
Reducing Instruction Fetch Cost by Packing

Instructions into Register Windows

Stephen Hines, Gary Tyson, David Whalley

Computer Science Dept.

Florida State University

November 14, 2005



Ê Introduction

• Reducing fetch energy consumption is important for embedded devices

– Fetch accounts for 1/3 of total processor power on a StrongARM
– Existing techniques provide tradeoffs with execution time (L0 caches),

or can only target certain innermost loops (loop caches, ZOLB)

• Instruction Packing with an Instruction Register File (IRF)

– Targets fetch energy, code size, and execution time for improvement
– Place frequently accessed instructions into a small register file for easy,

lower-power access
– Original ISCA 2005 version limited to 32 instructions/registers locked

in at program load

slide 1



u Reducing Fetch Energy Consumption

• Can be improved by fetching even more instructions from the IRF

• SPARC uses register windows to reduce overhead of register
saves/restores on function calls

• Windowing is also better than just increasing the size of the IRF, as the
larger IRF would require a greater number of bits to address each entry

• Windowing eliminates the need to modify our original proposed IRF
instruction formats

• Allow the compiler to make decisions about which instructions should be
promoted to the IRF for each particular function/phase of execution

slide 2



u Outline

Ê Introduction

Ë IRF Overview

Ì Software Windowing

Í Hardware Windowing

Î Static IRF Portions

Ï Using an IRF with a Loop Cache

Ð Future Work

Ñ Conclusions

slide 3



Ë IRF Overview

Instruction
Cache

(L0 or L1)

IRF

IMM

PC

IF Stage

IF/ID

First Half of ID Stage

• Stores frequently occurring instructions as specified by the compiler
(potentially in a partially decoded state).

• Allows multiple instruction fetch with packed instructions.

slide 4



u ISA Modifications

• MIPS ISA — commonly known and provides simple encoding

– RISA (Register ISA) — instructions available via IRF access
– MISA (Memory ISA) — instructions available in memory

? Create new instruction formats that can reference multiple RISA
instructions — Tightly Packed

? Modify original instructions to be able to pack an additional RISA
instruction reference — Loosely Packed

• Increase packing abilities with Parameterization

slide 5



u Tightly Packed Instruction Format

6 bits 5 bits 5 bits 5 bits 5 bits

opcode inst1 inst2 inst3 inst4

5 bits
inst5

1
s paramparam

• New opcodes for this T-format of MISA instructions
• Supports sequential execution of up to 5 RISA instructions from the IRF

– Unnecessary fields are padded with nop.
• Supports up to 2 parameters replacing instruction slots

– Parameters can come from 32-entry Immediate Table (IMM).
– Each IRF entry retains a default immediate value as well.
– Branches use these 5-bits for displacements.

slide 6



u Experimental Setup

• SimpleScalar PISA and VPO targeted for MIPS with IRF

• Dynamically profiled applications + irfprof for selecting IRF entries

• Library code is not packed and thus not evaluated

• 21 MiBench embedded benchmarks

• Power analysis validated by sim-panalyzer and Cacti approximations:

Efetch = CostIC × AccessesIC + CostIRF × AccessesIRF

• CostIC hit is approximately 2 orders of magnitude greater than CostIRF
for an 8KB IC and 32-entry IRF

slide 7



Ì Software Windowing

• Improve utilization by replacing entries in the IRF on a per-function basis
• load irf – Compiler-generated instruction to replace IRF entries
• Greedy partitioning algorithm selects instructions from similar functions

to share space in a window
– Depending on benefit/cost of splitting, choose whether to merge

function profile with an existing partition, or create a new partition
– Each function only placed once, so the algorithm is guaranteed to

terminate
• Results

– Fetch Energy – Standard IRF 58.08% → SW windows 54.40%
– Windows from 1 – 32 with median of 4 and mean of 8.33
– Approximately 24.54 different IRF entries between partitions

slide 8



u Software Partitioning – Results

slide 9



Í Hardware Windowing

• Overhead in switching software windows hides some of the additional
benefit when working with smaller, less diverse programs

• Similar to SPARC data register windows, IRF can support multiple
hardware windows, although they are not handled in a LIFO manner

– Function addresses are modified to include an instruction register
window pointer (IRWP)

– Calls transfer control to the specified address and set the new IRWP
– When saving the return address, the current IRWP is also saved
– Returns also restore the proper window based on the saved IRWP

• Windows can be purely physical or managed through parallel register
copying

slide 10



u Hardware Window Partitioning

• Greedy algorithm operates similar to previous software partitioning, but
no need to estimate overhead costs

• First build up the N partitions by choosing the function with the greatest
minimum increase in cost for adding to the existing partitions

• For each remaining function, choose to allocate it to the partition that
yields the lowest overall cost

• Fetch Energy – Standard IRF 58.08% → 4 windows 53.28%

• Results can be further improved if inactive partitions are kept in a drowsy
low-power state

slide 11



u Hardware Partitioning – Results

slide 12



Î Static IRF Portions

• Goal is to minimize area requirements of IRF windowing while still
providing improved fetch energy consumption

• Similar to SPARC global registers remaining the same on window
switches, we noticed instructions are often duplicated in multiple windows

• Selection algorithm chooses the M shared entries and then proceeds with
the standard selection algorithm for 4 windows, considering that some
instructions are available in each IRF window

• Fetch Energy – 4 windows IRF 53.28% → 4 shared entries 53.35%

• Reduced leakage energy for smaller IRF area may be more important for
future design processes

slide 13



u Static IRF Portions – Results

slide 14



Ï Using an IRF with a Loop Cache

• Loop Cache – automatically places inner loop instructions into a small
fetch buffer (reducing energy consumption)

• Three modes
– Inactive – waiting to detect a short backward branch (sbb)
– Fill – after sbb detection, fill the buffer with instructions until another

taken sbb or a different jump (canceling the fill)
– Active – after filling back to sbb, all fetches can be handled by the

circular buffer, until the sbb is not taken or another branch is
• Limitations

– Can only capture innermost loops
– No additional transfers of control
– Difficult to handle long loops

slide 15



u IRF and Loop Cache Synergy

• Allow loop cache to handle more instructions (packing reduces code size)
• Better than just lengthening the loop cache buffer, since IRF acts as a

filter against instructions that also are not effective with the loop cache
– Calls are not packable (and not able to be in the loop cache)
– Branches terminate packs and thus do not condense as well as straight-

line code
– Densely encoded inner loops are formed by the IRF, and then able to

be detected/fetched easily by a loop cache
• IRF normally has to fetch from the IC at least once every five instructions

(for a new MISA packed instruction), but the loop cache replaces the
expensive IC fetch with a reduced cost fetch as well

• Fetch Energy – 8 entry LC 93.26% → 4 windows IRF 53.28% → 8 entry
LC + 4 windows IRF 43.84%

slide 16



u IRF with Loop Cache – Results

slide 17



u IRF with Loop Cache – Details

slide 18



Ð Future Work

• Combine software partitioning and hardware partitioning to allow for a
greater number of available physical IRF entries

– Use load irf instructions in spots where behavior changes
– Virtualize the IRF and let windows be cached/loaded as necessary

• Combine IRF with existing techniques that have fetch bottlenecks

– Code compression and encryption can impose serious penalties on
instruction fetch due to extra work decompressing/decrypting

– Similarly, L0 (filter) caches can have performance penalties due to low
hit rates

– IRF can reduce the latency since more instructions are executed than
are fetched from the IC (essentially masking the pipeline stalls)

slide 19



Ñ Conclusions

• Improve IRF packing for varied function/phase behavior by windowing
the register file (software or hardware)

• Can reserve a portion to be statically shared for reduced area overhead

• Nearly half of the fetch energy can be eliminated using a windowed IRF

• Synergistic relationship between IRF and Loop Cache, since each operate
at a different granularity

• IRF provides significant fetch energy savings with reduced code size and
slightly improved execution behavior

• Can be added to an existing architecture with just a few spare opcodes,
providing a rich extension to the traditional ISA via the RISA

slide 20



u The End

Thank you!

Questions ???

slide 21







u Hardware Partioning – Details



u MIPS Instruction Format Modifications

5 bits 5 bits 5 bits 6 bits6 bits 5 bits

shamt functionrdrtrsopcode

Register Format: Arithmetic/Logical Instructions

immediate valuertrsopcode

 Immediate Format: Loads/Stores/Branches/ALU with Imm

6 bits 5 bits 5 bits 16 bits

26 bits6 bits

target addressopcode

Jump Format: Jumps and Calls

(a) Original MIPS Instruction Formats

Register Format with Index to Second Instruction in IRF

opcode rs rt rd function inst

5 bits6 bits5 bits5 bits5 bits6 bits

shamt

6 bits 5 bits 5 bits 11 bits 5 bits

opcode rs rt immediate value inst

Immediate Format with Index to Second Instruction in IRF

Jump Format 

opcode target address

26 bits6 bits

(b) Loosely Packed MIPS Instruction Formats

• Creating Loosely Packed Instructions
– R-type: Removed shamt field and merged with rs
– I-type: Shortened immediate values (16-bit → 11-bit)

? Lui now uses 21-bit immediate value, hence no loose packing
– J-type: Unchanged



u Compiler Modifications

C Source Files
Profiling

Executable
VPO

Compiler

Executable IRF Analyzer
VPO

Compiler

Profile
Data

Dynamic

Data
IRF/IMM

Profile
Data

Static

• VPO — Very Portable Optimizer targeted for SimpleScalar MIPS/Pisa
• IRF-resident instructions are selected by a greedy algorithm using profile

data including parameterization/positional hints
• Iterative packing process using a sliding window to allow branch

displacements to slip into (5-bit) range



u Selecting IRF-Resident Instructions

Read in instruction profile (static or dynamic);
Calculate the top 32 immediate values for I-type instructions;

Coalesce all I-type instructions that match based on parameterized immediates;
Construct positional and regular form lists from the instruction profile, along with conflict information;
IRF[0]← nop;

foreach i ∈ [1..31] do
Sort both lists by instruction frequency;

IRF[i]← highest freq instruction remaining in the two lists;
foreach conflict of IRF[i] do

Decrease the conflict instruction frequencies by the specified amounts;

• Greedy heuristic for selecting instructions to reside in IRF

• Can mix static and dynamic profiles together now to obtain good
compression and good local packing



u Coalescing Similar Instructions

Opcode rs rt immed prs prt Freq

addiu r[3] r[5] 1 s[0] NA 400
addiu r[3] r[5] 4 s[0] NA 300
addiu r[7] r[5] 1 s[0] NA 200
...

⇓ Coalescing Immediate Values ⇓
addiu r[3] r[5] 1 s[0] NA 700
addiu r[7] r[5] 1 s[0] NA 200
...

⇓ Grouping by Positional Form ⇓
addiu NA r[5] 1 s[0] NA 900
...

⇓ Actual RTL ⇓
r[5]=s[0]+1 900

• Semantically equivalent and commutative instructions are converted into
single recognizable forms to aid in detecting code redundancy



u Packing Instructions

Name Description

tight5 5 IRF instructions (no parameters)
tight4 4 IRF instructions (no parameters)

param4 4 IRF instructions (1 parameter)
tight3 3 IRF instructions (no parameters)

param3 3 IRF instructions (1 or 2 parameters)
tight2 2 IRF instructions (no parameters)

param2 2 IRF instructions (1 or 2 parameters)
loose Loosely packed format

none Not packed (or loose with nop)

• Instructions are packed only within a basic block
• A sliding window of instructions is examined to determine which packing

(if any) to apply
• Branches can move into range (5-bits) due to packing, so we repack

iteratively in an attempt to obtain greater packing density


