is checked by performing

a tag/ID comparison within the TH-IC in parallel with

the L1-IC fetch. On a false miss, the TH-IC need not

write the cache line from the L1-IC, and does not need

to invalidate any additional cache metadata either.

If the fetch is a true miss, however, we need to replace

the appropriate line in the cache and update/invalidate

various portions of the TH-IC. First of all, the new line

needs to be written into cache from the L1-IC along with

its corresponding TH-IC ID. The NS bit and the NT bits

for each instruction in this line are cleared, as we can-

not guarantee that any branch target or the next sequen-

tial line are available in cache. If we are replacing a

line that is a known branch target, we need to inval-

idate the NT bits on all corresponding lines that may

have transfers of control to this line. This requirement

to manipulate metadata for multiple lines is not partic-

ularly onerous since the total number of metadata bits

is extremely small. There are several possible schemes

for keeping track of where these transfers originate, and

four approaches are discussed in the next subsection on

invalidation policies. We use the previous branch predic-

tion’s direction bit to determine whether we have fetched

sequentially or taken a transfer of control. If the access

was sequential, the previous line’s NS bit is set since

we are simply filling the cache with the next sequen-

tial line in memory. Note that the only time that we

can have a sequential fetch causing a cache miss will

be when we are fetching the first instruction in the new

line. For transfers of control, we need to keep track of

the last instruction fetched. If we are not replacing the

line containing the transfer of control, we set the last in-

struction’s NT bit to signify that its branch target is now

available in the small cache.

Once the instruction is fetched, we need to update the

last instruction pointer (and hence last line pointer), as

well as determine whether the next fetch will come from

the TH-IC or the L1-IC. It is also at this point that we

need to determine whether the current instruction is an

indirect transfer of control. Direct transfers of control

do not change their targets, and this is why the NT bit

is sufficient for guaranteeing that a target is available in

cache. If we detect an indirect transfer, we need to steer

the next fetch to the L1-IC, since we cannot guarantee

that an indirect branch target will be unchanged. We

also invalidate the last instruction pointer so that the next

instruction will not incorrectly set the indirect transfer’s

NT bit.

We rely on the result of the current cycle’s branch

prediction to determine whether the next fetch is sequen-

tial or not. If a taken direct branch is predicted, then the

corresponding NT bit for the current instruction fetch is

used to decide whether to fetch from the TH-IC or the

L1-IC. If instead it is a sequential access, then we will

use the NS bit of the current fetch line if we are at the

end of the line. If we are elsewhere in the line, the next

instruction will be fetched from the TH-IC based on the

line buffer principle. When we have a pipeline flush due

to a branch misprediction, we choose to fetch from the

L1-IC on the next cycle since we cannot guarantee that

the TH-IC contains this potentially new address.

2.3 Tagless Hit Instruction Cache In-
validation Policies

Invalidation policies provide the TH-IC with the abil-

ity to efficiently update its metadata so that it operates

correctly. Without a proper invalidation scheme, the TH-

IC could possibly fetch incorrect instructions since we

no longer do tag/ID comparisons for verification. In this

section, we present four invalidation policies that vary in

complexity from conservative approximations to more

precise tracking of the relations between the transfers of

control and their target instructions.

Figure 7 shows four sample line configurations for a

TH-IC, where each configuration implements a particu-

lar policy. In each configuration, each line is composed

of four instructions (Insn), a Next Sequential bit (NS), a

Next Target bit (NT) for each instruction, a Valid bit (V),

as well as an ID field. The number and size of the Trans-

fer from bits (none, T, TLs, or TIs) is what distinguishes

each configuration.



Figure 6. Tagless Hit IC Operation



Figure 7. Tagless Hit Instruction Cache
Line Configurations

The Oblivious case is shown in Figure 7a. In this

configuration, there are no bits reserved for denoting the

lines that transfer control to the chosen line. Under this

policy, whenever any cache line is replaced, all NT bits

in the TH-IC will be cleared.

Figure 7b shows the addition of a single Transfer (T)

bit to each line representing that this line is a potential

transfer of control target. This bit is set when any direct

transfer of control uses this line as a target. Whenever

we have a line replacement where the T bit is set, we

need to clear all NT bits similar to the oblivious policy.

The savings occur when replacing a purely non-target

line (one that is not a known target of any direct transfers

of control currently in cache), which does not necessitate

the clearing of any of the other NT bits. This allows

the existing NT metadata within all the lines not being

fetched to continue to remain unchanged in cache. It is

important to note, however, that any replaced line will

always have at least its own NT bits cleared.

The configuration shown in Figure 7c adds 1 bit to

each line for every line in the cache (Line-based (TLs)).

The bit corresponding to a particular line in the TL field

is set when there is a direct transfer of control to this line.

When the line is replaced, all NT bits will be cleared in

lines whose corresponding bit in the TLs is set.

Finally, Figure 7d shows the addition of 1 bit to

each line for every instruction available in the cache

(Instruction-based (TIs)). A bit corresponding to an in-

dividual instruction in the TI field is set when the in-

struction transfers control to the line. The only NT bits

cleared when a line is replaced are due to the corre-

sponding instruction-specified TIs. Of all the schemes

proposed, this one is the most aggressive and requires

the greatest area overhead (and hence increased energy

consumption to operate). This scheme maintains almost

perfect information about NT transfers of control for in-

validation. It is only conservative in that replacing a line

(and thus clearing its NT bits) will not clear the corre-

sponding TIs still contained in any other lines.

Although we have proposed these four schemes,

there are other possible variants. For instance, one could

disallow the set of NT for intra-line transfers, thus sav-

ing 1 bit per line when using line-based transfer in-

formation, since the line itself would not need a self-

referential bit. A similar approach could save additional

bits with the instruction-based transfer metadata. One

can also imagine a completely omniscient policy that

clears other line’s matching TIs when a line is replaced

in the instruction-based policy. Each of these schemes

requires greater complexity than the four simpler poli-

cies that we have presented. Further experimentation

and analysis could help in developing even more area

and energy efficient invalidation policies.

3 Experimental Setup and Evaluation

We used the SimpleScalar simulator for evaluating

the TH-IC [1]. The Wattch extensions [5] were used

to estimate energy consumption including leakage based

on the cc3 clock gating style. Under this scheme, inac-

tive portions of the processor are estimated to consume

10% of their active energy. The machine that is modeled

uses the MIPS/PISA instruction set, although the base-

line processor is configured with parameters equivalent

to the StrongARM. Table 1 shows the exact details of the

baseline configuration used in each of the experiments.

We refer to the TH-IC invalidation policies as follows

in our graphs: TN - Oblivious, TT - Transfer bit, TL -

Line-based Transfers, and TI - Instruction-based Trans-

fers. Each policy or L0-IC designation is suffixed with a

corresponding cache size configuration. The first value

is the number of lines in the cache. We evaluate con-

figurations consisting of 8, 16, and 32 lines. The sec-

ond value is the number of instructions (in 4-byte words)

present in each cache line. Since the L1-IC uses a 16-

byte line size on the StrongARM, all of our configura-

tions will also use 16-byte lines (4 instructions). Thus,

the three small cache size configurations are 8x4 (128-

bytes), 16x4 (256-bytes), and 32x4 (512-bytes). We also

evaluate a tagless hit line buffer (TH LB), which guar-

antees hits for sequential instruction fetches within the

same line. This is essentially a degenerate form of the

oblivious TH-IC that uses only a single line (1x4) with

no additional metadata bits.

Although the Wattch power model is not perfect, it is

capable of providing reasonably accurate estimates for

simple cache structures for which it uses CACTI [21].



Table 1. Baseline Configuration
I-Fetch Queue 4 entries

Branch Predictor Bimodal – 128

Branch Penalty 3 cycles

Fetch/Decode/Commit 1

Issue Style In-order

RUU size 8 entries

LSQ size 8 entries

16 KB

L1 Data Cache 256 lines, 16 B line, 4-way assoc.

1 cycle hit

16 KB

L1 Instruction Cache 256 lines, 16 B line, 4-way assoc.

1 cycle hit

Instruction/Data TLB 32 entries, Fully assoc., 1 cycle hit

Memory Latency 32 cycles

Integer ALUs 1

Integer MUL/DIV 1

Memory Ports 1

FP ALUs 1

FP MUL/DIV 1

Table 2. MiBench Benchmarks
Category Applications

Automotive Basicmath, Bitcount, Qsort, Susan

Consumer Jpeg, Lame, Tiff

Network Dijkstra, Patricia

Office Ispell, Rsynth, Stringsearch

Security Blowfish, Pgp, Rijndael, Sha

Telecomm Adpcm, CRC32, FFT, Gsm

The structures involved in the evaluation of TH-IC are

composed primarily of simple regular cache blocks and

associated tags/metadata. Although the L0-IC and TH-

IC may have differing functionality (tag checks vs.

metadata updates), they remain very similar in overall

latency and area. Writing of metadata bits can be viewed

as a small register update, since the overall bit length is

often short, even for some of the larger configurations.

Table 2 shows the subset of MiBench benchmarks we

used for each of the experiments [9]. MiBench con-

sists of six categories of applications suitable for the

embedded domain in a variety of areas. Each bench-

mark is compiled and optimized with the VPO com-

piler [4], which yields code that is comparable in qual-

ity to GCC. All applications are run to completion us-

ing their small input files (to keep the running times

manageable). Large input experiments were also done,

yielding similar results to the small input files, so any

further discussion is omitted. MiBench results are pre-

sented by category along with an average due to space

constraints. Results are verified for each run to ensure

that the application carries out the required functional-

ity. Sanity checks are performed to ensure correct be-

havior and verify that the TH-IC does not unfairly use

information that should not be available.

Figure 8. Performance Overhead of L0 In-
struction Caches

Figure 9. Energy Consumption of L0 and

Tagless Hit Instruction Caches

Figure 8 shows the performance overhead for using

a conventional L0-IC. Cycle time is normalized to the

baseline case, which only uses an L1-IC. Results for

the various TH-IC configurations are not shown, since

they yield exactly the same performance as the baseline

case (100%). The 128-byte L0-IC increases the aver-

age execution time by 8.76%, while the 256-byte L0-IC

(L0 16x4) increases it by 6.05%, and the 512-byte L0-

IC (L0 32x4) still increases the average execution time

by 4.53%. The relative complexity of encryption and de-

cryption procedures keeps the Security category’s loop

kernels from even fitting completely within the 512-byte

L0-IC. The additional 1-cycle performance penalty of a

cache miss when using an L0-IC can clearly accumulate

into a sizable difference in application performance.

The energy consumption of the various L0-IC and

TH-IC configurations are shown in Figure 9. Each of

the TH-IC configurations outperform their correspond-

ing L0-IC configurations. Similar to the execution cy-

cles results, the Security and Telecomm benchmark cat-



Figure 10. Hit Rate of L0 and Tagless Hit

Instruction Caches

egories gain the most from the addition of the TH-

IC. The most efficient L0 configuration is the 256-byte

L0-IC(L0 16x4), which reduces energy consumption to

75.71% of the baseline value. The greatest energy sav-

ings is achieved by the 256-byte TH-IC using a line-

based transfer scheme (TL 16x4), which manages to re-

duce the overall energy consumption to 68.77% of the

baseline energy. The best performing invalidation policy

for the TH-IC is to use TL bits until we reach the 32-line

cache configuration. Here, the target bit transfer scheme

(TT 32x4) performs better than the line-based scheme

(TL 32x4) due to the additional energy requirements of

maintaining 32 TLs in each TH-IC line. We expect that

larger TH-ICs will be more energy efficient with a TT

scheme due to its linear scaling of cache metadata. We

also see that the tagless hit line buffer (TH LB) manages

to reduce overall energy consumption more than any of

the tested L0-IC configurations. This is due in part to the

faster application running times, but a significant portion

of the savings comes from the reduced fetch structure

size (essentially a single line with little metadata).

Figure 10 shows the average hit rate of the L0-IC and

TH-IC configurations. The false miss rate is also shown

for the non-line buffer TH-IC configurations. It is impor-

tant to note that the sum of these two rates is the same

for all policies in each cache organization of the TH-IC

and L0-IC. The TH-IC really applies a different access

strategy to the existing L0-IC. Thus it is not surprising

that the TH-IC contents are the same as an equivalently

sized L0-IC on a given instruction fetch. As the inval-

idation policy becomes more complex, the number of

guaranteed hits increases for a TH-IC, while the num-

ber of false misses is correspondingly reduced. This is

due to a reduction in the number of invalidations that

were overly conservative. Overall, however, we see that

the hit rate for a TH-IC is competitive with the hit rate

Figure 11. Fetch Power of L0 and Tagless

Hit Instruction Caches

of a comparably-sized L0-IC. Considering the relatively

small false miss rate, we see that the sample policies per-

form quite well, particularly the target-bit and line-based

transfer schemes. For instance, the TL 16x4 configura-

tion has a hit rate of 84.99%, while the L0 16x4 has a hit

rate of 87.63%. More complicated policies could unnec-

essarily increase energy utilization and overall circuit

complexity. The TH LB has a hit rate of approximately

67.62%, which shows that the majority of instructions

fetched are sequential and in the same line. False misses

are not captured since they cannot be exploited in any

way by a line buffer.

Figure 11 compares the average power required of the

instruction fetch stage of the pipeline for the L0-IC and

TH-IC configurations. The baseline case again is using

only an L1-IC and has an average power of 100%. These

results are not surprising considering the overall proces-

sor energy results already shown. However, this shows

that the power requirements for the TH-IC are consider-

ably lower than an equivalently sized L0-IC. For the best

TH-IC configuration (TL 16x4), the fetch power is ap-

proximately 35.47% of the baseline fetch power, while

the corresponding 256-byte L0-IC yields only a 43.81%

fetch power. The average fetch power reduction comes

from the elimination of cheaper tag/ID comparisons on

cache hits, as well as fewer ITLB accesses. The TH LB

is able to reduce the fetch power to 46.60%. This is a

considerable savings for such a small piece of hardware,

but it is obvious that the higher miss rate (and thus in-

creased number of L1 fetches) reduces the energy effi-

ciency below that achievable with a true TH-IC.

Energy-delay squared or ED
2 is a composite metric

that attempts to combine performance and energy data

together in a meaningful way. Energy is directly propor-

tional to the square of the voltage (E ∝ V
2), so decreas-

ing the voltage reduces the energy of a processor, but in-



Figure 12. Energy-Delay2 of L0 and Tag-

less Hit Instruction Caches

creases the clock period and hence execution time. Dy-

namic voltage scaling is one such technique that reduces

the clock rate in an effort to save energy [18]. ED
2

is then used as an indicator of a design’s relative per-

formance and energy characteristics. Figure 12 shows

ED
2 computed for each of the L0-IC and TH-IC con-

figurations that we tested. Again, the TL 16x4 configu-

ration performs best (68.58%), since it had the greatest

energy reduction with no performance penalty. The TH

LB also shows greater potential than any of the L0-IC

configurations.

In addition to evaluating the efficacy of TH-IC with

traditionally embedded applications such as those found

in MiBench, we also performed similar experiments us-

ing the benchmark 176.gcc available in SPECInt2000.

We selected this benchmark because it is representative

of a fairly complex general-purpose application. While

most of the embedded MiBench applications will spend

their time fetching the same tight loops, the fetch pat-

terns of 176.gcc should be more diverse due to its longer

running time and varied processing phases. This bench-

mark is run to completion using the cccp.i test input file

with the L0 16x4, TH LB, and TL 16x4 configurations,

which correspond to the most efficient configurations

found during the MiBench experiments. Similar results

have been obtained using the reference input (expr.i).

Table 3 compares the average MiBench results with

the experimental values we obtained from running

176.gcc. The execution time penalty for using an L0-

IC with 176.gcc (4.1%) is lower than the MiBench aver-

age (6.5%). There is a clear difference in average fetch

power between 176.gcc and MiBench. With MiBench,

the fetch power is lower because the hit rate of the small

cache is much higher. For 176.gcc, the guaranteed hit

rate for the TH-IC is 73.57%, and adding false misses

only brings the rate up to 77.86%, which is still much

smaller than the MiBench results (84.96% → 87.63%).

Overall, the TL 16x4 TH-IC configuration again outper-

forms both the TH LB and the traditional L0-IC in all as-

pects. Despite 176.gcc having completely different data

access patterns than our embedded applications, we see

that fetch behavior is still comparable, and thus TH-IC

can be beneficial for processors running general-purpose

applications as well.

4 Related Work

There has been some previous work to decide

whether the filter cache or the L1-IC should be accessed

on each cycle. A predictive filter cache has been devel-

oped to allow direct access to the L1-IC without access-

ing a filter cache first for accesses that are likely to be

filter cache misses [20]. A dynamic prediction is made

regarding whether or not the subsequent fetch address is

in the filter cache. This prediction is accomplished by

storing for each line the four least significant tag bits for

the next line that is accessed after current line. When

an instruction is being fetched, these four bits are com-

pared to the corresponding bits for the current instruc-

tion’s tag. These bits will often be identical when con-

secutive lines are accessed in a small loop. Significant

energy savings were obtained with a slight performance

degradation by accessing the L1-IC directly when these

bits differ. Conventional tag comparisons and the addi-

tional 4-bit comparison are both required for the predic-

tive filter cache. The HotSpot cache uses dynamic pro-

filing to determine when blocks of instructions should be

loaded into the filter cache based on the frequency of ex-

ecuted branches [22]. Instructions are fetched from the

L0-IC as long as hot branches are encountered and there

are no L0-IC misses. Like the predictive filter cache,

the HotSpot cache also requires a tag comparison to be

made for each L0 access. In contrast, the TH-IC re-

quires no tag comparison for guaranteed hits and only

a small ID comparison for potential misses. This should

result in reduced energy consumption compared to both

of these approaches.

There has also been previous research on guaran-

teeing hits in an L1-IC. The goal for these caches is

to reduce energy consumption by avoiding unnecessary

tag checks in the L1-IC. Way memoization was used to

guarantee that the next predicted way within a 64-way

L1-IC is in cache [16]. Valid bits are used to guaran-

tee that the next sequential line accessed or line associ-

ated with the target of a direct transfer of control are in

cache. Different invalidation policies were also inves-

tigated. When the next instruction is guaranteed to be

in cache, 64 simultaneous tag comparisons are avoided.

The history-based tag-comparison (HBTC) cache uses

a related approach. It stores in the BTB an execution



Table 3. Comparing Fetch Efficiency Across Different Application Domains
MiBench Average 176.gcc from SPECInt2000

L0 16x4 TH LB TL 16x4 L0 16x4 TH LB TL 16x4

Execution Cycles 106.50% 100.00% 100.00% 104.10% 100.00% 100.00%

Total Energy 75.17% 74.13% 68.58% 83.81% 80.41% 79.03%
Small Cache Hit Rate 87.63% 67.62% 84.96% 77.86% 66.61% 73.57%

Fetch Power 43.81% 46.60% 35.47% 63.72% 58.33% 56.07%

Energy-Delay Squared 84.57% 74.13% 68.58% 90.82% 80.41% 79.03%

footprint, which indicates if the next instruction to be

fetched resides in the L1-IC [11, 10]. These footprints

are invalidated whenever an L1-IC miss occurs. Rather

than guaranteeing hits in a conventional L1-IC, we be-

lieve that the most beneficial level to guarantee hits is

within a small instruction cache. First, most of the in-

structions fetched can be guaranteed to be resident in

the small IC, which will result in a smaller percentage of

guaranteed hits in an L1-IC. Since the L1-IC will be ac-

cessed fewer times in the presence of a small instruction

cache, the additional metadata bits in the L1-IC will be

costly due to the increased static versus dynamic energy

expended. Second, the invalidation of metadata when a

line is replaced is much cheaper in a small IC since there

are fewer bits of metadata to invalidate.

There are other small structures that have been used

to access a large percentage of the frequently executed

instructions within an application. A zero overhead loop

buffer (ZOLB) is a compiler managed IC, where the in-

nermost loops of an application are explicitly loaded into

the ZOLB and executed [6]. The advantages include re-

duced energy consumption and elimination of loop over-

head (increments, compares, and branches). The disad-

vantages of a ZOLB are that the number of loop itera-

tions must be known and there can be no other transfer

of control instructions within the loop besides the loop

branch. In contrast, loop caches are used to hold in-

nermost loops when short offset backward branches are

detected during execution [15]. Loop caches are exited

whenever the loop branch is not taken or another trans-

fer of control occurs. The L-cache is similar to the loop

cache, but the compiler statically places innermost loops

in the address space of the executable that will be resi-

dent in the L-cache [2, 3]. Thus, an L-cache can hold

only a pre-specified and limited number of loops. Line

buffers are essentially degenerate L0/filter caches that

contain only a single line [19]. The cache access latency

of a line buffer is typically prolonged such that a line

buffer miss will trigger the corresponding fetch from the

L1-IC during the same processor clock cycle. The TH-

IC provides better performance than a conventional L0-

IC or line buffer, while capturing more instruction ac-

cesses than a ZOLB, loop cache, or L-cache.

5 Conclusions

L0/filter instruction caches can greatly reduce the en-

ergy consumption of a processor by allowing the most

frequent instructions to be accessed in a more efficient

manner. However, L0-IC misses can accumulate and

lead to significant application slowdown. In this paper,

we proposed the Tagless Hit instruction cache, a small

IC that does not require a tag/ID comparison or ITLB

access to be performed on cache hits. The TH-IC is

designed to take advantage of the properties of a small

direct-mapped instruction cache and common instruc-

tion fetch behaviors. The reason that a TH-IC works

is that it can identify nearly all of the accesses that will

be hits in the cache before the instructions are fetched.

The L0-IC impacts performance because trying to cap-

ture the few remaining accesses (false misses as hits)

comes at the cost of a cycle of latency for all L0-IC

misses. The TH-IC features a hit rate that is competitive

with that of a similarly sized L0-IC (because there are

not many false misses). Furthermore, the TH-IC can be

bypassed during fetch when an instruction is not guar-

anteed to reside in one of the cache lines, eliminating

the performance penalty normally associated with small

instruction caches that can’t be bypassed, like L0. Some

TH-IC configurations require fewer metadata bits than

a corresponding L0-IC, and even the larger TH-IC con-

figurations require only a few extra bits per line. We

also designed a compact line buffer based on the same

principles as the TH-IC that provides better performance

and energy efficiency than any L0-IC at a fraction of the

area requirement. By exploiting fetch behavior, the TH-

IC provides an attractive solution for improving proces-

sor energy efficiency without any negative performance

impact or additional programmer effort. The TH-IC is

even desirable for general-purpose processors as power

and heat issues have become more of a concern. Even

though execution characteristics of general-purpose ap-

plications tend to be more diverse, fetch behavior re-

mains similar and can thus be exploited by the TH-IC.

The lack of any additional miss penalty makes the TH-

IC a viable alternative for high-performance processors,

something which could not be said of the L0-IC.



Acknowledgments

We thank the anonymous reviewers for their con-

structive comments and suggestions. This research was

supported in part by NSF grants CCR-0312493, CCF-

0444207, and CNS-0615085.

References

[1] T. Austin, E. Larson, and D. Ernst. SimpleScalar: An in-

frastructure for computer system modeling. IEEE Com-

puter, 35:59–67, February 2002.
[2] N. Bellas, I. Hajj, C. Polychronopoulos, and G. Sta-

moulis. Energy and performance improvements in a mi-

croprocessor design using a loop cache. In Proceedings

of the 1999 International Conference on Computer De-

sign, pages 378–383, October 1999.
[3] N. E. Bellas, I. N. Hajj, and C. D. Polychronopoulos.

Using dynamic cache management techniques to reduce

energy in general purpose processors. IEEE Transac-

tions on Very Large Scale Integrated Systems, 8(6):693–

708, 2000.
[4] M. E. Benitez and J. W. Davidson. A portable global op-

timizer and linker. In Proceedings of the SIGPLAN’88

conference on Programming Language Design and Im-

plementation, pages 329–338. ACM Press, 1988.
[5] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A

framework for architectural-level power analysis and op-

timizations. In ISCA ’00: Proceedings of the 27th an-

nual International Symposium on Computer architec-

ture, pages 83–94, New York, NY, USA, 2000. ACM

Press.
[6] J. Eyre and J. Bier. DSP processors hit the mainstream.

IEEE Computer, 31(8):51–59, August 1998.
[7] K. Ghose and M. Kamble. Energy efficient cache orga-

nizations for superscalar processors. In Power Driven

Microarchitecture Workshop, held in conjunction with

ISCA 98, June 1998.
[8] K. Ghose and M. B. Kamble. Reducing power in su-

perscalar processor caches using subbanking, multiple

line buffers and bit-line segmentation. In Proceedings of

the 1999 International Symposium on Low Power Elec-

tronics and Design, pages 70–75, New York, NY, USA,

1999. ACM Press.
[9] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin,

T. Mudge, and R. B. Brown. MiBench: A free, commer-

cially representative embedded benchmark suite. IEEE

4th Annual Workshop on Workload Characterization,

December 2001.
[10] K. Inoue, V. Moshnyaga, and K. Murakami. Dynamic

tag-check omission: A low power instruction cache ar-

chitecture exploiting execution footprints. In 2nd In-

ternational Workshop on Power-Aware Computing Sys-

tems, pages 67–72. Springer-Verlag, February 2002.
[11] K. Inoue, V. G. Moshnyaga, and K. Murakami. A

history-based I-cache for low-energy multimedia appli-

cations. In Proceedings of the 2002 International Sym-

posium on Low Power Electronics and Design, pages

148–153, New York, NY, USA, 2002. ACM Press.

[12] N. S. Kim, K. Flautner, D. Blaauw, and T. Mudge.

Drowsy instruction caches: Leakage power reduction

using dynamic voltage scaling and cache sub-bank pre-

diction. In Proceedings of the 35th annual ACM/IEEE

International Symposium on Microarchitecture, pages

219–230, Los Alamitos, CA, USA, 2002. IEEE Com-

puter Society Press.

[13] J. Kin, M. Gupta, and W. H. Mangione-Smith. The filter

cache: An energy efficient memory structure. In Pro-

ceedings of the 1997 International Symposium on Mi-

croarchitecture, pages 184–193, 1997.

[14] J. Kin, M. Gupta, and W. H. Mangione-Smith. Filtering

memory references to increase energy efficiency. IEEE

Transactions on Computers, 49(1):1–15, 2000.

[15] L. Lee, B. Moyer, and J. Arends. Instruction fetch en-

ergy reduction using loop caches for embedded applica-

tions with small tight loops. In Proceedings of the In-

ternational Symposium on Low Power Electronics and

Design, pages 267–269, 1999.

[16] A. Ma, M. Zhang, and K. Asanović. Way memoization

to reduce fetch energy in instruction caches. ISCA Work-

shop on Complexity Effective Design, July 2001.

[17] J. Montanaro, R. T. Witek, K. Anne, A. J. Black, E. M.

Cooper, D. W. Dobberpuhl, P. M. Donahue, J. Eno,

G. W. Hoeppner, D. Kruckemyer, T. H. Lee, P. C. M. Lin,

L. Madden, D. Murray, M. H. Pearce, S. Santhanam,

K. J. Snyder, R. Stephany, and S. C. Thierauf. A 160-

mhz, 32-b, 0.5-W CMOS RISC microprocessor. Digital

Tech. J., 9(1):49–62, 1997.

[18] T. Pering, T. Burd, and R. Brodersen. The simulation

and evaluation of dynamic voltage scaling algorithms.

In Proceedings of the 1998 International Symposium on

Low Power Electronics and Design, pages 76–81, New

York, NY, USA, 1998. ACM Press.

[19] C.-L. Su and A. M. Despain. Cache design trade-offs

for power and performance optimization: A case study.

In Proceedings of the 1995 International Symposium on

Low Power Design, pages 63–68, New York, NY, USA,

1995. ACM Press.

[20] W. Tang, R. Gupta, and A. Nicolau. Design of a predic-

tive filter cache for energy savings in high performance

processor architectures. In Proceedings of the Interna-

tional Conference on Computer Design, pages 68–73,

Los Alamitos, CA, USA, 2001. IEEE Computer Society.

[21] S. J. Wilton and N. P. Jouppi. CACTI: An enhanced

cache access and cycle time model. IEEE Journal of

Solid State Circuits, 31(5):677–688, May 1996.

[22] C.-L. Yang and C.-H. Lee. HotSpot cache: Joint tempo-

ral and spatial locality exploitation for I-cache energy re-

duction. In Proceedings of the 2004 International Sym-

posium on Low Power Electronics and Design, pages

114–119, New York, NY, USA, 2004. ACM Press.


