REDUCING INSTRUCTION FETCH COST BY PACKING
INSTRUCTIONS INTO REGISTER WINDOWS

STEPHEN HINES, GARY TYSON, DAVID WHALLEY

COMPUTER SCIENCE DEPT.
FLORIDA STATE UNIVERSITY

NOVEMBER 14, 2005

‘ © INTRODUCTION I

e Reducing fetch energy consumption is important for embedded devices

— Fetch accounts for 1/3 of total processor power on a StrongARM
— Existing techniques provide tradeoffs with execution time (LO caches),
or can only target certain innermost loops (loop caches, ZOLB)

e Instruction Packing with an Instruction Register File (IRF)

— Targets fetch energy, code size, and execution time for improvement

— Place frequently accessed instructions into a small register file for easy,
lower-power access

— Original ISCA 2005 version limited to 32 instructions/registers locked
in at program load

SLIDE 1

‘ € RepuciNnGg FETcH ENERGY CONSUMPTION |

e Can be improved by fetching even more instructions from the IRF

e SPARC uses register windows to reduce overhead of register
saves/restores on function calls

e Windowing is also better than just increasing the size of the IRF, as the
larger IRF would require a greater number of bits to address each entry

e Windowing eliminates the need to modify our original proposed IRF
instruction formats

e Allow the compiler to make decisions about which instructions should be
promoted to the IRF for each particular function/phase of execution

SLIDE 2

‘ € OUTLINE I

O Introduction

® IRF Overview

® Software Windowing

® Hardware Windowing

@ Static IRF Portions

® Using an IRF with a Loop Cache

©® Future Work

® Conclusions

SLIDE 3

‘ O IRF OVERVIEW |

IF Stage First Half of ID Stage
IF/ID
——
Instruction I
PC Cache IRF
(LOorL1)
{ — [IMM

e Stores frequently occurring instructions as specified by the compiler
(potentially in a partially decoded state).

e Allows multiple instruction fetch with packed instructions.

SLIDE 4

‘ € [SA MODIFICATIONS I

e MIPS ISA — commonly known and provides simple encoding

— RISA (Register ISA) — instructions available via IRF access
— MISA (Memory ISA) — instructions available in memory
* Create new instruction formats that can reference multiple RISA
instructions — Tightly Packed
* Modify original instructions to be able to pack an additional RISA
instruction reference — Loosely Packed

e Increase packing abilities with Parameterization

SLIDE 5

‘ € TicuTLYy PACKED INSTRUCTION FORMAT I

6 bits 5 bits 5 bits 5 bits Sbits 1 5 bits

opcode inst1 inst2 inst3 | ™ S| ™ param

e New opcodes for this T-format of MISA instructions
e Supports sequential execution of up to 5 RISA instructions from the IRF
— Unnecessary fields are padded with nop.
e Supports up to 2 parameters replacing instruction slots
— Parameters can come from 32-entry Immediate Table (IMM).
— Each IRF entry retains a default immediate value as well.
— Branches use these 5-bits for displacements.

SLIDE 6

‘ € EXPERIMENTAL SETUP |

e SimpleScalar PISA and VPO targeted for MIPS with IRF

e Dynamically profiled applications + irfprof for selecting IRF entries

e Library code is not packed and thus not evaluated

e 21 MiBench embedded benchmarks

e Power analysis validated by sim-panalyzer and Cacti approximations:
Ecetch = Costjc X Accesses|c + Cost|gp X Accesses|RE

e Cost|c hit is approximately 2 orders of magnitude greater than Cost|rp
for an 8KB IC and 32-entry IRF

SLIDE 7

‘ ® SOFTWARE WINDOWING I

e |Improve utilization by replacing entries in the IRF on a per-function basis
e load_irf — Compiler-generated instruction to replace IRF entries
e Greedy partitioning algorithm selects instructions from similar functions
to share space in a window
— Depending on benefit/cost of splitting, choose whether to merge
function profile with an existing partition, or create a new partition
— Each function only placed once, so the algorithm is guaranteed to
terminate
e Results
— Fetch Energy — Standard IRF 58.08% — SW windows 54.40%
— Windows from 1 — 32 with median of 4 and mean of 8.33
— Approximately 24.54 different IRF entries between partitions

SLIDE &

€ SOFTWARE PARTITIONING — RESULTS

B Dynamic Windows

] Single Window

o ——— OB IOAY

 ——L11C510.

= 01D
- Ajlunoag
|leepully

L —— (54
, 7E ysumolg

—— ||0J29S0UINS
lcuc\mwﬂ_

| — |00 S|

e ——————10110S)SOY)

m——31 0151

—— 2|0]1)E
—]S

MQZHIL
|ﬂ aweT

| — God

L aAllowoINy
ﬂ uesng
110SD

e —— ylewoliseg

0%
0%
0%
30%

X
o
N

90%
70%

© un <

%) ABJau3 yoje4 pajewns3

X
o
©
A

)

Benchmark

SLIDE 9

‘ ® HARDWARE WINDOWING I

e Overhead in switching software windows hides some of the additional
benefit when working with smaller, less diverse programs

e Similar to SPARC data register windows, IRF can support multiple
hardware windows, although they are not handled in a LIFO manner

— Function addresses are modified to include an instruction register
window pointer (IRWP)

— Calls transfer control to the specified address and set the new IRWP

— When saving the return address, the current IRWP is also saved

— Returns also restore the proper window based on the saved IRWP

e Windows can be purely physical or managed through parallel register
copying

SLIDE 10

‘ €® HARDWARE WINDOW PARTITIONING |

e Greedy algorithm operates similar to previous software partitioning, but
no need to estimate overhead costs

e First build up the N partitions by choosing the function with the greatest
minimum increase in cost for adding to the existing partitions

e For each remaining function, choose to allocate it to the partition that
yields the lowest overall cost

e Fetch Energy — Standard IRF 58.08% — 4 windows 53.28%

e Results can be further improved if inactive partitions are kept in a drowsy
low-power state

SLIDE 11

‘ €® HARDWARE PARTITIONING — RESULTS I

70.00% I
67.50%

65.00%

62.50%

60.00%

57.50%

55.00%

52.50%

50.00%

47.50%

Estimated Fetch Energy (%)

45.00%

42.50%

40.00% | | | | |

/7 8

9

10 11 12 13 14 15 16
Number of IRF Windows

= Automotive ¢ Consumer v Network

A Office

» Security

< Telecomm » Average

All

SLIDE 12

‘ ® StAaTIC IRF PORTIONS I

e Goal is to minimize area requirements of IRF windowing while still
providing improved fetch energy consumption

e Similar to SPARC global registers remaining the same on window
switches, we noticed instructions are often duplicated in multiple windows

e Selection algorithm chooses the M shared entries and then proceeds with

the standard selection algorithm for 4 windows, considering that some
Instructions are available in each IRF window

e Fetch Energy — 4 windows IRF 53.28% — 4 shared entries 53.35%

e Reduced leakage energy for smaller IRF area may be more important for
future design processes

SLIDE 13

‘ € StAaTIC IRF PORTIONS — RESULTS |

Estimated Fetch Energy (%)

65%

|] 1 static [l 4 Static [|8 Static | |12 Static] 16 Static

60%

55%

50%
45% -
40%

35% -

30%

Automotive

Consumer
Network
Office
Security

Benchmark Category

Telecomm
Average

SLIDE 14

‘ ® UsIiNG AN IRF wiTH A Loor CACHE I

e Loop Cache — automatically places inner loop instructions into a small
fetch buffer (reducing energy consumption)
e Three modes
— Inactive — waiting to detect a short backward branch (sbb)
— Fill — after sbb detection, fill the buffer with instructions until another
taken sbb or a different jump (canceling the fill)
— Active — after filling back to sbb, all fetches can be handled by the
circular buffer, until the sbb is not taken or another branch is
e Limitations
— Can only capture innermost loops
— No additional transfers of control
— Difficult to handle long loops

SLIDE 15

‘ ¢ IRF AND Loor CACHE SYNERGY I

e Allow loop cache to handle more instructions (packing reduces code size)
e Better than just lengthening the loop cache buffer, since IRF acts as a
filter against instructions that also are not effective with the loop cache
— Calls are not packable (and not able to be in the loop cache)
— Branches terminate packs and thus do not condense as well as straight-
line code
— Densely encoded inner loops are formed by the IRF, and then able to
be detected /fetched easily by a loop cache
e |IRF normally has to fetch from the IC at least once every five instructions
(for a new MISA packed instruction), but the loop cache replaces the
expensive |C fetch with a reduced cost fetch as well
e Fetch Energy — 8 entry LC 93.26% — 4 windows IRF 53.28% — 8 entry
LC + 4 windows IRF 43.84%

SLIDE 16

‘ ¢ IRF wiTH Loor CACHE — RESULTS I

Automotive
Consumer
Network
Office
Security

Benchmark Category

7 LC 4 JLCs []LC 16 []LC 32 LC 64 I IRF 4 P LC4+IRF4
[JLC8+IRF4 PLC 16+ IRF 4 [LC 32+ IRF 4[] LC 64 + IRF 4
~ 100%
o~
< 90%
>
) 80%
L 70%
'_-'CJ 60% |
O 50% .
()}
. 40% H -
D 30%- | |
g 20% - - -
2 10% . .
LLl 0% |

Telecomm
Average

SLIDE 17

, @,_m
M =i

¢ IRF wiTH Loor CACHE — DETAILS

B IRF 4 | |LC8+IRF4

L/LC8

 obelony

. LWWI029|9 |
wso
wodpy

u4

FI Ajnosg

e — EUS
[[|leepuliy
| | | | | [ysiyymolg

T T T T

e ——— SO0

ITTTm yoseasbuiig
- |lods|

] - 1duosisoys

I\ YJOM]DN
| [| [eloLyed
mbmv:_n_

1] | 7LLLIE>>QNt_._.

awe
 Bedp

. 9AlJoWOoINY

| 7Ecmm:w

| [JOSD
”_.CJOO”—_m

| [ylewoisegd

60%
50% |
40%
30%
20%
10%
0% —

|

|

,
N
o
N~

100%

(%) ABlsu3z yojo4 pejewns3

Benchmark

SLIDE 18

‘ ©® FUTURE WORK I

e Combine software partitioning and hardware partitioning to allow for a
greater number of available physical IRF entries

— Use load_irf instructions in spots where behavior changes
— Virtualize the IRF and let windows be cached/loaded as necessary

e Combine IRF with existing techniques that have fetch bottlenecks

— Code compression and encryption can impose serious penalties on
instruction fetch due to extra work decompressing/decrypting

— Similarly, LO (filter) caches can have performance penalties due to low
hit rates

— IRF can reduce the latency since more instructions are executed than
are fetched from the IC (essentially masking the pipeline stalls)

SLIDE 19

‘ ® CONCLUSIONS |

e Improve IRF packing for varied function/phase behavior by windowing
the register file (software or hardware)

e Can reserve a portion to be statically shared for reduced area overhead
e Nearly half of the fetch energy can be eliminated using a windowed IRF

e Synergistic relationship between IRF and Loop Cache, since each operate
at a different granularity

e |RF provides significant fetch energy savings with reduced code size and
slightly improved execution behavior

e Can be added to an existing architecture with just a few spare opcodes,
providing a rich extension to the traditional ISA via the RISA

SLIDE 20

‘0 THE ENDI

Thank you!

Questions 777

, @,_m
M =i

€® HARDWARE PARTIONING — DETAILS

] No Partitioning [l 4 Partitions

o IEEE——— 50 e oAy

Wwwoog|e |

| e—— 11150

wodpy

| —— |
m—— 7COYD
= Ajlunoag
|oepully

LIEQ@&
| | 7tr_w_u_>>o_m

_‘E f=19) _uE.O

m—— 0 20S6UL)S
tr_“c\nwﬁ_

, | E:mam_
LIEHQ_._OQEOLG

memp— 05N

| ee—— C|0)|]}E]
E mLu_wv___D

TL Jawinsuo)
MQcil
L aweT

E badpr

TL aAljowoINy
H uesng
Hosp
| —— 1UN00)IG

| , | ylewoiseg

90%
85%
80%
75% -
70%
65% -
40%
35% -
30% -
25%
20% -

, I
NN
O 0o W
© WO~
yojed pe

Jewnsg

Benchmark

‘ € MIPS INSTRUCTION FORMAT MODIFICATIONS I

6 bits

5 bits

5 bits

5 bits

5 bits

6 bits

6 bits

5 bits

5 bits

5 bits

6 bits

5 bits

opcode

rs

rt

rd

shamt

function

opcode

rs

shamt

rt

rd

function

inst

Register Format: Arithmetic/Logical Instructions

6 bits

5 bits

5 bits

16 bits

Register Format with Index to Second Instruction in IRF

6 bits

5 bits

5 bits

11 bits

5 bits

opcode

rs

rt

immediate value

opcode

rs

rt

immediate value

inst

Immediate Format with Index to Second Instruction in IRF
6 bits 26 bits

opcode target address

Immediate Format: Loads/Stores/Branches/ALU with Imm
6 bits 26 bits

opcode target address

Jump Format: Jumps and Calls Jump Format

(a) Original MIPS Instruction Formats (b) Loosely Packed MIPS Instruction Formats

e Creating Loosely Packed Instructions
— R-type: Removed shamt field and merged with rs
— |-type: Shortened immediate values (16-bit — 11-bit)
* Lui now uses 21-bit immediate value, hence no loose packing
— J-type: Unchanged

‘ € COMPILER MODIFICATIONS I

_ VPO Profiling
C Source Files @ = Executable

Static Dynamic
Profile Profile
VPO
Executable |—= - IRF Analyzer
S IRF/IMM @

Data

e VPO — Very Portable Optimizer targeted for SimpleScalar MIPS/Pisa
e |RF-resident instructions are selected by a greedy algorithm using profile
data including parameterization/positional hints

e lterative packing process using a sliding window to allow branch
displacements to slip into (5-bit) range

‘ € SELECTING IRF-RESIDENT INSTRUCTIONS I

Read in instruction profile (static or dynamic);
Calculate the top 32 immediate values for I-type instructions;
Coalesce all I-type instructions that match based on parameterized immediates;
Construct positional and regular form lists from the instruction profile, along with conflict information;
IRF[0] «— nop;
foreach / € [1..31] do
Sort both lists by instruction frequency;
IRF[i] «— highest freq instruction remaining in the two lists;

foreach conflict of IRF[i] do
| Decrease the conflict instruction frequencies by the specified amounts;

e Greedy heuristic for selecting instructions to reside in IRF

e Can mix static and dynamic profiles together now to obtain good
compression and good local packing

‘ € COALESCING SIMILAR INSTRUCTIONS I

Opcode | rs | rt | immed | prs | prt | Freq
addiu r[3] r[5] 1 s[0] NA 400
addiu r[3] r[5] 4 s[0] NA 300
addiu r[7] r[5] 1 s[0] NA 200

| Coalescing Immediate Values |
addiu r[3] r[5] 1 s[0] NA 700
addiu r[7] r[5] 1 s[0] NA 200

| Grouping by Positional Form {
addiu NA r[5] 1 s[0] NA 900

{ Actual RTL |
| r[5]=s[0]+1 | 900 |

e Semantically equivalent and commutative instructions are converted into
single recognizable forms to aid in detecting code redundancy

‘ € PACKING INSTRUCTIONS |

Name Description

tight5 5 IRF instructions (no parameters)
tight4 4 IRF instructions (no parameters)
param4 | 4 IRF instructions (1 parameter)
tight3 3 IRF instructions (no parameters)
param3 | 3 IRF instructions (1 or 2 parameters)

tight2 2 IRF instructions (no parameters)
param2 | 2 IRF instructions (1 or 2 parameters)
loose Loosely packed format

none Not packed (or loose with nop)

e Instructions are packed only within a basic block

e A sliding window of instructions is examined to determine which packing
(if any) to apply

e Branches can move into range (5-bits) due to packing, so we repack
iteratively in an attempt to obtain greater packing density

