
Reducing Instruction Fetch Cost by Packing Instructions into Register Windows

Stephen Hines, Gary Tyson, and David Whalley
Florida State University

Computer Science Department
Tallahassee, FL 32306-4530

{hines,tyson,whalley}@cs.fsu.edu

Abstract

Instruction packing is a combination com-
piler/architectural approach that allows for decreased
code size, reduced power consumption and improved per-
formance. The packing is obtained by placing frequently
occurring instructions into an Instruction Register File
(IRF). Multiple IRF entries can then be accessed using
special packed instructions. Previous IRF efforts focused
on using a single 32-entry register file for the duration of
an application. This paper presents software and hardware
extensions to the IRF supporting multiple instruction
register windows to allow a greater number of relevant
instructions to be available for packing in each function.
Windows are shared among similar functions to reduce the
overall costs involved in such an approach. The results
indicate that significant improvements in instruction fetch
cost can be obtained by using this simple architectural
enhancement. We also show that using an IRF with a loop
cache, which is also used to reduce energy consumption,
results in much less energy consumption than using either
feature in isolation.

1 Introduction

One important design constraint for many embedded
systems is power consumption, which can affect battery life
and operating temperature. Reducing the power consump-
tion associated with I-fetch logic, which consumes approx-
imately one third of the total processor power [18], is a nat-
ural target for making embedded processors more energy
efficient. There have been a number of different approaches
to reduce the power consumption associated with I-fetch
logic. L0 caches can significantly reduce power consump-
tion, but incur an associated execution time penalty [13].
Zero overhead loop buffers [7] and loop caches [9] can also
reduce fetch cost, but only for a specific class of the inner-
most loops in a function.

An orthogonal approach has been recently proposed that
places instructions into registers, enabling the compiler to
pack the most frequently executing instructions into an In-
struction Register File (IRF) [11]. This approach allows
multiple instructions to be specified (by IRF index) in a sin-
gle instruction fetched from the instruction cache (IC). Us-
ing an IRF not only saves energy by reducing the number
of instructions referenced from the IC, but also saves space
by reducing the number of instructions stored in memory,
and can improve execution time by streamlining instruction
fetch and improving the IC hit rate.

The previous work on investigating the benefits of an IRF
focused on using a single 32-entry IRF containing the most
frequently executed instructions for an application. The
IRF was initialized with the selected instructions at the time
the application was loaded and remained unchanged for the
lifetime of the application. Even with this very restrictive
IRF allocation strategy, the results showed significant en-
ergy savings, particularly for smaller applications.

In this paper we investigate IRF allocation policies that
enable the compiler to select those instructions most use-
ful for each phase of execution [20]. This approach reduces
energy consumption by providing more instructions to the
processor pipeline from the IRF. We develop two heuris-
tics for determining what instructions will be placed into the
IRF and at what points in the program the instructions are
promoted to the IRF. We also propose microarchitectural
enhancements to minimize the overhead in changing IRF
contents during execution. Finally, we also evaluate how
the use of an IRF interacts with another instruction fetch
energy reduction technique — the loop cache.

The remainder of this paper has the following organiza-
tion. First, we review previous work on reducing instruction
fetch cost, including the prior work on packing instructions
into registers. Second, we describe our IRF framework and
the model used for evaluating its performance. Third, we
develop a more sophisticated IRF allocation heuristic for
modifying the contents of the IRF during execution, and
evaluate the resulting reduction in energy as well as the

overhead of inserting instructions to load the IRF at various
points in the program. Fourth, we develop a new IRF mi-
croarchitecture that reduces the overhead required to mod-
ify the IRF instructions during execution, providing greater
energy reduction benefits when compared to the original
IRF with compiler instruction promotion only. Fifth, we
show that the total number of IRF registers can be reduced
with only a slight increase in fetch cost by having a portion
of the visible entries in the IRF contain a fixed set of instruc-
tions. Sixth, we illustrate that a loop cache and the IRF can
be used together to further significantly reduce instruction
fetch cost. Seventh, we present some crosscutting issues re-
garding the support costs of using a windowed approach for
the IRF. Eighth, we mention several potential topics for fu-
ture work. Finally, we present our conclusions for the paper.

2 Previous Work on Reducing Instruction
Fetch Cost

There have been a number of approaches used to re-
duce instruction fetch cost. They can be broadly placed
into three groups: code compression, alternate instruction
caching strategies, and alternate instruction storage strate-
gies with compiler selection.

The first approach is to compress the code within a pro-
gram, which can have the side effect of decreasing the num-
ber of cache misses due to a smaller footprint of instructions
being accessed during the execution. One technique is to
abstract common code sequences into routines and have the
original sites of each sequence converted into calls [8, 6, 4].
A hardware extension of this approach is to use an echo in-
struction, which indicates where the instruction sequence
can be found and the number of instructions to be exe-
cuted [15]. This approach eliminates the need for an ex-
plicit return instruction at the end of the abstracted sequence
and allows abstracted sequences of instructions to overlap.
However, both procedural abstraction and echo factoring
can increase execution time due to the extra transfers of con-
trol and can degrade instruction cache performance due to
diminished spatial locality.

Other techniques use a hardware dictionary, where du-
plicate code sequences are placed in a special control store
in the processor and codewords are associated with each of
these sequences [17, 5]. These approaches have the disad-
vantage of complicating instruction fetch and decode logic
since instructions can now vary in size. Yet another tech-
nique is to use dual instruction sets, which support both 16-
bit and 32-bit instruction formats [19, 14]. While using the
16-bit mode typically saves space, this occurs at a cost of
additional instructions and increased execution times. More
recently, Cheng, et al. proposed a new 16-bit ISA that
avoids some of the instruction overhead found in other 16-
bit ISAs by replacing the instruction decoder with a pro-

Instruction
Cache

(L0 or L1)

IRF

IMM

PC

IF Stage

IF/ID

First Half of ID Stage

Figure 1. Decoding a Packed Instruction

grammable decoder that enables a subset of the instructions
implemented in the microarchitecture to be mapped to the
ISA [3].

There have also been hardware features explicitly devel-
oped to reduce energy consumption associated with instruc-
tion fetches. One technique is to use a zero overhead loop
buffer, where an innermost loop is explicitly loaded and ex-
ecuted [7]. Such loops must typically be limited in that the
number of instructions must fit into the buffer, there can
be no transfers of control besides the loop branch, and the
number of iterations to be executed must be known. An-
other technique is to use an L0 cache, which is very small
and requires much less energy to access than an L1 instruc-
tion cache [13]. However, L0 caches have high miss rates,
which increase execution times. Finally, loop caches have
been used that can be dynamically loaded when short offset
backward branches are encountered [9]. The set of loops
that can be cached using this approach is limited to those
that have a small number of instructions and no transfers of
control occur besides the branch back to the top of the loop.

The work in our paper builds upon prior work on pack-
ing instructions into registers [11]. The general idea is to
keep frequently accessed instructions in registers, just as
frequently used data values are kept in registers by the com-
piler through register allocation. Instructions referenced
from memory are referred to as the memory ISA or MISA
instructions. Likewise, instructions referenced from the IRF
are referred to as the register ISA or RISA instructions. Fig-
ure 1 shows the use of an IRF at the start of the instruction
decode stage. Figure 2 shows the special MISA instruction
format used to reference multiple instructions in the IRF.
These instructions are called packed since multiple RISA
instructions are referenced in a single MISA instruction. Up
to five instructions from the IRF can be referenced using this
format. Along with the IRF is an immediate table (IMM),
as shown in Figure 1, that contains the 32 most commonly
used immediate values in the program. Thus, the last two
fields that could reference RISA instructions can instead be
used to reference immediate values. The number of parame-
terized immediate values used and which RISA instructions
will use them is indicated through the use of four opcodes
and the 1-bit S field. The compiler uses a profiling pass to
determine the most frequently referenced instructions that

2

6 bits 5 bits 5 bits 5 bits 5 bits

opcode inst1 inst2 inst3 inst4

5 bits
inst5

1
s paramparam

Figure 2. Tightly Packed Format

Table 1. MiBench Benchmarks
Category Applications
Automotive Basicmath, Bitcount, Qsort, Susan
Consumer Jpeg, Lame, Tiff
Network Dijkstra, Patricia
Office Ghostscript, Ispell, Rsynth, Stringsearch
Security Blowfish, Pgp, Rijndael, Sha
Telecomm Adpcm, CRC32, FFT, Gsm

should be placed in the IRF. The 31 most commonly used
instructions are placed in the IRF. One instruction is re-
served to indicate a no-operation (nop) so that fewer than
five RISA instructions can be packed together. Access to
the RISA nop terminates execution of the packed MISA in-
struction so no performance penalty is incurred. The com-
piler uses a second pass to pack the MISA instructions into
the tightly packed format shown in Figure 2.

3 Evaluation of IRF Enhancements

This section provides an overview of the IRF frame-
work used to carry out the experiments described in this
paper. Our modeling environment is an extension of the
SimpleScalar PISA target supporting IRF instructions [1].
Each simulator is instrumented to collect the relevant data
involving instruction cache and IRF access during program
execution. Our baseline IRF model has 32 instruction reg-
ister entries and supports parameterization via a 32-entry
immediate table. For all of our experiments, only the size
of the IRF is increased as preliminary studies showed little
to no benefit for varying the IMM size.

Code is generated using a modified port of the VPO com-
piler for the MIPS [2]. Each benchmark is profiled dynam-
ically using SimpleScalar and then instructions are selected
for packing using irfprof, our profile-driven IRF selection
and layout tool. The application is then recompiled and in-
structions are packed based on the IRF layout provided by
irfprof. Instruction packing is performed only on the code
generated for the actual source provided for each bench-
mark. Library code is left unmodified and as such is not
evaluated in our results.

We chose to use the MiBench embedded benchmark
suite for our experiments [10]. MiBench consists of six cat-
egories, each designed to exhibit application characteristics
representative of a typical embedded workload in that par-
ticular domain. Table 1 shows the benchmarks evaluated in
each of our experiments, although some of the figures will
only show category averages to save space.

The IRF simulator includes a power analysis estimation
based on and validated using sim-panalyzer [21]. It calcu-
lates approximations of area size and number of gates for
the IC, IRF, immediate table and combinational logic asso-
ciated with instruction fetch (there are negligible effects on
the rest of the pipeline). In fact, for a fixed, 8K-byte IC
and 32-entry IRF, the energy requirements for each config-
uration can be very accurately estimated with the follow-
ing equation where CostIRF is approximately two orders of
magnitude less expensive than CostIC:

Efetch = CostIC × AccessesIC +

CostIRF × AccessesIRF
Actual parameters were calculated using the Cacti cache
modeling tool [24] with extensions for handling the IRF.
As IRF sizes are increased, CostIRF increases in a simi-
lar fashion as with traditional register file implementations.
These estimates are conservative for the IRF, considering
that a windowed approach can take advantage of drowsy
cache techniques [12] for powering down unused windows,
which was not modeled in our experiments.

4 Dynamic IRF Recomposition via Software
Windowing

In prior work on instruction packing with an IRF, the
IRF-resident instructions were selected using a profiled run
of the application and assigned for the duration of the ap-
plication’s execution. The most frequently fetched instruc-
tions were placed in the IRF and packed instructions were
inserted into the application code referencing sequences of
IRF instructions. Since the instructions in the IRF were un-
changed by the application during execution, the benefits
of IRF could be reduced if the application has phases of
execution with radically different instruction composition.
No individual phase will be able to obtain maximum in-
struction packing with a single statically loaded IRF, since
only the most frequently executed instructions from each
phase will exist in the IRF. A natural extension to improve
IRF utilization is to enable the modification of instructions
in the IRF during program execution. This will enable a
better selection of instructions for each phase of the pro-
gram execution. Our first approach replaces the load-time
allocation of instructions into the IRF with compiler man-
aged allocation throughout execution by including load irf
instructions. This approach enables the compiler to manage
the IRF storage in a manner similar to data register promo-
tion. The IRF contents at a particular point in execution are
viewed as an IRF window. Each function could logically
have its most frequently executed instructions in its unique
IRF window. These windows would likely be shared among
functions to reduce the switching necessary during calls and
returns.

3

Functions are natural entities to allocate to windows
since they are compiled and analyzed separately. The prior
work on exploiting instruction registers used the entire ex-
ecution profile to decide which instructions would be allo-
cated to the IRF for the entire execution. In effect, one can
view the prior work as allocating all of the functions to a
single window. When multiple windows are available, we
must decide how to partition the set of functions in a pro-
gram among these windows. The goal is to allocate func-
tions whose set of executed instructions are similar to the
same window so that the windows can be best exploited.

Instructions can be inserted that load an individual IRF
entry from memory. Thus, there will be a cost associated
with switching IRF windows. To assess how effective this
approach can be, we devised an algorithm that takes into ac-
count the cost of switching the instructions available via the
IRF. This algorithm is shown in Figure 3. We first profiled
each application to build a call graph with edges weighted
by the total number of calls between each pair of functions.
Initially all functions start as part of a single IRF window.
We take a greedy approach to adding partitions, selecting
the most beneficial function to be either placed in a new
partition of its own or merged with another existing parti-
tion. The goal of this algorithm is to keep functions in the
same window unless the benefit for switching windows out-
weighs the cost of additional instructions to load and restore
IRF windows. Each time we calculate the cost of allocating
a function to a specific window, we also include the switch-
ing cost if the function being allocated either invokes or is
invoked by a function in a different window. We determine
the difference in IRF entries between the two windows and
assess the cost of loading the instructions for the new win-
dow at the point of the call and loading the instructions for
the old window at the point of the return. One can view this
cost as a lower bound since it may be difficult to keep the
common instructions in the same IRF entry locations since
a function may be invoked by many other functions using
different windows. Additionally, we only place each func-
tion in a partition at most one time in order to reduce the
partitioning overhead. Once the partitions have been con-
structed, the compiler determines which instructions can be
packed and at what call sites IRF loads must occur to main-
tain the correct contents of the IRF.

We evaluate the effectiveness of applying a software par-
titioning against the single window IRF partitioning. Fig-
ure 4 shows the results for performing software partition-
ing on each benchmark. Each benchmark is shown indi-
vidually along with the averages for each category and the
entire suite. The software window approach obtains an av-
erage fetch cost of 54.40% compared to not using an IRF,
while the original single IRF only obtains 58.08%. Several
of the benchmarks perform worse after packing instructions
with software windows. This is due to the heuristic used for

Read in instruction profile for each function;
Read in callgraph along with estimated edge weights;
Merge all functions into a single IRF window;
changes = TRUE;
while changes do

changes = FALSE;
best savings = 0;
split type = NONE;
foreach function i that has not been placed do

new savings = benefit of placing i in a new window;
// 1) Find maximum benefit split,
if new savings > best savings then

best savings = new savings;
split function = i;
split type = NEW WINDOW;

foreach function i that has not been placed do
foreach window k from 1 to n-1 do

new savings = benefit of placing i in window k;
// 2) Find maximum benefit merge
if new savings > best savings then

best savings = new savings;
split function = i;
split window = k;
split type = ADD TO WINDOW;

if best savings > 0 then
if split type == NEW WINDOW then

create a new window n and move split function into it;
// 3a) Perform the split,
n += 1;

else
//split type == ADD TO WINDOW
move split function from its original window into
split window;
// 3b) Or perform the merge

changes = TRUE;
mark split function as placed;

Figure 3: Partitioning Functions for Software
IRF Windows

choosing which instructions to pack. In the single IRF case,
only the extremely frequent instructions from tight loops
become packed, leading to a great initial savings. This is
particularly true for the applications with a few dominant
loops. The greedy heuristic used to partition the functions
can underestimate the overhead of a function removed from
the primary partition early in the processing because it as-
sumes that unprocessed functions will not increase the over-
head. Of course some of these later functions will be placed
in different partitions increasing the overhead. The smaller
the benefit of partitioning, as seen in some of the smaller
applications, the more likely inefficiencies in the heuris-
tic will negate the advantage of performing IRF partition-
ing. The larger benchmarks see marked improvement (up
to 31% savings with Lame), as they are more likely to ex-
hibit different phases of execution and can better partition
their phase behavior using multiple IRF windows.

The number of software partitions allocated for each
benchmark ranges from 1 through 32 (Pgp) with a median
of only 4 and a mean of 8.33. The relatively small number
of partitions reduces the overhead of loading instructions
into the IRF by reducing the number of function calls that

4

Figure 4. Reducing Fetch Energy by Software
Partitioning IRF Windows

require a new set of instructions placed into the IRF. Each
call site may also only change a subset of the IRF entries
since the IRF windows may contain some of the same in-
structions. In fact, the average number of IRF entries that
differ between partitions is 24.54, so the overhead for each
function call between different IRF partitions averages 49
new instructions — half each for allocating the new instruc-
tion and restoring at the function return. The small number
of partitions also allows us to consider a hardware solution
that can eliminate most of the overhead of loading a sin-
gle IRF in favor of providing multiple IRF windows in the
microarchitecture.

5 Partitioning Functions into Hardware
Windows

In the previous section, we found that applying software
windowing techniques to the IRF can lead to reductions
in fetch cost, particularly for large programs with varying
phase behaviors. One of the problems for smaller programs
however is the added overhead of switching IRF windows
in software. In addition, the software partitioning approach
requires an explicit call graph. This approach does not en-
able functions called through pointers to be effectively par-
titioned since this would make it difficult, if not impossi-
ble, to determine which IRF entries must be loaded. In this
section we evaluate an IRF design supporting several IRF
windows, which can be filled with instructions at load time,
thus eliminating the overhead of switching windows. Since
we know that most programs use only a small number of
partitions anyway, it is feasible to add a limited number of
windows into the microarchitecture and still see the power
savings — without the overhead.

Register windows have been used to avoid saving and
restoring data registers. On the SPARC architecture, the

...

IRF windows

functions

Figure 5. Example of Each Function Being Al-
located an IRF Window

windows are arranged in a circular buffer [23]. A regis-
ter window pointer (RWP) is used to indicate the current
window that is to be accessed on each register reference.
The RWP is advanced one window when entering a func-
tion and is backed up one window when leaving a function.
When the RWP is advanced onto an active window (an over-
flow), then an exception occurs and the window’s contents
are spilled to memory. When the RWP is backed up onto a
window that does not contain the correct contents (an under-
flow), then an exception occurs and the window’s contents
are loaded from memory. A circular buffer is an appropriate
model for holding these data values since the data registers
are used to contain values associated with function activa-
tion records, which are allocated in a LIFO manner.

Unlike data values associated with function activation
records, the instructions associated with each function are
fixed at compile time. Thus, we modified our compiler to
statically allocate each function to a specific window. Fig-
ure 5 depicts both functions and the IRF windows associ-
ated with them. While the functions can vary in the type of
instructions and their frequency of execution, the IRF win-
dows all have the same size. The drawback of raising excep-
tions due to overflowing and underflowing data windows on
the SPARC does not occur in our design due to each func-
tion being statically allocated to an instruction window.

In order to reduce the overhead of switching from one
window to another, we encode the window to be used by
the called function as part of the call instruction’s target ad-
dress. The MIPS call instruction uses the J format shown
at the top of Figure 6. The modified call instruction uses
the same format, but the high order bits are now used to set
the instruction RWP (IRWP) and only the low order bits are
used to update the program counter. While this change does
decrease the maximum size of programs from 226 instruc-
tions, even retaining only 20 bits for the actual target ad-
dress would allow over two million (now more compressed)
instructions, which should be more than enough for almost
all embedded applications. Rather than just saving the re-
turn address in a data register ($31 on the MIPS), the call in-
struction also saves the value of the current IRWP. Thus, the
semantics of the return instruction, jr $31 on the MIPS,

5

opcode

6 bits

target address

26 bits

opcode actual target addresswindow

Figure 6. Encoding the IRF Window Number
As Part of the Call Target Address

is also changed to reset the IRWP. Thus, the processor has
an entire cycle during each call and return instruction to set
the IRWP. Note that calls through pointers can also be han-
dled since the linker can modify the address associated with
a function so that the high order (or low order) bits indicate
which window is associated with the function.

Rather than having to go through an IRWP for every ac-
cess to an entry in the IRF, the hardware could alternatively
copy the registers each time the window is changed during
the execution of a call or return instruction. Parallel register
moves can be performed between the IRF and the appropri-
ate window, which is similar to the boosting approach used
to support speculation by copying a number of shadow reg-
isters to general-purpose registers in parallel [22].

Register windows are a more attractive approach than
just increasing the number of total available registers for
hardware such as the IRF. First, increasing the number of
registers in the IRF without windowing would force the
RISA instruction specifiers to grow beyond the 5 bits they
currently occupy. Moving to 64 entries would require 6
bits, from which it would not be possible to pack 5 en-
tries together (6 + 5 × 6 = 36 bits > 32 bits). Thus, at
most 4 RISA instructions could exist in a tightly packed in-
struction, limiting the number of pure IRF fetches that can
possibly be attained. Prior research shows that 13.35% of
the dynamic instructions fetched from the IC are these very
tightly packed instructions [11], so cutting them down to
four entries might drastically affect the fetch performance.
Second, the larger IRF would also consume more power as
the entirety would need to be active on each instruction de-
code. With windowing, some portions can be placed in a
low-power state when they are not being actively used.

Figure 7 depicts the algorithm that we used to per-
form this partitioning. The primary difference between this
heuristic and the previous software partitioning heuristic is
that this version does not need to estimate overhead costs.
The algorithm begins by reading in the instruction profile
that indicates how often each type of instruction is executed
for each function. We are concerned with the type of in-
struction since we are able to parameterize immediate val-
ues so that several distinct instructions can refer to the same
RISA instruction. The algorithm then estimates a cost for
each function, where the 31 most frequently executed types
of instructions have a fetch cost of 1 and the remaining in-
structions have a fetch cost 100 times greater, which serves

Read in instruction profile for each function;
Select the function with the highest estimated cost and assign it to
window 0;
m = 1;
while m < number of IRF windows do

max func increase = 0;
// Initially allocate most beneficial
// function for each partition
foreach function i not yet assigned do

if max func increase < worst-case cost of function i then
min increase = worst-case cost of function i;
foreach window of the m current windows do

old cost = current cost associated with window;
new cost = cost associated with current window

along with merging function i into this window;
if new cost - old cost < min increase then

min increase = new cost - old cost;

if max func increase < min increase then
max func increase = min increase;
k = i;

Assign the function k to the new window m;
m += 1;

Sort the functions according to their worst-case cost;
// Allocate remaining functions
foreach function not yet assigned do

Assign the function to the window that results in the lowest
increase in cost;

Figure 7: Partitioning Functions for Hardware
IRF Windows

as a simple estimate for the relative difference in energy
consumption from fetching an instruction from the IRF ver-
sus the IC. The 31 most frequently executed types of in-
structions are selected since one of the 32 entries in the IRF
has to be reserved to represent a nop (no operation) when
not all of the RISA instruction fields in a packed instruc-
tion can be filled, allowing a portion of the fields to be used
without wasting processor cycles. For each of the remain-
ing windows the algorithm determines for each function the
minimum increase in cost that would be required to allo-
cate that function among the currently assigned windows.
The algorithm allocates the next window to the function
that would cause the greatest minimum increase in cost. In
other words, we initially allocate a single function to each
window taking into account both the estimated cost of the
function and overlap in cost with the functions allocated to
the other windows. The worst-case cost is used to improve
the efficiency of the algorithm. For the worst-case cost we
assume that none of the instructions in the functions are al-
located to the IRF. The final pass is used to assign each of
the remaining functions to the window that results in the
lowest increase in cost. We sort the functions so that the
functions with the greatest number of executed instructions
are assigned first. The rationale for processing the functions
in this order is to prioritize the allocation of functions that
will have the greatest potential impact on fetch cost.

For the hardware partitioning scheme, we vary the num-
ber of available hardware windows from 1 through 16. Each

6

Figure 8. Reducing Fetch Energy by Varying
the Number of Hardware Windows

time the number of windows is increased, we recalculate the
power statistics for the IRF based on the number of new in-
struction registers. We also evaluate an ideal scheme (all)
that produces a window for each individual function while
using the power statistics for a single window. Due to the
large number of program runs, the results are presented by
benchmark category in Figure 8. The original IRF scheme
(one window) achieves an average 58.08% fetch cost, while
moving to two windows shrinks the average fetch cost to
54.69%. The ideal case only provides an additional 5% sav-
ings in fetch cost on average over four windows, which pro-
vides a fetch cost of 53.28%. After four windows, however
the average results show slight increases in instruction fetch
energy, since the larger IRFs require an increase in the en-
ergy required to access and store the frequent instructions.
Since we can pack no more than 5 RISA instructions in each
32-bit MISA instruction the theoretical limit to fetch cost is
approximately 21.5% based on using the power statistics
for a 32-entry IRF. However, some restrictions are placed
on where instructions can be located in a packed instruction
(e.g. branches and branch targets cannot be placed in the
middle of a pack), so the best results fall short of the theo-
retical limits even for very large IRF window sizes. How-
ever, the average improvements exceed those for the com-
piler managed IRF because the overhead has been almost
entirely eliminated.

Figure 9 depicts a slice of the results from Figure 8, de-
tailing the per benchmark results for partitioning with four
hardware windows. The graph shows an IRF with only a
single window, as well as the four window IRF compared
to a baseline fetch unit with no IRF. Although a few of the
benchmarks see a small increase in fetch energy when mov-
ing to four windows, there is still a substantial overall fetch

Figure 9. Reducing Fetch Energy with a 4 Par-
tition IRF

energy savings, and the additional partitions can be used
to improve more phase-diverse benchmarks like Jpeg and
Blowfish. Many of the benchmarks are able to obtain a large
benefit from the hardware IRF windows since they have a
diverse instruction composition among several frequently
accessed functions. The hardware partitioning allows func-
tion call and return switching costs to be eliminated in these
cases, leading to improved instruction packing and reduced
fetch cost. However, a few of the applications (Lame) do
not achieve the same savings as the compiler managed IRF
when the number of IRF windows is smaller than the parti-
tions used in the results presented in Section 4.

6 Reserving a Portion of the IRF to be Static

In the prior work on packing instructions into an IRF, the
IRF was statically assigned instructions that would remain
the same for the entire execution of each application [11].
For the windowed IRF approach, we found that often the
same instructions were stored in different windows. This
fact leads us to believe that some instructions may be com-
mon enough to warrant packing for the entire application
execution. In this section we explore keeping a portion of
the IRF fixed throughout the entire execution and allowing
the remaining portion to change as calls to and returns from
functions in different IRF windows occur. This concept
is similar to the SPARC data registers, where r0-r7 of
the visible register set correspond to global registers which
never change and r8-r31 correspond to windows within
the register file [23]. The general idea is that if a small set
of the most frequently executed instructions types can be
used for all of the functions, then the remaining portion of
the visible register set can refer to smaller windows and the
total size of the IRF can be decreased with only a very small
impact on packing instructions. The benefits of a smaller

7

Figure 10. Reserving a Portion of the 4 Parti-
tion IRF to be Static

total IRF size include reducing energy consumption and de-
creasing access time.

We first read the instruction profile for the entire execu-
tion and assign the most frequently executed types of in-
structions to the static portion of the IRF. The functions are
then partitioned among the IRF windows that have fewer
entries using the algorithm described in Figure 7, where in-
structions in the static portion are not considered when as-
signing instructions to each window.

We varied the size of the static portion from 4, 8, 12, and
16 for the 4 window version of the IRF. Note that the basic
IRF described in this paper always shares 1 static entry re-
served for nop. Thus the static portion really only amounts
to 3, 7, 11, or 15 shared meaningful instruction entries. The
evaluated number of entries in the windowed portion of the
IRF are 28, 24, 20, and 16, respectively. These values for
the static portion correspond to a physical size reduction for
the 4 window IRF of 10.4%, 20%, 29.6%, and 39.2%.

Figure 10 shows the results of holding a portion of the
IRF entries static across the 4 hardware register windows.
These results assume a uniform cost for accessing an IRF
entry in each configuration, so increasing the static portion
only reduces our ability to pack instructions. Fetch costs
are increased approximately 0.07% by going to the 4 static
entries, and moving to 16 static entries yields an average
fetch cost of 53.97%. The actual hardware cost of mov-
ing to 4 partition with 16 shared entries is approximately
2.45 times greater than the cost of a single partition IRF,
and the benefit is better than just adding a second window.
A tuned implementation might obtain reductions in overall
fetch energy consumption due to reduced leakage energy
for the smaller physical size IRF, despite the reduced pack-
ing ability. Larger windowed IRFs may also be easier to
support by reserving some registers statically for the entire
application execution.

7 Using an IRF with a Loop Cache

We believe that using an IRF can be complementary,
rather than competitive, with other architectural and/or
compiler approaches for reducing energy consumption and
compressing code size. One complementary technique for
reducing instruction fetch energy is a loop cache. In this
section we show that the combination of using an IRF and
a loop cache reduces energy consumption much more than
using either feature in isolation.

A loop cache is a small instruction buffer that is used
to reduce instruction fetch energy when executing code in
small loops [9]. We modified SimpleScalar to simulate the
execution of the loop cache described by Lee, Moyer, and
Arends [16]. This loop cache has three modes: inactive, fill,
and active. The hardware detects when a short backward
branch (sbb) instruction is taken whose target is within a
distance where the instructions between the target and the
sbb will fit into the loop cache. At that point the loop cache
goes into fill mode, which means that the instructions are
fetched from the IC and placed in the loop cache. After en-
countering the sbb instruction again, the loop cache is set
to active mode, when instructions are only fetched from the
loop cache. Whenever there is a taken transfer of control
that is not the sbb instruction or the sbb instruction is not
taken, the loop cache goes back to inactive mode and in-
structions are fetched from the IC. Thus, loop caches can be
exploited without requiring the addition of any new instruc-
tions to the ISA.

One of the limiting factors for using this loop cache is
the number of instructions within the loop. This factor can
be mitigated to a large extent by the use of an IRF. For each
tightly packed MISA instruction, there are up to five RISA
instructions that are fetched from the IRF. The loop cache
contains only the MISA instructions. Thus, the number of
total instructions executed from the loop cache can poten-
tially increase by a factor of five.

Figure 11 shows the instruction fetch cost of using a loop
cache, a 4 window IRF, and a 4 window IRF with a loop
cache normalized against using no IRF and no loop cache.
We varied the size of the loop cache to contain 4, 8, 16,
32, and 64 instructions. The energy requirement of a loop
cache access closely compares to that of a single IRF ac-
cess. A MISA instruction fetched from the loop cache and
that contains five RISA references would have an approxi-
mate fetch cost of 0.016 since there has to be a fetch from
both the loop cache and the IRF before the first RISA in-
struction can be executed. We found that the loop cache
and IRF can cooperate to further reduce instruction fetch
costs. Whereas an 8-entry loop cache reduces the fetch cost
to 93.26%, and a 4 window IRF can reduce fetch cost to
53.28%, the combination of such an IRF with a loop cache
reduces the instruction fetch cost to 43.84%.

8

Figure 11. Reducing Fetch Energy with a Loop
Cache and/or IRF

The results show clearly that a loop cache and an IRF
can operate in a complementary fashion, often obtaining
better results than either can separately. One limitation of
a loop cache is that the maximum loop size is fixed, and
any loop that extends beyond the sbb distance can never
be matched. Packing instructions naturally shortens this
distance for frequently executed instructions, thus allowing
more loops to fit into the loop cache. The loop cache is
also limited to loops that do not contain call instructions as
any taken transfer of control invalidates the cache contents.
Lengthening the actual size of the loop cache only provides
greater access for loops with transfers of control (e.g. outer
loop nests and those with function calls) to start the filling
process. Our IRF does not currently support packing call in-
structions (since they are rare and usually diverse), and thus
these references remain a single unpacked MISA instruc-
tion. Additionally, packed instructions can contain at most
one branch instruction, which terminates the pack execu-
tion. Due to these factors, code packed for IRF tends to be
less dense around sections containing potential transfers of
control, leading to longer branch distances for the sbb and
serves in essence as a filter for eliminating these poor loop
choices. Instruction packing with an IRF is limited in the
number of RISA instructions available from a single MISA
instruction that is fetched from memory. Thus, there is an
approximate lower bound of 21.5% for fetching with an IRF
as at least 1 out of every 5 instructions (assuming all tight
packs) must be MISA. The loop cache can assist by provid-
ing low-power access to frequently executed packed MISA
instructions, thus allowing the fetch cost with an IRF to drop
even further. In this manner, both schemes are able to alle-
viate some of their inefficiencies by exploiting the features
provided by the other.

Figure 12 provides a more detailed look at the interac-
tions between an 8-entry loop cache and a 4 window IRF.

Figure 12. Reducing Fetch Energy Using a
Combination of 8-entry Loop Cache and 4 Par-
tition IRF

Notice that for Susan, Tiff2bw, Stringsearch, and Sha, the
fetch cost is reduced below 15% (saving more than 85%! of
the fetch energy over the baseline model) for the combined
IRF and loop cache scheme. These benchmarks demon-
strate the potential multiplicative collaboration that exists
between a loop cache and an IRF performing at their peak.

8 Crosscutting Issues

There are a couple of design issues that must be ad-
dressed to incorporate an IRF into a processor architecture.
Using IRF register windows means more state has to be pre-
served at context switches. The IRF need not be saved at
each context switch since the instructions in each window
are unchanged copies of a section of memory. However, the
IRF may need to be reloaded after returning from a con-
text switch. Rather than eagerly reloading all of the IRF
windows, the processor could only reload a particular win-
dow when it is referenced and is not resident in the IRF. An
exception could be generated when such a situation is en-
countered, which should only infrequently occur. We are
exploring an alternate caching model (discussed in the next
section) that would moderate the impact of saving IRF state
on a context switch.

Another issue involves library code compiled separately
from application code. A number of solutions are possi-
ble in this case. First, the library code could avoid using
packed instructions – though this would limit the advantage
of the IRF. Second, a software convention could specify a
single IRF window containing common instructions for a
wide variety of library routines that is always mapped to a
specific IRF window. Any call to a library routine would
specify the generic library IRF window. This solution re-
quires identification of library routines so the compiler can

9

use the correct IRF window. Finally, IRF loads can be used
to overwrite IRF entries within the library routines as long
as the IRF state can be restored when the application code
is reentered. Note that we do not attempt to pack instruc-
tions in library functions into the IRF and do not include
the results of executing library code in our measurements.

9 Future Work

There are many areas of future work that are possible
to investigate for dynamically selecting the instructions to
place in the IRF. In this paper, we explored using IRF load
instructions to change the contents of the IRF and we ex-
amined the benefits of multiple IRF windows. While we
carefully chose the number of IRF windows to match the
average number of different partitions chosen by the com-
piler, there are some applications that would benefit from
having additional windows. There are two ways to achieve
a larger set of windows than there are hardware windows:
The first is to return to the IRF load instructions used in
Section 4, but with the multiple IRF hardware windows
proposed in Section 5. For most applications this would
not provide additional performance gains (since 4 IRF win-
dows is sufficient), but for some of the larger applications,
this would further improve our ability to pack more instruc-
tions. Furthermore, it would come at much lower overhead
costs, since IRF loads only need occur when the program
switches to a phase that cannot be best serviced by one of
four resident IRF windows (instead of the only resident IRF
in the results in Section 4). Alternately, the microarchitec-
ture can virtualize a large set of windows (say 32), and rely
on caching to retain the most active subset in the physical
IRF. This would be organized as a fully associative set of 4
cached IRFs supporting a memory resident set of IRF win-
dows. In this configuration, the call instruction still speci-
fies which of the 32 windows to switch to; if that window is
not resident in the 4-entry IRF cache, a miss occurs and the
LRU entry is replaced with the IRF window specified in the
call.

Another area of future research is to expand the evalua-
tion of the IRF with existing code compression techniques.
Many of the existing code compression techniques require
a multiple cycle fetch in order to perform the decompres-
sion. In a conventional instruction fetch pipeline, there is
little opportunity to hide the increased latency of the mul-
tiple cycle access, but instruction fetches from memory oc-
cur less frequently with an IRF as it takes multiple cycles to
consume packed instructions. That is, a single instruction
fetched from the IC may specify up to 5 instruction to fetch
from the IRF. Most processor pipeline implementations, es-
pecially low-power embedded processors, could not process
5 instructions in a single cycle. However, the next IC fetch
can occur immediately after (even in the event of a branch

in the IRF), so when the instructions fetched from the IC
contain a packed instruction, the following IC fetch can of-
ten take an additional cycle without incurring any perfor-
mance penalty. This synergistic relationship between the
IRF and code compression can result in a significant reduc-
tion in any performance degradation expected with the de-
compression algorithm. Alternately, it can enable more so-
phisticated compression algorithms by subsuming much of
the latency effects.

10 Conclusions

In this paper, we have examined several extensions to
incorporating an IRF into a processor architecture. These
include software inserted by the compiler to modify the
contents of the IRF as program phase changes occur. This
approach improves the ability of an IRF to reduce en-
ergy requirements for instruction fetch — particularly for
those large applications that exhibit many diverse execu-
tion phases. We also propose a new windowed IRF mecha-
nism that further reduces instruction fetch energy by elimi-
nating almost all of the overhead from switching IRF win-
dows between functions. Our results show that the use of
IRF windows can eliminate almost 1/2 of the instruction
fetch energy requirements on average across a wide selec-
tion of embedded applications. We also showed the syn-
ergistic relationship between the use of an IRF and existing
loop cache designs to further reduce energy requirements —
to less than 10% of the baseline instruction fetch energy for
some applications. As with the earlier results on employing
an IRF, our research showed that the addition of an IRF can
significantly reduce fetch energy without negative tradeoffs
in code size (reduced with IRF) and execution time (slightly
reduced due to IC effects).

The IRF can be easily integrated into an embedded pro-
cessor pipeline architecture and can be effectively utilized
by compilers using profiled feedback or compile-time esti-
mates of instruction frequencies. IRF support can be easily
added to an existing architecture, requiring only a few free
opcodes to implement, and since the RISA architecture can
differ from the MISA, an IRF can provide a simple mech-
anism for extending an ISA with few remaining instruction
encoding bits.

11 Acknowledgments

We thank the anonymous reviewers for their constructive
comments and suggestions. This research was supported
in part by NSF grants EIA-0072043, CCR-0208892, CCR-
0312493, and CCF-0444207.

10

References

[1] T. Austin, E. Larson, and D. Ernst. SimpleScalar: An infras-
tructure for computer system modeling. IEEE Computer,
35:59–67, February 2002.

[2] M. E. Benitez and J. W. Davidson. A portable global opti-
mizer and linker. In Proceedings of the SIGPLAN’88 con-
ference on Programming Language Design and Implemen-
tation, pages 329–338. ACM Press, 1988.

[3] A. Cheng, G. Tyson, and T. Mudge. FITS: Framework-
based instruction-set tuning synthesis for embedded appli-
cation specific processors. In DAC ’04: Proceedings of the
41st annual conference on Design Automation, pages 920–
923, New York, NY, USA, 2004. ACM Press.

[4] K. Cooper and N. McIntosh. Enhanced code compression
for embedded risc processors. In Proceedings of the ACM
SIGPLAN Conference on Programming Language Design
and Implementation, pages 139–149, May 1999.

[5] M. Corliss, E. Lewis, and A. Roth. A DISE implementation
of dynamic code decompression. In ACM SIGPLAN Con-
ference on Languages, Compilers, and Tools for Embedded
Systems, pages 232–243, June 2003.

[6] S. K. Debray, W. Evans, R. Muth, and B. DeSutter. Compiler
techniques for code compaction. ACM Transactions on Pro-
gramming Languages and Systems, 22(2):378–415, March
2000.

[7] J. Eyre and J. Bier. DSP processors hit the mainstream. IEEE
Computer, 31(8):51–59, August 1998.

[8] C. W. Fraser, E. W. Myers, and A. L. Wendt. Analyz-
ing and compressing assembly code. In Proceedings of the
SIGPLAN ’84 Symposium on Compiler Construction, pages
117–121, June 1984.

[9] A. Gordon-Ross, S. Cotterell, and F. Vahid. Tiny instruction
caches for low power embedded systems. Trans. on Embed-
ded Computing Sys., 2(4):449–481, 2003.

[10] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin,
T. Mudge, and R. B. Brown. MiBench: A free, commer-
cially representative embedded benchmark suite. IEEE 4th
Annual Workshop on Workload Characterization, December
2001.

[11] S. Hines, J. Green, G. Tyson, and D. Whalley. Improving
program efficiency by packing instructions into registers. In
Proceedings of the 2005 ACM/IEEE International Sympo-
sium on Computer Architecture, pages 260–271. IEEE Com-
puter Society, 2005.

[12] N. S. Kim, K. Flautner, D. Blaauw, and T. Mudge. Drowsy
instruction caches: Leakage power reduction using dynamic
voltage scaling and cache sub-bank prediction. In Proceed-
ings of the 35th annual ACM/IEEE International Symposium
on Microarchitecture, pages 219–230, Los Alamitos, CA,
USA, 2002. IEEE Computer Society Press.

[13] J. Kin, M. Gupta, and W. H. Mangione-Smith. The filter
cache: An energy efficient memory structure. In Proceed-
ings of the 1997 International Symposium on Microarchitec-
ture, pages 184–193, 1997.

[14] K. D. Kissell. MIPS16: High-density MIPS for the embed-
ded market. Technical report, Silicon Graphics MIPS Group,
1997.

[15] J. Lau, S. Schoenmackers, T. Sherwood, and B. Calder. Re-
ducing code size with echo instructions. In Proceedings of
the 2003 International Conference on Compilers, Architec-
tures and Synthesis for Embedded Systems, pages 84–94.
ACM Press, 2003.

[16] L. Lee, B. Moyer, and J. Arends. Instruction fetch energy
reduction using loop caches for embedded applications with
small tight loops. In Proceedings of the International Sym-
posium on Low Power Electronics and Design, pages 267–
269, 1999.

[17] C. Lefurgy, P. Bird, I.-C. Chen, and T. Mudge. Improving
code density using compression techniques. In Proceedings
of the 1997 International Symposium on Microarchitecture,
pages 194–203, December 1997.

[18] J. Montanaro, R. T. Witek, K. Anne, A. J. Black, E. M.
Cooper, D. W. Dobberpuhl, P. M. Donahue, J. Eno, G. W.
Hoeppner, D. Kruckemyer, T. H. Lee, P. C. M. Lin, L. Mad-
den, D. Murray, M. H. Pearce, S. Santhanam, K. J. Snyder,
R. Stephany, and S. C. Thierauf. A 160-mhz, 32-b, 0.5-W
CMOS RISC microprocessor. Digital Tech. J., 9(1):49–62,
1997.

[19] S. Segars, K. Clarke, and L. Goudge. Embedded con-
trol problems, Thumb, and the ARM7TDMI. IEEE Micro,
15(5):22–30, October 1995.

[20] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Au-
tomatically characterizing large scale program behavior. In
ASPLOS-X: Proceedings of the 10th international confer-
ence on Architectural Support for Programming Languages
and Operating Systems, pages 45–57, New York, NY, USA,
2002. ACM Press.

[21] SimpleScalar-ARM Power Modeling Project.
http://www.eecs.umich.edu/∼panalyzer.

[22] M. Smith, M. Horowitz, and M. Lam. Efficient superscalar
performance through boosting. In Proceedings of the Inter-
national Conference on Architectural Support for Program-
ming Languages and Operating Systems, pages 248–259,
October 1992.

[23] D. Weaver and T. Germond. The SPARC Architecture Man-
ual, 1994.

[24] S. J. Wilton and N. P. Jouppi. CACTI: An enhanced cache
access and cycle time model. IEEE Journal of Solid State
Circuits, 31(5):677–688, May 1996.

11

